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ABSTRACT
Evidence for non-zero mean stellar velocities in the direction perpendicular to the Galactic
plane has been accumulating from various recent large spectroscopic surveys. Previous analyt-
ical and numerical work has shown that a ‘breathing mode’ of the Galactic disc, similar to what
is observed in the solar vicinity, can be the natural consequence of a non-axisymmetric internal
perturbation of the disc. Here we provide a general analytical framework, in the context of
perturbation theory, allowing us to compute the vertical bulk motions generated by a single
internal perturber (bar or spiral pattern). In the case of the Galactic bar, we show that these
analytically predicted bulk motions are well in line with the outcome of a numerical simula-
tion. The mean vertical motions induced by the Milky Way bar are small (mean velocity of
less than 1 km s−1) and cannot be responsible alone for the observed breathing mode, but they
are existing. Our analytical treatment is valid close to the plane for all the non-axisymmetric
perturbations of the disc that can be described by small-amplitude Fourier modes. Further
work should study how the coupling of multiple internal perturbers and external perturbers is
affecting the present analytical results.

Key words: Galaxy: evolution – Galaxy: kinematics and dynamics – solar neighbourhood –
Galaxy: structure – galaxies: spiral.

1 IN T RO D U C T I O N

The kinematics of stars perpendicular to the Galactic plane tra-
ditionally had (and still has) great importance, for instance as a
probe of the vertical force and mass density in the solar neighbour-
hood (e.g. Kuijken & Gilmore 1991; Creze et al. 1998; Siebert,
Bienaymé & Soubiran 2003; Bienaymé et al. 2014; Read 2014).
In dynamical modelling, the natural zeroth-order approximation is
to assume a null mean vertical motion everywhere in the Galaxy
(as it should be in a steady-state axisymmetric stellar system; see
Binney & Tremaine 2008). However, thanks to the spatial extension
and accuracy of recent surveys, it has been discovered that signifi-
cant non-zero mean vertical motions do exist in the extended solar
neighbourhood (Widrow et al. 2012; Carlin et al. 2013; Williams
et al. 2013). These consist in patterns looking like ‘rarefaction-
compression’ waves or ‘breathing modes’ of the disc. Whilst origi-
nally associated solely with excitations by external sources such as a
passing satellite galaxy or a small dark matter substructure crossing
the Galactic disc (Widrow et al. 2012, Gómez et al. 2013; Yanny
& Gardner 2013; Feldmann & Spolyar 2015), it was then shown
that if the density perturbation has even parity with respect to the
Galactic plane (i.e. is plane-symmetric), and the vertical velocity

� E-mail: giacomo.monari@astro.unistra.fr

field has odd parity (i.e. a breathing mode). Then internal non-
axisymmetric perturbations, such as spiral arms, could be sufficient
to cause this (Faure, Siebert & Famaey 2014, hereafter F14). This
was shown analytically by solving the linearized Euler equations
in a cold fluid toy-model, and confirmed through test-particle sim-
ulations for quasi-static spiral arms. Subsequently, the same effect
was found in self-consistent simulations (Debattista 2014). Such an
effect from internal non-axisymmetries is of course not mutually
incompatible with external perturbers playing a role in shaping the
velocity field (e.g. Widrow et al. 2014, in which satellite interac-
tions cause both bending and breathing modes depending on the
velocity of the satellite), and such perturbers are themselves ex-
citing non-axisymmetric modes such as spiral waves (Widrow &
Bonner 2015).

There is a long history of theoretical studies of the dynamical
effects of disc non-axisymmetries in two dimensions in the Galactic
plane, dating back to the seminal works of, e.g., Lin & Shu (1964)
and Toomre (1964) on spiral arms. From the observational point of
view, striking kinematic features related to the bar and spiral arms
were, for instance, found in the solar neighbourhood in the form of
moving groups, i.e. local velocity-space substructures made of stars
of very different ages and chemical compositions (Dehnen 1998;
Chereul, Crézé & Bienaymé 1999; Famaey et al. 2005; Antoja
et al. 2008). At a less fine-grained level, it is obvious that such
local velocity-space substructures will affect the mean motions too.
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And indeed, it has long been well established that a non-zero mean
radial motion is a natural response to disc instabilities such as spiral
arms (e.g. Lin & Shu 1964, see also Binney & Tremaine 2008),
independently of the exact nature of the perturber (quasi-static or
transient). The same is true for the effects of the Galactic bar across
the whole Galactic disc (see e.g. Kuijken & Tremaine 1991).

Such non-zero mean radial motions have recently been detected in
the extended solar neighbourhood with the RAVE survey (Siebert
et al. 2011), and shown to be consistent with the effect of spiral
arms in the form of Lin–Shu density waves (Siebert et al. 2012).
Velocity fluctuations have also been detected on larger scales with
the APOGEE survey, and attributed to the effects of the Galactic
bar (Bovy et al. 2015). Monari et al. (2014, hereafter M14) found
that the bar can also explain the RAVE radial velocity gradient of
Siebert et al. 2011, but did not find hints of the observed vertical
bulk motions (Williams et al. 2013). On the contrary, the spiral
arm model of F14 has been shown to generate a ‘breathing mode’
qualitatively similar to what is observed for vertical motions. Gen-
erally speaking, theoretical studies of the dynamical response to
disc non-axisymmetries in 3D are much less developed than in 2D
(see however Patsis & Grosbol 1996; Cox & Gómez 2002).

In this paper, our aim is to provide a general analytical frame-
work linking the vertical bulk motions generated by disc non-
axisymmetries to the horizontal bulk motions. This analytic treat-
ment goes beyond the analytic toy-model of F14 for a pressureless
three-dimensional fluid, which was only suitable for an extremely
cold stellar population, and which required a few unrealistic as-
sumptions (for instance that the vertical force of the axisymmetric
potential was negligible w.r.t. to the maximum vertical force of the
perturber). Our reasoning hereafter is based on a linearization of
the zeroth-order moment of the collisionless Boltzmann equation,
i.e. the continuity equation for stellar systems. As an improve-
ment over the analytic treatment in F14, the present calculation is
valid for the whole range of velocity dispersions compatible with
the epicyclic approximation, and it is valid close to the plane for
all non-axisymmetric perturbations of the potential described by
small-amplitude Fourier modes. In particular, we show that even
the Galactic bar is expected to induce vertical bulk motions in the
Galactic disc. We use this particular case to compare our analytic
results with a numerical study.

The paper is organised as follows. In Section 2 we linearize the
continuity equation, deriving a theoretical prediction for the vertical
bulk motion. More specifically, we relate it to the horizontal motions
in the case where the potential perturbation is a Fourier mode of
small amplitude. In Section 3 we present the outcome of a numerical
test-particle simulation with a realistic model of the Galactic disc
under the influence of the gravity of the Milky Way and the bar, and
compare it with the analytical results. In Section 4 we conclude.

2 V E RT I C A L E F F E C T S O F PE RT U R BATI O N S

2.1 The linearized continuity equation

Using the cylindrical coordinates (R, φ, z) and velocities
(vR, vφ, vz) = (Ṙ, Rφ̇, ż), and integrating the collisionless Boltz-
mann equation over velocity space, one gets the following form of
the continuity equation for stellar systems:

∂ρ

∂t
+ 1

R

∂(RρuR)

∂R
+ 1

R

∂(ρuφ)

∂φ
+ ∂(ρuz)

∂z
= 0, (1)

where ρ is the density of the system in configuration space, and
ui ≡ 〈vi〉 are the average vi velocities, all estimated at (R, φ, z) and
at the time t.

For an axisymmetric stationary system, symmetric with respect
to the plane z = 0, all observables depend on (R, z) only, and one
has

ρ = ρ0, uR = 0, uφ = uφ,0, uz = 0. (2)

Let us now consider the case where the system is perturbed by a
small non-axisymmetric perturbation in the potential, i.e.

�(R, φ, z, t) = �0(R, z) + ε�1(R, φ, z, t), (3)

where �0 is the unperturbed axisymmetric potential, ε � 1, and �1

has the same order of magnitude as �0.
Considering a small response to this small perturbation, we can

write:

uR = εuR,1, uφ = uφ,0 + εuφ,1, uz = εuz,1, ρ = ρ0 + ερ1. (4)

Plugging equation (4) into equation (1) and dropping the terms that
are O(ε2), we obtain the well-known linearized continuity equa-
tion:

∂ρ1

∂t
+ 1

R

∂(Rρ0uR,1)

∂R
+ ρ0

R

∂uφ,1

∂φ
+ uφ,0

R

∂ρ1

∂φ
= −∂(ρ0uz,1)

∂z
.

(5)

From this equation, it is immediately apparent that, for a given
background axisymmetric model, one will be able to relate the
vertical bulk motion uz, 1 to the horizontal responses uR, 1 and uφ, 1

and the density wake of the perturbation ρ1.

2.2 Solution for an exponential disc

Disc non-axisymmetries do not break the plane symmetry, hence on
the galactic plane uz, 1(z = 0) = 0. This would not be true in the case
where a bending mode, due to satellite interactions for example, is
present (Widrow & Bonner 2015; Xu et al. 2015). This will be the
subject of further work.

From uz, 1(z = 0) = 0, the solution of equation (5) reads

ρ0(R, z)uz,1(R, φ, z, t) = −
∫ z

0
F (R, φ, ξ, t)dξ, (6)

where

F (R, φ, z, t) ≡ ∂ρ1

∂t
+ 1

R

∂(Rρ0uR,1)

∂R
+ ρ0

R

∂uφ,1

∂φ
+ uφ,0

R

∂ρ1

∂φ
.

(7)

We now assume that the unperturbed stellar system that we consider
is an axisymmetric exponential disc, i.e.

ρ0(R, z) = ρ0(0, 0) exp

(
− R

hR

− |z|
hz

)
, (8)

where hR and hz are the scale length and height, respectively. We
also assume that ρ1 and ρ0 have the same exponential vertical de-
pendence, i.e. ρ̃ ≡ ρ1/ρ0 is constant with z. With these assumptions
equation (6) becomes

uz,1(R, φ, z, t) = −
∫ z

0 e−|ξ |/hzG(R, φ, ξ, t)dξ

e−|z|/hz
, (9)
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where

G(R, φ, z, t) ≡ ∂ρ̃

∂t
+ uφ,0

R

∂ρ̃

∂φ
+ uR,1

R
− uR,1

hR

+ ∂uR,1

∂R
+ 1

R

∂uφ,1

∂φ
. (10)

2.3 Taylor expansion close to the plane

We now indicate only the dependence on z of the functions to
simplify the notation, and Taylor expand G in powers of z up to
second order close to the plane, i.e. from equation (9),

uz,1(z) ≈ −
∫ z

0 e−|ξ |/hz

[
G(0) + 1

2
∂2G
∂z2 (0)ξ 2

]
dξ

e−|z|/hz
. (11)

Therefore, from equations (4) and (11),

uz(z) = ε sgn(z)hz

[
G(0)(1 − e|z|/hz )

+ ∂2G
∂z2

(0)

(
z2

2
+ hz|z| + h2

z − e|z|/hzh2
z

)]
, (12)

and, averaging uz over z > 0, weighted by ρ, we obtain

�〈uz〉(z) ≡ 2

∫ z

0 ρ(ξ )uz(ξ ) dξ∫ z

0 ρ(ξ ) dξ

= 2ε

{[
G(0)(hz − z) + ∂2G

∂z2
(0)h2

z(3hz − z)

]

− z

[
G(0) + ∂2G

∂z2
(0)

hz

2
(6hz + z)

]
/
(
ez/hz − 1

)}
,

(13)

the difference between the mean vertical velocities of stars within
z, above and below the Galactic plane, since uz(z) = −uz( − z). A
value �〈uz〉 > 0 (�〈uz〉 < 0) implies that the stars of both Galactic
hemispheres tend to move away from (towards) the Galactic plane,
while for �〈uz〉 = 0 we have uz = 0, like in an axisymmetric Galaxy.

Note that, whilst being C0 continuous, the function uz(z) given by
equation (12) is not continuously differentiable (C1) at z = 0. This
is a consequence of the fact that the vertical density distribution exp
(−|z|/hz) is itself not C1 at z = 0. This technical issue disappears
for a sech2(z/hz) density distribution, which is C1 at z = 0. In
Appendix A we compute the formulae corresponding to equations
(12)–(13) in the sech2 case, and show that the results are quantita-
tively similar for the same value of hz close to the plane.

2.4 Computing the horizontal bulk motions

At this point, we will need to estimate G(0) and ∂2G(0)/∂z2. To
do so, we consider the potential perturbation �1, the density re-
sponse ρ̃, and the horizontal mean velocities as Fourier m modes
propagating in the disc, i.e.

�1(R, φ, z, t) = Re {�a(R, z) exp [im (φ − 	bt)]} . (14)

ρ̃(R, φ, t) = Re {ρ̃a(R) exp [im(φ − 	bt)]} , (15)

uR,1(R, φ, z, t) = Re
{

ua
R(R, z) exp [im (φ − 	bt)]

}
, (16)

uφ,1(R, φ, z, t) = Re
{

ua
φ(R, z) exp [im (φ − 	bt)]

}
, (17)

where we have reintroduced the R, φ, and t explicit dependencies.
Dividing equation (5) by ρ0 and integrating over z we obtain the
2D continuity equation, i.e.

∂ρ̃

∂t
+ Uφ,0

R

∂ρ̃

∂φ
+ UR,1

R
− UR,1

hR

+ ∂UR,1

∂R
+ 1

R

∂Uφ,1

∂φ
= 0, (18)

where

Ui ≡
∫ ∞

−∞ ρ (z) ui (z) dξ∫ ∞
−∞ ρ (z) dz

, (19)

and ui is one of the uR, 1, uφ, 1, uφ, 0, ua
R , and ua

φ , functions defined
above. Using the condition equation (18) we can derive ρ̃a as

ρ̃a(R) = mU a
φ/R + i

(
U a

R/hR − U a
R/R − ∂U a

R/∂R
)

m
(
	b − Uφ,0/R

) . (20)

The perturbative regime cannot give accurate estimates of ρua
R ,

ρua
φ , and ρuφ, 0 far from the z = 0 plane. However, typically these

functions must decrease quite fast as a function of z and tend to 0
as z goes to infinity. Therefore, we can approximate

Ui (R, φ, t) ≈
∫ ζ

−ζ
ρ(R, ξ )ui (R, φ, ξ, t) dξ∫ ζ

−ζ
ρ(R, ξ ) dξ

, (21)

where ζ is the height from the plane up to which we are computing
the average and at which the integral in the perturbative regime is
converging to a constant value.1

We then obtain the value of ua
R and ua

φ close the z = 0 plane by
linearizing Jeans equations, in the same way as Kuijken & Tremaine
(1991) in the 2D case. Under the assumptions that the velocity
dispersions σ 2

R and σ 2
φ are related by the epicyclic approximation

(Binney & Tremaine 2008), that the radial scale length of �1 is
larger than max [|uR, 1|, σ R]/κ , and that the mixed terms in the
velocity dispersion σ R, z and σφ, z are negligible, one obtains the
two following equations for ua

R and ua
φ :

ua
R(R, z) = i

�̃

[
m(	b − 	̃)

∂�a

∂R
− 2m	̃

R
�a

]
, (22a)

ua
φ(R, z) = − 1

�̃

[
2B̃

∂�a

∂R
+ m(m	b − m	̃)

R
�a

]
, (22b)

where

	̃(R, z) = uφ,0(R, z)

R
, (23a)

κ̃(R, z)2 = R
∂	̃2

∂R
(R, z) + 4	̃2(R, z), (23b)

�̃(R, z) = κ̃2(R, z) − m2
[
	b − 	̃(R, z)

]2
, (23c)

B̃(R, z) = −	̃(R, z) − 1

2
R

∂	̃

∂R
(R, z). (23d)

Notice how the quantities (equation 23) would yield the well-known
	, κ , �, B functions (Binney & Tremaine 2008) on the z = 0 plane
for a zero-asymmetric-drift cold fluid.

1 In the rest of the paper we adopt ζ = 1 kpc, as it is sufficient for the
convergence of the ρui functions in the barred case of Section 3.
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The assumption that the radial scale length of �1 is larger than
max [|uR, 1|, σ R]/κ is in general not valid for spiral arms, except for
very cold populations. Nevertheless, our framework for relating the
vertical and horizontal motions remains very general. In the case
of spirals we should use the generalized equations for ua

R and ua
φ

from Lin & Shu 1964, including reduction factors depending on
the velocity dispersion of the background stellar population (Bin-
ney & Tremaine 2008). Hereafter, we will concentrate on the case
of the bar, where the above assumption on the radial variation of
�1 remains valid even for a realistic background stellar velocity
dispersion.

2.5 Relating the vertical and horizontal bulk motions

To get the vertical bulk motions, we need G(0) and ∂G(0)/∂z2 in
order to evaluate �〈uz〉(z) in equation (13). To do so, we need
ρ̃a and its derivatives. Hence, we further simplify the integrals in
equation (21) by expanding, up to the second order, the functions
ui in equation (22a) and (22b). These are even function with the
respect of z, so

ui(R, z) ≈ ui(R, 0) + 1

2

∂2ui

∂z2
(R, 0)z2. (24)

For the specific function uφ, 0 coming from the background axisym-
metric model, in Appendix B we estimate

∂2uφ,0

∂z2
(R, 0) ≈ R

uφ,0(R, 0)

dν2

dR
(R), (25)

where ν(R) ≡
√

∂2�0(R, 0)/∂z2 is the vertical epicyclic fre-
quency.

We thus now have a fully analytical expression for �〈uz〉(z)
in equation (13), which we can apply to the case of the Galactic
bar hereafter. Indeed, according to the above calculations, non-
zero vertical motions should be induced by any non-axisymmetric
perturbations described by small-amplitude Fourier modes, even
though M14 had not found them in a bar simulation. This means
that they are probably quite small, but they should be present: here,
we can explicitly estimate them analytically, and then check for their
presence in a numerical simulation similar to that of M14. Note,
however, that the present analytical perturbative approach breaks
down close to the corotation and Lindblad resonances where our
analytical expression for �〈uz〉 diverges. Note also that we consider
here only the response to the potential perturbation, and do not relate
back the density response to the potential perturbation.

3 A P P L I C ATI O N TO TH E G A L AC T I C BA R

3.1 Galactic potential and disc stellar population

We take for the background axisymmetric potential �0 the Milky
Way Model I by Binney & Tremaine 2008. It consists of a spheroidal
dark halo and bulge, and three disc components: thin, thick, and ISM
disc. The disc densities decrease exponentially with Galactocentric
radius and height from the Galactic plane. The position of the Sun
in this model is (R0, z0) = (8 kpc, 0). In this axisymmetric po-
tential, we consider a background stellar population described by
an exponential disc of scale length hR = 2 kpc and scale height
hz = 0.3 kpc, with radial and vertical velocity dispersions varying
as σ R = σ R, 0exp [ − (R − R0)/Rs], σ z = σ z, 0exp [ − (R − R0)/Rs],
where (σ R, 0, σ z, 0) = (35, 15) km s−1, and Rs = 5hR. The mean tan-
gential velocity has an asymmetric drift described by Stromgren’s

formula (Binney & Tremaine 2008) adapted in our case, i.e.

uφ,0(R, 0) = vc − σ 2
R

2vc

(
κ2

4	2
− 1 + 7

5

R

hR

)
. (26)

3.2 Bar potential

We describe the perturbation due to the bar by a 3D extension of the
quadrupole bar used by Weinberg (1994) and Dehnen 2000, i.e. �1

as described in equation (14) with m = 2 and the angle φ measured
from the long axis of the bar, with

�a(R, z) = V 2
0

3

(
R0

Rb

)3
R2

r2
U(r) (27)

and

U(r) =
{ −(r/Rb)−3 for r ≥ Rb,

(r/Rb)3 − 2 for r < Rb,
(28)

where R0 is the Galactocentric radius of the Sun, V0 = vc(R0) the
local circular velocity, Rb the bar length, and r2 = R2 + z2.

The amplitude ε in equation (3) then represents the ratio between
the bar and axisymmetric background radial forces at (R, φ, z) = (R0,
0, 0).

Here we choose ε = 0.01 (Dehnen 2000), 	b =
52.23 km s−1 kpc−1, 	b/	(R0) = 1.89, (Antoja et al. 2014), and
Rb = 3.5 kpc (Dwek et al. 1995).

3.3 Analytical results

With all these inputs, we can then immediately compute �〈uz〉
from equation (13), and in Fig. 1 we plot the predicted difference
between the mean vertical velocities within 300 pc above and below
the Galactic plane, i.e. �〈uz〉(R, φ, z = 0.3 kpc, t = 0).

The dashed line represents the orientation of the long axis of the
bar, and the dashed circles the position of the corotation and outer
Lindblad resonance (OLR), i.e. R where 	(R) = 	b, and [	(R) −
	b] + κ(R)/2 = 0.

Figure 1. Difference between the average vertical motion of stars in the
northern and Southern hemisphere of the Milky Way �〈uz〉 in our analytical
model for z = 0.3 kpc, as a function of the x and y positions in the plane. The
dashed line corresponds to the long axis of the bar, and the dashed circles to
the position of the corotation and OLR.
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Vertical effects of disc non-axisymmetries 751

We are interested in studying the response of the background
axisymmetric thin disc to the bar potential, hence we focus on
the outside of the bar region (R > Rb). We also limit ourselves to
R < 10 kpc in this plot, since that is the interesting region where
there are still non-negligible effects. In this plot the Galaxy and the
bar rotate counterclockwise.

Fig. 1 shows that the mean vertical motions induced by the Milky
Way bar are small, of the order of a few tenth of km s−1, and up
to about 0.5 km s−1. More importantly, it shows how these motions
depend on the angle from the long axis of the bar and the distance
from the centre of the Galaxy. The angular dependence of �〈uz〉 is
that of an m = 2 mode propagating in the disc while keeping the
same configuration w.r.t. the bar as the bar rotates.

As noted earlier, close to the corotation and OLR, �〈uz〉 diverges,
because the linear theory presents poles there, as is evident in equa-
tion (20), and equations (22a)–(22b). Higher-order expansions (and
changing variables so that the new variables only vary slowly there)
would be required near these resonances, where we leave our pre-
dictions as blank. Notice how the correspondence in the figure to
the resonances is not exact. This is due to the fact that, since we
consider a stellar disc rather than a cold fluid, in the analytical model
we use uφ, 0 which differs from vc for the asymmetric drift and the
dependence from z, and shift the position of the resonances in the
model. At the OLR there is a phase shift of π/2 in �〈uz〉: along
a given fixed azimuth φ, the value of �〈uz〉 inside and outside the
OLR has always opposite signs.

At a given radius, the function �〈uz〉 also changes sign between
the regions ahead of the bar (φ > 0) and behind the bar (φ < 0).
This is due to the fact that uz is an odd function in φ, as it is the sum
of odd functions, as we can find out by looking at equations (10),
(13), (15–17), (20), (22a), and (22b). In particular, the compression
(�〈uz〉 < 0) is ahead of the bar between the corotation and the OLR,
while it is behind the bar outside the OLR, due to the change of sign
of �̃ in equation (23).

We note that the pattern in �〈uz〉 is actually qualitatively follow-
ing the uR, 1 pattern, because they are both odd functions in φ, as
can be seen from equations (16) and (22a) for uR, 1. This is in stark
contrast with what happens in the case of spiral arms, for which
F14 showed a clear phase shift between the vertical and radial bulk
motions. The reason for this difference is that �a(R, z) is a pure real
function in the case of the bar, but depends on exp(i mln(R)/tanp)
in the case of spirals,2 inducing a phase shift in equations (16) and
(22a) for spirals.

For visual comparison with the �〈uz〉 pattern of Fig. 1, we plot
the analytical uR and εuφ, 1 patterns for the bar model in Fig. 2.
In particular, we see that between the corotation and OLR and for
φ < 0 there is a net outward motion of stars (uR > 0) with vertical
expansion, while for φ > 0 the radial motion is inward (uR < 0)
and there is a vertical compression. The same behaviour has been
seen in fig. 12 of Widrow et al. (2014), where a satellite-induced
bar has been shown to create the same qualitative pattern. Outside
the OLR, the pattern is reversed, in both uR and �〈uz〉.

A heuristic explanation of this phenomenon is that the net radial
flows are related to the shape of the orbits induced by the bar
inside and outside the resonances (see Binney & Tremaine 2008).
Outside the OLR, the orbits in the bar frame are aligned with the
bar and retrograde, while they are perpendicular to the bar and
retrograde between the corotation and OLR: this naturally explains
the shape of the radial flow. Stars are then also adapting to the

2 Where p is the pitch angle.

Figure 2. As in Fig. 1 for the horizontal motions uR (top panel) and uφ −
uφ, 0 (bottom panel) in our analytical models for z = 0.

vertical restoring force, stronger in the inner parts than the outer
parts of the Galaxy: when the flow is inward, the force is stronger
and the vertical motion corresponds to a compression, and when
the flow is outward it corresponds to an expansion-rarefaction. We
note that the situation is different in the case of spirals because of
the restoring force from the spiral potential itself.

Our analytical predictions for the vertical bulk motions induced
by the bar can now be compared to a simulation akin to M14 in the
next subsection.

3.4 Numerical results

3.4.1 Initial conditions and integration time

A simple and yet very effective way to study numerically the
response of a stellar disc to an external perturbation is through
test-particle simulations. These consist of the numerical integration
of the equations of motion of massless particles (representing the
stars in the disc), accelerated by a gravitational field (representing
the potential of the galaxy) which is uninfluenced by the particles
themselves.
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We generate 5 × 107 initial positions and velocities for our sim-
ulations, as discrete realizations of the Shu–Schwarzschild phase-
space distribution function (Shu 1969; Bienayme & Sechaud 1997;
Binney & Tremaine 2008) described in section 2.2 of F14, with
the same parameters adopted in our analytical calculations. The
surface density of the initial conditions obtained in this way is ap-
proximately distributed in space as an exponential disc of scale
length hR = 2 kpc. The radial and vertical velocity dispersion on the
disc plane vary approximately as σ R ≈ σ R, 0exp [−(R − R0)/Rs],
σ z ≈ σ z, 0exp [−(R − R0)/Rs], where (σ R, 0, σ z, 0) = (35, 15) km s−1,
and Rs = 5hR (Bienayme & Sechaud 1997; F14).

We then integrate forward our initial conditions for a total time
T = 9 Gyr, from ti = −3 Gyr to te = 6 Gyr. For t < 0 the bar is absent
and the axisymmetric gravitational field is only given by Model I
of Binney & Tremaine 2008. This period of time allows the initial
conditions to become well mixed in the background potential.3

After the initial 3 Gyr, we obtain a stable particle configuration,
with velocity dispersions at (R, z) = (R0, 0): (σ R, σφ , σ z) ≈ (37,
27, 13) km s−1. The vertical restoring force determines the z density
profile, which, at R = R0, is nicely described by an exponential or
sech2 profile (see Appendix A), both with scale height hz ≈ 0.3 kpc
close to the plane.

The bar is introduced smoothly in the simulation at t = 0 with
the potential defined in equations (3), (14) and (27), its amplitude
reaching ε = 0.01 only at t = 3 Gyr. For 0 ≤ t < 3 Gyr the amplitude
grows with time by a factor (Dehnen 2000)

η(t) =
(

3

16
ξ 5 − 5

8
ξ 3 + 15

16
ξ + 1

2

)
, ξ ≡ 2

t

3 Gyr
− 1. (29)

The amplitude then stays constant at ε = 0.01 for another 3 Gyr.
The response becomes almost stable in the rotating frame of the
bar,4 and the end of the simulation can be used to compare with our
analytical predictions.

3.4.2 Comparison with the analytical model

In Fig. 3 we present the mean vertical kinematics as a function
of the Cartesian (x, y) position in the Galaxy, at the end of the
simulation. We plot the difference �〈vz〉 ≡ 〈vz〉p − 〈vz〉n, where
〈vz〉p (〈vz〉n) is the average vz of particles found at z > 0 (z < 0)
at the end of the simulation. We present it both for particles at
|z| < 0.3 kpc (top panel) and at every z (bottom panel). The averages
are computed inside bins of 0.25 kpc × 0.25 kpc, also applying a
Gaussian smoothing on a scale 1 kpc.

Fig. 3 shows a very good agreement with Fig. 1, with clear
trends in the vertical kinematics, depending on the angle from the
long axis of the bar φ and on the distance from the resonances
in the same way as on Fig. 1. The quantity �〈vz〉 appears always
to be periodic with φ, fluctuating twice for φ ∈ [0, 2π], so that
�〈vz〉(φ) ≈ �〈vz〉(φ + π) and �〈vz〉(φ) ≈ −�〈vz〉(φ + π/2).
Notice how the phase of the periodic oscillations changes inside

3 The Shu–Schwarzschild distribution function is built on approximate in-
tegrals of motion for an axisymmetric galaxy: in particular, the vertical
energy is a good approximate integral only very close to the plane. Because
of Jeans’ theorem (Binney & Tremaine 2008), the worse the approximation
of the integrals, the faster the distribution function will evolve in time.
4 Some transient effects are still present in the kinematics at the end of the
simulation, resulting in minor asymmetries in the maps of the mean motions.
To reach complete stability one should integrate for many more dynamical
times, which would be unphysical (see e.g. Mühlbauer & Dehnen 2003).

Figure 3. Difference between the average vertical motion of the Northern
and Southern hemisphere of the simulated Milky Way �〈vz〉, as a function
of the x and y positions. The dashed line corresponds to the long axis of
the bar, and the dashed circles to the position of the corotation and OLR.
Top panel: particles at |z| < 0.3 kpc only, to be directly compared with the
analytical model. Bottom panel: all particles.

and outside the OLR: the maxima of �〈vz〉 are at φ ∼ π/4 ± π/2
inside the resonance and at φ ∼ −π/4 ± π/2 outside, as predicted
by our analytical model.

The agreement between the analytical and numerical models is
not only qualitative, but also quantitative.

In Fig. 4 we show the predictions of the analytical model for
�〈uz〉(R, φ, z) = �〈uz〉(5 kpc, φ, 0.3 kpc) (blue line) and �〈uz〉(R,
φ, z) = �〈uz〉(8.5 kpc, φ, 0.3 kpc) (red line), where φ is measured
from the long axis of the bar. In the same plot we show the 90 per cent
confidence bands obtained fitting the model asin (2φ + b) to �〈vz〉
for particles in the simulation with |R − 5 kpc|< 0.2 kpc (blue band),
and |R − 8.5 kpc| < 0.2 kpc (red band). The concordance between
analytical model and simulations shows how our assumptions in
the analytical model are convincing. Notice how a small phase shift
is present between the analytical predictions and the simulation.
This is due to the fact that the kinematics in the simulation did not
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Figure 4. Predictions of the analytical model for �〈uz〉(R, φ,
z) =�〈uz〉(5 kpc, φ, 0.3 kpc) (blue line) and �〈uz〉(R, φ, z) =�〈uz〉(8.5 kpc,
φ, 0.3 kpc) (red line), where φ is measured from the long axis of the
bar. The 90 per cent confidence bands are obtained fitting �〈vz〉 for par-
ticles in the simulation with |R − 5 kpc| < 0.2 kpc (blue band) and |R −
8.5 kpc| < 0.2 kpc (red band) with the model asin (2φ + b).

reach a complete stability w.r.t. the bar disturbance, as previously
mentioned.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper we demonstrated analytically how the mean verti-
cal motions of stars in disc galaxies are affected by small, non-
axisymmetric perturbations of the potential in the form of Fourier
modes (e.g. bar or spiral arms). This was previously shown nu-
merically for spiral arms in F14, and supported by an analytical
toy-model for a pressureless fluid. The present analytical treatment
goes beyond this toy-model, and is valid for the response of realistic
disc populations to any non-axisymmetric perturbation described by
small-amplitude Fourier modes.

Our general analytical solution shows that, depending on the
distance from the Lindblad resonances and azimuth in the frame of
the perturber, the mean vertical motion points towards or away from
the galactic plane, with a bulk velocity depending on the position
projected in the galactic plane and on the distance from the galactic
plane.

Although M14 did not find hints of significant vertical bulk mo-
tions in a Galactic bar simulation, our present analytical treatment
indicates that non-zero vertical motions should be induced by the
bar too. We thus explicitly estimate them analytically, and then
check for their presence in a numerical simulation similar to that
of M14. These vertical mean motions induced by the Galactic bar
are indeed modest in magnitude, especially if compared with those
observed recently in the solar neighbourhood (Widrow et al. 2012;
Carlin et al. 2013; Williams et al. 2013), but they are well exist-
ing, as we have shown here for the very first time. And the results
of our test-particle simulation are well in line with our analytical
prediction away from the main resonances. However, it is clear
that perturbations exerting vertical forces that change more rapidly
than that of the bar with the distance from the galactic plane (e.g.
the spiral arms) do create much more significant mean vertical
velocities.

Our analytical treatment being valid close to the plane for all the
non-axisymmetric perturbations of the disc that can be described
by small-amplitude Fourier modes, it will be extremely useful for
interpreting the outcome of simulations including any such pertur-

bation, and to estimate how much of the observed breathing modes
can be explained by such non-axisymmetries alone. Further work
should study how the coupling of multiple internal perturbers (bar+
multiple spirals) and external perturbers (satellite interactions them-
selves exciting spiral waves, but also bending modes) is affecting
the present analytical results.
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APPENDIX A : R ESULTS FOR A SECH 2

VE RTICAL DENSITY D ISTRIBUTION

We report here the analytical results for uz and �〈uz〉 obtained with
a different unperturbed vertical density distribution, namely

ρ0 (R, z) = ρ0 (0, 0) exp

(
− R

hR

)
sech2

(
z

hz

)
. (A1)

With this continuously differentiable choice of density, and follow-
ing the same steps as in Section 2, equations (12) and (13) become

uz(z) = −εhz cosh2

(
z

hz

) {
G(0) tanh

(
z

hz

)

∂2G
∂z2

(0)

[
h2

zπ
2

24
+ h2

z

2
Li2

(−e−2z/hz
)

− hz ln
(
1 + e−2z/hz

)
z + 1

2

(
tanh

(
z

hz

)
− 1

)
z2

]}
,

(A2)

and

�〈uz〉 = −2ε coth

(
z

hz

) {
−hzG(0) ln

[
cosh

(
z

hz

)]

+ ∂2G
∂z2

(0)

[
−h3

z

4
Li3

(
−e− 2z

hz

)
− h3

z

2
Li3

(
−e

2z
hz

)

− 9h3
z

16
ζ (3) − h2

z

2
Li2

(
−e− 2z

hz

)
z + h2

z

2
Li2

(
−e

2z
hz

)
z

− π2h2
z

24
z + hz

2
log

(
e− 2z

hz + 1
)

z2 + z3

3

]}
, (A3)

where the ‘polylogarithm’ function Lis(z) is defined by the power
series

Lis(z) =
∞∑

k=1

zk

ks
, (A4)

and the Riemann ζ (s) function by

ζ (s) =
∞∑

k=1

k−s . (A5)

Figure A1. As in Fig. 1, but for a density distribution depending on z as
sech2(z/hz).

Figure A2. Comparison between the analytical �〈uz〉 in the case of a
density distribution depending on z as exp ( − |z|/hz) (coloured lines) and
sech2(z/hz) (black dashed lines). The potential parameters and scale height
are as in Fig. 4. The blue line corresponds to R = 5 kpc, and the red line to
R = 8.5 kpc.

Using these new formulae equations (A2)–(A3), we obtain Fig. A1,
corresponding to Fig. 1, and Fig. A2, corresponding to Fig. 4. These
figures show how in the bar case the relative difference between the
predicted bulk motions for the case of a sech2(z/hz), and exp ( −
|z|/hz) density distributions are tiny [of the order of 5 × 10−3 km s−1

at most]. We note that the initial axisymmetric stellar population
in our test-particle simulation is well fitted close to the plane by
sech2 and exponential distributions with the same scale height
hz = 0.3 kpc. However, we note that the sech2 profile is actually
a better fit, as expected from the form of the Shu–Schwarzschild
distribution function used for the initial conditions.

APPENDI X B: ESTI MATI NG uφ, 0 N E A R T H E
P L A N E

Jeans’ equation for uφ , in the case of an axisymmetric system, and
neglecting mixed terms, can be rewritten as (Binney & Tremaine
2008)

∂
(
ρ0σ

2
R,0

)
∂R

+ ρ0

(
σ 2

R,0 − σ 2
φ,0 − u2

φ,0

R
+ ∂�0

∂R

)
= 0. (B1)

Differentiating twice with the respect of z, assuming an exponential
disc, and that the velocity dispersion near the plane is approximately
constant with z, we obtain

u2
φ,0(R, z) + uφ,0(R, z)

∂2uφ,0

∂z2
(R, z) = R

2

∂3�0

∂R∂z2
(R, z), (B2)

which, estimated at z = 0, is

∂2uφ,0

∂z2
(R, 0) = R

2uφ,0(R, 0)

dν2

dR
(R), (B3)

and

ν2(R) ≡ ∂2�0

∂z2
(R, 0) (B4)

is the square of the vertical frequency.
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