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2 ViVoLab, Aragón Institute for Engineering Research (I3A), University of Zaragoza, Spain

marie.tahon@univ-lemans.fr

Abstract
When processing audio data, multiple challenges arise, one

of them being the diversity of information present in the audio
signal. Various audio segmentation subtasks appeared includ-
ing voice activity detection (VAD), overlapped speech detection
(OSD), music or noise detection. These tasks are often com-
pleted by separate models trained on different datasets, thus in-
creasing computational costs and limiting the usage to specific
datasets. We first show that a multiclass VAD and OSD model
outperforms state of the art models. Then, we propose 3MAS,
a novel deep learning-based audio segmentation model capable
of handling multiple datasets, and assessing multiple simulta-
neously as a multilabel segmentation problem. 3MAS provides
similar performances as specialized models with a similar archi-
tecture and can be trained using partial and unbalanced annota-
tions on different datasets. 3MAS is a gain in computational
time, and opens new opportunities to include new labels.

1. Introduction
Audio segmentation systems aim to divide an audio signal into
shorter fragments according to a predefined set of rules so that
each fragment contains only information from a specific au-
dio typology. In the context of raw audio recordings such as
broadcast data, podcasts, or voice assistants, a large taxonomy
of sound events can occur. In general terms, we can consider at
least the speech, music, or noise categories. An initial segmen-
tation of speech fragments can be used as a guide for automatic
systems that work on speech-only fragments. Indeed, this pre-
processing is an essential step before applying automatic speech
recognition (ASR) or speaker recognition systems. In addition
to speech detection, being able to recognize overlapping speech
–speech fragments in which at least two speakers are simultane-
ously active– is also required in several audio processing tasks.
Most ASR systems assume that they are fed with single-speaker
utterances, consequently the presence of overlapped speech is
usually an important source of error in ASR [1]. In addition,
the presence of untreated overlapped speech degrades the per-
formance of speaker diarization [2]. The distinction of musical
content may also hold significance from the standpoint of doc-
ument information retrieval. In broadcast content, music de-
tection plays a key role in order to monitor copyright infringe-
ment [3]. The accurate detection of noisy events could be rel-
evant in to remove it, or at least to reduce with a speech en-
hancement algorithm on the audio signal [4]. The definition of
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what is considered as noise is clearly not consensual. It can be
background noise (brouhaha, urban, in-car, etc.), but also iso-
lated occurrences of specific sound events (dog barking, laugh,
mouth noise, etc.). In the present work, we define noise as a
background sound coming from a non-vocal source, hindering
the comprehension of the message.

While Voice Activity Detection (VAD) and Overlapped
Speech Detection (OSD) have mainly been considered as
two independent binary classification tasks, they can be ad-
dressed jointly by considering three classes – non-speech, sin-
gle speaker, and overlapped speech – according to the number
of present speakers in each speech segment [5]. Thus, two main
segmentation by classification approaches, i.e., the segmenta-
tion obtained by classifying each time frame, can be observed:
the multiclass framework, where only a single class can be ac-
tive at a given time, and the multilabel framework, where sev-
eral classes can be active at a given time. One of the main ben-
efit of considering a multilabel solution is scalability. While the
problem complexity grows in a factorial way for a multiclass
classification task that considers all possible combinations of
classes [6] (i.e., speech, speech+overlap, speech+music, speech
+ noise ...), the same problem observes a linear growth in com-
plexity for the multilabel paradigm. When dealing with mul-
tiple labels, one of the main issues concerns the available la-
bels. Indeed, training a multipurpose model requires to have a
homogeneous distribution of the labels in the data. However,
databases annotated with a large number of labels are gener-
ally small due to annotation costs. Therefore, one option is to
merge different databases annotated according to different sets
of labels.

In this study, we first compare the performances in terms of
segmentation (F1-score) and training time of multiclass mod-
els trained on databases in which both the presence of speech
and overlapped speech is annotated (DIHARD, AMI). Then we
propose a new methodology which extends the approach to new
sound classes under a multilabel framework. This methodology
relies on a modified loss able to take into account missing la-
bels, and an adapted data augmentation process. As we include
non-speech classes, we also investigate new acoustic features
that are supposed to generalize to a large set of sound events.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces relevant previous work in the field of audio
segmentation. The description of all data used and the details
of data processing are shown in Section 3. Experimental set up
and evaluations for the multiclass, respectively the multilabel,
are presented in Section 4, respectively Section 5. The conclu-
sions are drawn in the last section 6.



2. Related work
Depending on the final task, the diversity of sound events pre-
dicted by an audio segmentation system is quite wide. Here,
we only focus on the models that predict the exact time loca-
tion when occurs the event. We will not discuss classification
approaches where a label is assigned to a pre-segmented au-
dio fragment. One of the most well-known segmentation tasks
is voice activity detection (VAD), which determines the exact
location of speech samples in an audio stream. Historically,
VAD systems have used energy measures [7] or statistical mod-
els [8]. Nowadays, most VAD models rely on deep learning
methods, mainly bi-directional recurrent or convolutional mod-
els [9,10]. Another relevant task is overlapped speech detection
(OSD), whose goal is to extract audio fragments where at least
two speakers are simultaneously active. Similarly to VAD, cur-
rent state-of-the-art for OSD is also based on recurrent or con-
volutional deep learning approaches [11]. The use of Temporal
Convolutional Network (TCN) has proven to be very efficient
for OSD [12, 13]. Additionally, some works have combined
both VAD and OSD in a single segmentation system. The 3
class OSD convolutional model presented in [5] deals with this
problem from a multiclass perspective, while a modified version
of the end-to-end diarization (EEND) approach [14] is based on
the multilabel paradigm. This paradigm also has shown to be
usable in broader speech-related tasks, as a voice type classi-
fier [15].

Concerning audio segmentation solutions related to music
information, several systems deal with binary tasks such as mu-
sic detection [16], or the separation of speech and music [17],
but the multiclass paradigm has also been investigated [18].
Other approaches go one step beyond, considering additional
audio typologies, such as noise. For instance, the task pro-
posed in the Albayzı́n audio segmentation evaluation campaigns
[19, 20] aims at segmenting broadcast data according to three
classes: speech, music, and noise.

As it can be inferred from previous explanations, audio seg-
mentation is a heterogeneous discipline. This characteristic is
also expressed in audio segmentation corpora, with different
datasets containing different kinds of annotations. The annota-
tion process with detailed taxonomies and several options is sig-
nificantly more complex than using a binary labeling schema.
That is the reason the amount of labeled data for audio segmen-
tation tasks with multiple classes is still limited.

While most of the speech databases, the presence of speech
is annotated, overlapped segments are not homogeneously an-
notated [21]. For instance, in some databases overlap is consid-
ered as noise. In such databases, noise and music are considered
as non speech sounds, and are not precisely identified. Semi-
supervised learning approaches deal with partially labeled data.
In [22], both labeled and unlabeled data are present within a
batch and the loss is a combination of a MSE obtained from
the labeled part and a consistency cost of the pseudo labels
predicted on the unlabeled part. Another option is to itera-
tively train the model on pseudo-labels [23]. In the multilabel
paradigm, the complete loss can not be estimated if one label
is missing, therefore we propose a very simple approach which
consists in ignoring the unlabeled part in the calculation of the
global loss.

To the best of our knowledge, the system presented in this
paper is the first audio segmentation model able to provide auto-
matic annotations for speech, overlap, music, and noise simul-
taneously. Furthermore, by following our training approach, the
system could theoretically be extended to any additional class,

Corpus Annotated hours per class
Speech Music Noise Overlap

AMI⋆ 80.90 - - 10.97
DIHARD⋆,† 53.29 - - 5.37
ALLIES† 368.26 - - 25.10
Albayzı́n 2010† 19.92 13.76 7.36 -
Albayzı́n 2012† 51.2 12.77 22.7 -
OpenBMAT† - 10.85 - -

Train 3MAS† 224.78 22.45 12.45 14.06
Test 3MAS† 234.02 11.17 5.46 15.69

Total 3MAS† 492.67 37.38 30.06 30.47

Table 1: Number of annotated hours per class for each of the
considered datasets. A speech segment can be annotated with
several classes. ⋆ are used to train the multiclass models, † are
used to train the multilabel models.

even with training data that is partially annotated.

3. Data description
To be able to train and evaluate a system that can detect speech,
overlap, music, and noise, several datasets with different an-
notations are used in our experiments. Namely, datasets con-
sidered in our work can be categorized into two big groups:
those annotated for speech and overlap, and those annotated
for speech, music, and/or noise. The first group (DIHARD and
AMI) is used to validate the multilabel approach against the use
of two independent binary models (section 4). In a second step,
we gather all data, keeping the train/test partitions, to investigate
how the performance degrades when adding two new classes:
music and noise.

The DIHARD corpus contains data from 7 domains with
various recording qualities, situations, and degrees of spontane-
ity, from read speech to phone conversations. Since sponta-
neous speech naturally contains a high proportion of overlapped
speech, this corpus is well-suited for OSD. This corpus is par-
titioned as intended for the DIHARD III challenge with the full
version, and evaluated on the official evaluation partition.

The AMI meeting corpus contains recordings of realistic
meetings involving up to 5 participants in various environments.
The headset-mix is used for single-channel experiments on this
dataset. The data partition follows the protocol full-corpus-ASR
proposed in [24].

The ALLIES corpus1 is a French meta-corpus designed to
gather and extend previous French data collected for speaker
diarization and transcription evaluation campaigns. The over-
lap proportion (in duration) fluctuates widely between broad-
cast news with little to no interaction and debates (around 10%
of overlaps). Music and noise are also present, but not anno-
tated. Despite a harmonization effort, the data collected and an-
notated under different protocols introduces some homogeneity
problems [21]. The testing partition has been split in three parts,
a DiarTest-SeenShows (181 files) composed of shows seen dur-
ing training (but different files), a DiarTest-UnseenShows (286
files) composed of shows unseen during training, and a partition
named FullTest-CleanAnnot (35 files) with carefully corrected
speaker segmentation.

The two dataset of Albayzı́n evaluation campaigns are

1https://lium.univ-lemans.fr/corpus-allies/



broadcast news data in Catalan for Albayzı́n 2010 [19] and
Spanish for Albayzı́n 2012 [25]. These contain annotations in
speaker, music, and noise segmentation. The speech class is in-
ferred from the speaker segmentation, but the overlapped areas
are not annotated as such, thus removing this class possibility.

The OpenBMAT dataset [26] contains television broadcast
audio from different countries labelled for the music detection
task under two different scenarios: a binary condition where
audio is annotated as containing music or not containing music,
and a multiclass setup where audio is separated into foreground,
background and no music fragments. In our experiments, we
only consider the binary annotations.

Our test set is generated by combining standard test par-
titions from ALLIES, AMI, DIHARD and Albayzı́n 2012
datasets. This allows to obtain evaluation results on all possible
classes provided by our system. Table 1 provides a comprehen-
sive overview of the datasets used throughout the research by
presenting the quantities of annotated audio for each class, as
well as the distribution into train and test sets.

4. Independent vs. joint speech and overlap
multiclass detection

Figure 1: Independent VAD, OSD, and joint VAD+OSD sys-
tems with the feature extractor (blue) and the sequence model-
ing network (red). WavLM is frozen.

In this section, we address the multiclass paradigm, and in-
vestigate the advantages of a joint VAD+OSD model in compar-
ison to two independent models. Figure 1 depicts an overview
of the two independent VAD, OSD, and the joint VAD+OSD
systems. While the feature extractor (in blue) encodes the input
channel, the sequence modeling network (in red) processes the
sequence of features before the frame classification.

4.1. Sequence modeling and classification

The frame classification is done at a rate of 100 Hz, while the
raw waveform is sampled at 16 kHz. The feature extractor
(blue) is based on the WavLM pre-trained model [27]. WavLM
is a self-supervised system built with transformer blocks trained
on Mix94k, a corpus of 94k hours drawn from LibriLight, Vox-
Populi, and GigaSpeech. It learns to represent speech by mask-
ing a part of the signal and trying to predict the hidden part.
Two versions are available, large and base + that differ by the
number of transformer blocks (respectively 24 and 12) and the
number of output dimensions (respectively 1024 and 768). In
this first experiment, we use only the large model. This choice
is motivated by the performance obtained by this model on the
diarization task according to the SUPERB benchmark [28]. Fur-
thermore, WavLM has been trained using simulated overlapped

speech and is then more robust to this type of data, as demon-
strated in previous works [13]. A trainable linear layer is added
on top of the frozen WavLM to align this representation (one
vector every 20 ms) with the target sequence (one label every
10 ms). More precisely, the linear layer transforms a segment
of 99 features extracted with WavLM over a 2 s window of raw
audio, into a 200-frame vector, aligned with our target.

The sequence modeling network (in red) takes as input a
sequence x of features and assigns a class to each frame of
this sequence. This task is performed using a TCN [29] since
this architecture has shown noticeable results on both VAD and
OSD tasks [12, 13, 30, 31]. This kind of architecture consists of
stacked dilated 1D convolutional layers that exploit long tem-
poral contexts from input sequences. It is composed of 5 resid-
ual convolutional blocks repeated 3 times. Classification is per-
formed by a 1-d convolutional layer followed by a softmax ac-
tivation function.

For each frame in the output sequence, the independent
VAD (top) outputs the pseudo-probability of presence of at least
one speaker p(Nspk > 0|x). The independent OSD (mid-
dle) outputs the pseudo-probability to contain speech from more
than one speaker p(Nspk ≥ 2|x). Both independent VAD and
OSD are then binary classifiers, denoted as 2-class systems. The
joint VAD+OSD system outputs the pseudo-probability of pres-
ence of either no speaker at all (non-speech) p(Nspk = 0|x),
a unique speaker p(Nspk = 1|x), or more than one speaker
p(Nspk ≥ 2|x). The 3-class approach is then converted for
evaluation to 2-class VAD and OSD by merging the relevant
classes.

4.2. Experimental protocol

In order to estimate the robustness over different speech do-
mains, the three systems are trained and evaluated indepen-
dently on the 2 datasets DIHARD and AMI. To counteract the
small number of overlap segments as stated in Table 1, 50%
of the training segments are augmented on-the-fly by summing
them to another randomly sampled training segment. Associ-
ated labels of each segment are also combined following the
method described in [32]. The loss function is a cross-entropy,
and we used the ADAM optimizer with a learning rate of
lr = 10−3. Again, to balance the training data in favor of noisy
labels, audio data is augmented with noise extracted from MU-
SAN [33] and additional reverberation using simulated room
impulse responses.

Following DIHARD III evaluation plan, we use the F1-
score obtained on the evaluation set as a performance metric. In
the 2-class approach, only the positive class output (Nspk > 0
for VAD, and Nspk ≥ 2 for OSD) is used for prediction and
two detection thresholds (in and out) are applied to predict bi-
nary labels [32]. In the 3-class approach, the labels can not
occur simultaneously. Then, the class associated with the max-
imum softmax output is selected at the frame level. The VAD
is inferred by combining Nspk = 1 and Nspk ≥ 2 outputs of
the system. OSD relies on the Nspk ≥ 2 prediction only.

4.3. Detection results

OSD and VAD results obtained on DIHARD and AMI datasets
with independent or joint models are presented in Table 2. VAD
performances are similar between the 2- and 3-class approaches
on both datasets. The high detection scores (over 97%) confirm
the ease of this task. However, we need to keep in mind that
the remaining 3% could heavily penalize speaker diarization or
ASR.



Table 2: Multiclass VAD and OSD F1-score (%) on AMI and DIHARD datasets for Mel+TCN [12], Mel+CRNN [31], Sinc-
Net+BLSTM [14] on the evaluation set of data covering various domains. † indicates that the results are taken from the original
article.

DIHARD AMI

Models Mel+TCN Mel+CRNN SincNet+BLSTM† Ours Mel+TCN Mel+CRNN SincNet+BLSTM† Ours

2-
cl

as
s VAD - - - 97.0 - - - 97.4

OSD 54.7 51.3 - 66.2 73.4 66.0 - 79.6

3-
cl

as
s VAD - - - 97.0 - - - 97.2

OSD 54.5 50.8 59.9 66.8 73.8 69.6 75.3 80.4

Regarding overlap detection, we retrained and evaluated
both models on DIHARD and AMI data to be able to com-
pare our results [12, 31]. Regarding state-of-the-art results, the
3-class SincNet + BLSTM from [32] reaches the best perfor-
mances on both datasets. The OSD results obtained with our
approach, being with the independent or the joint approach, are
above 66%.

The 3-class approach shows a small increase in OSD results
for both datasets. In summary, the joint VAD+OSD system of-
fers similar to slightly better performances than two dedicated
systems. It even outperforms the previous state-of-the-art re-
sults on DIHARD and AMI data with a new F1-score at 66.8%
and 80.4% respectively.

4.4. Training time

To assess the value of training a joint VAD+OSD system against
two dedicated models, we compare the training time required
for each approach to converge. Each system is trained on an
RTX6000 GPU card until it reaches its best F1-score on the
validation set. Figure 2 presents the elapsed time to obtain the
best-performing model.
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Figure 2: Training time (in hours) required for two separated
VAD and OSD systems, and the joint VAD+OSD system to con-
verge on both AMI and DIHARD datasets.

Regarding the DIHARD corpus, the VAD requires more re-

sources than OSD. This can be explained by the fact that the
data contains a lot of real-life domains, such as group chat, clin-
ical (conversations between a clinician and a child) or phone,
with a high amount of background noises. We observe the exact
opposite with AMI data, which can be explained by the highly
controlled recording conditions. In terms of training time, the 3-
class model is beneficial with AMI, where the model converges
as fast as a single VAD. This conclusion is not true for DIHARD
where no gain is noticeable when using a 3-class approach.

4.5. Influence of the speech domain on performance

To study the influence of the speech domain on OSD perfor-
mances obtained with the 3-class model, we analyze the OSD
F1-score distributions for each of the DIHARD evaluation files,
manually separated into 7 domains (see Fig. 3). Clinical con-
tains conversations between a clinician and a child, facetoface
contains interviews, phone contains phone conversations, map
task contains a game in which someone guides a person re-
motely on a map, group chat contains spontaneous conversa-
tions, court contains court recordings and audiobook contains
read speech.
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Figure 3: Distribution of F1-scores on DIHARD speech do-
mains

We expect similar results for dyadic conversations such as
phone, clinical and face-to-face conversations. Fig. 3 shows
that the F1-score is globally better for phone conversations than
the other. We hypothesize that the absence of visual cues in
phone conversations limits the diversity of overlaps contained
in the audio files, thus making overlap detection easier. Another
difference between domains is the quality of the recordings. For
example, group chat and face-to-face files feature strong back-
ground noise and low-quality recordings, which could explain
the low performance obtained in these domains. This analysis
concludes that the speech domain is of major importance for



OSD. The presence of noise, the diversity of overlaps, and the
differences in turn-taking driven by the speech domain are ma-
jor issues for OSD.

In summary, the joint VAD+OSD system offers similar to
slightly better performances than two dedicated systems. It even
outperforms the previous state-of-the-art results on DIHARD
and AMI data with a new F1-score at 66.8% and 80.4% respec-
tively. We also shown that such an approach can drastically
reduce the training time in certain scenario. OSD performance
remains limited by the audio quality and the speech domains.
This opens new directions to improve the robustness of such
systems.

5. Semi-supervised multilabel segmentation
model (3MAS)

In this section, we extend our joint speech and overlap detection
model to two new classes: music and noise. To do so, we in-
vestigate a new semi-supervised approach to train our model on
missing labels and heterogeneous data. We also move towards
a multilabel approach, meaning that all labels can occur at the
same time.

5.1. Features description

In the previous section, we demonstrated that WavLM represen-
tations were very accurate in detecting speech and overlapped
speech segments. However, this model built on transformer en-
coder layers has been trained on (noisy) speech data. Therefore,
the features extracted with such a model might not be relevant
for music detection. That is why, in addition to WavLM, we
investigate other acoustic features while extending our 3-class
model to music and noise labels.

As a baseline, we use a combination of 20 MFCCs with first
and second derivatives (∆ and ∆∆) and 12 chromas that cor-
respond to a projection of a time-frequency representation onto
a 12-tone scale. These characteristics are extracted on 30ms
windows each 20ms to match the step of WavLM.

Leaf [34] is a trainable feature extractor that aims to provide
a Mel-filterbank-like representation from an audio signal. It is
similar to SincNet [35] in its composition but contains Gabor
convolutions instead of sinc, a learnable Gaussian filter, and a
per-channel energy normalization. This framework is presented
as having better performances than mel-filterbank overall and
than SincNet on music-related tasks.

5.2. Semi-supervised learning

The multilabel segmentation model is similar to the joint
VAD+OSD presented in the previous section (bottom in Fig.1).
It consists of a feature extractor (WavLM, MFCC+chromas,
Leaf + linear layer) and a TCN. Classification is performed by a
1-d convolutional layer followed by a sigmoid activation func-
tion.

The loss function of the multilabel segmentation (see eq. 1)
is a binary cross-entropy (BCE) computed on average at the se-
quence level between predicted ŷc and reference yc for each
label c ∈ {speech, overlap, music, noise}.

Lglobal =
∑
c∈C

wc · BCE(ŷc, yc) (1)

As shown in Table 1, the 5 datasets (ALLIES, DIHARD, Al-
byzı̀n, openBMAT) used for training are not annotated with
all classes. When the annotation is available in the reference,

the presence of the class is denoted by yc = 1 (respectively
yc = 0) when absent). For instance, the overlapped speech
class is present in Albyzı̀n data, but has not been annotated and
no reference yov is available. To cope with this issue, an op-
tion is to neutralize this class by setting the weight wov = 0
for samples coming from this database. Otherwise the weight
of the class c is wc = 1

In practice, we mask the frames corresponding to missing
labels by adding a -1 label (instead of 0 or 1) as illustrated
in Figure 4. The loss function management has been imple-
mented in pyannote 2.1 [36]. The training and evaluation
processes also rely heavily on pyannote and thus can be re-
produced easily. For encouraging reproducible research, the
codebase for training and evaluating our model is available on
GitHub2

Figure 4: Masking process to ignore unannotated classes in a
dataset

5.3. Data augmentation

Furthermore, the classes considered in this work are strongly
unbalanced. More precisely, music, noise, and overlap classes
are under-represented (see Table 1). To cope with this issue,
one option is to artificially augment data. Two distinct kinds
of augmentation are used. First music and noise augmentation
consists of adding an audio segment from an external source,
in our case, MUSAN [33] and ESPINETE, an internal dataset
of noise collected from YouTube, to add noise and music to the
audio signal and the associated label. This method increases the
proportion of music and noise classes during the training stage.

The second augmentation adapts the method described in
section 4.2 to the multilabel paradigm. Two segments from the
same batch are summed, thus augmenting simultaneously the 4
classes. This augmentation brings new issues in merging the ex-
isting labels. Adding two segments of speech creates an overlap
segment, but adding a segment with annotated speech (ysp = 1)
and a segment without speech annotation (ysp = −1) should
keep the speech information (ysp = 1), without overlap infor-
mation (yov = −1).

5.4. Experimental protocol

For these experiments, we use the ADAM optimizer with torch
default parameters, a non-weighted binary cross-entropy as
loss, and a batch size of 128. All segmentation models are
trained and evaluated on the databases (except AMI) described
in section 3. The exact amount of data for training and testing
is given by the 3MAS lines of Table 1. We decided to discard
AMI from this experiment to limit the number of data with only
speech and overlap annotations. Note that test partitions from
all databases are merged into a single one, and we provide only
global results regarding each class. Therefore, we cannot com-
pare the results of this section to the previous one.

2https://github.com/Lebourdais/3MAS



Table 3: Multilabel precision, recall, and F1-score obtained for the different classes with different input features on Test 3MAS. The
ablation of the augmentation process is done using the WavLM model.

Speech Overlap Music Noise

Features Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Merged baselines 98.1 98.4 98.2 58.6 68.7 63.2 90.2 92.1 91.1 81.1 77.2 79.1

MFCC+chroma 97.8 98.3 98.1 44.5 55.6 49.4 90.7 70.9 79.6 45.2 92.3 60.7
Leaf 97.1 98.0 97.6 32.2 50.3 39.3 77.0 89.1 82.6 65.8 59.9 62.7
WavLM 98.7 97.9 98.3 59.5 68.7 63.8 90.0 96.6 93.2 73.0 85.1 78.6

No Music+noise aug 98.3 98.1 98.2 55.8 75.1 64.0 90.3 94.4 92.3 61.3 85.2 71.3
No Overlap aug 98.5 97.6 98.0 67.7 57.8 62.4 89.6 95.6 92.5 65.5 90.2 75.9
No augmentation 98.5 98.2 98.3 67.7 61.0 64.2 92.8 89.1 90.9 81.5 70.5 75.6

Two independent baselines are combined to provide results
on the four target classes, and then compare the results with the
semi-supervised multilabel segmentation. The first baseline is
the 3-class model presented in the previous section, in which the
final classification layer is adapted towards a multilabel frame-
work (by using sigmoid instead of softmax, and by modifying
the output dimensions from 1 to 2). While the 3-class outputs
a single prediction, the multilabel outputs two binary predic-
tions: speech and overlap. This baseline is evaluated in terms
of speech and overlap only.

The second baseline is inspired by the work presented in
[18] but considers a multilabel approach. Using the set of
MFCC+chroma acoustic features presented in section 5.1, a 2-
layer bidirectional LSTM network is trained to predict speech,
music, and noise. Predictions obtained from both baselines are
merged. For the speech class, we keep only the best detection
among the two systems. This approach is referred to as Merged
baselines in the following.

The multilabel segmentation model extended to the
four classes is evaluated with three different feature sets :
MFCC+chromas, Leaf and WavLM.

5.5. Detection results

The experiment is conducted on the full corpus (except AMI)
presented earlier for acoustic features, leaf features, and the two
mentioned WavLM models, the base plus and the large version.
The Table 3 presents the precision, recall, and f1-score on the
test set. Our model based on WavLM is the best we trained,
achieving similar results as baselines separate models. We can
notice a small gain from the baseline on music. The multilabel
segmentation can benefit from the different classes to slightly
improve the overlap detection in comparison to the baseline.
We hypothesize that the information provided by the presence
of music within the cost function improves the precision of the
overlap segmentation.

Regarding the audio features, all of them get comparable
performances on speech detection (VAD). We confirm that this
task is not discriminant enough to assess the performance of a
model. We can notice that music is better detected with Leaf
features than MFCC+chroma, while it is the contrary for over-
lap detection. It seems that Leaf features do not generalize
enough to non-music classes to be used in a multilabel seg-
mentation approach. We also conclude that WavLM features
provide high detection scores whatever the class is. It shows
that this pre-trained model generalizes to non-speech signals.

5.6. Influence of the augmentation

To validate the usage of our data augmentation techniques, we
propose an ablation study on our best system using WavLM.
In this experiment, we remove first the augmentation by noise
and music addition, keeping the mixing of segments. We then
remove this second augmentation, keeping the first, and finally,
both augmentations are removed.

The obtained results are summarized in the Table 3 (bot-
tom). From this experiment, we can separate two groups of
classes: the ones that need augmentation and the ones that don’t.
Without any augmentation, we obtain the best performance on
speech and overlap detection. WavLM is heavily optimized for
speech-related tasks and thus can segment speech and overlap
without issues. The internal representation of these classes is
sufficiently accurate (thanks to the multiclass loss function) to
achieve good performances without augmentation by reaching
F1-scores of 98.3% on speech and 64.2% on overlap detection.
The absence of overlap augmentation when music and noise are
augmented seems to penalize the model. The reason could be
that the addition of music and noise strengthens the underrepre-
sentation of the overlap class.

Contrary to speech and overlap, noise, and in a less extent
music, detection require data augmentation to achieve the best
results: 92.5% on music and 75.9% on noise. Indeed these
classes are not well represented in the training data of WavLM
and thus need to be represented somewhere else. The variety
and amount of training data are important to achieve good re-
sults. This is why any augmentation that adds music or noise
information is improving the results.

5.7. Output logits correlations

To better understand the behaviour of our best model, we in-
vestigate how correlated are the predicted logits on the full test
set (44 × 106 frames). To do so, we compute the correlation
matrix (depicted on Fig. 5) between the 4 logits obtained at the
frame level. Time frames are considered as independent in this
analysis. We remind that thresholds are applied on each logit to
get the final labels.

In general terms, classes are not to be strongly correlated.
This is expected because we set up a multilabel framework,
meaning that classes are considered independent from a statisti-
cal perspective. We were expecting speech and overlap classes
to be highly correlated, as the presence of overlap is conditioned
by the presence of speech, however, counter-intuitively the cor-
relation is only moderate (ρ(sp, ov) = 0.14). We notice a weak
inverse correlation (ρ(no, ov) = −0.55) between noise and
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Figure 5: Correlation matrix obtained from logits for speech,
overlap, music and noise labels on the full test set.

overlap. One reason behind this observation is the annotation
heterogeneity issue. In some data, overlap is annotated as noise
as it follows the definition of an event hindering the comprehen-
sion of the main speech. A better definition of the overlap class
is necessary to ensure coherence in segmentation. To conclude,
we confirm that our segmentation multilabel framework oper-
ates classes independently at the frame level. However further
investigations at the sequence level should clarify the influence
of the temporal aspects.

6. Conclusions
In this paper, we have investigated multiclass and multilabel
approaches for audio segmentation. We have first demonstrated
that a joint multiclass VAD+OSD (3-class model) reaches simi-
lar performances than two independent models (2-class). The
joint approach has the advantage of drastically reducing the
training time for some data. We also highlighted the fact that
overlapped speech detection still remains limited by the audio
quality and the speech domains. These first conclusions moti-
vated a multilabel approach in which the model has more free-
dom to discriminate the different classes.

The main contribution of this paper is the introduction of
the 3MAS audio segmentation model, the first of its kind to
jointly provide segmentation labels for speech, overlap, music,
and noise. This single system has been proven to be as effec-
tive as multiple specialized previous systems. We also assessed
different features possibilities to confirm the efficiency of pre-
trained self-supervised models on task further from their orig-
inal goal. In addition to this, we propose a solution based on
loss masking to train a semi-supervised model on a fusion of
different datasets partially annotated.

To tackle the lack of data for some classes, we propose
two augmentation methods that can be used together or sepa-
rately for music, noise, and overlap classes. An ablation study
was performed, confirming that both methods can benefit self-
supervised representation when dealing with music and noise
classes. The proposed system relies on the multilabel classifica-
tion paradigm and, thus, shows potential to be extended easily to
more classes without a major change of the architecture. We fi-
nally studied the correlation between predicted classes and out-

lined the major flaw of the multilabel paradigm, which consid-
ers each class as an independent variable while this fact might
not be true. An interesting lead to follow would be to inject
knowledge of class correlation into the system to help interac-
tion between multilabel classes without losing the modularity.
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