
HAL Id: hal-04591472
https://hal.science/hal-04591472v1

Preprint submitted on 29 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Growing Tiny Networks: Spotting Expressivity
Bottlenecks and Fixing Them Optimally

Manon Verbockhaven, Sylvain Chevallier, Guillaume Charpiat

To cite this version:
Manon Verbockhaven, Sylvain Chevallier, Guillaume Charpiat. Growing Tiny Networks: Spotting
Expressivity Bottlenecks and Fixing Them Optimally. 2024. �hal-04591472�

https://hal.science/hal-04591472v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

GROWING TINY NETWORKS: SPOTTING EXPRESSIVITY
BOTTLENECKS AND FIXING THEM OPTIMALLY

Manon Verbockhaven, Sylvain Chevallier, Guillaume Charpiat
TAU team, Université Paris-Saclay, CNRS, Inria, LISN, 91405, Orsay, France
firstname.name@inria.fr

ABSTRACT

Machine learning tasks are generally formulated as optimization problems, where
one searches for an optimal function within a certain functional space. In practice,
parameterized functional spaces are considered, in order to be able to perform
gradient descent. Typically, a neural network architecture is chosen and fixed,
and its parameters (connection weights) are optimized, yielding an architecture-
dependent result. This way of proceeding however forces the evolution of the
function during training to lie within the realm of what is expressible with the
chosen architecture, and prevents any optimization across architectures. Costly
architectural hyper-parameter optimization is often performed to compensate for
this. Instead, we propose to adapt the architecture on the fly during training.
We show that the information about desirable architectural changes, due to ex-
pressivity bottlenecks when attempting to follow the functional gradient, can be
extracted from backpropagation. To do this, we propose a mathematical definition
of expressivity bottlenecks, which enables us to detect, quantify and solve them
while training, by adding suitable neurons when and where needed. Thus, while
the standard approach requires large networks, in terms of number of neurons per
layer, for expressivity and optimization reasons, we are able to start with very
small neural networks and let them grow appropriately. As a proof of concept,
we show results on the CIFAR dataset, matching large neural network accuracy,
with competitive training time, while removing the need for standard architectural
hyper-parameter search.

1 INTRODUCTION

Issues with the fixed-architecture paradigm. Universal approximation theorems such as (Hornik
et al., 1989; Cybenko, 1989) are historically among the first theoretical results obtained on neural
networks, stating the family of neural networks with arbitrary width as a good candidate for a param-
eterized space of functions to be used in machine learning. However the current common practice
in neural network training consists in choosing a fixed architecture, and training it, without any pos-
sible architecture modification meanwhile. This inconveniently prevents the direct application of
these universal approximation theorems, as expressivity bottlenecks that might arise in a given layer
during training will not be able to be fixed. There are two approaches to circumvent this in daily prac-
tice. Either one chooses a (very) large width, to be sure to avoid expressivity and optimization issues
(Hanin & Rolnick, 2019b; Raghu et al., 2017), to the cost of extra computational power consump-
tion for training and applying such big models; to mitigate this cost, model reduction techniques
are often used afterwards, using pruning, tensor factorization, quantization (Louizos et al., 2017)
or distillation (Hinton et al., 2015). Or one tries different architectures and keeps the most suitable
one (in terms of performance-size compromise for instance), which multiplies the computational
burden by the number of trials. This latter approach relates to the Auto-DeepLearning field (Liu
et al., 2020), where different exploration strategies over the space of architecture hyper-parameters
(among other ones) have been tested, including reinforcement learning (Baker et al., 2017; Zoph &
Le, 2016), Bayesian optimization techniques (Mendoza et al., 2016), and evolutionary approaches
(Miller et al., 1989; Stanley et al., 2009; Miikkulainen et al., 2017; Bennet et al., 2021), that all
rely on random tries and consequently take time for exploration. Within that line, Net2Net (Chen
et al., 2015), AdaptNet (Yang et al., 2018) and MorphNet (Gordon et al., 2018) propose different
strategies to explore possible variations of a given architecture, possibly guided by model size con-

1

straints. Instead, we aim at providing a way to locate precisely expressivity bottlenecks in a trained
network, which might speed up neural architecture search significantly. Moreover, based on such
observations, we aim at modifying the architecture on the fly during training, in a single run (no
re-training), using first-order derivatives only, while avoiding neuron redundancy. Related work on
architecture adaptation while training includes probabilistic edges (Liu et al., 2019) or sparsifying
priors (Wolinski et al., 2020). Yet the training is done on the largest architecture allowed, which is
resource-consuming. On the opposite we aim at starting from the simplest architecture possible.

Optimization properties. An important reason for common practice to choose wide architectures
is the associated optimization properties: sufficiently larger networks are proved theoretically and
shown empirically to be better optimized than small ones (Jacot et al., 2018). Typically, small net-
works exhibit issues with spurious local minima, while wide ones find good nearly-global minima.
One of our goals is to train small networks without suffering from such optimization difficulties.

Neural architecture growth. A related line of work consists in growing networks neuron by neu-
ron, by iteratively estimating the best possible neurons to add, according to a certain criterion. For
instance, approaches such as (Wu et al., 2019) or Firefly (Wu et al., 2020) aim at escaping local
minima by adding neurons that minimize the loss under neighborhood constraints. These neurons
are found by gradient descent or by solving quadratic problems involving second-order derivatives.
Other approaches (Causse et al., 2019; Bashtova et al., 2022), including GradMax (Evci et al., 2022),
seek to minimize the loss as fast as possible and involve another quadratic problem. However the
neurons added by these approaches are possibly redundant with existing neurons, especially if one
does not wait for training convergence to a local minimum (which is time consuming) before adding
neurons, therefore producing larger-than-needed architectures.

Redundancy. To our knowledge, the only approach tackling redundancy in neural architecture
growth adds random neurons that are orthogonal in some sense to the ones already present (Maile
et al., 2022). More precisely, the new neurons are picked within the kernel (preimage of {0}) of an
application describing already existing neurons. Two such applications are proposed, respectively
the matrix of fan-in weights and the pre-activation matrix, yielding two different notions of orthog-
onality. The latter formulation is close to the one of GradMax, in that both study first-order loss
variations and use the same pre-activation matrix, with an important difference though: GradMax
optimally decreases the loss without caring about redundancy, while the other one avoids redun-
dancy but picks random directions instead of optimal ones. In this paper we bridge the gap between
these two approaches, picking optimal directions that avoid redundancy in the pre-activation space.

Notions of expressivity. Several concepts of expressivity or complexity exist in the Machine
Learning literature, ranging from Vapnik-Chervonenkis dimension (Vapnik & Chervonenkis, 1971)
and Rademacher complexity (Koltchinskii, 2001) to the number of pieces in a piecewise affine func-
tion (as networks with ReLU activations are) (Serra et al., 2018; Hanin & Rolnick, 2019a). Bottle-
necks have been also studied from the point of view of Information Theory, through mutual infor-
mation between the activities of different layers (Tishby & Zaslavsky, 2015; Dai et al., 2018); this
quantity is difficult to estimate though. Also relevant and from Information Theory, the Minimum
Description Length paradigm and Kolmogorov complexity (Kolmogorov, 1965; Li et al., 2008) en-
able to define trade-offs between performance and model complexity.

In this article, we aim at measuring lacks of expressivity as the difference between what the back-
propagation asks for and what can be done by a small parameter update (such as a gradient step),
that is, between the desired variation for each activation in each layer (for each sample) and the best
one that can be realized by a parameter update. Intuitively, differences arise when a layer does not
have sufficient expressive power to realize the desired variation. Our main contributions are that we:

• take a functional analysis viewpoint over gradient descent on neural networks, suggesting
to attempt to follow the functional gradient. We optimize not only the weights of the
current architecture, but also the architecture itself on the fly, in order to progressively move
towards more suitable parameterized functional spaces. This removes the optimization
issues (local minima) that are due to thin architectures;

• properly define and quantify the notion of expressivity bottlenecks, globally at the neural
network output as well as at each layer, and this in an easily computable way. This allows
to localize expressivity bottlenecks in a neural network;

2

• mathematically define the best possible neurons to add to a given layer to decrease lacks of
expressivity as a quadratic problem; compute them and their associated expressivity gain;

• automatically adapt the architecture to the task at hand by making it grow where needed,
and this in a single run, in competitive computational complexity with respect to classically
training a large model just once. To remove any need for layer width hyper-optimization,
one could define a target accuracy and stop adding neurons when it is reached.

2 MAIN CONCEPTS

2.1 NOTATIONS

Let F be a functional space, e.g. L2(Rp → Rd), and a loss function L : F → R defined on it, of the
form L(f) = E(x,y)∼D

[
ℓ(f(x),y)

]
, where ℓ is the per-sample loss, assumed to be differentiable,

and whereD is the sample distribution, from which the dataset {(x1,y1), ..., (xN ,yN)} is sampled,
with xi ∈ Rp and yi ∈ Rd.

For the sake of simplicity we consider a feedforward neural network fθ : Rp → Rd with L hidden
layers, each of which consisting of an affine layer with weights Wl followed by a differentiable
activation function σl which satisfies σl(0) = 0. The network parameters are then θ := (Wl)l=1...L.
The network iteratively computes:

b0(x) =

(
x
1

)

∀l ∈ [1, L],

al(x) = Wl bl−1(x)

bl(x) =

(
σl(al(x))

1

)
fθ(x) = σL(aL(x)) Figure 1: Notations

To any vector-valued function noted t(x) and any batch of inputs X := [x1, ...,xn], we as-
sociate the concatenated matrix T (X) := (t(x1) ... t(xn)) ∈ R|t(.)|×n. The matrices of
pre-activation and post-activation activities at layer l over a minibatch X are thus respectively:
Al(X) = (al(x1) ... al(xn)) and Bl(X) = (bl(x1) ... bl(xn)).

NB: convolutions can also be considered, with appropriate representations (cf matrix bcl (x) in 13).

2.2 APPROACH

Functional gradient descent. We take a functional perspective on the use of neural networks.
Ideally in a machine learning task, one would search for a function f : Rp → Rd that minimizes the
loss L by gradient descent: ∂f

∂t = −∇fL(f) for some metric on the functional space F (typically,
L2(Rp → Rd)), where ∇f denotes the functional gradient and t denotes the evolution time of the
gradient descent. The descent direction vgoal := −∇fL(f) is a function of the same type as f and
whose value at x is easily computable as vgoal(x) = − (∇fL(f)) (x) = −∇uℓ(u,y(x))

∣∣
u=f(x)

(see Appendix A.1 for more details). This direction vgoal is the best infinitesimal variation in F to
add to f to decrease the loss L.

Parametric gradient descent reminder. However in practice, to represent functions and to
compute gradients, the infinite-dimensioned functional space F has to be replaced with a finite-
dimensioned parametric space of functions, which is usually done by choosing a particular neural
network architecture A with weights θ ∈ ΘA. The associated parametric search space FA then
consists of all possible functions fθ that can be represented with such a network for any parameter
value θ. Under standard weak assumptions (see Appendix A.2), the gradient descent is of the form:

∂θ

∂t
= −∇θL(fθ) = − E

(x,y)∼D

[
∇θℓ(fθ(x),y)

]
.

3

Using the chain rule, these parameter updates yield a functional evolution :

vGD :=
∂fθ
∂t

=
∂fθ
∂θ

∂θ

∂t
=

∂fθ
∂θ

E
(x,y)∼D

[
∂fθ
∂θ

T

(x) vgoal(x)

]
which significantly differs from the original functional gradient descent. We will aim to augment the
neural network architecture so that parametric gradient descents can get closer to the functional one.

Figure 2: Expressivity bottleneck

Optimal move direction. We name T fθ
A , or just

TA, the tangent space of FA at fθ, that is, the set of
all possible infinitesimal variations around fθ under
small parameter variations:

T fθ
A :=

{
∂fθ
∂θ

δθ

∣∣∣∣ s.t. δθ ∈ ΘA

}
This linear space is a first-order approximation of the
neighborhood of fθ within FA. The direction vGD
obtained above by gradient descent is actually not
the best one to consider within TA. Indeed, the best
move v∗ would be the orthogonal projection of the
desired direction vgoal := −∇fθL(fθ) onto TA. This
projection is what a (generalization of the notion of)
natural gradient would compute (Ollivier, 2017).

Indeed, the parameter variation δθ∗ associated to the functional variation v∗ = ∂fθ
∂θ δθ∗ is the gradi-

ent−∇TA
θ L(fθ) ofL◦fθ w.r.t. parameters θ when considering the L2 metric on functional variations

∥∂fθ∂θ δθ∥L2(TA), not to be confused with the usual gradient∇θL(fθ), based on the L2 metric on pa-
rameter variations ∥δθ∥L2(R|ΘA|). This can be seen in a proximal formulation as:

v∗ = argmin
v∈TA

∥v − vgoal∥2 = argmin
v∈TA

{
DfL(f)(v) +

1

2
∥v∥2

}
(1)

where D is the directional derivative (see details in Appendix A.3), or equivalently as:

δθ∗ = argmin
δθ∈ΘA

∥∥∥∥∂fθ∂θ
δθ − vgoal

∥∥∥∥2 = argmin
δθ∈ΘA

{
DθL(fθ)(δθ) +

1

2

∥∥∥∥∂fθ∂θ
δθ

∥∥∥∥2
}

=: −∇TA
θ L(fθ) .

Lack of expressivity. When vgoal does not belong to the reachable subspace TA, there is a lack of
expressivity, that is, the parametric spaceA is not rich enough to follow the ideal functional gradient
descent. This happens frequently with small neural networks (see Appendix A.4 for an example).
The expressivity bottleneck is then quantified as the distance ∥v∗ − vgoal∥ between the functional
gradient vgoal and the optimal functional move v∗ given the architecture A (in the sense of Eq. 1).

2.3 GENERALIZING TO ALL LAYERS

Ideal updates. The same reasoning can be applied to the pre-activations al at each layer l, seen
as functions al : x ∈ Rp 7→ al(x) ∈ Rdl defined over the input space of the neural network.
The optimal parameter update for a given layer l then follows the projection of the desired update
−∇al

L(fθ) of the pre-activation functions al onto the linear subspace T al
A of pre-activation varia-

tions that are possible with the architecture, as we will detail now.

Given an sample (x,y) ∈ D, standard backpropagation already iteratively computes vl
goal(x) :=

− (∇al
L(fθ)) (x) = − ∇uℓ (σL(WL σL−1(WL−1 ... σl(u))), y)|u=al(x)

, which is the derivative
of the loss ℓ(fθ(x),y) with respect to the pre-activations u = al(x) of each layer. This is usually
performed in order to compute the gradients w.r.t. model parameters Wl, as ∇Wl

ℓ(fθ(x),y) =
∂al(x)
∂Wl

∇al
ℓ(fθ(x),y).

vl
goal(x) := − (∇al

L(fθ)) (x) indicates the direction in which one would like to change the layer
pre-activations al(x) in order to decrease the loss at point x. However, given a minibatch of points
(xi), most of the time no parameter move δθ is able to induce this progression for each xi simulta-
neously, because the θ-parameterized family of functions al is not expressive enough.

4

Activity update resulting from a parameter change. Given a subset of parameters θ̃ (such as
the ones specific to a layer: θ̃ = Wl), and an incremental direction δθ̃ to update these parameters
(e.g. the one resulting from a gradient descent: δθ̃ = −η

∑
(x,y)∈minibatch∇θ̃ℓ(fθ(x),y) for some

learning rate η), the impact of the parameter update δθ̃ on the pre-activations al at layer l at order 1

in δθ̃ is vl(xi, δθ̃) :=
∂al(x)

∂θ̃
δθ̃.

Note: given a learning rate η, in the sequel we will rather consider vl
goal(x) := −η∇al

L(fθ)(x).

3 EXPRESSIVITY BOTTLENECKS

We now quantify expressivity bottlenecks at any layer l as the distance between the desired activity
update vl

goal(.) and the best realizable one vl(.) (cf Figure 2):

Definition 3.1 (Lack of expressivity). For a neural network fθ and a minibatch of points
X = {(xi,yi)}ni=1, we define the lack of expressivity at layer l as how far the desired
activity update V l

goal = (vl
goal(x1),v

l
goal(x2), ...) is from the closest possible activity update

V l = (vl(x1),v
l(x2), ...) realizable by a parameter change δθ:

Ψl := min
vl∈T al

A

1

n

n∑
i=1

∥∥vl(xi)− vl
goal(xi)

∥∥2 = min
δθ

1

n

∥∥V l(X, δθ)− V l
goal(X)

∥∥2
Tr

(2)

where ||.|| stands for the L2 norm, ||.||Tr for the Frobenius norm, and V l(X, δθ) is the activity
update resulting from parameter change δθ as defined in previous section. In the two following parts
we fix the minibatch X and simplify notations accordingly by removing the dependency on X .

3.1 BEST MOVE WITHOUT MODIFYING THE ARCHITECTURE OF THE NETWORK

Let δW ∗
l be the solution of 2 when the parameter variation δθ is restricted to involve only layer

l parameters, i.e. Wl. This move is sub-optimal in that it does not result from an update of all
architecture parameters but only of the current layer ones:

δW ∗
l = argmin

δWl

1

n

∥∥V l(δWl)− V l
goal

∥∥2
Tr

(3)

Proposition 3.1. The solution of Problem (3) is:

δW ∗
l =

1

n
V l

goalB
T
l−1(

1

n
Bl−1B

T
l−1)

+

where P+ denotes the generalized inverse of matrix P .

This update δW ∗
l is not equivalent to the usual gradient descent update, whose form is δW GD

l ∝
V l

goalB
T
l−1. In fact the associated activity variation, δW ∗

l Bl−1, is the projection of V l
goal on the

post-activation matrix of layer l − 1, that is to say onto the span of all possible post-activation
directions, through the projector 1

nB
T
l−1(

1
nBl−1B

T
l−1)

+Bl−1. To increase expressivity if needed,
we will aim at increasing this span with the most useful directions to close the gap between this best
update and the desired one. Note that the update δW ∗

l consists of a standard gradient (V l
goalB

T
l−1)

and of a (kind of) natural gradient only for the last part (projector), as we consider metrics in the
pre-activation space.

3.2 REDUCING EXPRESSIVITY BOTTLENECK BY MODIFYING THE ARCHITECTURE

To get as close as possible to V l
goal and to increase the expressive power of the current neural network,

we modify each layer of its structure. At layer l− 1, we add K neurons n1, ..., nK with input
weights α1, ...,αk and output weights ω1, ...,ωK (cf Figure 3). We have the following expansions
by concatenation : W T

l−1 ←
(
W T

l−1 α1 ... αK

)
and Wl ← (Wl ω1 ... ωK).

We note this architecture modification θ ← θ ⊕ θK↔ where ⊕ is the concatenation sign and θK↔ :=
(αk,ωk)

K
k=1 are the K added neurons.

5

Figure 3: Adding one neuron to layer l in cyan
(K = 1), with connections in cyan. Here, α ∈ R5

and ω ∈ R3.

Figure 4: Sum of functional moves

The added neurons could be chosen randomly, as in usual neural network initialization, but this
would not yield any guarantee regarding the impact on the system loss. Another possibility would be
to set either input weights (αk)

K
k=1 or output weights (ωk)

K
k=1 to 0, so that the function fθ(.) would

not be modified, while its gradient w.r.t. θ would be enriched from the new parameters. Another
option is to solve a optimization problem as in the previous section with the modified structure
θ ← θ ⊕ θK↔ and jointly search for both the optimal new parameters θK↔ and the optimal variation
δWl of the old ones:

argmin
θK
↔, δWl

∥∥V l(δWl ⊕ θK↔)− V l
goal

∥∥2
Tr

(4)

As shown in figure 4, the displacement V l at layer l is actually a sum of the moves induced by the
neurons already present (δWl) and by the added neurons (θK↔), our problem rewrites as :

argmin
θK
↔, δWl

∥∥∥V l(θK↔) + V l(δWl)− Vgoal
l
∥∥∥2
Tr

(5)

with vl(x, θK↔) :=
∑K

k=1 ωk (bl−2(x)
Tαk) (See A.5). We choose δWl as the best move of already-

existing parameters as defined in Proposition 3.1 and we note V l
goalproj

:= V l
goal − V l(δWl

∗). We

are looking for the solution
(
K∗, θK∗

↔
)

of the optimization problem :

argmin
K, θK

↔

∥∥∥V l(θK↔)− V l
goalproj

∥∥∥2
Tr

. (6)

This quadratic optimization problem can be solved thanks to the low-rank matrix approximation the-
orem (Eckart & Young, 1936), using matrices N := 1

nBl−2

(
V l

goalproj

)T
and S := 1

nBl−2B
T
l−2. As

S is semi-positive definite, let its truncated SVD be S = UΣUT , and define S− 1
2 := U

√
Σ

−1
UT ,

with the convention that the inverse of 0 eigenvalues is 0. Finally, consider the truncated SVD of
matrix S− 1

2N =
∑R

k=1 λkukv
T
k , where R is the rank of the matrix S− 1

2N . Then:

Proposition 3.2. The solution of Problem (6) is:
• optimal number of neurons: K∗ = R

• their optimal weights: θK
∗

↔ = (α∗
k,ω

∗
k)

K∗

k =
(
sign(λk)

√
|λk|S− 1

2uk,
√
|λk|vk

)K∗

k

Moreover for any number of neurons K ⩽ R, and associated weights θK,∗
↔ , the expressivity gain

and the first order in η of the loss improvement due to the addition of these K neurons are equal and
can be quantified very simply as a function of the singular values λk:

Ψl
θ⊕θK,∗

↔
= Ψl

θ −
K∑

k=1

λ2
k and L(fθ⊕θK,∗

↔
) = L(fθ) +

σ′
l(0)

η

K∑
k=1

λ2
k + o(||θK,∗

↔ ||2)

6

Proposition 3.3. If S is positive definite, then solving (5) is equivalent to taking ωk = Nαk and
finding the K first eigenvectors αk associated to the K largest eigenvalues λ of the generalized
eigenvalue problem :

NNTαk = λSαk

Corollary 1. For all integers m,m′ such that m + m′ ⩽ R, at order one in η, adding m + m′

neurons simultaneously according to the previous method is equivalent to adding m neurons then
m′ neurons by applying successively the previous method twice.

Note: Problems (5) and (6) are generally not equivalent, though similar (cf C.4).
Note 2: Minimizing the distance (4), ie the distance between V l

goal and V l, is equivalent to minimiz-
ing the loss L at order one in V l:

L(fθ⊕θK
↔
) ≈ L(fθ)−

σ′
l−1(0)

η n

〈
V l

goal, V
l
〉
Tr

(7)

The family {V l+1((αk,ωk))}Kk=1 of pre-activity variations induced by adding the neurons θK,∗
↔ is

orthogonal for the trace scalar product. We could say that the added neurons are orthogonal to each
other (and to the already-present ones) in that sense. Interestingly, the GradMax method (Evci et al.,
2022) also aims at minimizing the loss 7, but without avoiding redundancy (see Appendix B.1 for
more details).

Addition of new neurons. In practice before adding new neurons (α, ω), we multiply them by
an amplitude factor γ found by a simple line search (see Appendix D.3), i.e. we add (

√
γα,
√
γω).

The addition of each neuron k has an impact on the loss of the order of γλ2
k provided γ is small.

This performance gain could be used in a selection criterion realizing a trade-off with computational
complexity. A selection based on statistical significance of singular values can also be performed.
The full algorithm and its complexity are detailed in Appendices D.4 and D.5.

4 ABOUT GREEDY GROWTH SUFFICIENCY

One might wonder whether a greedy approach on layer growth might get stuck in a non-optimal
state. We derive the following series of propositions in this regard. Since in this work we add
neurons layer per layer independently, we study here the case of a single hidden layer network, to
spot potential layer growth issues. For the sake of simplicity, we consider the task of least square
regression towards an explicit continuous target f∗, defined on a compact set. That is, we aim at
minimizing the loss:

inf
f

∑
x∈D
∥f(x)− f∗(x)∥2

where f(x) is the output of the neural network and D is the training set.
Proposition 4.1 (Greedy completion of an existing network). If f is not f∗ yet, then there exists a
set of neurons to add to the hidden layer such that the new function f ′ will have a lower loss than f .

One can even choose the added neurons such that the loss is arbitrarily well minimized. Furthermore:
Proposition 4.2 (Greedy completion by one single neuron). If f is not f∗ yet, there exists a neuron
to add to the hidden layer such that the new function f ′ will have a lower loss than f .

As a consequence, there exists no situation where one would need to add many neurons simulta-
neously to decrease the loss: it is always feasible with a single neuron. One can express a lower
bound on how much the loss has improved (for the best such neuron), but it is not a very good
bound without further assumptions on f . Furthermore, finding the optimal neuron to add is actually
NP-hard (Bach, 2017), so we will not necessarily search for the optimal one.
Proposition 4.3 (Greedy completion by one infinitesimal neuron). The neuron in the previous
proposition can be chosen to have arbitrarily small input weights.

This detail is important in that our approach is based on the tangent space of the function f and thus
manipulates infinitesimal quantities. Our optimization problem indeed relies on the linearization of
the activation function by requiring the added neuron to have infinitely small input weights, to make
the problem easier to solve. This proposition confirms that such neuron exists indeed.

7

Correlations and higher orders. Note that, as a matter of fact, our approach exploits linear cor-
relations between inputs of a layer and desired output variations. It might happen that the loss is
not minimized yet but there is no such correlation to exploit anymore. In that case the optimization
problem (6) will not find neurons to add. Yet following Prop. 4.3 there does exist a neuron with
arbitrarily small input weights that can reduce the loss. This paradox can be explained by pushing
further the Taylor expansion of that neuron output in terms of weight amplitude (single factor ε on
all of its input weights), for instance σ(εα ·x) ≃ σ(0)+ σ′(0)εα ·x+ 1

2σ
′′(0)ε2(α ·x)2 +O(ε3).

Though the linear term α · x might be uncorrelated over the dataset with desired output variation,
i.e. Ex∼D[α · x] = 0, the quadratic term (α · x)2, or higher-order ones otherwise, might be corre-
lated. Finding neurons with such higher-order correlations can be done by increasing accordingly
the power of (α · x) in the optimization problem (5). Note that one could consider other function
bases than the polynomials from Taylor expansion. In all cases, one does not need to solve such
problems exactly but just to find an approximate solution, i.e. a neuron improving the loss.

Adding random neurons. Another possibility to suggest additional neurons, when expressivity
bottlenecks are detected but no correlation (up to order p) can be exploited anymore, is to add random
neurons. The first p order Taylor expansions will show 0 correlation with desired output variation,
hence no loss improvement nor worsening, but the correlation of the p+1-th order will be non-0, with
probability 1, in the spirit of random projections. Furthermore, in the spirit of common neural net-
work training practice, one could consider brute force combinatorics by adding many random neu-
rons and hoping some will be close enough to the desired direction (Frankle & Carbin, 2018). The
difference with usual training is that we would perform such computationally-costly searches only
when and where relevant, exploiting all simple information first (linear correlations in each layer).

5 RESULTS

5.1 COMPARISON WITH GRADMAX ON CIFAR-100

The closest growing method to TINY is GradMax Evci et al. (2022), as it solves a quadratic problem
similar to 6. By construction, the objective of GradMax is to decrease the loss as fast as possible
considering an infinitesimal increment of new neurons. In fact, this method is equivalent to ours,
with the main difference that GradMax does not take into account the expressivity of the current
architecture as TINY does in 6 by projecting vgoal. In-depth details about the difference between the
GradMax and TINY are provided in B.1.

In this section, we show on the CIFAR-100 dataset that solving (6) instead of B.1(defined by Grad-
Max) to grow a network allows better final performance and almost full expressivity power. To do
so, we have re-implemented the GradMax method and mimicked its growing process which consists
in increasing the architecture of a shallow ResNet18s until it reaches the architecture of the usual
ResNet18. This process is described in the pseudo code 1, where two parameters can be chosen :
the starting architecture of the model of the usual ResNet18 architecture 3 (s = 1/4 or s = 1/64)
and the time of training between each neurons addition (∆t = 1 or ∆t = 0.25). Then the number
of parameters and the performance of the growing network are evaluated at regular intervals to plot
Figure 5.

Once the models have reached the final architecture ResNet18, they are trained for 250 epochs
(or 500 epochs if they have not converged on the training set). We have summarized the final
performance in table 1. We also added the column Reference, which gives the performance of a
ResNet18 trained from scratch by usual gradient descent with all its neurons. We do not expect
TINY or GradMax to achieve the performance of the reference as its architecture and optimisation
process have been optimised for years.

The details of the protocol can be found in the annexes E.1, as well as other technical details such as
the dynamic of the learning batch size D.2, the number of examples used to solve the expressivity
bottleneck 6 and the complexity of the algorithms D.5. For both methods, all the latter apply so
that the main differences between GradMax and TINY is the mathematical definition of the new
neurons.

For s = 1/64, we observe a significant difference in performance between TINY and GradMax
methods. While TINY models almost achieve the reference’s performance, they remain stuck 10
points below with GradMax. It suggests that starting with an architecture far from full expressvity,

8

Figure 5: Accuracy on test of as a function of the number of parameters during architecture
growth from ResNets to ResNet18. The left (resp. right) column is for the starting architecture
ResNet1/4(resp. ResNet1/64). The upper (resp. lower) row is for ∆t equal to 0.25 (resp. 1) epoch.

Figure 6: Evolution of accuracy and number of parameters as a function of gradient step for the
setting ∆t = 1, s = 1/64 for TINY and GradMax, mean and standard deviation over two runs.
Other settings in the annexes 13

9

TINY GradMax Refe-

s
∆t

0.25 1 0.25 1 rence

1/4 67.0± 0.1 71.0± 0.1 65.0± 0.1 69.0± 0.1
72.9

1/4 70.0± 0.2 5∗ 71.0± 0.2 5∗ 67.0± 0.2 5∗ 69.0± 0.1 5∗
±

1/64 66.0± 0.1 68.0± 0.4 45.0± 0.2 57.0± 0.2
0.1 5∗

1/64 69.0± 0.1 5∗ 69.0± 0.6 5∗ 57.0± 0.3 10∗ 59.0± 0.1 10∗

Table 1: Final accuracy on test of ResNet18 after the architecture growth (grey) and after conver-
gence (black). The number of start indicated grossly the multiple of 50 epochs needed to achieve
convergence. With the starting architecture ResNet1/64 and ∆t = 0.25 the method TINY achieves
66.0 ± 0.1on test after its growth and it reaches 69.0 ± 0.1 5∗after 5∗ := 5 × 50 epochs (examples
of training curves for the extra training 14). Mean and standard deviation performed on 2 runs for
each setting.

Figure 7: Evolution of accuracy and number of parameters as a function of gradient step for the
setting ∆t = 1, s = 1/64 during extra training for TINY and GradMax, mean and standard deviation
over two runs. Other settings in the annexes 15 and 14.

ie ResNet1/64, the theory proposed by GradMax is not sufficient and TINY is more robust. As for
the setting s = 1/4, both methods seem equivalent in terms of final performance and achieve full
expressivity.

The curves on Figure 6, which are extracted from Figure 13 in the annexes, show that TINY models
have converged at the end of the growing process, while GradMax ones do not. This latter effects
contrast with GradMax formulation which is to accelerate the gradient descent as fast as possible
by adding neurons. Furthermore GradMax need extra training to achieve full expressivity as for the
particular setting s = 1/64,∆t = 1, the extra training time of GradMax is twice as high as TINY’s,
as shown in Figure 7. This need for extra training also appear in Table 1 where for all settings the
difference in performance after and before extra training goes up to 20 % (s = 1/64,∆t = 0.25,
resp. 6% for TINY).

5.2 COMPARISON WITH RANDOM ON CIFAR-100 : INITIALISATION IMPACT

In this section, we focus on the impact of the new neurons’ initialization. To do so, we consider
as a baseline the Random method, which initializes the new neurons according to a Gaussian dis-
tribution: (α∗

k, ω
∗
k)

K
k=1 ∼ N (0, Id). Also, when adding new neurons, instead of normalizing them

as previously, we search for the best scaling using a line-search on the loss. Thus, we perform the

10

Figure 8: Accuracy on test as a function of the number of parameters during architecture growth
from ResNet1/64 to ResNet18.

operation θK↔ ← γ∗θK↔ 1, with the amplitude factor γ∗ ∈ R defined as :

γ∗ := argmin
γ∈[−L,L]

∑
i

L(fθ⊕γθK
↔
(xi),yi) with γθK

∗

↔ = (γα∗
k, γω

∗
k)

K
k (8)

with L a positive constant. More details can be found in D.3.2. With such an amplitude factor,
one can measure the quality of the directions generated by TINY and Random by quantifying the
decrease of loss.

To better measure the impact of the initialisation method, and to distinguish it from the optimization
process, we do not preform any gradient descent. This contrasts with the previous section where long
training time after architecture growth was modifying the direction of the added neurons, dampening
initialization impact with training time, especially as they were added with a small amplitude factor
(cf Section D.3.1).

With these two modifications to the protocol of previous section, we obtain Figure 8. We see the
crucial impact of TINY initialization over the Random method. Indeed, the random method does
not learn through the growing process and it can be quantified as follows. In the random setting,
we models v(X),vgoal(X) as independent Gaussian variable following N (0d, Id

1√
d
) where d ap-

proximate the dimension of vgoal and v. From equation 7, the scalar product ⟨V (X),Vgoal(X)⟩ :=
1
n

∑
i vgoal(xi)

Tv(xi) is a proxy of the expected decrease of loss after each architecture growth.
This quantity can be approximated by its standard deviation, ie 1√

d
and therefore making the ex-

pected gain of loss comparable to to 1√
64

for the first layer and 1√
512

for the last layer.

A first supplementary remarks is that the search interval of equation 8 for can be shrunk to [0, L] as
the first order development of the loss in equation 7 is positive. This property is the direct conse-
quence of the definition of V ∗ as the minimizer of the expressivity bottleneck equation 6. One can
also note that we do not include GradMax in Figure 8, because its protocol initializes the on-going
weight to zero (αk ← 0) and imposes a small norm on its out-going weights (||ωk|| = ε). Those two
aspects make the amplitude factor γ∗ meaningless and the impact of the new neurons initialization
invisible without gradient descent.

The code and the DEMO-notebook are available at https://gitlab.inria.fr/
mverbock/tinypub.

11

https://gitlab.inria.fr/mverbock/tinypub
https://gitlab.inria.fr/mverbock/tinypub

6 CONCLUSION

We provided the theoretical principles of TINY, a method to grow the architecture of a neural net
while training it; starting from a very thin architecture, TINY adds the neurons where needed and
yields a fully trained architecture at the end. Our method relies on the functional gradient to find
new directions that tackle the expressivity bottleneck, even for small networks, by expanding their
space of parameters. This way, we combine in the same framework gradient descent and neural
architecture search, that is optimizing the network parameters and its architectures at the same time.

The method is generic for all architectures and is instantiated for linear and convolutional layers.
Extension to self-attention mechanism (transformers) is part of future works. Although the common
architectures consist of a succession of layers, a new research direction is to develop tool handling
general computational graphs (U-net, Inception, Dense-Net).

Another possible development would be to study the statistics reliability of the TINY method, for
instance using tools borrowed from random matrix theory. Indeed statistical tests can be applied
on intermediate computations to obtain the new neurons. An interesting byproduct of this approach
would define a threshold to select neurons found by 3.2, based on statistical significance.

REFERENCES

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi-
tectures using reinforcement learning. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=S1c2cvqee.

Kateryna Bashtova, Mathieu Causse, Cameron James, Florent Masmoudi, Mohamed Masmoudi,
Houcine Turki, and Joshua Wolff. Application of the topological gradient to parsimonious neural
networks. In Computational Sciences and Artificial Intelligence in Industry, pp. 47–61. Springer,
2022.

Pauline Bennet, Carola Doerr, Antoine Moreau, Jeremy Rapin, Fabien Teytaud, and Olivier Teytaud.
Nevergrad: black-box optimization platform. ACM SIGEVOlution, 14(1):8–15, 2021.

Mathieu Causse, Cameron James, Mohamed Slim Masmoudi, and Houcine Turki. Parsimonious
neural networks. In Cesar Conference, 2019. URL https://www.cesar-conference.
org/wp-content/uploads/2019/10/s5_p1_21_1330.pdf.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Compressing neural networks using the varia-
tional information bottleneck. In International Conference on Machine Learning, pp. 1135–1144.
PMLR, 2018.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psy-
chometrika, 1(3):211–218, September 1936. ISSN 1860-0980. doi: 10.1007/BF02288367. URL
https://doi.org/10.1007/BF02288367.

Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Fabian Pedregosa, and Max Vladymyrov.
Gradmax: Growing neural networks using gradient information. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=qjN4h_
wwUO.

Harley Flanders. Differentiation under the integral sign. The American Mathematical Monthly, 80
(6):615–627, 1973. ISSN 00029890, 19300972. URL http://www.jstor.org/stable/
2319163.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural net-
works. CoRR, abs/1803.03635, 2018. URL http://arxiv.org/abs/1803.03635.

12

https://openreview.net/forum?id=S1c2cvqee
https://www.cesar-conference.org/wp-content/uploads/2019/10/s5_p1_21_1330.pdf
https://www.cesar-conference.org/wp-content/uploads/2019/10/s5_p1_21_1330.pdf
https://doi.org/10.1007/BF02288367
https://openreview.net/forum?id=qjN4h_wwUO
https://openreview.net/forum?id=qjN4h_wwUO
http://www.jstor.org/stable/2319163
http://www.jstor.org/stable/2319163
http://arxiv.org/abs/1803.03635

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi. Mor-
phnet: Fast & simple resource-constrained structure learning of deep networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1586–1595, 2018.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2596–2604.
PMLR, 09–15 Jun 2019a. URL https://proceedings.mlr.press/v97/hanin19a.
html.

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation pat-
terns. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019b. URL https://proceedings.neurips.cc/paper/2019/file/
9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approxi-
mators. Neural Networks, 2(5):359–366, 1989.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf.

Andrei N Kolmogorov. Three approaches to the quantitative definition ofinformation’. Problems of
information transmission, 1(1):1–7, 1965.

Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions
on Information Theory, 47(5):1902–1914, 2001.

Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its applications, vol-
ume 3. Springer, 2008.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1eYHoC5FX.

Zhengying Liu, Zhen Xu, Shangeth Rajaa, Meysam Madadi, Julio CS Jacques Junior, Sergio Es-
calera, Adrien Pavao, Sebastien Treguer, Wei-Wei Tu, and Isabelle Guyon. Towards automated
deep learning: Analysis of the autodl challenge series 2019. In NeurIPS 2019 Competition and
Demonstration Track, pp. 242–252. PMLR, 2020.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. Ad-
vances in neural information processing systems, 30, 2017.

Kaitlin Maile, Emmanuel Rachelson, Hervé Luga, and Dennis George Wilson. When, where, and
how to add new neurons to ANNs. In First Conference on Automated Machine Learning (Main
Track), 2022. URL https://openreview.net/forum?id=SWOg-arIg9.

Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. To-
wards automatically-tuned neural networks. In Frank Hutter, Lars Kotthoff, and Joaquin Van-
schoren (eds.), Proceedings of the Workshop on Automatic Machine Learning, volume 64 of Pro-
ceedings of Machine Learning Research, pp. 58–65, New York, New York, USA, 24 Jun 2016.
PMLR. URL https://proceedings.mlr.press/v64/mendoza_towards_2016.
html.

Risto Miikkulainen, Jason Zhi Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon,
Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving deep
neural networks. CoRR, abs/1703.00548, 2017. URL http://arxiv.org/abs/1703.
00548.

13

https://proceedings.mlr.press/v97/hanin19a.html
https://proceedings.mlr.press/v97/hanin19a.html
https://proceedings.neurips.cc/paper/2019/file/9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9766527f2b5d3e95d4a733fcfb77bd7e-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=SWOg-arIg9
https://proceedings.mlr.press/v64/mendoza_towards_2016.html
https://proceedings.mlr.press/v64/mendoza_towards_2016.html
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1703.00548

Geoffrey F. Miller, Peter M. Todd, and Shailesh U. Hegde. Designing neural networks using genetic
algorithms. In ICGA, 1989.

Yann Ollivier. True asymptotic natural gradient optimization, 2017.

Allan Pinkus. Approximation theory of the mlp model in neural networks. ACTA NUMERICA, 8:
143–195, 1999.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In Doina Precup and Yee Whye Teh (eds.), Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pp. 2847–2854. PMLR, 06–11 Aug 2017. URL https:
//proceedings.mlr.press/v70/raghu17a.html.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4558–4566. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/serra18b.html.

Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial life, 15(2):185–212, 2009.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck princi-
ple. CoRR, abs/1503.02406, 2015. URL http://dblp.uni-trier.de/db/journals/
corr/corr1503.html#TishbyZ15.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.
doi: 10.1137/1116025. URL http://link.aip.org/link/?TPR/16/264/1.

P. Wolinski, G. Charpiat, and O. Ollivier. Asymmetrical scaling layers for stable network pruning.
OpenReview Archive, 2020.

Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest descent for growing neural archi-
tectures. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
3a01fc0853ebeba94fde4d1cc6fb842a-Paper.pdf.

Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. Firefly neural architecture descent: a general
approach for growing neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
22373–22383. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/fdbe012e2e11314b96402b32c0df26b7-Paper.pdf.

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 285–300, 2018.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2016. URL
http://arxiv.org/abs/1611.01578. cite arxiv:1611.01578.

Appendix outline

• Section A details the theoretical approach of TINY.
• Section B compares the theoretical approach of TINY with other approaches .
• Section C proves the propositions of the paper.
• Section D provides the hyper parameters for learning.
• Section E gives additional graphics associated to the result part.

We provide additional details, following the same order as the sections in the paper.

14

https://proceedings.mlr.press/v70/raghu17a.html
https://proceedings.mlr.press/v70/raghu17a.html
https://proceedings.mlr.press/v80/serra18b.html
https://proceedings.mlr.press/v80/serra18b.html
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#TishbyZ15
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#TishbyZ15
http://link.aip.org/link/?TPR/16/264/1
https://proceedings.neurips.cc/paper/2019/file/3a01fc0853ebeba94fde4d1cc6fb842a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3a01fc0853ebeba94fde4d1cc6fb842a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fdbe012e2e11314b96402b32c0df26b7-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fdbe012e2e11314b96402b32c0df26b7-Paper.pdf
http://arxiv.org/abs/1611.01578

A THEORETICAL DETAILS FOR PART 2

A.1 FUNCTIONAL GRADIENT

The functional loss L is a functional that takes as input a function f ∈ F and outputs a real score:

L : f ∈ F 7→ L(f) = E
(x,y)∼D

[
ℓ(f(x),y)

]
∈ R .

The function space F can typically be chosen to be L2(Rp → Rd), which is a Hilbert space. The
directional derivative (or Gateaux derivative, or Fréchet derivative) of functional L at function f in
direction v is defined as:

DL(f)(v) = lim
ε→0

L(f + εv)− L(f)
ε

if it exists. Here v denotes any function in the Hilbert space F and stands for the direction in which
we would like to update f , following an infinitesimal step (of size ε), resulting in a function f + εv.

If this directional derivative exists in all possible directions v ∈ F and moreover is continuous in v,
then the Riesz representation theorem implies that there exists a unique direction v∗ ∈ F such that:

∀v ∈ F , DL(f)(v) = ⟨v∗, v⟩ .

This direction v∗ is named the gradient of the functional L at function f and is denoted by∇fL(f).
Note that while the inner product ⟨, ⟩ considered is usually the L2 one, it is possible to consider other
ones, such as Sobolev ones (e.g., H1). The gradient ∇fL(F) depends on the chosen inner product
and should consequently rather be denoted by ∇L2

f L(f) for instance.

Note that continuous functions from Rp to Rd, as well as C∞ functions, are dense in L2(Rp → Rd).

Let us now study properties specific to our loss design: L(f) = E(x,y)∼D

[
ℓ(f(x),y)

]
. Assuming

sufficient ℓ-loss differentiability and integrability, we get, for any function update direction v ∈ F
and infinitesimal step size ε ∈ R:

L(f + εv)− L(f) = E
(x,y)∼D

[
ℓ(f(x) + εv(x),y)− ℓ(f(x),y)

]
= E

(x,y)∼D

[
∇uℓ(u,y)

∣∣
u=f(x)

· εv(x) +O(ε2∥v(x)∥2)
]

using the usual gradient of function ℓ at point (u = f(x),y) w.r.t. its first argument u, with the
standard Euclidean dot product · in Rp. Then the directional derivative is:

DL(f)(v) = E
(x,y)∼D

[
∇uℓ(u,y)

∣∣
u=f(x)

· v(x)
]
= E

x∼D

[
E

y∼D|x

[
∇uℓ(u,y)

∣∣
u=f(x)

]
· v(x)

]
and thus the functional gradient for the inner product ⟨v, v′⟩E := Ex∼D

[
v(x)·v′(x)

]
is the function:

∇E
f L(f) : x 7→ E

y∼D|x

[
∇uℓ(u,y)

∣∣
u=f(x)

]
which simplifies into:

∇E
f L(f) : x 7→ ∇uℓ(u,y(x))

∣∣
u=f(x)

if there is no ambiguity in the dataset, i.e. if for each x there is a unique y(x).

Note that by considering the L2(Rp → Rd) inner product
∫
v · v′ instead, one would respectively

get:
∇L2

f L(f) : x 7→ pD(x) E
y∼D|x

[
∇uℓ(u,y)

∣∣
u=f(x)

]
and

∇L2

f L(f) : x 7→ pD(x)∇uℓ(u,y(x))
∣∣
u=f(x)

instead, where pD(x) is the density of the dataset distribution at point x. In practice one estimates
such gradients using a minibatch of samples (x,y), obtained by picking uniformly at random within
a finite dataset, and thus the formulas for the two inner products coincide (up to a constant factor).

15

A.2 DIFFERENTIATION UNDER THE INTEGRAL SIGN

Let X be an open subset of R, and Ω be a measure space. Suppose f : X × Ω −→ R satisfies the
following conditions:

• f(x, ω) is a Lebesgue-integrable function of ω for each x ∈ X .
• For almost all ω ∈ Ω , the partial derivative fx of f according to x exists for all x ∈ X .
• There is an integrable function θ : Ω −→ R such that |fx(x, ω)| ≤ θ(ω) for all x ∈ X and

almost every ω ∈ Ω.

Then, for all x ∈ X ,
d

dx

∫
Ω

f(x, ω) dω =

∫
Ω

fx(x, ω) dω

See proof and details :Flanders (1973).

A.3 GRADIENTS AND PROXIMAL POINT OF VIEW

Gradients with respect to standard variables such as vectors are defined the same way as functional
gradients above: given a sufficiently smooth loss L̃ : θ ∈ ΘA 7→ L̃(θ) = L(fθ) ∈ R, and an inner
product · in the space ΘA of parameters θ, the gradient ∇θL̃(θ) is the unique vector τ ∈ ΘA such
that:

∀δθ ∈ ΘA, τ · δθ = DθL̃(θ)(δθ)
where DθL̃(θ)(δθ) is the directional derivative of L̃ at point θ in the direction δθ, defined as in the
previous section. This gradient depends on the inner product chosen, which can be highlighted by
the following property. The opposite−∇θL̃(θ) of the gradient is the unique solution of the problem:

argmin
δθ∈ΘA

{
DθL̃(θ)(δθ) +

1

2
∥δθ∥2P

}
where ∥ ∥P is the norm associated to the chosen inner product. Changing the inner product ob-
viously changes the way candidate directions δθ are penalized, leading to different gradients. This
proximal formulation can be obtained as follows. For any δθ, its distance to the gradient descent
direction is: ∥∥∥δθ − (

−∇θL̃(θ)
)∥∥∥2 = ∥δθ∥2 + 2 δθ · ∇θL̃(θ) +

∥∥∥∇θL̃(θ)
∥∥∥2

= 2

(
1

2
∥δθ∥2 +DθL̃(θ)(δθ)

)
+K

where K does not depend on δθ. For the above to hold, the inner product used has to be the one
from which the norm is derived. By minimizing this expression with respect to δθ, one obtains the
desired property.

In our case of study, for the norm over the space ΘA of parameter variations, we consider a norm of
in the space of associated functional variations, i.e.:

∥δθ∥P :=

∥∥∥∥∂fθ∂θ
δθ

∥∥∥∥
which makes more sense from a physical point of view, as it is more intrinsic to the task to solve and
depends as little as possible on the parameterization (i.e. on the architecture chosen). This results
in a functional move that is the projection of the functional one to the set of possible moves given
the architecture. On the opposite, the standard gradient (using Euclidean parameter norm ∥δθ∥ in
parameter space) yields a functional move obtained not only by projecting the functional gradient
but also by multiplying it by a matrix ∂fθ

∂θ
∂fθ
∂θ

T
which can be seen as a strong architecture bias over

optimization directions.

We consider here that the loss L to be minimized is the real loss that the user wants to optimize,
possibly including regularizers to avoid overfitting, and since the architecture is evolving during
training, possibly to architectures far from usual manual design and never tested before, one cannot
assume architecture bias to be desirable. We aim at getting rid of it in order to follow the functional
gradient descent as closely as possible.

16

Searching for

v∗ = argmin
v∈TA

∥v − vgoal∥2 = argmin
v∈TA

{
DfL(f)(v) +

1

2
∥v∥2

}
or equivalently for:

δθ∗ = argmin
δθ∈ΘA

∥∥∥∥∂fθ∂θ
δθ − vgoal

∥∥∥∥2 = argmin
δθ∈ΘA

{
DθL(fθ)(δθ) +

1

2

∥∥∥∥∂fθ∂θ
δθ

∥∥∥∥2
}

=: −∇TA
θ L(fθ)

then appears as a natural goal.

A.4 EXAMPLE OF EXPRESSIVITY BOTTLENECK

Example. Suppose one tries to estimate the function y =
ftrue(x) = 2 sin(x) + x with a linear model fpredict(x) = ax + b.
Consider (a, b) = (1, 0) and the square loss L . For the dataset
of inputs (x0, x1, x2, x3) = (0, π

2 , π,
3π
2), there exists no param-

eter update (δa, δb) that would improve prediction at x0, x1, x2

and x3 simultaneously, as the space of linear functions {f : x →
ax+b | a, b ∈ R} is not expressive enough. To improve the pre-
diction at x0, x1, x2 and x3, one should look for another, more ex-
pressive functional space such that for i = 0, 1, 2, 3 the functional
update ∆f(xi) := f t+1(xi)−f t(xi) goes into the same direction
as the functional gradient vgoal(xi) := −∇f(xi)L(f(xi), yi) =
−2(f(xi)− yi) where yi = ftrue(xi).

0 2 4 6
x

0

1

2

3

4

5

6

y

target
prediction

Figure 9: Linear interpolation

A.5 PROBLEM FORMULATION AND CHOICE OF PRE-ACTIVITIES

There are several ways to design the problem of adding neurons, which we discuss now, in order to
explain our choice of the pre-activities to express expressivity bottlenecks.

Suppose one wishes to add K neurons θK↔ := (αk,ωk)
K
k=1 to layer l − 1, which impacts the

activities al at the next layer, in order to improve its expressivity. These neurons could be chosen
to have only nul weights, or nul input weights αk and non-nul output weights ωk, or the opposite,
or both non-nul weights. Searching for the best neurons to add for each of these cases will produce
different optimization problems.

Let us remind first that adding such K neurons with weights θK↔ := (αk,ωk)
K
k=1 changes the

activities al of the (next) layer by

δal =

K∑
k=1

ωk σ(bl−2(x)
Tαk) (9)

Small weights approximation Under the hypothesis of small input weights αk, the activity vari-
ation 9 can be approximated by:

σ′(0)

K∑
k=1

ωkbl−2(x)
Tαk

at first order in ∥αk∥. We will drop the constant σ′(0) in the sequel.

This quantity is linear both in αk and ωk, therefore the first-order parameter-induced activity varia-
tions are easy to compute:

vl(x, (αk)
K
k=1) =

∂al(x)

∂((αk)Kk=1) |(αk)Kk=1=0

(αk)
K
k=1 =

K∑
k=1

ωkbl−2(x)
Tαk

vl(x, (ωk)
K
k=1) =

∂al(x)

∂((ωk)Kk=1) |(ωk)Kk=1=0

(ωk)
K
k=1 =

K∑
k=1

ωkbl−2(x)
Tαk

17

so with a slight abuse of notation we have:

vl(x, θK↔) =

K∑
k=1

ωkbl−2(x)
Tαk

Note also that technically the quantity above is first-order in αk and in ωk but second-order in the
joint variable θK↔ = (αk,ωk).

Adding neurons with 0 weights (both input and output weights). In that case, one increases
the number of neurons in the layer, but without changing the function (since only nul quantities are
added) and also without changing the gradient with respect to the parameters, thus not improving
expressivity. Indeed, the added quantity (Eq. 9) involves 0×0 multiplications, and consequently the
derivative ∂al(x)

∂θK
↔

∣∣∣
θK
↔=0

w.r.t. these new parameters, that is, bl−2(x)
Tαk w.r.t. ωk and ωk bl−2(x)

T

w.r.t. ak is 0, as both ak and ωk are 0.

Adding neurons with non-0 input weights and 0 output weights or the opposite. In these cases,
the addition of neurons will not change the function (because of multiplications by 0), but just the
gradient. One of the 2 gradients (w.r.t. ak or w.r.t ωk) will be non-0, as the variable that is 0 has
non-0 derivatives.

The question is then how to pick the best non-0 variable, (ak or ωk) such that the added gradient
will be the most useful. The problem can then be formulated similarly as what is done in the paper.

Adding neurons with small yet non-0 weights. In this case, both the function and its gradient
will change when adding the neurons. Fortunately, Proposition 3.2 states that the best neurons to add
in terms of expressivity (to get the gradient closer to the variation desired by the backpropagation)
are also the best neurons to add to decrease the loss, i.e. the function change they will imply goes
into the right direction.

For each family (ωk)
K
k=1, the tangent space in al restricted to the family (αk)

K
k=1, ie T al

A :=

{ ∂al

∂(αk)Kk=1 |(αk)Kk=1=0
(.)(αk)

K
k=1|(αk)

K
k=1 ∈

(
R|bl−2(x)|

)K} varies with the family (ωk)
K
k=1, ie

T al

A := T al

A ((ωk)
K
k=1). Optimizing w.r.t. the ωk is equivalent to search for the best tangent space

for the αk, while symmetrically optimizing w.r.t. the αk is equivalent to find the best projection on
the tangent space defined by the ωk.

Figure 10: Changing the tangent space with different values of (ωk)
K
k=1.

Pre-activities vs. post-activities. The space of pre-activities al is a natural space for this frame-
work, as they are formed with linear operations and we compute first-order variation quantities.

18

Considering the space of post-activities bl = σ(al) is also possible, though computing variations
will be more complex. Indeed, without first-order approximation, the obtained problem is not man-
ageable, because of the non-linear activation function σ added in front of all quantities (while in the
case of pre-activations, quantity 9 is linear in ωk and thus does not require approximation in ωk,
which allow considering large ωk), and, with first-order approximation, it would add the derivative
of the activation function, taken at various locations σ′(al) (while in the previous case the derivatives
of the activation function were always taken at 0).

A.6 ADDING CONVOLUTIONAL NEURONS

To add a convolutional neuron at layer l − 1, one should add a kernel at layer l − 1 and expand one
dimension to all the kernels in layer l to match the new dimension of the post-activity.

Figure 11: Adding one convolutional neuron at layer one for a input with tree channels.

B THEORETICAL COMPARISON WITH OTHER APPROACHES

B.1 GRADMAX METHOD

The theoretical approach of GradMax is to add neurons with zero fan-in and choose the fan-out that
will decrease the loss as much as possible after one gradient step. At time t, we perform such neuron
addition and we note Ω the fan-out of the new neurons. After one gradient step, ie t → t + 1, we
have the approximation :

Lt+1 ≈ Lt − ||∇θL||2 − ||∇ΩL||2

The solution of GradMax is then :

(ω∗
1 , ...,ω

∗
K) := Ω∗ = argmax

Ω
||∇ΩL||2 s.t. ||Ω||2F < c

= argmax
Ω

||
∑
i

bl−2(xi)v
l+1
goal

T
(xi)Ω||2F s.t. ||Ω||2F < c

:= argmax
Ω

||Bl−2V
l+1

goal
T
Ω||2F s.t. ||Ω||2F < c

:= argmax
Ω

Tr
(
ΩT ÑT ÑΩ

)
s.t. ||Ω||2F < c (10)

19

Where c is a normalisation constant. On the other hand, TINY is equivalent to the following
optimisation problem :

(ω∗
1 , ...,ω

∗
K) = Ω∗ = argmax

Ω
||
∑
i

bl−2(xi)vgoal
l+1 T
proj

(xi)Ω||2F s.t. ||Bl−1Ω||2F < c

= argmax
Ω

||Bl−2Vgoal
l T
proj

Ω||2F s.t. ||Bl−1Ω||2F < c

= argmax
Ω̂

Tr
(
Ω̃TS− 1

2NTNS− 1
2 Ω̃

)
s.t. ||Ω̃||2F < c, Ω̃ := S

1
2Ω

= argmax
Ω

Tr
(
ΩS−1NTNS−1Ω

)
s.t. ||Ω||2F < c̃

One can note three differences between those optimization problems:

• First, the matrix Ñ is not defined using the projection of the desired update Vgoal
l+1
proj

. As
a consequence, GradMax does not take into account redundancy, and on the opposite will
actually try to add new neurons that are as redundant as possible with the part of the goal
update that is already feasible with already-existing neurons.

• Second, the constraint lies in the weight space for GradMax method while it lies in the pre-
activation space in our case. The difference is that GradMax relies on the Euclidean metric
in the space of parameters, which arguably offers less meaning that the Euclidean metric in
the space of activities. Essentially this is the same difference as between the standard L2
gradient w.r.t. parameters and the natural gradient, which takes care of parameter redun-
dancy and measures all quantities in the output space in order to be independent from the
parameterization. In practice we do observe that the ”natural” gradient direction improves
the loss better than the usual L2 gradient.

• Third, our fan-in weights are not set to 0 but directly to their optimal values (at first order).

B.2 NORTH PREACTIVATION

In paper Maile et al. (2022), fan-out weights are initialized to 0 while fan-in weights are initialized
as αi = S−1Bl−1V

T
Zl
ri where ri is a random vector and VZl

∈ M(|Ker(BT
l−1)|, |bl−1(x)|)

is a matrix consisting of the orthogonal vectors of the kernel of pre-activations Bl, i.e
{z | BT

l z = 0}. In our paper fan-in weights are initialized as αi = S−1Bl−1Vgoal
T
proj

vi =

S−1Bl−1Vgoal
TVZl

VT
Zl
vi, where the vi are right eigenvectors of the matrix S− 1

2N .

The main difference is thus that we use the backpropagation to find the best vi or ri directly, while
the NORTH approach tries random directions ri to explore the space of possible neuron additions.

C PROOFS OF PART 3 AND 4

C.1 PROPOSITION 3.1

Denoting by δWl
+ the generalized (pseudo-)inverse of δWl, we have:

δW ∗
l =

1

n
Vgoal

lBT
l−1

(1
n
Bl−1B

T
l−1

)+
and V l

0 =
1

n
Vgoal

lBT
l−1

(1
n
Bl−1B

T
l−1

)+
Bl−1

Proof
Consider the function

g(δWl) = ||Vgoal
l − δWlBl−1||2Tr (11)

20

then:

g(δWl +H) = ||Vgoal
l − δWlBl−1 −HBl−1||2Tr

= g(δWl)− 2⟨Vgoal
l − δWlBl−1,HBl−1⟩Tr + o(||H||)

= g(δWl)− 2Tr
((
Vgoal

l − δWlBl−1

)T
HBl−1

)
+ o(||H||)

= g(δWl)− 2Tr
(
Bl−1

(
Vgoal

l − δWlBl−1

)T
H

)
+ o(||H||)

= g(δWl)− 2⟨
(
Vgoal

l − δWlBl−1

)
BT

l−1,H⟩Tr + o(||H||)

By identification∇δWl
g(δWl) = −2

(
Vgoal

l − δWlBl−1

)
BT

l−1, and thus:

∇δWl
g(δWl) = 0 =⇒ Vgoal

lBT
l−1 = δWlBl−1B

T
l−1

Using the definition of the generalized inverse of M+, we get:

δW ∗
l =

1

n
Vgoal

lBT
l−1

(1
n
Bl−1B

T
l−1

)+
as one solution. For convolutional layer, we definied as bci the input associated to the activation
al(Xi) ∈ Rk,p,p, such that for any convolution layer Conv with parameter W , we have :

Conv(al(Xi)) = Bc
i vect(W) (12)

Example : considering the kernel of Conv to be (2, 2), then :

bki =

b1,ki b2,ki . bp,ki

bp+1,k
i bp+2,k

i . b2p,ki

. . . .

b
p(p−1)+1,k
i . . bp

2,k
i

 (13)

Bc
i =

b1,1i b2,1i bp+1,1
i bp+2,1

i b1,2i b2,2i bp+1,2
i bp+2,2

i b1,3i .

b2,1i b3,1i bp+2,1
i bp+3,1

i b2,2i b3,2i bp+2,2
i bp+3,2

i b2,3i .
.

Then the function to minimize is

g(δWl) = ||Vgoal
l −BcδWl||2Tr

where Bc :=
(
Bc

1 ... Bc
n

)
.

C.2 PROPOSITION 3.2

We define the matrices N := 1
nBl−2

(
Vgoal

l
proj

)T
and S := 1

nBl−2B
T
l−2. Let us denote its SVD

by S = UΣUT , and note S− 1
2 := U

√
Σ

−1
UT and consider the SVD of the matrix S− 1

2N =∑R
k=1 λkukv

T
k with λ1 ≥ ... ≥ λR ≥ 0, where R is the rank of the matrix N . Then:

Proposition C.1 (3.2). The solution of (5) can be written as:

• optimal number of neurons: K∗ = R

• their optimal weights: (α∗
k,ω

∗
k) = (sign(λk)

√
λkS

− 1
2uk,

√
λkvk) for k = 1, ..., R.

Moreover for any number of neurons K ⩽ R, and associated scaled weights θK,∗
↔ , the expressivity

gain and the first order in η of the loss improvement due to the addition of these K neurons are
equal and can be quantified very simply as a function of the eigenvalues λk:

Ψl
θ⊕θK,∗

↔
= Ψl

θ −
K∑

k=1

λ2
k

L(fθ⊕θK,∗
↔

) = L(fθ) +
σ′
l(0)

η

K∑
k=1

λ2
k + o(||θK,∗

↔ ||2)

21

Proof

We first compute the proof for a linear layer.
The optimal neurons n1, ..., nK are defined by ni := (αi,ωi) and are the solution of the optimiza-
tion problem :

argmin
δWl,δθK

l−1↔l

∣∣∣∣
V l

goalproj︷ ︸︸ ︷
V l

goal − δWlBl−1−ΩATBl−2

∣∣∣∣2
Tr

where Ω :=
(
ω1 ... ωK

)
and A :=

(
α1 ... αK

)
This is equivalent to :

argmin
C=ΩAT

∣∣∣∣
V l

goalproj︷ ︸︸ ︷
V l

goal − δWlBl−1−CBl−2

∣∣∣∣2
Tr

(14)

Then C∗ = S+N . Taking R = rank(S+N) and a family (αk,ωk)1,...,K such that ΩAT =∑
k ωkα

T
k = S+N is a optimal solution. But what if we decide to only add K < R neurons ?

argmin
θK
↔

{ 1

n
||Vgoal

l
proj
− V l(θK↔)||2Tr

}
= argmin

θK
↔

{
− 2

n

〈
Vgoal

l
proj

,V l(θK↔)
〉
Tr

+
1

n
||V l(θK↔)||2Tr

}
= argmin

θK
↔

1

n
g(θK↔)

We have

1

n
g(θK↔) = − 2

n

n∑
i

∑
k

vgoal
l
proj

(xi)
T
(
αT

k bl−2(xi)
)
ωk

+
1

n

K∑
k,j

n∑
i

(
αT

k bl−2(xi)
)
ωT

k ωj

(
αT

j bl−2(xi)
)

= −2
K∑
k

αT
k

(1

n

n∑
i

bl−2(xi)vgoal
l
proj

(xi)
T
)
ωk

+

K∑
k,j

ωT
k ωjα

T
k

(1

n

n∑
i

bl−2(xi)bl−2(xi)
T
)
αj

= −2
K∑
k

αT
kNωk +

K∑
k,j

ωT
k ωjα

T
kSαj

with N := 1
nBl−2

(
Vgoal

l
proj

)T
and S := 1

nBl−2B
T
l−2.

Consider the SVD of S = UΣUT . Define S
1
2 := U

√
ΣU and S− 1

2 := U
√
Σ

−1
UT .

Consider also the SVD of S− 1
2N =

∑R
r=1 λrvre

T
r .

Note also βk := S
1
2αk. Then :

−
K∑

k=1

αT
kNωk = −

∑
k

βT
k S

− 1
2Nωk

= −Tr
(∑

k

∑
r

λr

(
βT
k vre

T
r

)
ωk

)

22

Using the linearity of the Trace and that Tr(AB) = Tr(BA), we have :

−
K∑

k=1

αT
kNωk = −Tr

(∑
k

∑
r

λrωkβ
T
k vre

T
r

)
= −Tr

(∑
k

ωkβ
T
k

∑
r

λrvre
T
r

)
= −

〈∑
k

βkω
T
k ,

∑
r

λrvre
T
r

〉
Tr

with ⟨A,B⟩Tr = Tr(ATB)

For the second sum :
K∑
k,j

ωT
k ωjα

T
k Sαj =

∑
k,j

(
ωT

k ωj

)(
βT
j βk

)
= Tr

(∑
k,j

(
(ωT

k ωj)β
T
j

)
βk

))
= Tr(

(∑
k,j

βkω
T
k ωjβ

T
j

)
= ||

∑
k

ωkβ
T
k ||2Tr with ||A||Tr =

√
Tr(ATA)

= ||
∑
k

βkω
T
k ||2Tr

Then we have :

argmin
K,θ↔

1

n
g(α,ω) = argmin

K,α=S−1/2γ,ω

∥∥∥∥∥S−1/2N −
K∑

k=1

βkω
T
k

∥∥∥∥∥
2

Tr

The solution of such problems is given by the paper Eckart & Young (1936). For any K ≤ R :=

rank(S−1/2N), the best option is given by
∑K

k=1 βkω
T
k =

∑K
r=1 λrvre

T
r . Thus we have that∑R

k ωkα
T
k = S−1/2

∑R
k λkβkω

T
k = S−1N .

We now consider the matrix S−1/2N . The minimization also yields the following properties at the
optimum:

for k ̸= j, ⟨βkω
T
k ,βjω

T
j ⟩Tr = 0

||S−1/2N −
K∑

k=1

βkω
T
k ||2Tr =

R∑
r=K+1

λ2
r

= ||S−1/2N ||2Tr − ||
K∑

k=1

βkω
T
k ||2Tr

Furthermore :
1

n
||Vgoal

l
proj
− V (θK,∗

↔)||2Tr =
1

n
||Vgoal

l
proj
||2Tr + ||S− 1

2N −
∑
k

βkω
T
k ||2 − ||S− 1

2N ||2Tr

=

R∑
r=K+1

λ2
r +

1

n
||Vgoal

l
proj
||2Tr − ||S− 1

2N ||2Tr

= −
K∑
r=1

λ2
r +

1

n
||Vgoal

l
proj
||2Tr

23

We note Vgoal
l
proj

(δW ∗
l) := Vgoal

l
proj

. Suppose that Bl−1 and Bl−2 are orthogonal for the trace
scalar product, then when adding the new neurons, the impact on the global loss is :

L(fθ⊕θK
↔
) =

1

n

n∑
i=1

L(fθ(xi),yi)−
γ

η

1

n
σ′
l(0)

〈
V l(θK,∗

↔),Vgoal
l
proj

〉
Tr

+ o(1)

We also have the following property :

argmin
θK
↔

{ 1

n
||Vgoal

l
proj
− V l(θK↔)||2Tr

}
= argmin

H≥0
argmin

θK
↔,||V l(θK

↔)||Tr=H

{ 1

n
||Vgoal

l
proj
− V l(θK↔)||2Tr

}
= argmin

H≥0
argmin

θK
↔,||V l(θK

↔)||Tr=H

{
− 2

n

〈
Vgoal

l
proj

,V l(θK↔)
〉
Tr

+
1

n
||V l(θK↔)||2Tr

}
= argmin

H≥0
argmin

θK
↔,||V l(θK

↔)||Tr=H

{
− 2

n

〈
Vgoal

l
proj

,V l(θK↔)
〉
Tr

+
1

n
H2

}
= argmin

H≥0
argmin

θK
↔,||V l(θK

l↔)∗||Tr=1

{
−H

〈
Vgoal

l
proj

,V l(θKl↔)∗
〉
Tr

+
1

2
H2

}

with V l(θK↔)∗ the solution of the second argmin (ie for H = 1).
Then the norm minimizing the first argmin is given by :

H∗ =
〈
Vgoal

l
proj

,V l(θK↔)∗
〉
Tr

Furthermore

min
θK
l↔l

{ 1

n
||Vgoal

l
proj
− V l(θKl↔l)||2Tr

}
= −

K∑
r=1

λ2
r +

1

n
||Vgoal

l
proj
||2Tr (15)

min
θK
↔

{ 1

n
||Vgoal

l
proj
− V l(θKl↔l)||2Tr

}
= − 1

n
H∗2

+
1

n
||Vgoal

l
proj
||2Tr (16)

=⇒ H∗ =
〈
Vgoal

l
proj

,V l(θK↔)∗
〉
Tr

=

√√√√ K∑
r=1

λ2
r ×
√
n (17)

V l(θK,∗
↔) = H∗V l(θK↔)∗ (18)〈

V l(θK,∗
↔),Vgoal

l
proj

〉
Tr

= H∗ ×
〈
Vgoal

l
proj

,V l(θK↔)∗
〉
Tr

= H∗2 (19)

where the last equality is given by the optimisation of ||S− 1
2N −

∑K
k=1 ukω

T
k ||2Tr. So minimiz-

ing the scalar product −
〈
Vgoal

l
proj

(δW ∗
l),V

l(θK↔)∗
〉
Tr

for fixed norm of V l(θK↔) is equivalent to

minimizing the norm ||Vgoal
l
proj

(δW ∗
l)− V l(θK↔)||2Tr.

L(fθ⊕θK
↔
) =

1

n

n∑
i=1

L(fθ(xi),yi)−
1

η
σ′
l(0)

K∑
r=1

λ2
k + o(1)

For convolutional layers, the same reasoning can be applied. Consider one adds one convolution
layer, ie K = 1. Use Bc

i defined in the first proof and Tj the linear application selecting the

24

activities for the j−pixel , then one has to minimize the expression :

g(θ1↔) =

out channels∑
m

examples∑
i

preactivity size∑
j=1

(ωT
mTjB

cα− Vgoal
i
j,m

)2

=
∑
m

∑
i

∑
j=1

(ωT
mTjB

c
iα)2 − 2ωT

mTjB
c
iαVgoal

i
j,m

+ C

=
∑
m

∑
i

∑
j=1

Tr(ωT
mTjB

c
iα)2 − 2ωT

mTjB
c
iαVgoal

i
j,m

+ C

=
∑
m

∑
i

∑
j=1

Tr(TjB
c
iαωT

m)2 − 2ωT
mTjB

c
iαVgoal

i
j,m

+ C

for some constant C. We have the property that ⟨T T
j ,Bc

iαωT
m⟩2Tr = Tr(TjB

c
iαωT

m)2 =

||TjB
c
iαωT

m||2Tr. Ignoring the constant C:

g(θ1↔) =
∑
m

Tr(ωmαT
(∑

i

Bc
i
T
∑
j

T T
j TjB

c
i

)
αωT

m)− 2ωT
m

∑
i,j

TjB
c
iVgoal

i
j,m

α

=
∑
m

αT
(∑

i

Bc
i
T
∑
j

T T
j TjB

c
i

)
αωT

mωm − 2ωT
m

∑
i,j

TjB
c
iVgoal

i
j,m

α

= αT
(∑

i

Bc
i
T
∑
j

T T
j TjB

c
i

)
αωTω − 2

∑
m

ωT
m

∑
i,j

Tj1
T
fullVgoal

i1j,mBc
iα

= αTSαωTω − 2
∑
m

ωT
m

∑
i

Fm
i Bc

iα

= αTSαωTω − 2ωNα

with Tj =

j−1+⌊j/(p−1)⌋︷ ︸︸ ︷
0 . 0 1 0

j−1+⌊j/(p−1)⌋︷ ︸︸ ︷
0 . 0 0 1

j−1+⌊j/(p−1)⌋︷ ︸︸ ︷
0 . 0

31︷ ︸︸ ︷
0 . 0 1 0 . . .

j−1+⌊j/(p−1)⌋︷ ︸︸ ︷
0 . 0

31︷ ︸︸ ︷
0 . 0 0 1 0 . .

for a kernel size equal to (2, 2).

C.3 PROPOSITION AND REMARK 3.3

Suppose S is semi definite, we note S = S
1
2S

1
2 . Solving (7) is equivalent to find the K first

eigenvectors αk associated to the K largest eigenvalues λ of the generalized eigenvalue problem :

NNTαk = λSαk

Proof

This is equivalent to maximizing the following generalized Rayleigh quotient (which is solvable by
the LOBPCG technique):

α∗ = max
x

αTNNTα

αTSα

p∗ = max
p=S1/2α

pTS− 1
2NNTS− 1

2p

pTp

p∗ = max
||p||=1

||NTS− 1
2p||

α∗ = S− 1
2p∗

25

Considering the SVD of S− 1
2N =

∑R
r=1 λrerf

T
r , then S− 1

2NNTS− 1
2 =

∑R
r=1 λ

2
rfrf

T
r ,

because j ̸= i =⇒ eTi ej = 0 and fT
i fj = 0. Hence maximizing the first quantity is equivalent

to p∗
k = fk, then αk = S− 1

2 ek. The same reasoning is used to find ωk.

We prove second corollary 3.2 by induction. For m = m′ = 1 :

al(x)
t+1 = al(x)

t + V (θ1,∗↔ ,x)γ + o(γ)

vgoal
l,t+1(x) = vgoal

l,t(x) +∇al(x)L(fθ(x),y)
Tv(θ1,∗↔ ,x)γ + o(γ)

Adding the second neuron we obtain the minimization problem:

argmin
α2,ω2

||Vgoal
l,t − V l(α2,ω2)||Tr + o(1)

C.4 ABOUT EQUIVALENCE OF QUADRATIC PROBLEMS

Problems 6 and 5 are generally not equivalent, but might be very close, depending on layer sizes and
number of samples. The difference between the two problems is that in one case one minimizes the
quadratic quantity: ∥∥∥V l(θK↔) + V l(δWl)− Vgoal

l
∥∥∥2
Tr

w.r.t. δWl and θK↔ jointly, while in the other case the problem is first minimized w.r.t. δWl and
then w.r.t. θK↔. The latter process, being greedy, might thus provide a solution that is not as optimal
as the joint optimization.

We chose this two-step process as it intuitively relates to the spirit of improving upon a standard
gradient descent: we aim at adding neurons that complement what the other ones have already done.
This choice is debatable and one could solve the joint problem instead, with the same techniques.

The topic of this section is to check how close the two problems are. To study this further, note that
V l(δWl) = δWl Bl−1 while V l(θK↔) =

∑K
k=1 ωkB

T
l−2αk. The rank of Bl−1 is min(nS , nl−1)

where nS is the number of samples and nl−1 the number of neurons (post-activities) in layer l − 1,
while the rank of Bl−2 is min(nS , nl−2) where nl−2 is the number of neurons (post-activities) in
layer l − 2. Note also that the number of degrees of freedom in the optimization variables δWl and
θK↔ = (ωk,αk) is much larger than these ranks.

Small sample case. If the number nS of samples is lower than the number of neurons nl−1 and
nl−2 (which is potentially problematic, see Section D.1), then it is possible to find suitable variables
δWl and θK↔ to form any desired V l(δWl) and V l(θK↔). In particular, if nS ⩽ nl−1 ⩽ nl−2, one
can choose V l(θK↔) to be Vgoal

l − V l(δWl) and thus cancel any effect due to the greedy process in
two steps. The two problems are then equivalent.

Large sample case. On the opposite, if the number of samples is very large (compared to the
number of neurons nl−1 and nl−2), then the lines of matrices Bl−1 and Bl−2 become asymptotically
uncorrelated, under the assumption of their independence (which is debatable, depending on the
type of layers and activation functions). Thus the optimization directions available to V l(δWl) and
V l(θK↔) become orthogonal, and proceeding greedily does not affect the result, the two problems
are asymptotically equivalent.

In the general case, matrices Bl−1 and Bl−2 are not independent, though not fully correlated, and
the number of samples (in the minibatch) is typically larger than the number of neurons; the prob-
lems are then different.

Note that technically the ranks could be lower, in the improbable case where some neurons are
perfectly redundant, or, e.g., if some samples yield exactly the same activities.

C.5 SECTION Theory behind Greedy Growth WITH PROOFS

One might wonder whether a greedy approach on layer growth might get stuck in a non-optimal
state. We derive the following series of propositions in this regard. Since in this work we add

26

neurons layer per layer independently, we study here the case of a single hidden layer network, to
spot potential layer growth issues. For the sake of simplicity, we consider the task of least square
regression towards an explicit continuous target f∗, defined on a compact set. That is, we aim at
minimizing the loss:

inf
f

∑
x∈D
∥f(x)− f∗(x)∥2

where f(x) is the output of the neural network and D is the training set.

Proposition C.2 (Greedy completion of an existing network). If f is not f∗ yet, there exists a set of
neurons to add to the hidden layer such that the new function f ′ will have a lower loss than f .

One can even choose the added neurons such that the loss is arbitrarily well minimized.

Proof. The classic universal approximation theorem about neural networks with one hidden layer
Pinkus (1999) states that for any continuous function g defined on a compact set ω, for any desired
precision γ, and for any activation function σ provided it is not a polynomial, then there exists a
neural network ĝ with one hidden layer (possibly quite large when γ is small) and with this activation
function σ, such that

∀x, ∥g(x)− g∗(x)∥ ⩽ γ

We apply this theorem to the case where g∗ = f∗ − f , which is continuous as f∗ is continuous, and
f is a shallow neural network and as such is a composition of linear functions and of the function σ,
that we will suppose to be continuous for the sake of simplicity. We will suppose that f is real-valued
for the sake of simplicity as well, but the result is trivially extendable to vector-valued functions (just
concatenate the networks obtained for each output independently). We choose γ = 1

10∥f
∗ − f∥L2,

where ⟨a| b⟩L2 = 1
|ω|

∫
x∈ω

a(x) b(x) dx. This way we obtain a one-hidden-layer neural network g

with activation function σ such that:

∀x ∈ ω, −γ ⩽ g(x)− g∗(x) ⩽ γ

∀x ∈ ω, g(x) = f∗(x)− f(x) + a(x)

with ∀x ∈ ω, |a(x)| ⩽ γ.

Then:
∀x ∈ ω, f∗(x)− (f(x) + g(x)) = −a(x)

∀x ∈ ω, (f∗(x)− h(x))
2
= a2(x) (20)

with h being the function corresponding to a neural network consisting in concatenating the hidden
layer neurons of f and g, and consequently summing their outputs.

∥f∗ − h∥2L2 = ∥a∥2L2

∥f∗ − h∥2L2 ⩽ γ2 =
1

100
∥f∗ − f∥2L2

and consequently the loss is reduced indeed (by a factor of 100 in this construction).

The same holds in expectation or sum over a training set, by choosing γ =
1
10

√
1

|D|
∑

x∈D ∥f(x)− f∗(x)∥2, as Equation (20) then yields:

∑
x∈D

(f∗(x)− h(x))
2
=

∑
x∈D

a2(x) ⩽
1

100

∑
x∈D

(f∗(x)− f(x))
2

which proves the proposition as stated.

For more general losses, one can consider order-1 (linear) developpment of the loss and ask for a
network g that is close to (the opposite of) the gradient of the loss.

Proof of the additional remark. The proof in Pinkus (1999) relies on the existence of real values cn
such that the n-th order derivatives σ(n)(cn) are not 0. Then, by considering appropriate values

27

arbitrarily close to cn, one can approximate the n-th derivative of σ at cn and consequently the poly-
nomial cn of order n. This standard proof then concludes by density of polynomials in continuous
functions.

Provided the activation function σ is not a polynomial, these values cn can actually be chosen ar-
bitrarily, in particular arbitrarily close to 0. This corresponds to choosing neuron input weights
arbitrarily close to 0.

Proposition C.3 (Greedy completion by one single neuron). If f is not f∗ yet, there exists a neuron
to add to the hidden layer such that the new function f ′ will have a lower loss than f .

Proof. From the previous proposition, there exists a finite set of neurons to add such that the loss will
be decreased. In this particular setting of L2 regression, or for more general losses if considering
small function moves, this means that the function represented by this set of neurons has a strictly
negative component over the gradient g of the loss (g = 2(f∗− f) in the case of the L2 regression).
That is, denoting by aiσ(Wi · x) these N neurons:

〈 N∑
i=1

aiσ(wi · x)
∣∣ g〉

L2
= K < 0

i.e.
N∑
i=1

⟨aiσ(wi · x)| g⟩L2 = K < 0

Now, by contradiction, if there existed no neuron i among these ones such that

⟨aiσ(wi · x) | g⟩L2 ⩽
1

N
K

then we would have:
∀i ∈ [1, N], ⟨aiσ(wi · x)| g⟩L2 >

1

N
K

N∑
i=1

⟨aiσ(wi · x)| g⟩L2 > K

hence a contradiction. Then necessarily at least one of the N neurons satisfies

⟨aiσ(wi · x)| g⟩L2 ⩽
1

N
K < 0

and thus decreases the loss when added to the hidden layer of the neural network representing f .
Moreover this decrease is at least 1

N of the loss decrease resulting from the addition of all neurons.

As a consequence, our greedy approach will not get stuck in a situation where one would need to
add many neurons simultaneously to decrease the loss: it is always feasible by a single neuron. On
can express a lower bound on how much the loss has improved (for the best such neuron), but it not
a very good one without further assumptions on f .

Proposition C.4 (Greedy completion by one infinitesimal neuron). The neuron in the previous
proposition can be chosen to have arbitrarily small input weights.

Proof. This is straightforward, as, following a previous remark, the neurons found to collectively
decrease the loss can be supposed to all have arbitrarily small input weights.

This detail is important in that our approach is based on the tangent space of the function f and con-
sequently manipulates infinitesimal quantities. Though we perform line search in a second step and
consequently add non-infinitesimal neurons, our first optimization problem relies on the lineariza-
tion of the activation function by requiring the added neuron to have infinitely small input weights,
without which it would be much harder to solve. This proposition confirms that such neuron does
exist indeed.

28

D TECHNICAL DETAILS

D.1 BATCH SIZE TO ESTIMATE THE NEW NEURON AND THE BEST UPDATE

In this section we study the variance of the matrices δWl
∗and S−1/2N computed using a minibatch

of n samples, seeing the samples as random variables, and the matrices computed as estimators of the
true matrices one would obtain by considering the full distribution of samples. Those two matrices
are the solutions of the multiple linear regression problems defined in (11) and in (14), as we are
trying to regress the desired update noted Y onto the span of the activities noted X . We suppose we
have the following setting :

Y ∼ AX + ε, ε ∼ N (0, σ2), E[ε|X] = 0

where the (Xi, Yi) are i.i.d. and A is the oracle for δWl
∗ or matrix S−1/2N . If Y is multidimen-

sional, the the total variance of our estimator can be seen as the sum of the variances of the estimator
on each dimension of Y .

We now suppose that Y ∈ R . The estimator Â := (XXT)−1XYT has variance var(Â) =
σ2(XXT)−1. If n is large, and if matrix 1

nXXT → Q, with Q non singular, then, asymptotically,

we have Â ∼ N (A, σ2Q−1

n), which is equivalent to (Â − A)
√

n
σQ

1/2 ∼ N (0, I). Then ||(Â −
A)

√
n
σQ

1/2||2 ∼ χ2(k) where k is the dimension of X . It follows that E
[
||(Â−A)Q1/2||2

]
= kσ

n

and as Q1/2Q1/2T is positive definite, we conclude that var(Â) ⩽ kσ
nλmin(Q) .

In practice and to keep the variance of our estimators stable during architecture growth, for the
estimation of the best neuron to add we use batch size

n ∝ (SW)2

P
,

with the notations defined in Figure 12, since the matrices we estimate have side size SW and that
each input sample contains P values, i.e. P quantities that each play the role of X here.

D.2 BATCH SIZE FOR LEARNING

We adjust the batch size for gradient descent as follow : the batch size is set to bt=0 = 32 at the
beginning of each experiment, and it is scheduled to increase as the square root of the complexity of
the model (ie number of parameters). If at time t the network has complexity Ct parameters, then at

time t+ 1 the training batch size is equal to bt+1 = bt ×
√

Ct+1

Ct
.

D.3 NORMALIZATION

D.3.1 FIGURES 5 AND 16 : USUAL NORMALIZATION

For the GradMax method of figure 5 and 16, before adding the new neurons to the architecture, we
normalize the out-going weight of the new neurons according to Evci et al. (2022), ie :

α∗
k ← 0 (21)

for 5 ω∗
k ← ω∗

k ×
1e− 3√

||{ω∗
j }

nd
j=1||22/nd

(22)

for 16 ω∗
k ← ω∗

k ×
√

1e− 3

||{ω∗
j }

nd
j=1||22/nd

(23)

For TINY method of both figures, the previous normalization process is mimicked by normalizing
the in and out going weights by theirs norms and multiplying them by

√
1e− 3, ie :

αk ← α∗
k ×

√
1e− 3

||{α∗
j}

nd
j=1||22/nd

(24)

ωk ← ω∗
k ×

√
1e− 3

||ω∗
j }

nd
j=1||22/nd

(25)

29

D.3.2 FIGURE 8 : AMPLITUDE FACTOR

For the Random and the TINY methods of figure 8, we first normalize the parameters as :

For the new neurons

α∗
k ← α∗

k ×
1√

||{α∗
j}

nd
j=1||22/nd

ω∗
k ← α∗

k ×
1√

||{ω∗
j }

nd
j=1||22/nd

For the best update

W ∗ ←W ∗ × 1√
||W ∗||22/nd

Then, we multiply them by the amplitude factor γ∗ :

For the new neurons :

α∗
k, ω∗

k ← α∗
kγ

∗, ω∗
kγ

∗

γ∗ := argmin
γ∈[−L,L]

∑
i

L(fθ⊕γθK
↔
(xi),yi)

For the best update :

W ∗
l ← γ∗Wl

γ∗ := argmin
γ∈[−L,L]

∑
i

L(fθ+γW ∗(xi),yi)

Where the operation γθK
∗

↔ = (γα∗
k, γω

∗
k)

K
k is the concatenation of the neural network with the new

neurons and θ + γW ∗ is the update of one layer with its best update. The batch on which γ∗ is
computed is different from the one used to estimate the new parameters and its size is fixed to 1000
for all experiments.

D.4 FULL ALGORITHM

In this section we describe in detail the pseudo code to plot 5 and 8. The
function NewNeurons(l), in Algorithm 2, computes the new neurons defined
at Proposition 3.2 for layer l sorted by decreasing eigenvalues. The function
BestUpdate(l), in Algorithm 4 computes the best update at Proposition 3.1 for layer l.

Algorithm 1: Algorithm to plot Figure 5 and 8.
for each method [TINY, MethodToCompareWith] do

Start from neural network N with initial structure ι ∈ {1/4, 1/64};
while N architecture doesn’t match ResNet18f do

for d in {depths to growth} do
θK

∗

↔ = NewNeurons(d,method = method) ;
Normalize θK

∗

↔ according to D.3;
Add the neurons at d ;
Train N for ∆t epochs ;
Save model N and its performance ;

end
end

end

30

Algorithm 2: NewNeurons
Data: l,method = TINY
Result: Best neurons at l
if method = TINY then

δWl = BestUpdate(l + 1);
S,N =

MatrixSN(l−1, l+1, δWl = δWl);
Compute the SVD of S := UΣUT ;
Compute the SVD of
U
√
Σ

−1
UN := AΛΩ;

Use the columns of A, the ligns of Ω
and the diagonal of Λ to construct
the new neurons of Prop. 3.2;

else if method = GradMax then
δWl = None ;
, N = MatrixSN(l−1, l+1, δWl =
δWl) ;

Compute the SVD of NTN ;
Use the eigenvectors to define the

new out-going weights ;
Set the new in-going weight to 0;

else if method = Random then
(αk, ωk)

nd

k=1 ∼ N (0, Id);
end

Algorithm 3: MatrixSN
Data: p1, p2 (layer indexes), δWl =

None
Result: Construct matrices S and N
Take a minibatch X of size ∝ (SW)2

P ;
Propagate and backpropagate X;
Compute Vgoal at p2, ie − ∂Ltot

∂Ap2
;

if δWl ̸= None then
Vgoal− = δWlBp1

end
S,N = Bp1

Bp1

T ,Bp1
Vgoal

T ;

Algorithm 4: BestUpdate
Data: l, index of a layer
Result: Best update at l
Take a minibatch X of size ∝ (SW)2

P ;
Compute (S,N) with the function

S N(l, l);
δWl = NTS−1;

D.5 COMPUTATIONAL COMPLEXITY

We estimate here the computational complexity of the above algorithm for architecture growth.

Theoretical estimate. We use the following notations:

• number of layers: L

• layer width, or number of kernels if convolutions: W (assuming for simplicity that all
layers have same width or kernels)

• number of pixels in the image: P (P = 1 for fully-connected)

• kernel filter size: S (S = 1 if fully-connected)

• minibatch size used for standard gradient descent: M

• minibatch size used for new neuron estimation: M ′

• minibatch size used in the line-search to estimate amplitude factor: M ′′

• number of classical gradients steps performed between 2 addition tentatives: T

Figure 12: Notation and size for convolutional and linear layers

Complexity, estimated as the number of basic operations, cumulated over all calls of the functions:

31

• of the standard training part: TMLW 2SP

• of the computation of matrices of interest (function MatrixSN): LM ′(SW)2P

• of SVD computations (function NewNeurons): L(SW)3

• of line-searches (function AmplitudeFactor): L2M ′′W 2SP

• of weight updates (function BestUpdate): LSW

The relative added complexity w.r.t. the standard training part is thus:

M ′S /TM + S2W /TMP + M ′′L / TM + 1 /WTMP.

SVD cost is negligible. The relative cost of the SVD w.r.t. the standard training part is
S2W /TMP . In the fully-connected network case, S = 1, P = 1, and the relative cost of the
SVD is then W/TM . It is then negligible, as layer width W is usually much smaller than TM ,
which is typically 10 × 100 for instance. In the convolutional case, S = 9 for 3 × 3 kernels, and
P ≈ 1000 for CIFAR, P ≈ 100000 for ImageNet, so the SVD cost is negligible as long as layer
width W << 10000 or 1 000 000 respectively. So one needs no worrying about SVD cost.

Likewise, the update of existing weights using the “optimal move” (already computed as a by-
product) is computationally negligible, and the relative cost of the line searches is limited as long as
the network is not extremely deep (L < TM/M”).

On the opposite, the estimation of the matrices (to which SVD is applied) can be more ressource
demanding. The factor M ′S/TM can be large if the minibatch size M ′ needs to be large for
statistical significance reasons. One can show that an upper bound to the value required for M ′ to
ensure estimator precision (see Appendix D.1) is (SW)2/P . In that case, if W >

√
TMP/S3,

these matrix estimations will get costly. In the fully-connected network case, this means W >√
TM ≈ 30 for T = 10 and M = 100. In the convolutional case, this means W >

√
TMP/S3 ≈

30 for CIFAR and ≈ 300 for ImageNet. We are working on finer variance estimation and on other
types of estimators to decrease M ′ and consequently this cost. Actually (SW)2/P is just an upper
bound on the value required for M ′, which might be much lower, depending on the rank of computed
matrices.

In practice. In practice the cost of a full training with our architecture growth approach is similar
(sometimes a bit faster, sometimes a bit slower) than a standard gradient descent training using
the final architecture from scratch. This is great as the right comparison should take into account
the number of different architectures to try in the classical neural architecture search approach.
Therefore we get layer width hyper-optimization for free.

E ADDITIONAL EXPERIMENTAL RESULTS AND REMARKS

E.1 RESNET18 ON CIFAR-100

Figures. In all plots the black line represents the average performance over two independent runs,
and the colored regions indicate the confidence interval.

technical details of figure 5 and 8 The experiment were performed on 1 GPU. The optimizer
is SGD(lr = 1e − 2) with the starting batch size 32 D.2. At each depth l we set the num-
ber nl of neurons to be added at this depth 2. These numbers do not depend on the start-
ing architecture and have been chosen such that each depth will reach its final width with the
same number of layer extensions. For the initial structure s = 1/4, resp. 1/64, we set the
number of layer extensions to 16, resp. 21, such that at depth 2 (named Conv2 in Table 3),
n2 = (Sizefinal2 − Sizestart2)/nb of layer extensions = (64 − 16)/16 = (64 − 1)/21 = 3. The
initial architecture is described in Table 3.

32

Figure 13: Accuracy and number of parameters during architecture growth for methods TINY and
GradMax as a function of gradient step.
.

33

Figure 14: Accuracy as a function of the number of epochs during extra training for TINY.

Figure 15: Accuracy curves as a function of the number of epochs during extra training for GradMax.

34

depth l Conv2 Conv3 Conv5 Conv6 Conv8 Conv9 Conv11 Conv12
nl 3 3 6 6 12 12 24 24

Table 2: Number of neurons to add per layer. The depth is identified by its name on tab 3

Table 3: Initial and final architecture for the models of Figure 5. Numbers in color indicate where
the methods were allowed to add neurons (middle of ResNet blocks). In blue the initial structure for
the model 1/64 and in green the initial structure for the model 1/4, ie 1/16 indicates that the model
1/64 started with 1 neurons at this layer while the model 1/4 started with 16 neurons at the same
layer.

ResNet18

Layer name Output size Initial layers (kernel=(3,3), padd.=1) Final layers (end of Fig 5)

Conv 1 32× 32× 64
[
3× 3,

] [
3× 3, 64

]
Conv 2 32× 32× 64

[
3× 3, 64

3× 3, 1/16

][
3× 3, 1/16

3× 3, 64

] [
3× 3, 64

3× 3, 64

][
3× 3, 64

3× 3, 64

]

Conv 3 32× 32× 64

[
3× 3, 64

3× 3, 1/16

][
3× 3, 1/16

3× 3, 64

] [
3× 3, 64

3× 3, 64

][
3× 3, 64

3× 3, 64

]
Conv 4 16× 16× 64

[
3× 3, 128

] [
3× 3, 128

]
Conv 5 16× 16× 128

[
3× 3, 128

3× 3, 2/32

][
3× 3, 2/32

3× 3, 128

] [
3× 3, 128

3× 3, 128

][
3× 3, 128

3× 3, 128

]

Conv 6 16× 16× 128

[
3× 3, 128

3× 3, 2/32

][
3× 3, 2/32

3× 3, 128

] [
3× 3, 128

3× 3, 128

][
3× 3, 128

3× 3, 128

]
Conv 7 8× 8× 256

[
3× 3, 256

] [
3× 3, 256

]
Conv 8 8× 8× 256

[
3× 3, 256

3× 3, 4/64

][
3× 3, 4/64

3× 3, 256

] [
3× 3, 256

3× 3, 256

][
3× 3, 256

3× 3, 256

]

Conv 9 8× 8× 256

[
3× 3, 256

3× 3, 4/64

][
3× 3, 4/64

3× 3, 256

] [
3× 3, 256

3× 3, 256

][
3× 3, 256

3× 3, 256

]
Conv 10 4× 4× 512

[
3× 3, 512

] [
3× 3, 512

]
Conv 11 4× 4× 512

[
3× 3, 512

3× 3, 8/128

][
3× 3, 8/128

3× 3, 512

] [
3× 3, 512

3× 3, 512

][
3× 3, 512

3× 3, 512

]

Conv 12 4× 4× 512

[
3× 3, 512

3× 3, 8/128

][
3× 3, 8/128

3× 3, 512

] [
3× 3, 512

3× 3, 512

][
3× 3, 512

3× 3, 512

]
AvgPool2d 1× 1× 512

FC 1 100 512× 100 256× 100

SoftMax 100

35

Figure 16: Accuracy on test of as a function of the number of parameters during architecture growth
from ResNet1/64 to ResNet18. The normalization for GradMax is

√
10−3

.

TINY GradMax Baseline

s
∆t

1 1

1/64 68.0± 0.4 57.2± 0.3
72.9± 0.1 5∗

1/64 69.0± 0.6 5∗ 57.7± 0.3 3∗

Table 4: Final accuracy on test of ResNet18 of 16 after the architecture growth (grey) and after
convergence (black). The number of start indicated the multiple of 50 epochs needed to achieve
convergence. With the starting architecture ResNet1/64 and ∆t = 1 the method TINY achieves
68.0± 0.4on test after its growth and it reaches 69.0± 0.6 5∗after ∗ := 5× 50 epochs.

36

	Introduction
	Main concepts
	Notations
	Approach
	Generalizing to all layers

	Expressivity bottlenecks
	Best move without modifying the architecture of the network
	Reducing expressivity bottleneck by modifying the architecture

	About greedy growth sufficiency
	Results
	Comparison with GradMax on CIFAR-100
	Comparison with Random on CIFAR-100 : initialisation impact

	Conclusion
	Theoretical details for part 2
	Functional gradient
	Differentiation under the integral sign
	Gradients and proximal point of view
	Example of expressivity bottleneck
	Problem formulation and choice of pre-activities
	Adding convolutional neurons

	Theoretical comparison with other approaches
	GradMax method
	NORTH Preactivation

	Proofs of Part 3 and 4
	Proposition 3.1
	Proposition 3.2
	Proposition and remark 3.3
	About equivalence of quadratic problems
	Section Theory behind Greedy Growth with proofs

	Technical details
	Batch size to estimate the new neuron and the best update
	Batch size for learning
	Normalization
	Figures 5 and 16 : Usual normalization
	Figure 8 : Amplitude Factor

	Full algorithm
	Computational complexity

	Additional experimental results and remarks
	ResNet18 on CIFAR-100

