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Abstract—Alzheimer’s Disease (AD) is supported by
several complementary neuroimaging scans including 18F-
fluorodeoxyglucose PET (FDG-PET), 18F-AV45 florbetapir
PET (AV45-PET) and tau PET. Limiting PET scans would
allow reducing cost and radiation exposure. Interestingly, the
early PET acquisition of the AV45 scan would allow providing
information similar to a FDG-PET scan. This study aims to
perform an unidirectional translation from eAV45-PET to FDG-
PET to optimize the similarities between both scan so that both
complementary informations could be obtained from a single
visit and radiotracer injection. The eAV45-PET to FDG-PET
image translation is made by a ResNet neural network as well
as a specific encoding and decoding algorithms. Results show
good performances (0.00160 for Mean Square Error, 0.10301 for
Normalized Root Mean Square Error, 33.80288 for Peak Signal
to Noise Ratio and 33.80288 for Structural Similarity), however
the technique still needs to be optimized to reduce the intensity
discrepancy in some brain regions especially the frontal cortex.

Index Terms—Alzheimer’s disease, neuroimaging, PET scans,
image generation, deep learning, translation

I. INTRODUCTION

Alzheimer’s Disease (AD) is the most common type of
dementia and affects more than 35 million people in the
world. This number tends to increase due to the aging of the
population. There is no known cure for this disease, and the
cause is not yet understood, but treatments can slow down
its progression. Sadly the early and differential diagnosis of
Alzheimer’s disease (AD) is still challenging (M. McKhann
and al. [1]).

Various parameters can be used to diagnose AD, in partic-
ular with neuroimaging. Several neuroimaging exams can be
realized to see different markers of the disease: brain Magnetic
Resonance Imaging (MRI) scan for hippocampal atrophy, and

three different Positron Emission Tomography (PET) scans:
18FF-fluorodeoxyglucose PET (FDG-PET), amyloid and tau
PET to assess for metabolism changes, amyloid and tau
PET for tau deposits, respectively. Although complementary,
acquiring 3 PET acquisitions requires multiple injections, each
being invasive and expensive (Vanhoutte and al. [2], R. Jack
and al. [3]).

Amyloid AV45 is a reliable measure of amyloid deposition.
Typically, the brain image is acquired at 50 to 70 minutes after
injection, which is the necessary duration for maximal binding
of the tracer onto amyloid deposits. Early acquisition of the
AV45 tracer, between 0 to 10 minutes, is however related to the
diffusion of the tracer within the brain vascular system before
its binding onto the amyloid deposit, providing an image of
the cerebral blood flow. This type of PET, named eAV45-
PET (in opposition to the AV45-PET with the usual delay)
shares a lot of similarities with FDG-PET, as expected when
measuring cerebral blood flow and metabolism (Vanhoutte and
al. [2], Asghar and al. [4], Hsiao and al. [5]). However, eAV45-
PET seems less sensitive to AD than FDG-PET. From this
observation, the aim of this article is to generate the result
of a FDG-PET from an eAV45-PET, using a Convolutional
Neural Network (CNN). Providing such a proxy of the FDG-
PET would enable the procurement of both metabolism-proxy
and amyloid map with only one injection, reducing acquisition
cost and being less invasive. In addition, we aim to provide
a synthesized metabolism map that is more sensitive to AD
than the original eAV45-PET scan.

Our method, which uses a CNN combined with an encoder
and a decoder algorithms, allows the generation of a FDG-
PET image, named artificial FDG-PET, from an eAV45-PET



scan. At the best of our knowledge we are the first to propose
such translation. This artificial FDG-PET image is close to the
true FDG-PET scan, which correspond to the original, with
stronger proximity than the initial eAV45-PET scan.

This paper is organized as follows: Section II proposes a
review of some related work. Then, Section III details the
methodology of this study, in terms of data acquisition and
processing, neural network choice, and evaluation parameters.
Afterward, Section IV presents the results of this study and
Section V discuss them. Finally, Section VI concludes this
paper with planned future works.

II. RELATED WORK

eAV45-PET is a recent method with first reports dating
from a decade ago: Hsiao and al. [5] point out the proximity
between FDG-PET and eAV45-PET by showing a significant
correlation between these two images. Asghar and al. [4]
subsequently showed its relevance in the detection of cognitive
disease, although with a lower sensitivity.

So far, eAV45-PET has been used as is, as ”pseudo-FDG”,
but no proper synthesis of FDG-PET has been realised. Hazrat
and al. [6] present a review on medical imaging generation and
PET images are not the common choice, especially for eAV45-
PET. An explanation for this is that deep learning, which is one
of the best choice for image generation, requires a lot of data
to provide reliable results. Unfortunately, eAV45-PET being
quite recent, data are available only in a limited quantities.
Due to these difficulties, eAV45-PET suffers from a lack of
familiarity and use outside of the research circle, unlike the
more widely used other PET or MRI scans.

Concerning image generation, although we do not use
this method in this work, the most popular technology is
Generative Adversarial Network (GAN). This technology is
based on a training through a discriminator. This discrimi-
nator is also a neural network which updated dynamically
to evaluate the accuracy of the first one. This model can
be unidirectional or bidirectional. Some very recent image
generation works use the stable diffusion method (Rombach
and al. [7]). Nonetheless, to our knowledge, they have not
been scaled to PET scans, and cannot yet be applied to small
data set like eAV45-PET. The efficiency of GAN makes them
popular in many fields including the medical field (Hazrat and
al. [6]). In our case, translation is the type of transformation
of interest, as it can generate a new image (artificial FDG-
PET) from an existing image (eAV45-PET). In the literature,
the general case is to generate an MRI image from another
MRI, Computed Tomography (CT) or PET modality. Due
to the complexity and time-consuming calculations, image
generation is generally approached in 2D, even for medical 3D
images with the use of slices. Lots of popular GAN networks
like CycleGAN or pix2pix (Zhu and al. [8]) show good results
with 2D medical images. For example, Tang and al. [9] adapt
a pix2pix GAN model, with Unet generator, to synthesis
2D CT with MRI scan. Likewise, Unsupervised Attention
Guided GAN (uagGAN) is used in Abu-Srhan and al. [10]
to make a 2D bidirectional translation between MRI and CT.

This network needs to have the same shape between the two
images, which is not a problem for brain images, and shows
better results than other GAN networks. Gu and Zheng [11]
use GANs combinaison Dual3D&PatchGAN based on fuzz-c-
mean algorithm, to generate CT from MRI by reconstructing
3D scans with 2D slices. But CT is not the only modality
synthesized: Marco Conte and al. [12] use 2D GAN model
to synthesis missing T1 MRI or FLAIR (FLuid Attenuated
Inversion Recovery) MRI from post-contrast T1 MRI or T2
MRI. The same idea is taken up by Dai and al. [13], which
propose a derived of StarGAN to create an unified GAN which
can generate 3D multimodal MRI like T1, T2 or even FLAIR
depending on the missing data.

For PET generation, most of the work is in 3D. Zhang
and al. [14] introduce BPGAN, based on BicyleGAN, an
unidirectional network which can transform MRI to PET and
these PET scans show good results for Alzheimer Disease
diagnosis. Other studies propose bidirectional GAN, to pass
MRI to PET and vice versa. Hu and al. [15], for example,
use DenseNet and U-Net networks to construct their model
named BMGAN which can pass one modality to the other.
In an other hand, Lin and al. [16] build 3D RevGAN, based
on RevGAN and SRCNN, which also performs well for the
translation between MRI and PET images. We compare our
work to this GAN state of the art in the results section.

Although GAN is the most popular method, it is not the only
solution for image generation. Convolutional Neural Network
(CNN) can also be used to perform image reconstruction.
For example, Han [17] uses MRI image to obtain Computed
Tomography (CT) with a DCNN model, or to reconstruct other
MRI modalities like FLAIR with a U-Net model like Osman
and M. Tamam [18], with good results. CNNs are easier to
train than GANs with fewer data points, we have therefore
chosen to focus on them.

III. METHODOLOGY

A. Data Population

To train our model, we need both FDG-PET and eAV45-
PET scans, which are not the most common data. We use
three different databases to maximize the number of available
images.

First, 118 pairs of images (FDG-PET and eAV45-PET)
were selected from the ‘Imagerie Multimodale de la Mal-
adie d’Alzheimer à un stade Precoce’ (IMAP) Study (Caen,
France). This protocol contains healthy participants with var-
ious ages, but most of them older than 60, and participants
with different stages of cognition decline. Out of the 118
selected pairs of images, 45 belong to participants with no
cognition problem (CN: Cognitive Neutral), 23 to participants
with complaints about their memory but no clinical sign
(SCD: Subjective Cognitive Decline), 32 to participants with
Mild Cognitive Impairment (MCI) and 18 to participants with
Alzheimer Dementia (AD). Inclusion and exclusion criteria are
detailed in Mutlu and al. [19] and Wirth and al. [20]. For each
subject, there may be several available image captures, taken



during different visits. We keep up to three of them, ignoring
low-quality ones.

Second, 223 pairs of images were selected from the Age-
Well randomized controlled trial of the Medit-Ageing Eu-
ropean Project (Poisnel and al. [21]), which contains only
healthy old adults. For the same reasons as before, for each
subject, there may be several available image captures taken
during different visits.

Third and last, 84 pairs of images were selected from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database1, which are available in open access. Out of the 84
selected pairs of images, 16 belong to CN participants, 34
to SCD participants, 23 to MCI participants and 11 to AD
participants. Only one visit per participants was included.

Participant demographics for each database are summarized
in TABLE I. The breakdown is not given participant by
participant but pair of images by pair of images.

The compound database is divided in two subgroups. 260
pairs of PET images are used for the training dataset (61%
of the database) and 165 pairs of PET images for testing the
model (39% of the database). The separation is made in such
a way that each source database, gender and pathology, are
equally represented in both training and testing datasets. It
also guarantees that if a subject has more than one visit, all its
visits are in the same dataset. Once all the criteria are fulfilled,
the distribution is made randomly. In the first dataset, we use
80% (208 pairs of images) for training and 20% (52 pairs of
images) for validation.

TABLE I
PARTICIPANTS DEMOGRAPHICS (BY PAIR OF IMAGES)
(AD: ALZHEIMER DISEASE, MCI: MILD COGNITIVE IMPAIRMENT,

SCD: SUBJECTIVE COGNITIVE DECLINE, CN: COGNITIVE NEUTRAL)

Agewell IMAP ADNI Total
Characteristics n=223 n=118 n=84 n=425
F gender, n (%) 139 (62,3) 55 (46,6) 43 (51,2) 237 (55,8)

AD, n (%) 0 18 (15,3) 11 (13,1) 29 (6,8)
MCI, n (%) 0 32 (27,1) 23 (27,4) 55 (12,9)
SCD, n (%) 0 23 (19,5) 34 (40,5) 57 (13,4)
CN, n (%) 223 (100) 45 (38,1) 16 (19,0) 284 (66,8)

Age, years (std) 70± 3, 8 65, 7± 15, 1 73± 7, 2 69, 4± 9, 3

Education, years (std) 13± 3, 1 12, 5± 3, 1 16, 46± 2, 7 13, 5± 3, 4

B. Data Acquisition and Processing

IMAP and Age-well databases share the same acquisition
parameters, but differ from ADNI ones (the parameters are
available on its website). Image processing was however
common across the three databases, and has already been
published by Vanhoutte et al. [2]. All the data processing
is made with Statistical Parametric Mapping 12 (SPM12)
software2 and a quality evaluation is performed to only use
good quality images.

1https://adni.loni.usc.edu/
2https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

1) MRI: MRI images are not used directly for the neural
network but are necessary for PET image processing. First for
the co-registration onto the MRI T1 image, then for the gray
matter segmentation of the PET images like in the usually
applied diagnosis protocols. T1-weighted imaging parameters
were all acquired from 3T scanners, although from various
manufacturers (Philips, Siemens). After acquisition, each MRI
image is normalized to the Montreal Neurological Institute
(MNI) space3 and segmented into gray matter, white matter
and cerebrospinal fluid. Resulting images have the following
parameters: matrix size = 121 × 145 × 121, voxel size =
1.5mm× 1.5mm× 1.5mm.

2) PET: For FDG-PET scans, 5 mCi of 18F-
fluorodeoxyglucose are injected, then 3D images are
dynamically taken as follows:

• Between fifty minutes and sixty minutes after injection
with a ten-minutes long acquisition for Age-well and
IMAP,

• Between thirty and sixty minutes after injection with six
five-minutes long acquisition for ADNI.

For eAV45-PET scans, 10 mCi of 18F-AV45 florbetapir are
injected and 3D images are dynamically taken right after:

• Every 60s for 10 minutes, resulting in 10 images, for
IMAP and Age-well,

• Over a total duration of 16 minutes divided in 16 different
time lapses (every fifteen seconds for the first minute,
every thirty seconds until the third minute, every minute
until the sixth minute, every two minutes until twelfth
minute and the last on the sixteenth minute) for ADNI.

Times-frames from 2 to 5 min for eAV45-PET scan were
used in the subsequent analysis. Then, we combine the images
obtained during each injection into a single image by taking
their arithmetic mean. Each mean PET image is next co-
registered onto their corresponding MRI. After that, all 3D
PET images are normalized to the MNI space, and therefore
shared the same matrice size and voxel resolution as the
MRI images (matrix size = 121 × 145 × 121, voxel size =
1.5mm×1.5mm×1.5mm). Eventually, to allow inter-subject
comparison and to have comparable voxel values, all PET data
are scaled (intensity normalization) by the mean value of the
cerebellum for the FDG-PET and the brainstem for the eAV45-
PET.

C. Neural Network Methods

Image generation is usually performed by Generative Adver-
sarial Network (GAN), whether for generation, reconstruction
or, in our case, translation. Nevertheless, these neural networks
are mostly used for 2D images. Despite some studies used
derived 2D for 3D images (Hu and al. [15], Lin and al.
[16], Zhang and al. [14]), this approach is particularly time-
consuming on development and training, and requires an
important dataset. With this context, and because our PET
images are scaled, we choose to use a 3D Convolutional Neu-
ral Network to perform our image translation, like previous

3https://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009

https://adni.loni.usc.edu/
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studies on MRI, CT and FLAIR (Han [17], Osman and Tamam
[18]).

We also use Monai [22], an open-source Python library
that contains the most recognized neural network adapted for
2D and 3D medical imaging. It also guarantees the correct
treatment of PET and MRI images, which have a special
format alias: nifti. After some preliminary tests on different
networks, like Unet or Resnet, we select a derived ResNet
network called SegResNet [23], with Dice Coefficient for
validation measure, batch size=4, epochs=1000, and Adam
optimizer. Fig. 1 summarizes the network architecture and
describes the different convolutions applied by the neural
network.

PET images having their intensity being normalized, with
intensity ranging between 0 and approximately 2, voxels
values can therefore be classified into a limited set of classes,
in agreement with SegResNet requirement. Preliminary tests
were conducted to define the optimal number of classes and
their range of values. An equal difference between all classes
is the easiest choice but shows poor results, especially because
high intensity is rare. Fig. 2 shows a classic distribution
of voxel values for a scaled FDG-PET scan. Removing the
voxels from 0 to 0.3, which correspond to the background in
neuroimaging, the majority of values are aggregated between
0.3 and 1.5. That is why we need more detail between these
two values. Likewise, choosing as many classes as possible
shows disappointing results. Indeed, a PET image has small
values and choosing too many classes results in recognizing
very few of them because of their proximity. The best choice
is to use eight classes, with 0 for the background and 7 for
higher intensity, with this separation:

• values below 0.3 belong to the background class 0
(because such values are discarded in the post-processing
step),

• values between 0.3 and 1.5 are spread into 6 classes
(numbered from 1 to 6) of equal width 0.2

• values above 1.5 belong to the last class (7).
An encoding algorithm is made to transform each PET

Fig. 1. SegResNet architecture described in Myronenko [23]: all steps are
left to right, with ResNet block

Fig. 2. Intensity histogram of FDG-PET image: X axis is for values and Y
axis for the percentage of voxels having this value

image to an image with the same dimensions but with discrete
values in 0, . . . , 7, before passing it to the SegResNet Network.

Once the model is trained, PET images are reconstructed to
have a range of values that is more appropriate for medical
analyses. For that, a decoding algorithm based on network
probabilities has been created. For each FDG-PET image
created by the SegResNet model, we also save a probability
map for each class, represented by a 4D images with (121,
145, 121, 8) for size. We also use the eAV45-PET scan to
estimate where the reconstructed value should lie within the
range assigned to its class. The probability map value is used
to weigh this observation: we consider that a high probability
means that a voxel has more chance to be a middle value of
its class and vice versa. Therefore, to assign a value to a given
voxel in the artificial FDG-PET image, we initially assign
either the highest or the lowest value of its class by considering
whether its eAV45-PET counterpart voxel has a high or low
value. We then correct the result by shifting it towards the
middle of the class, by an amount which is proportional to
the probability of the class in the probability map, as shown
in Equation 1. One can note that classes of interest have a
width of 0.2, therefore if such a class has probability 1, the
formula returns the mid value of the class.

Voxel value =

{
Low Class value + p

10 if EarlyAV 45 low,

High Class value − p
10 if EarlyAV 45 high,

(1)

where p is the probability that the voxel belongs to its class.
In the end, we have our artificial FDG-PET image. However,

for medical interpretation, only gray matter is relevant for this
modality. Accordingly, artificial FDG-PET images are also
segmented for gray matter using the MRI T1 gray matter
probability map on SPM12, with Equation 2.

output[v] =


FDG-PET[v] ifGM[v] > max

WM[v]

CL[v]

0.3

 ,

0 otherwise,

(2)



Fig. 3. Complete FDG-PET generation process

where output is the segmented FDG-PET, v is voxel value,
GM is Gray Matter, WM is White Matter and CL is cere-
brospinal liquid.

Fig. 3 summarizes the whole process. First, we have a
training phase, with SegResNet model, our 260 pairs of PET
images (80% for training, 20% for validation) encoded with an
eight class encoder. Then, the testing phase begins, with our
165 other eAV45-PET scans encoded to the trained model that
gives us 165 artificial FDG-PET images, which are decoded
with the decoding algorithm and segmented to only keep gray
matter. The final step is the evaluation of artificial FDG-
PET images, in comparison with corresponding true FDG-PET
scans.

D. Evaluation Metrics

To evaluate the model, we use several metrics to estimate
the similarity between artificial FDG-PET images and true
FDG-PET scans. For that, common measures in the literature
were chosen: Mean Square Error (MSE) and Normalized Root
Mean Square Error (NRMSE) [24] to compute errors between
the artificial and true FDG-PET, combined with Peak Signal
to Noise Ratio (PSNR) [25] for the quality of the image
and Structural Similarity (SSIM) [26] to estimate proximity
between the artificial and true FDG-PET images.

First, we aim to assess the quality of the artificial FDG-
PET generation by comparing it to the true FDG-PET scan.
Then, we estimate whether artificial FDG-PET has a better
similarity to true FDG-PET than eAV45-PET, considered in
previous studies as pseudo-FDG-PET (Asghar and al. [4] and
Vanhoutte and al. [2]). Last, we compare our results with
studies (Zhang and al. [14], Hu and al. [15], Lin and al. [16])

that also performed an artificial FDG-PET image, although the
image used for synthesis is not an eAV45-PET but MRI scan.

E. Experimental Set-Up

All algorithms (except data processing, which is done with
SPM12 as previously mentioned) use Python. Pytorch and
Monai [22] are required for neural network, sklearn and
skimage for evaluation measure, with utility libraries: numpy,
pandas and nibabel. Computations are made on an internal
computing platform with 2 Intel Xeon E5-2640 v4 2.40GHz
processors, 40 cores, 256Go RAM and 8 MSI GeForce GTX
1080 Ti 3584 Cores 11G RAM for GPU. A single GPU is
required to execute the model and the image reconstruction.

IV. RESULTS

A. Comparison with true FDG-PET

The aim of this study is to generate an artificial FDG-PET
image from an eAV45-PET scan that maximizes the similarity
with the true-FDG-PET scan as shown in Fig. 4. Artificial
FDG-PET image (4(b)) is very similar to the corresponding
FDG-PET image (4(a)). We observe some smoothing differ-
ences between two different intensity areas, due to the model
and decoding algorithm, but intensity areas are the same on the
same brain region. Artificial FDG-PET is slightly less high-
valued than the corresponding true FDG-PET, especially in
frontal and occipital brain areas, but we obtain a very similar
result.

To confirm the good quality of the image, TABLE II shows
their computed evaluation measures. Each value is calculated
between artificial and true FDG-PET images. We separate
PET images into two categories: with and without pathology,



(a) True FDG-PET (b) Artificial FDG-PET

Fig. 4. Comparison between corresponding True 4(a) and Artificial 4(b) FDG-
PET on a healthy subject (CN)

TABLE II
RESULTS OF EVALUATION MEASURES BETWEEN ARTIFICIAL AND TRUE

FDG-PET IMAGES (MEAN SQUARE ERROR, NORMALIZED ROOT MEAN
SQUARE ERROR, PEAK SIGNAL TO NOISE RATIO AND STRUCTURAL

SIMILARITY)

General Results CN Results Patient Results
MSE 0.00160± 0.00021 0.00163± 0.00029 0.00152± 0.00026

NRMSE 0.10301± 0.00521 0.10222± 0.00651 0.10467± 0.00884

PSNR 33.80288± 0.42296 33.95528± 0.54451 33.48081± 0.62873

SSIM 0.99528± 0.00045 0.99539± 0.00056 0.99505± 0.00077

as FDG-PET aims to be used for clinical diagnosis in the
future. Artificial images obtain good results. For SSIM, we
reach 0.99528, which a very high score for this measure
whose maximum value is 1. Likewise, we achieve 33.80288
for PSNR. As for the two error values, we have 0.00160 for
MSE and 0.10301 for NRMSE, which lower is better for both
measures, with 0 as unreachable bound.

We also notice that CN and patients scores are similar. SSIM
does not differ, with 0.99539 and 0.99505 respectively. PSNR
varies by 1% between CN and patients results. As for the error,
MSE varies by 8% and NRMSE by 2%. Except for MSE, the
others measures is in favor for CN results but the variance is
very small, which is a good point.

B. Comparison with eAV45-PET

In order to measure the quality of our work, we compared
the similarity of artificial FDG-PET and eAV45-PET to true
FDG-PET images in TABLE III. Although eAV45-PET has
good results, our processing allowed to reduce MSE by
36% and reduce NRMSE by two points. PSNR climbs two
points, which illustrates improvement of artificial FDG-PET
over eAV45-PET. SSIM does not show a great difference
between eAV45-PET and artificial FDG-PET, with 0.99337
and 0.99528 respectively. Nevertheless, this can be explained
by the structural similarity of the PET images to each other.

C. Comparision with previous studies

To our knowledge, no study has generated artificial FDG-
PET images from eAV45-PET scans. Therefore, we were only
able to compare our study with MRI-based artificial FDG-PET

studies. Our results reached their best scores on the evaluation
metrics when computed on segmented FDG-PET (see in
tablename II). However, since some of the previous studies
computed the image on the whole unsegemented brain (Zhang
and al. [14], Hu and al. [15], Lin and al. [16]), we also assessed
our metrics on unsegmented images in TABLE IV. Results
showed lower similarity when computed in the entire brain
(33.80288 to 31.08430 for PSNR and 0.99528 to 0.95479 for
SSIM) but were still better than previous studies. When they
reached 25.08, 27.88117 and 29.42 for PSNR, we achieved
31.08430. This correspond to an increase from 6% to 24%.
In the same way, previous studies performed 0.6646, 0.89008
and 0.8176 for SSIM while we had 0.95479. We also improved
this score by 7% to 44%.

V. LIMITATIONS

While results are promising, our work have some limita-
tions.

First of all, as we previously said, there are no other
works generating artificial FDG-PET image from eAV45-PET
scan. Therefore, we compared our results with studies (Zhang
and al. [14], Hu and al. [15], Lin and al. [16]) with MRI-
based artificial FDFG-PET. Moreover, GAN network used in
comparative studies are bidirectional which means that they
can also recreate an MRI image from an FDG-PET scan. Our
network is unidirectional and can only recreate an FDG-PET
from an eAV45-PET. Nevertheless, the reverse operation has
no interest in this case, because eAV45-PET is not used for
diagnosis.

Then, our method generates an artificial FDG-PET image
with a convolutional neural network, less greedy both in terms
of computation time and data than a GAN. Although the result
is better than previous studies (Zhang and al. [14], Hu and al.
[15], Lin and al. [16]), our method does not generate a perfect
FDG-PET image, such as the smoothing problems previously
mentioned (Fig. 4). Our compounded database contains only
425 pairs for images, which is already sufficient to have a
suitable result. However, reinforcing it by adding images,
in particular of MCI and AD patients, could improve the
results. Upgrading our encoder and decoder algorithms can
also smooth intermediates values.

Another limitation is about good results of the eAV45-PET
scan (TABLE III). Although we improve the results on all
scores, artificial FDG-PET quality can be partially explained
by eAV45-PET quality. Although the improvement of artificial
FDG-PET over eAV45-PET is clearly present, it remains

TABLE III
COMPARISON BETWEEN EAV45-PET AND ARTIFICIAL FDG-PET WITH

TRUE FDG-PET

eAV45-PET Artificial FDG-PET
MSE 0.00251± 0.00030 0.00160± 0.00021

NRMSE 0.12941± 0.00692 0.10301± 0.00521
PSNR 31.83984± 0.48960 33.80288± 0.42296
SSIM 0.99337± 0.00062 0.99528± 0.00045



TABLE IV
COMPARISON WITH SIMILAR STUDIES ON EVALUATION MEASURES

BETWEEN TRUE AND ARTIFICIAL FDG-PET ON THE WHOLE BRAIN (PEAK
SIGNAL TO NOISE RATIO AND STRUCTURAL SIMILARITY)

BPGAN [14] BMGAN [15] 3D RevGAN [16] SegResNet
PSNR 25.08 27.88117 29.42 31.08430
SSIM 0.6646 0.89008 0.8176 0.95479

moderate and it seems possible to improve the scores by a
few points.

At last, we see on Fig. 4 that some brain regions, like frontal
cortex or occipital lobe, have some discrepancies. Fig. 5 high-
lights the regions suffering from this concern. We observe that
values on the true FDG-PET image 5(a) 5(c) are higher than
artificial FDG-PET 5(b) 5(d), particularly in the frontal cortex
5(a) 5(b) and occipital lobes 5(c) 5(d) as shown by warmer
colors in the true FDG-PET. This discrepancy can be found
in eAV45-PET too, where it is even more marked. Although
artificial PET-FDG images show good results (II) and stay
close to true FDG-PET scans, we need to overcome these
discrepancies by improving our algorithms. The challenge is
that these discrepancies is not linear and depends on some
parameters like pathology, which cannot be used as an input
parameter as it would introduce a bias.

Future works will concentrate on improving our result,
especially to erase discrepancies found on frontal cortex and
occipital lobe. First of all, increasing the database seems
complicated due to the limited quantity of available eAV45-
PET scans. However, a solution to improve our method would
be to enhance the encoder and decoder algorithms to better
support the convolutional neural network. Then, we will post-
process our artificial FDG-PET images to avoid the discrep-
ancies. Mathematical models will be studied to overcome the
discrepancies, without altering the brain regions which have
a good convergence between the artificial FDG-PET and the

(a) True FDG-PET
frontal cortex

(b) Artificial FDG-
PET frontal cortex

(c) True FDG-PET
occipital lobe

(d) Artificial FDG-
PET occipital lobe

Fig. 5. Comparison between frontal cortex from True 5(a) and Artificial 5(b)
FDG-PET and occipital lobe from True 5(c) and Artificial 5(d) FDG-PET on
a healthy subject (CN)

true FDG-PET images. We will also focus further on intra
group comparisons to better understand the discrepancies, and
overcome them.

VI. CONCLUSIONS

This study presents an innovative deep learning approach to
generate an artificial FDG-PET images based on eAV45-PET
scans, using convolutional neural network and an encoding and
a decoding algorithms. This provides an artificial metabolism
map in addition to the amyloid deposition map, which are both
relevant for the diagnosis of Alzheimer’s disease, at no extra
cost and without any extra radioactive injection. Computed
artificial FDG-PET images show high similarity with true
FDG-PET scans (0.00160 for MSE, 0.10301 for NRMSE,
33.80288 for PSNR and 33.80288 for SSIM), with better
performances than previous MRI-based artificial FDG-PET or
eAV45-PET images. However, some discrepancies in specific
brain regions (frontal cortex and occipital lobe) have to be
overcome with further developments.
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