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Abstract: Social media platforms have surpassed cultural and linguistic boundaries, thus enabling 1

online communication worldwide. However, the expanded use of various languages has intensified 2

the challenge of online detection of hate speech content. Despite the release of multiple Natural 3

Language Processing (NLP) solutions implementing cutting-edge machine learning techniques, the 4

scarcity of data, especially labeled data, remains a considerable obstacle, which further requires 5

the use of semisupervised approaches along with Generative Artificial Intelligence (Generative AI) 6

techniques. This paper introduces an innovative approach, a multilingual semisupervised model 7

combining Generative Adversarial Networks (GANs) and Pretrained Language Models (PLMs), more 8

precisely mBERT and XLM-RoBERTa. Our approach proves its effectiveness in the detection of hate 9

speech and offensive language in Indo-European languages (in English, German, and Hindi) when 10

employing only 20% annotated data from the HASOC2019 dataset, thereby presenting significantly 11

high performances in each of multilingual, zero-shot crosslingual, and monolingual training scenarios. 12

Our study provides a robust mBERT-based semisupervised GAN model (SS-GAN-mBERT) that 13

outperformed the XLM-RoBERTa-based model (SS-GAN-XLM) and reached an average F1 score 14

boost of 9.23% and an accuracy increase of 5.75% over the baseline semisupervised mBERT model. 15

Keywords: social media; hate speech; semisupervised; GAN; multilingual; PLMs 16

1. Introduction 17

Generative Artificial Intelligence (Generative AI) has fundamentally revolutionized 18

the field of Natural Language Processing (NLP), thus adding outstanding changes in text 19

summarization, translation, classification, and of course text generation tasks. One of the 20

major reasons for this paradigm transformation is the release of large-scale models like 21

Generative Adversarial Networks (GANs) and GPT. For example, GPT-3 has demonstrated 22

remarkable text generation abilities across different NLP tasks, including storytelling and 23

coding [1]. Additionally, generative models like XLM-RoBERTa or mBERT have also 24

participated in advancing machine translation techniques [2]. Moreover, using generative 25

AI models for data augmentation and semisupervised learning has constructed more robust 26

models, thus reducing the need for labeled data [3]. Getting deeper into how far Generative 27

AI can go, it has proven its capacity to generate social media-like content and also to 28

annotate it [4]. 29

In recent years, social media platforms like Facebook and Twitter have become more 30

and more famous and widely used for connecting and communicating. These platforms 31

contribute enormously to creating bridges between different countries and cultures, thus 32

illustrating multiculturalism and multilingualism [5]. Even though the freedom to commu- 33

nicate and express opinions is one of the noteworthy aspects on social media, this privilege 34

is often misused and serves as a means for disseminating hate speech and offensive content 35

online [6]. An increasing consideration has been shown that many users have reported 36

encountering hate speech and offensive content on these platforms [7]. In fact, due to the 37
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anonymity delivered on social media, users are becoming more free to express themselves 38

and more likely to be engaged in hateful actions [8]. 39

In order to give a detailed overview of the concept, we aim to illustrate the definition 40

of hate speech on social media. Hate speech is a specific subset of offensive language 41

that directly targets individuals or groups based on specific features with the intent to 42

discriminate or incite harm [9]. Generally, hate speech is defined as a conscious and 43

intended public expression aimed at criticizing a specific group of people, whether based 44

on race, religion, ethnicity, nationality, gender, sexual identity, or orientation. Recently, the 45

emergence of social media platforms has intensified the spread of this content. And defining 46

hate speech in this field becomes challenging due to its different forms of expression, 47

including symbolic, verbal, nonverbal, etc. [10]. Moreover, online hate speech usually uses 48

imprecise or metaphorical language, thereby making it more difficult to determine or to 49

build a unique standard definition to be used worldwide. Particularly, it can be considered 50

sometimes as socially acceptable to express negative stereotyping [10]. Overall, we provide 51

a definition of this phenomenon in a survey paper in which we established extensive study, 52

and we define hate speech as any content that targets individuals or groups based on several 53

factors such as race, ethnicity, religion, sexual orientation, gender, or other identifiable 54

characteristics. This concept often reflects the policies and guidelines set by multiple social 55

media platforms, which are influenced by legal frameworks and societal standards [9]. 56

In addition, the spread of this content exceeds linguistic borders and encompasses more 57

languages over time. Consequently, there is a crucial need to restrain this viral spread, 58

especially since it can lead to severe crimes against minorities or vulnerable groups [11]. 59

In the beginning, efforts to moderate the spread of hate speech on social media 60

depended on strategies like keyword filters and crowdsourcing, along with human mod- 61

erators who check flagged content to define if it is considered as hateful or not. While 62

these manual techniques helped in this field, they still require lot of effort, time, and money, 63

especially with the challenges faced by the growing volume of this content spread online. 64

As a result, it becomes more and more difficult to manually moderate it. Therefore, there 65

have been several initiatives to automate the multilingual detection of hateful content, 66

which remains a challenging task [11]. Among the most common challenges, is the cultural 67

backgrounds, which affect the interpretation of this content, that impact its perception 68

across various regions and populations, even within the same language. This complexity 69

is made by the various dialects within languages like Arabic [9]. Moreover, users are 70

becoming more familiar with the automatic detection algorithms, and they have discovered 71

many ways to censor their hateful content to prevent its detection. For example, there 72

is the likely manipulation of words, such as substituting letters with visually equivalent 73

numbers (e.g., replacing “l” with “1” or “E” with “3”) [12]. Another example is illustrated 74

in this research paper [13], which analyzes the Israeli–Palestinian conflict on TikTok and 75

demonstrates how users try to avoid censorship by manipulating their language. 76

Most of the existing machine learning solutions (monolingual and multilingual) have 77

used supervised learning approaches [9,11], where transfer learning techniques, based 78

on Pretrained Language Models (PLMs), have proven to give outstanding results in mul- 79

tilingual hate speech detection. In fact, transformer-based architectures, such as BERT 80

[14], have been demonstrated to achieve state-of-the-art performance in a variety of hate 81

speech detection tasks. As a result, a large number of BERT-based approaches have been 82

presented in this field [15–18] etc. Moreover, multilingual transformers, particularly mBERT 83

(multilingual BERT) or XLM-RoBERTa, have been implemented in the multilingual domain 84

for hate speech detection tasks. These models have provided cutting-edge performance in 85

crosslingual and multilingual settings, where several studies demonstrate their usefulness 86

in many languages, especially in low-resource ones [19,20]. 87

While supervised NLP text classification approaches have made impressive advances, 88

they still encounter difficulties in obtaining enough annotated data, which is further 89

complicated in multilingual sentiment analysis tasks like hate speech detection. More 90

specifically, acquiring such high-quality labeled corpora is expensive and time-consuming 91
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[12]. Adding to that, multilingual robust models often depend on rich linguistic resources, 92

which are mostly available in English (as a resource-rich language). As a result, these 93

models meet generalization issues that yield decreased performance when used with low- 94

resource languages [21]. As a solution for these deficiencies, semisupervised SS-Learning 95

was introduced in order to reduce the necessity for labeled data. It helps building efficient 96

models that are able to use unlabeled corpora while utilizing only small-sized annotated 97

samples. Thus, SS-Learning was largely used in NLP for hate speech detection tasks [22,23]. 98

One of these SS techniques is the Generative Adversarial Network (GAN) [24], which is 99

based on an adversarial process, where a “discriminator” learns to distinguish between 100

real and generated instances produced by a “generator” that simulates data based on 101

a specific distribution. An extension of GANs is semisupervised SS-GANs, where the 102

“discriminator” also classifies and assigns a class to each data sample [25]. It becomes a 103

remarkable solution in semisupervised learning in hate speech detection, which has been 104

widely used in combination with pretrained language models like SS-GAN-BERT [26] 105

(non-English language). 106

In this paper, we extended our previous work [27] by proposing a semisupervised 107

generative adversarial framework, in which we include PLMs (mBERT and XLM-RoBERTa) 108

for multilingual hate speech and offensive language detection. This approach leverages the 109

PLM’s capacity to generate high-quality text representations and to adjust to nonannotated 110

data, thus contributing to enhancing the GAN’s generalization for hate speech detection in 111

multiple languages. Even though GAN-BERT has been utilized for different non-English 112

languages in NLP, the semisupervised GAN-PLM approach remains underexplored, espe- 113

cially in multilingual hate speech detection tasks. Therefore, this study aims to fill this gap 114

by proposing the SS-GAN-PLM model for hate speech and offensive language detection 115

across English, German, and Hindi. The key contributions are as follows: 116

• Using mBERT [27] and XLM-RoBERTa, we proposed a model, namely SS-GAN-PLM, 117

in multilingual and zero-shot crosslingual settings, and we compared it with the 118

baseline semisupervised mBERT, as well as investigated and compared the capacity of 119

Pretrained Language Models (PLMs) within a generative adversarial framework to 120

enhance sentiment analysis tasks across diverse linguistic contexts. 121

• We trained our proposed models across three paradigms: multilingual, crosslingual 122

(zero-shot learning), and monolingual, thereby aiming to examine linguistic feature 123

sharing within Indo-European languages, and we demonstrated their crucial role in 124

enhancing text classification tasks. 125

• We explored SS-GAN-PLM’s progressive influence in improving performance through 126

iterative labeled data increases in a multilingual scenario, thus delving into the extent 127

to which the models can perform independently of labeled data. 128

2. Literature Review 129

2.1. GAN for Hate Speech Detection 130

Generative AI data augmentation is a strategy that applies modifications to a dataset 131

to improve its size and its diversity. Usually, this technique is especially helpful in classes 132

with small sample sizes, since it balances the dataset and enhances model generalization. 133

By producing synthetic data, data augmentation reduces class imbalances, helps avoid 134

overfitting, and improves model performance [28]. In this context, Cao et al. [29] (2020) de- 135

veloped HateGAN, a deep generative reinforcement learning network aimed at augmenting 136

datasets including hateful tweets. HateGAN is built on reinforcement learning and takes 137

influence from Yu et al.’s study on SeqGAN [30] (2017). Their work introduced a gradient 138

reward policy that controls the generation function, thus encouraging the generator to 139

produce more realistic English samples. Their research analyzed text’s hatefulness across 140

six hateful content dimensions by integrating a pretrained toxicity scorer as a multilabel 141

classification model. The production of hateful material is directed by these toxicity scores, 142

which act as feedback signals. These scores are used as rewards to modify the generator’s 143

parameters, which eventually helps to produce more realistic hateful content. The Hate- 144
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GAN model was trained using a policy gradient method to overcome sequence generation 145

issues, and its outcomes highlighted an improvement in the precision of identifying hate 146

speech. Although the use of reinforcement learning is valued, the authors did not show 147

obvious improvements in outcomes or offer a thorough explanation of how it affected the 148

model’s performance. Therefore, at this point, we chose not to apply this methodology to 149

our strategy. 150

2.2. GAN-PLM 151

Aiming to overcome the time-consuming and expensive labeling process, semisupervised 152

learning has drawn increasing attention as a viable solution. This approach seeks to achieve 153

equivalent or even better performance than supervised algorithms by employing both 154

labeled and unlabeled data. A famous technique in this domain is the use of Generative 155

Adversarial Networks (GANs) [24], which utilize a discriminator to distinguish between 156

generated and real data and a generator to generate synthetic text samples. In fact, GANs 157

have proven their ability to improve the generalization and robustness of text classification 158

models and pretrained language models like BERT, thereby allowing them to efficiently 159

use unlabeled data [31]. 160

In this context, GAN-BERT was first introduced by Croce et al. [31] (2020) as a viable 161

solution to deal with the lack of annotated data. They presented a novel method that 162

uses unlabeled data in a generative adversarial framework to extend the BERT fine-tuning 163

process. Their approach achieved impressive performance across several text classification 164

tasks with as little as 50–100 annotated examples, thus significantly reducing the need for 165

annotated data. Their GAN-BERT model integreated a semisupervised GAN model into a 166

fine-tuned BERT model, where a generator generates synthetic samples that imitate the 167

real data distribution, and BERT operates as the discriminator. This hybrid method makes 168

use of unlabeled data to enhance the model’s generalization capabilities while leveraging 169

BERT’s capacity to produce high-quality representations of input texts. Furthermore, their 170

evaluation tests consistently revealed that GAN-BERT improves the robustness of the 171

model without adding inference cost, because the generator is only used for training, and 172

the discriminator is only used for inference. 173

Numerous studies were inspired by this model’s outstanding results, and numerous 174

approaches were developed for various tasks. In 2022, Cho et al. [32] presented Lin- 175

guistically Informed Semi-Supervised GAN with Multiple Generators (LMGAN), a novel 176

approach to semisupervised learning. Their model makes use of BERT’s hidden layers 177

and includes several generators instead of a single one. More specifically, they used the 178

linguistically meaningful intermediate hidden layer outputs of BERT to enhance fake data 179

distribution. Using the hidden layers of BERT (instead of only the last layer) and a basic 180

generator, they managed to improve the quality of the generated data. In fact, when a 181

final generator uses BERT’s embeddings from the GAN-BERT model, it transmits informa- 182

tion about real data distribution that would mislead the trained discriminator. Therefore, 183

to apply richer representations of generated data, LMGAN uses numerous generators 184

and the linguistically relevant hidden layers of BERT. Displaying the results of BERT’s 185

hidden layers, they confirmed the significance of having multiple generators, with up 186

to 1.8% improvements in the results. Moreover, Auti et al. [33] utilized the GAN-BERT 187

model for pharmaceuticals text classification tasks. Trained exclusively on biomedical data, 188

GAN-BioBERT [34] gave the best-performing results. 189

In 2023, Jain et al. [35] introduced the GAN-BERT model with consumer sentiment 190

analysis aspect fusion, which adds semisupervised adversarial learning to enhance the 191

BERT model’s fine-tuning performance. They took different service elements out of cus- 192

tomer evaluations and combined them with the word sequences before adding them to 193

the model. The accuracy of the provided model was demonstrated by their examination 194

of the results and their comparison with other models that have been found in earlier 195

work. Adding to that, Du et al. [36] presented a novel approach for job recommendation 196

tasks with Large Language Models (LLMs). They went beyond users’ self-descriptions 197
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to extract both explicit features and implicit traits derived from their behaviors, thereby 198

improving the accuracy of user profiling for resume filling. They offered an approach called 199

LGIR (LLM-based GANs Interactive Recommendation) that uses Generative Adversarial 200

Networks (GANs) along with ChatGLM-6B to align unpaired low-quality resumes with 201

high-quality resumes in order to address this problem. Moreover, Govers et al. [37] pre- 202

sented Prompt-GAN, an adversarial method that tunes prompts. Their approach produces 203

both hateful and nonhateful speech texts. Compared to fine-tuning, Prompt-GAN’s archi- 204

tecture reduces the requirements for memory and runtime. Their model improved hate 205

speech categorization F1 scores by up to 10.1%. The Prompt-GAN architecture is composed 206

of the prompt and vocabulary generator, the GPT2/Neo text generation module, and the 207

discriminator network, which serves as a policy engine and feeds the input to the prompt 208

generator. 209

Multilingual GAN-PLM: 210

Even though GAN-PLM demonstrated remarkable proficiency in generating and 211

learning textual English content, multilingual GAN-PLM expands this ability to encom- 212

pass many other languages. The integration of multilingualism promotes crosscultural 213

understanding and communication on a worldwide basis, thus gaining benefit from mul- 214

tilingual PLMs (like mBERT) or PLMs that have been pretrained on a specific language 215

(like ChouBERT in French, among others). In 2022, Muttaraju et al. [38] introduced a new 216

approach for binary classification of humorous code-mixed Hindi–English data. Their 217

model outperformed several methods in code-mixed data classification. They investigated 218

the fine-tuned HinglishBERT model into GAN, which gave the best overall results, along 219

with the use of other PLMs such as IndicBERT, MuRIL, and HingBERT within GAN. In 220

2023, Lora et al. [39] proposed a transformer-based generative adversarial technique for 221

sarcasm detection in Bengali based on Bangla-BERT. They gathered both sarcastic and 222

nonsarcastic comments from newspapers and YouTube and manually annotated them in 223

order to create a dataset. Moreover, Jiang et al. [40] used CamemBERT and ChouBERT in 224

order to construct generative adversarial models. They worked on exploring varied losses 225

over modifying the number of annotated and nonannotated samples in several French 226

datasets to provide a more significant understanding of how to train GAN-BERT models 227

for domain-specific document categorization. 228

2.3. GAN-PLM for Hate Speech Detection 229

Unlike traditional approaches that depend only on PLMs, Generative Adversarial 230

Networks with Pretrained Language Models (GAN-PLMs) offer a new approach to hate 231

speech detection tasks. GAN-PLMs not only include generative capabilities to produce 232

realistic hateful samples, but they can also identify hate speech patterns in several languages 233

using multilingual PLMs. Through the incorporated use of pretrained language models 234

and generative adversarial networks, GAN-PLMs improve the detection of hate speech 235

while enabling inclusive and cultural sentiment analysis approaches. 236

In fact, in 2022, Tanvir et al. [26] used a GAN-BERT model based on Bangla-BERT to 237

examine both hate speech and fake news detection in Bengali. They compared the model’s 238

performance to a baseline Bangla-BERT model in order to illustrate the advantages of 239

GAN integration, especially when data samples are scarce. They found that, even with 240

minimally annotated data, their GAN Bangla-BERT model delivered significantly good 241

performance. The experimental results demonstrate how their model outperformed both 242

Bangla-Electra and Bangla-BERT, thereby revealing the importance of incorporating GAN 243

within PLMs. Moreover, using GAN-BERT, Ta et al. [41] developed a method for the 244

Detection of Aggressive and Violent INCIdents in Spanish (DA-VINCIS). As part of a back 245

translation data augmentation technique, they used Helsinki Marian models in order to 246

translate Spanish tweets into English, French, German, and Italian. With each tweet, this 247

technique yields two new texts: the translated text and its back translation. This approach 248

effectively balanced the dataset and reduced the deficiencies in the violent labels when 249

it was specifically applied to the training set across all violent samples. In addition, an 250



Version May 28, 2024 submitted to Entropy 6 of 19

ensemble of two semisupervised models was introduced by Santos et al. [42] with the aim 251

to automatically produce a Portuguese hate speech dataset while mitigating bias. The first 252

model combines a GAN-BERT network with Multilingual BERT (mBERT) and BERTimbau, 253

while the second model uses label propagation in order to extend labels from existing 254

annotated datasets to unlabeled ones. With the use of unlabeled data, the GAN-BERT- 255

based approach seeks to modify the label distribution for annotated data. Contrarily, the 256

second approach, based on label propagation, uses dataset samples’ similarities to extend 257

labels to the unlabeled data points. 258

In 2023, Su et al. [43] introduced SSL-GAN-RoBERTa, a semisupervised model for so- 259

cial media Anti-Asian COVID-19 hate speech detection. Using RoBERTa as the base model, 260

their approach learned from several heterogeneous datasets and enhanced performance 261

accordingly by generating unlabeled data. Their model delivered significant progress in 262

performance over the RoBERTa baseline. Overall, SSL-GAN-RoBERTa learns Anti-Asian 263

speech features from unlabeled samples by employing semisupervised learning-based 264

generative adversarial network technique. Furthermore, the authors managed to show 265

that SSL-GAN-RoBERTa maintains decreased computational costs while outperforming 266

crossdomain transfer learning approaches. Lastly, our previous work, which is a shorter 267

version of the current study [27], presented an innovative approach based on GAN and 268

mBERT to construct a multilingual semisupervised model. With just 20% of the labeled 269

data, we managed to detect hate speech in Indo-European languages. We investigated 270

linguistic feature sharing among these languages and demonstrated its importance for 271

improving sentiment analysis text classification tasks. 272

Overall, these previous studies have proved remarkable effectiveness, particularly 273

in non-English and many low-resource languages. Researchers have concentrated their 274

efforts on exploring hate speech and offensive language detection in languages like Spanish, 275

Bengali, Portuguese, German, etc., thus constructing customized BERT-based generative 276

adversarial model variations (based on ChouBERT, BanglaBERT, etc.) that are optimized for 277

these linguistic settings. Mostly employed on monolingual techniques, these studies have 278

underlined how adaptable GAN-BERT frameworks are to different linguistic features in 279

the domain. However, the utility of these previous studies is not restricted to monolingual 280

scenarios. In fact, there is a huge trend for utilizing such techniques in multilingual hate 281

speech and offensive language detection, thus emphasizing the pivotal role of generative 282

AI in promoting multilingual and crosslingual analyses. Therefore, the objective of our 283

research paper is to develop an innovative solution in the field, a multilingual and zero-shot 284

crosslingual PLM-based semisupervised generative adversarial model. With the use of 285

both unlabeled and labeled datasets, this approach simultaneously trains a mixture of 286

languages, such as Hindi, English, and German, thus enabling linguistic feature sharing 287

across Indo-European languages. Our paper aims to enhance and effectively contribute 288

to multilingual sentiment analysis tasks. Our main objective is to explain the role and 289

usefulness of GAN-based networks in this NLP field. We aim to investigate the adaptability 290

of one of the generative AI techniques—Generative Adversarial Networks (GANs)—in a 291

variety of linguistic contexts. We seek to go beyond traditional supervised machine learning 292

techniques and study the domain of unlabeled data via a semisupervised approach, which 293

is especially relevant in situations with small or nonexistent annotated data. 294

3. Methodology 295

3.1. Semisupervised Generative Adversarial Network: SS-GAN 296

The Generative Artificial intelligence (Generative AI) field was ultimately converted 297

by Generative Adversarial Networks (GANs), which brought a novel method for producing 298

synthetic data. GANs were first proposed by Goodfellow et al. in 2014 [24], and they are set 299

on the interchange of two basic parts: the discriminator (D) and the generator (G). These 300

two neural networks are trained against one another in an adversarial context aiming to 301

continually improve the performance in the corresponding task (such as text classification). 302

The generator’s primary role is to generate synthetic data that closely simulates real training 303
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data. Yet, the discriminator inspects these produced data samples and distinguishes them 304

from real data. This process goes on iteratively as training runs on until the generator 305

produces more realistic data, and the discriminator gets better at differentiating between 306

real and fake generated samples. The adversarial approach in GANs can be recapitulated 307

by the following equation: 308

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))]

where we define the following: 309

• G, the generator, minimizes the probability that the discriminator accurately classifies 310

its generated samples as fake. 311

• D, the discriminator, maximizes its capability to accurately categorize real data as real 312

and generated data as fake. 313

• V(D, G) illustrates the value function that both the generator and discriminator aim 314

to optimize through adversarial training. 315

GANs have been demonstrated to be capable of generating data with complex features 316

and structures, which are similar to real-world datasets. They have shown their adaptability 317

in many fields, from synthesizing realistic images to constructing text and audio. This 318

has extended opportunities for applications in computer vision, NLP, and many other 319

domains [44]. 320

Following the revolutionary work on GANs by Goodfellow et al., there was an interest 321

in investigating various ways to improve and expand upon the original GAN framework. 322

Among these evolutions, semisupervised SS-GANs were introduced by Salimans et al. in 323

2016 [25], which was a significant turning point in the field. Semisupervised learning in 324

GANs represents a novel case in which the discriminator annotates the data samples in 325

addition to distinguishing between true and fake samples. This helps GANs to be used for 326

semisupervised classification tasks, thus extending their capacities beyond only generating. 327

Compared to separate classifiers and traditional GANs, this hybrid method enables the use 328

of GANs’ adversarial training in both generative and classification tasks simultaneously. 329

Adding to that, SS-GANs effectively employ both labeled and unlabeled data, which is 330

especially valuable in situations where labeled data are not available. 331

Overall, Table 1 sums up a simple explanation of the roles and related loss functions 332

in mathematical formulas of both SS-GAN’s discriminator D and generator G. First of 333

all, let preal and pg denote the real data and generated data distribution, respectively, let 334

p(ŷ = y|x, y = k + 1) denote the probability that a sample data x is associated with the 335

fake class, and let p(ŷ = y|x, y ∈ (1...k)) denote the probability that x is considered real. 336

Table 1. Roles and loss functions for the discriminator D and generator G in SS-GAN frameworks.

Discriminator (D) Generator (G)

Role

Training within (k + 1) labels, D assigns “real”
samples to one of the designated (1, ..., k) labels,
thus allocating the generated samples to an
additional class labeled as k + 1.

Generates samples that are similar to the
real distribution preal as much as possible.

Loss
Function

L = Lsup + Lunsup
where:
Lsup = −Ex,y∼preal log[p(ŷ = y|x, y ∈ (1, . . . , k))]
and
Lunsup = −Ex,y∼preal log[1 − p(ŷ = y|x, y = k + 1)]
−Ex∼G log[p(ŷ = y|x, y = k + 1)]

L is the error of correctly identifying fake
samples by D
L = Lmatching + Lunsup
where:

Lmatching =
∥∥∥Ex∼preal f (x)− Ex∼G f (x)

∥∥∥2

2
and
Lunsup = −Ex∼G log[1 − p(ŷ = y|x = k + 1)]

Lsup is the error in wrongly assigning a label to a real data sample. Lunsup is the error in wrongly assigning a fake
label to a real (unlabeled) data sample. f (x) represents the activation or feature representation on an intermediate
layer of D. Lmatching is the distance between the feature representations of real and generated data.

3.2. SS-GAN-PLM 337

In our study, we used mBERT and XLM-RoBERTa as PLM models in our generative 338

framework. Starting with a pretrained PLM model, GAN layers were incorporated to 339
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execute semisupervised learning. By training on a dataset comprising both labeled and 340

unlabeled samples, the resulting model learns to deliver realistic text representations 341

and yield accurate predictions in text classification tasks. By implementing multilingual 342

pretrained language models like mBERT or XLM-RoBERTa, this integration presents a 343

robust framework for leveraging unlabeled data across multiple languages. 344

In the task of data classification using Multilingual BERT (mBERT) or XLM-RoBERTa, 345

the model generates a vector representation (hCLS, hs1, . . . , hsn, hSEP), with hCLS serving as 346

the sentence embedding. Enriching this with a Generative Adversarial Network (GAN), 347

we present an adversarial generator G and discriminator D to improve the classification. In 348

fact, G produces synthetic sentence embeddings to imitate real data, while D differentiates 349

between real data and those generated embeddings. These synthesized embeddings, 350

alongside PLM embeddings, are later fed into the discriminator for final classification. 351

As illustrated in Figure 1, we combined the GAN architecture on top of mBERT and 352

XLM-RoBERTa by including an adversarial generator G and a discriminator D for final 353

classification. 354

Figure 1. Representation of SS-GAN-PLM architecture for multilingual hate speech detection. [PLM
refers to the models we used in our experiments: mBERT and XLM-RoBERTa. “L” denotes the
labeled training data, and “U” denotes the unlabeled training data. The process starts with the GAN
generator G taking a random noise vector as input, which is in our case a 50-dimensional noise
vector. G then generates synthetic data samples, thus yielding fake vectors h f ake ∈ Rd. These output
samples are fed into the discriminator D, alongside the embeddings of both the labeled and unlabeled
data processed by the PLM model, which are represented as hCLS ∈ Rd vectors for each language.
The discriminator D assesses the realism of these inputs, thus distinguishing between real and fake
data and simultaneously classifying them into the ‘Hate and Offensive’ and ‘Normal’ classes. This
setup enables the training of GAN on both labeled and unlabeled data, thereby leveraging PLM
representations to enhance the classification function].

We utilized a Multilayer Perceptron (MLP) architecture to construct both the generator 355

G and the discriminator D. Initially, G receives a 50-dimensional noise vector and converts 356

it into a synthetic data vector h f ake ∈ Rd. Afterward, D evaluates the realism of h f ake, along 357

with the representation vectors of real data—labeled and unlabeled for each language— 358
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developed by PLMs and denoted as hCLS. The final layer of D incorporates a softmax 359

activation function, thus giving three vectors of logits corresponding to the three labels in 360

our study: ’hateful and offensive’, ’normal’, and ’is real or fake?’ classes. More specifically, 361

during training, if real data are sampled (h = hCLS), D will classify them into the 2 classes of 362

the hateful data (’hateful and offensive’ or ’normal’); otherwise, if h = h f ake, D will classify 363

them into all of the three classes. 364

No cost at inference time: The concept of ’No cost at inference time’ refers to the 365

efficiency of the model during the inference stage, in which computational resources are 366

optimized. After the GAN model is trained, the generator G is no longer employed during 367

this inference phase. Rather, only the PLM model and the discriminator D are maintained 368

for our classification task. Therefore, since the generator G is no longer engaged, there is 369

no extra computational resource consumption during the inference phase. This procedure 370

assures that the model’s performance during the classification task is kept without any 371

additional resources, which results in more cost-effective and efficient inference [31]. 372

4. Experiments and Results 373

4.1. Data: HASOC2019 Indo-European Corpora 374

In the HASOC (Hate Speech and Offensive Content) track at FIRE 2019, Mandl et al. [45] 375

established comprehensive Indo-European Language corpora for hate speech and offensive 376

content classification, which were extracted from Twitter and Facebook platforms. Their 377

work resulted in the collection of three publicly available datasets (https://hasocfire.github. 378

io/hasoc/2019/ (accessed on 01 September 2023)) in each of the following languages: 379

English, German, and Hindi. These datasets were created in order to contain a various 380

scope of linguistic and cultural contexts, thus enabling robust research in multilingual hate 381

speech and offensive language detection. Particularly, the datasets include 40.82%, 26.63%, 382

and 32.54% of the total training data for English, German, and Hindi, respectively. As 383

for the test set, English contains 34.71%, German 25.59%, and Hindi 39.68% of the total 384

test corpora. For each language, they provide the train and test datasets labeled in three 385

subtasks. In our study, we consider only the first subtask, in which the data is binary 386

labeled into (HOF) Hate and Offensive and (NOT) Non Hate-Offensive. Figure 2 displays 387

the class distribution of each language in the training set. 388

Figure 2. Class distribution variation across languages in the HASOC2019 training dataset. Note: In
this corpora, English presents 40.82%, German 26.63%, and Hindi 32.54%.

For our study, we focused on the first subtask of the HASOC2019 track. The training 389

dataset was first split, with 80% (∼11.5 k) going to the Unlabeled dataset (U) and the 390

remaining 20% (∼3 k) going to the Labeled dataset (L). Moreover, we made sure that 391

the actual class distribution was maintained in this division. Our main objective was 392

to demonstrate that using Generative Adversarial Networks (GANs) to train models on 393

https://hasocfire.github.io/hasoc/2019/
https://hasocfire.github.io/hasoc/2019/
https://hasocfire.github.io/hasoc/2019/
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small, annotated datasets is effective, thereby reducing the need or the dependency on 394

annotated data. When encountering a deficiency of labeled data, traditional machine 395

learning techniques sometimes fail to achieve a good performance because they might not 396

have sufficient data samples to determine robust features in the data. We reproduced a 397

situation where labeled data were scarce, which is widespread in real-world applications, 398

by splitting the training set into two parts: a smaller amount for annotated data (L) and 399

a larger amount for nonannotated data (U). We also aimed to manage the issue of the 400

imbalanced distribution of data across languages and especially classes. In particular, there 401

was a shortage of data samples for some languages and labels like the class imbalance 402

and small size in German training set in this HASOC2019 corpora, which proposes a 403

severe difficulty for traditional classification models. However, within our SS-GAN-PLM 404

model, we planned to reduce the effect of data imbalance on model performance. Our 405

model can overcome these challenges by employing the capacities of PLMs and Generative 406

Adversarial Networks (GANs) within the semisupervised approach to efficiently learn 407

from both labeled and unlabeled data. In fact, by combining PLMs and GANs into a 408

semisupervised learning framework, our model acquires the ability to effectively learn 409

from both labeled and unlabeled data. More specifically, PLMs serve by providing an 410

understanding of linguistic nuances across the languages we use. On the other side, GANs 411

complement PLMs by enabling data augmentation specifically targeted for the multilingual 412

aspect. GANs help our model to generate synthetic data samples in various languages, 413

thereby extending the diversity and size of the training dataset. This generation process 414

is especially beneficial for addressing data imbalances and enhancing the model’s ability 415

to generalize to unseen languages or linguistic variations (within a zero-shot learning 416

paradigm). Furthermore, the semisupervised learning technique allows our models to 417

leverage the knowledge provided in both labeled and unlabeled data during training. 418

Finally, our model is prepared to effectively address the challenges posed by limited labeled 419

data and data imbalance. This methodology not only improves the model’s robustness but 420

also increases its generalization and relevance to real-world scenarios where labeled data 421

may be scarce or imbalanced. 422

4.2. Experiments and Interpretations 423

4.2.1. Training Scenarios 424

We focused on training three models, SS-GAN-mBERT, SS-GAN-XLM (based on 425

XLM-RoBERTa pretrained model), and baseline semisupervised mBERT. After yielding 426

unexpectedly low results from the SS-GAN-XLM model, we considered only the best 427

overall results, thus only displaying its performance on the multilingual training paradigm 428

in our paper. We investigated its function and explained the low results it gave in our 429

analysis. We also considered mBERT as the baseline model because it gave us higher results 430

compared to the XLM-RoBERTa model in our work. The training scenarios were as follows: 431

• Multilingual Training Scenario: We used all data from the three languages in our 432

dataset, English, German, and Hindi, to train both the SS-GAN-PLM and the baseline 433

semisupervised mBERT models in our multilingual training paradigm. Through the 434

inclusion of crosslinguistic features and patterns, our aim was to utilize the sharing 435

features between languages. We could take advantage of the joint linguistic knowledge 436

that exists inside our multilingual training corpora, which improves our models’ 437

adaptability and generalization among different languages. After training, we utilized 438

HASOC2019 test sets in order to evaluate each model’s performance for each language. 439

Figure 3 offers a more clear vision of this training paradigm. 440

• Zero-Shot Crosslingual Training Scenario: We employed a crosslingual approach to 441

train our models in the zero-shot scenario. We fine-tuned our models on the English 442

dataset, which is larger than the corpora for the other two languages and has richer 443

linguistic resources. After that, we used a zero-shot learning paradigm to evaluate 444

these models’ performance on the test sets in Hindi and German. Using this technique, 445
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we investigated the models’ capacity for crosslingual generalization. Figure 3 presents 446

a more explicit description of the training paradigm. 447

• Monolingual Training Scenario: For every language in our training data, we fine- 448

tuned our models in the monolingual training paradigm by training and testing the 449

models separately on each language. This method contributes to a richer understand- 450

ing of model behavior across many linguistic contexts by providing insights into the 451

complexities and difficulties unique to each language. 452

(a) Multilingual training. (b) Crosslingual zero-shot training scenario.

Figure 3. Multilingual and crosslingual training scenarios.

4.2.2. Models Implementation 453

Considering the high computational resources employed during the training process, 454

we developed the architecture of GAN to be as simple and accurate as possible. Toward 455

that end, we built the model’s generator as a Multilayer Perceptron (MLP) with one hidden 456

layer. Its role is to generate synthetic data vectors from a given noise vector. In fact, 457

the generator performs by converting noise vectors sampled from a standard normal 458

distribution N(0, 1), in which each value is extracted from a distribution with a mean 459

(µ) of 0 and a standard deviation (σ) of 1. This initial conversion transforms the input 460

noise vector, more specifically of size 50 in our structure, into a hidden size vector of 512. 461

Afterward, a 0.2 LeakyReLU activation layer is involved; then, a dropout layer with a rate 462

of 0.1 is included within the generator in order to prevent overfitting and improve the 463

model’s robustness. Overall, this simplified structure promotes efficient consumption of 464

computational resources while enabling the generator to effectively produce synthetic data 465

vectors. 466

Keeping with the computational resources allocation, the discriminator is alternatively 467

built as another hidden layer Multilayer Perceptron (MLP), thus operating together with 468

the generator. This network has been designed to distinguish between real and fake data 469

samples, as well as to detect hate speech and offensive language for final classification. 470

Equivalent to the generator’s structure, the discriminator begins with a linear layer. Then, a 471

LeakyReLU activation function with a value of 0.2 is incorporated into this layer, alongside 472

a dropout layer with a 0.1 dropout rate. Finally, the output layer of the discriminator 473

consists of class logits that include three outputs: one for each of the two classes “Hate and 474

offensive” and “Normal” class and another output for differentiating between fake and 475

real data samples. Class probabilities are derived by delivering these logits into a softmax 476

activation layer. Overall, our final classification outcome is based on this architectural 477

configuration. 478

In our process, we leveraged the “BERT-Base Multilingual Cased” model (https:// 479

github.com/google-research/bert/blob/master/multilingual.md (accessed on 01 Septem- 480

ber 2023)). This version of BERT has been trained on 104 languages and has a struc- 481

ture with 12 layers, 12 attention heads, and a hidden size of 768. This version of the 482

model is composed of 110 million parameters, which demonstrates how well it can 483

catch complicated linguistic features. The “Cased” version was chosen because it per- 484

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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forms well with languages that use non-Latin alphabets, like Hindi. Adding to that, 485

our selection of the “BERT-Base Multilingual Cased” model was also influenced by the 486

computational resources we had. Compared to bigger, more refined large language 487

models, this model is considered lighter. However, we plan to explore and integrate 488

these large language models into our upcoming work. Moreover, for the multilingual 489

scenario, we also integrated XLM-RoBERTa model, more specifically “xlm-roberta-base” 490

(https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr) (accessed on 491

01 November 2023), in order to obtain a comparison between the effectiveness of this model 492

along with mBERT model on our SS-GAN framework. This version of XLM-RoBERTa 493

contains 12 layers, 12 attention heads, and a hidden size of 768, which contains 270 M 494

parameters and has been trained on over 100 languages [46]. We intend to study the impact 495

of different pretrained language models on this generative AI method within multilingual 496

hate speech detection tasks. 497

Moreover, our models have been implemented using Pytorch (https://pytorch.org/) 498

(accessed on 01 September 2023) and trained using a batch size of 32 on Google Colab Pro 499

(https://colab.research.google.com/signup) (accessed on 01 September 2023) (V100 GPU 500

environment with 32 GB of RAM). We set the maximum length variable to 200, and we 501

trained our models on five epochs, with a learning rate of 1 × 10−5 and AdamW optimizers 502

for both the discriminator and the generator. We used accuracy, precision, recall, and F1 503

macro scores as the evaluation metrics to measure our models’ results, which are displayed 504

in Table 2. 505

Table 2. Results in monolingual, zero-shot crosslingual, and multilingual training on HASOC2019
dataset.

English German Hindi
Acc. Pr. Rec. F1 Acc. Pr. Rec. F1 Acc. Pr. Rec. F1

Monolingual

Baseline
mBERT 0.638 0.605 0.629 0.601 0.842 0.489 0.495 0.485 0.696 0.707 0.697 0.693

SS-GAN-
mBERT 0.731 0.668 0.680 0.673 0.811 0.540 0.537 0.538 0.754 0.756 0.755 0.754

Crosslingual

Baseline
mBERT 0.638 0.605 0.629 0.601 0.657 0.525 0.551 0.502 0.696 0.707 0.697 0.693

SS-GAN-
mBERT 0.731 0.668 0.680 0.673 0.704 0.568 0.637 0.561 0.754 0.756 0.755 0.754

Multilingual

Baseline
mBERT 0.736 0.692 0.726 0.699 0.820 0.582 0.585 0.583 0.737 0.743 0.738 0.736

SS-GAN-
mBERT 0.753 0.700 0.723 0.708 0.771 0.598 0.667 0.609 0.783 0.783 0.783 0.783

SS-GAN-
XLM 0.686 0.594 0.587 0.590 0.863 0.531 0.508 0.495 0.647 0.647 0.647 0.647

In crosslingual training, we used zero-shot learning: training on English and testing on German and Hindi. XLM
refers to XLM-RoBERTa model.

4.2.3. Results and Interpretations 506

Regarding the three training scenarios—monolingual, zero-shot crosslingual, and 507

multilingual—the results in Table 2 demonstrate that SS-GAN-mBERT consistently out- 508

performed the baseline mBERT and SS-GAN-XLM in all the languages. When it comes to 509

enhancing performance in the multilingual training paradigm, SS-GAN-mBERT proved 510

to be a highly efficient solution compared to both monolingual and crosslingual training 511

strategies. More specifically, SS-GAN-mBERT yielded the best results, thereby demonstrat- 512

ing its capability in our semisupervised text classification task. In fact, our investigation 513

shows a 6.5% improvement in accuracy and a 6.4% improvement in the F1 score for hate 514

speech detection tasks in Hindi, over the baseline mBERT model, and a significant rise 515

of about 17% in both the accuracy and F1 macro score compared to SS-GAN-XLM in the 516

same training case. These significant gains highlight the SS-GAN-mBERT’s capacity to 517

develop a deeper understanding of the semantic nuances of languages in hate speech 518

detection task. Even with giving the highest accuracy of about 86% on German data, 519

SS-GAN-XLM output a low performance. This can be explained by various factors. In fact, 520

while XLM-RoBERTa proposes multilingual capabilities, its pretraining might not handle 521

https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr
https://pytorch.org/
https://colab.research.google.com/signup
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enough the complexities of hate speech detection tasks across the languages used in our 522

experiments. In addition, differences in data quality and linguistic nuances could also 523

affect SS-GAN-XLM’s performance. 524

Similar improvements were also noticed when zero-shot crosslingual training was em- 525

ployed, which highlights further the effectiveness of SS-GAN-mBERT in various linguistic 526

contexts. This model achieved the highest progress with an approximately 12% increase 527

in the accuracy, precision, recall, and F1 macro scores for the hate detection task in Hindi. 528

This result indicates the model’s strength in transferring knowledge between languages, 529

even in cases when annotated data in the target language is scarce. Nevertheless, it is also 530

important to acknowledge the significant results that both the baseline and SS-GAN-mBERT 531

models within the monolingual scenario achieved, where mBERT indicated an accuracy of 532

approximately 84% for German classification task. 533

The constant outperformance of the SS-GAN-mBERT model in comparison to the 534

baseline mBERT across all of the three training paradigms highlights the rich influence 535

of adversarial training methods in refining the model’s capacity to distinguish complex 536

and variant linguistic features. More specifically, this outcome became more noticeable 537

within the multilingual training process, thus emphasizing the model’s ability to leverage 538

multilingual corpora effectively. Moreover, regarding the dataset imbalance, we focused 539

on considering F1 macro scores as a robust evaluation metric in our experiments. Thus, 540

comparing the languages output, we can say that our models gained the highest perfor- 541

mance in Hindi. This distinction can be related to the larger size of the corresponding 542

dataset. Contrarily, the smaller dataset for German showed lower model performance, 543

as the model may have encountered difficulties in generalizing effectively because of the 544

narrowed exposure to relevant linguistic features and contexts in this language. 545

To acquire a more detailed interpretation of how our SS-GAN-mBERT model per- 546

forms better than the baseline mBERT (the second best performing model), we considered 547

analyzing the confusion matrices of the best overall results, which in our case are the 548

multilingual training scenario models tested on Hindi test subset. Figure 4 presents the 549

two confusion matrices of both the baseline mBERT and SS-GAN-mBERT models of this 550

training paradigm. 551

(a) Baseline mBERT confusion matrix (b) SS-GAN-mBERT confusion matrix

Figure 4. Confusion matrices for mBERT and SS-GAN-mBERT in multilingual training scenario for
Hindi.

As we can witness in Figure 4, SS-GAN mBERT achieved higher classification accuracy 552

for both the “Hate and Offensive” (HOF) and “NOT hate and offensive” (NOT) classes 553

compared to the baseline mBERT. Particularly, in the “NOT” class, SS-GAN mBERT reached 554

an approximately 79.03% True Positive Rate (TPR), while baseline mBERT achieved around 555

66.72%, thus indicating considerable progress in correctly classifying nonoffensive data 556

samples in Hindi. Additionally, SS-GAN mBERT presented a more balanced performance 557
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across the two classes, with smaller differences in the TPR between “HOF” and “NOT”, 558

thus presenting improved overall classification accuracy. 559

5. Discussions and Future Directions 560

5.1. Effect of Iterative Labeled Data Increase 561

Based on the results we obtained, as illustrated in Table 2, we took the best training 562

paradigm, which is multilingual training tested on Hindi, and we reiterated the training 563

of both of the models while progressively increasing the size of the annotated dataset L. 564

We carried a fixed number for the unlabeled dataset U while systematically increasing the 565

number of labeled samples. This technique was essential for evaluating the performance 566

and the scalability of the models under various levels of supervision in our semisupervised 567

approach. Our objective in freezing the number of unlabeled samples was to investigate 568

the influence of the labeled data size on model performance. This enabled us to examine to 569

which extent our models could reach acceptable performance independently of annotated 570

data. We aimed to get closer towards a more unsupervised approach, depending primarily 571

on unlabeled data, thus reducing the need for extensive data annotation. Initiating with 572

a small percentage of labeled data samples and progressively increasing it helped us to 573

observe the learning curve of the models and comprehend their behavior as they were 574

exposed to more labeled data. For more details, we maintained the same size of unlabeled 575

material U, then we started by sampling only 1% of L (which presents very few samples at 576

29 samples) and then increasing the labeled set size with 5%, 10%, 20%, etc. As we already 577

explained in the previous Section 4.2.3, we considered the F1 macro score metric, along 578

with the accuracy metric values. 579

Based on Figure 5, we can observe the difference between the baseline and SS-GAN- 580

mBERT models, especially when using the smallest percentage of L data, and even with the 581

use of almost the total amount of labeled data (80–90%), the baseline could not reach the 582

performance of SS-GAN-mBERT. Moreover, even with almost yielding the same accuracy 583

for both models, we can witness the difference in the F1 macro score, where it was evident 584

that SS-GAN-mBERT managed to reach the same performance as the baseline model with a 585

very small amount of labeled data (e.g., we can see the same F1 macro score attained by SS- 586

GAN-mBERT with 1% of L, while the baseline needed more than 6% to reach it). Another 587

aspect to consider is the requirement for labeled data. In fact, in this semisupervised 588

framework (whether within SS-GAN-mBERT or mBERT alone), we can see that with 589

the training unlabeled sets provided U, both of the models did not need a big volume 590

of annotated data. More specifically, as presented in Figure 5, baseline mBERT started 591

giving an F1 macro score and accuracy of more than 0.7 with ∼40% of L, while SS-GAN- 592

mBERT needed only ∼30% to reach this performance; this demonstrates the benefits of 593

implementing semisupervised learning, as it helps to reduce the necessity of data labeling. 594

Figure 5. F1 score and accuracy progress on Hindi: baseline mBERT vs SS-GAN-mBERT in multilin-
gual training.
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Overall, we managed to show through these experiments that the need for annotated 595

instances is reduced when the GAN structure is applied over semispervised mBERT, and it 596

can be reduced more when further improving the structure of GAN, which will be our next 597

step in future work to implement more complex and more advanced GAN structures with 598

more hidden layers in both the generator and the discriminator. 599

5.2. Computational Cost at Inference Time 600

Considering the cost at inference time, as previously mentioned in Section 3.2, we 601

executed a comprehensive study of the training times of each of the models across the 602

training paradigms (multilingual, crosslingual, and monolingual). Since XLM-RoBERTa 603

has a different number of parameters, it took a very different training time; therefore, we 604

did not consider it in this part of our analysis. Eventually, we found that there was not a 605

considerable difference in training duration between the two models: the baseline mBERT 606

and the SS-GAN-mBERT models. The maximum training time difference marked was 607

about 16 min in one of the training scenarios. This emphasizes the hypothesis that the 608

training time of SS-GAN-mBERT remains essentially similar to that of the baseline model 609

semi-supervised mBERT. This remark indicates that SS-GAN-mBERT offers a viable solu- 610

tion for scenarios where both robustness and training efficiency are critical aspects. More 611

specifically, its efficiency in inference time does not require a large extended training dura- 612

tion. Nevertheless, it is worth noting that this conclusion is related to the simple structure 613

of our GAN’s generator (as an MLP). Therefore, there is a high probability that the time gap 614

could broaden when implementing a more complex generator structure, which can help us 615

to better study the inference time within GANs. Overall, we have a big interest towards 616

this matter because it is crucial to consider the environmental influences of model training, 617

particularly in the context of carbon emissions. Our aim is not restricted to revealing the 618

efficacy of SS-GAN-mBERT but also opening new paths for investigating the environmental 619

aspect, which remains an interesting field for sustainable AI development. While our study 620

did not investigate this aspect in detail, the efficiency of SS-GAN-mBERT could eventually 621

show reduced energy consumption and carbon footprint. Notably, both SS-GAN-mBERT 622

and mBERT demonstrated similar levels of computational resource consumption, thus 623

generally ranging from 4.6 to 5.3 MegaBytes (MBytes) depending on the training scenario 624

and the size of the test set. In the majority of these cases, both models consumed almost 625

equal amounts of resources. This suggests future research for a deeper analysis of resource 626

consumption and measurements, thus taking into consideration the existing tools for CO2 627

energy measurements when training machine learning and large language models [47]. 628

5.3. Future Directions 629

The future direction of this study can be grouped into three domains as follows: 630

(1) Generator’s Input: We have used a constant value of the noise vector of dimensions 631

50 as the input for our generator in the Generative Adversarial Network (GAN). This 632

option is the optimized value that gave us the best overall results from a comprehensive 633

examination of the initial experimental outcomes associated with concerns of computational 634

efficiency. As a result, we were able to balance between the complexity of the model and 635

the computational resources needed for training. Our goal is to develop procedures that 636

can optimize the generator to select the most appropriate noise vector size for any given 637

dataset. This objective aligns with the idea of improving the adaptability and effectiveness 638

of our GAN framework. An example of our future work for achieving this objective is 639

leveraging Wasserstein GAN, which is a variant famous for its capacity to increase the 640

diversity of generated data samples, thus enabling enhanced stability during training [48]. 641

By incorporating strategies such as Wasserstein GAN into our models, we expect not only to 642

improve the nature of our synthesized data but also to get better generalization capabilities 643

of our model to be able to generate more diverse multilingual data closer to the real ones 644

extracted from social media platforms. 645
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(2) Data Augmentation: We aim to decrease the effects of class imbalance, thus 646

leveraging new data augmentation techniques that can be considered as a promising future 647

direction. For instance, we can integrate back translation [41] as one of the solutions, 648

thus taking advantage of its efficacy in various NLP tasks, especially multilingual tasks. 649

In fact, besides our efforts to enhance GAN’s accuracy, we consider improving its data 650

augmentation performance using several techniques, such as Conditional GANs [49]. 651

This strategy has illustrated success in generating high-quality and diverse data samples 652

prepared on specific details to be set as conditions, which could help in further enhancing 653

our hate speech detection tasks. 654

(3) Large Language Models (LLMs): Our future objective opens to accomplishing 655

better generalization abilities by employing advanced multilingual Large Language Models 656

(LLMs) instead of mBERT and XLM-RoBERTa, such as BLOOM, GPT-3, LLaMA2, and 657

Gemma. These LLMs provide richer linguistic features and better contextual understanding, 658

which potentially can enhance the efficacy of our proposed model. Even though the use of 659

such LLMs requires much more computational resources, we intend to mitigate resource 660

limitations gradually. Initially, we plan to start with smaller architectures like GPT-2 and 661

Distil-GPT [50], thus profiting from their language modeling abilities. Moreover, we seek to 662

evaluate the influence of these LLMs within the context of the SS-GAN model. By executing 663

extensive experiments and comparison analyses, we aim to explain and compare the effect 664

of each LLM on the generative capabilities of our model, thereby giving a clear vision for 665

decision making and further advancements. 666

6. Conclusions 667

In this paper, we have introduced a semisupervised approach, the semisupervised 668

generative adversarial pretrained language models SS-GAN-mBERT and SS-GAN-XLM, 669

which displayed remarkable performance in the field of multilingual and zero-shot crosslin- 670

gual hate speech and offensive language detection across the English, German, and Hindi 671

languages. Our approach contributes to leveraging semisupervised learning methods to 672

dive into the challenge of data annotation scarcity. The inclusion of Generative AI, which 673

in our case is Generative Adversarial Networks (GANs), managed to improve the efficacy 674

of our approach, thereby demonstrating the benefits of combining semisupervised learning 675

and generative modeling techniques. Our study investigated multilingual textual hate 676

speech detection, which presents important challenges in today’s online communication. 677

By utilizing our SS-GAN-PLM model, we contribute to the proceeding actions in mod- 678

erating online hate speech content, which is a major sensitive problem widespread in 679

online social media platforms. Previous studies have focused on monolingual hate speech 680

and offensive language detection across languages like Bengali, Portuguese, etc., thus 681

producing specific BERT-based generative adversarial models such as GAN-BanglaBERT 682

for Bengali [26], GAN-bertTimbau for Portuguese [42] , SS-GAN-RoBERTa for English [43], 683

etc. However, the relevance of these analyses extends beyond monolingual settings. There 684

is a growing tendency to utilize such techniques for multilingual hate speech detection. 685

Therefore, our paper introduced multilingual and zero-shot crosslingual GAN-PLMs. Our 686

focus was on exploring GANs’ adaptability in various linguistic contexts, thus moving 687

beyond traditional supervised machine learning methods, especially in scenarios with 688

limited annotated data. Exceeding hate speech detection, the importance of our research 689

opens to various generative AI fields, and by constructing upon the foundation of GANs, 690

we propose an adaptable framework that can be further adjusted and extended to address 691

generative tasks across other languages. Overall, our paper also underscores the signifi- 692

cance of integrating semisupervised learning and generative modeling techniques along 693

with PLMs in addressing real-world challenges such as hate speech detection. 694
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