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ABSTRACT
Precise and robust GNSS positioning with low-cost receivers is a challenge, as these receivers will often be disturbed by biased
observations due to a given environment, for example by code pseudoranges with multipath. One way to reach centimeter
positioning accuracy is by using very precise observations, in particular by using GNSS carrier phase measurements. These
carrier phase measurements can be very precise (under centimeter standard deviation) but they contain an unknown, the phase
ambiguity. Throughout time, for a tracked satellite during multiple epochs, this phase ambiguity is supposed to remain constant.
So by building an observation model containing observations from multiple epochs, we can take advantage of this information.
This is what is usually done in a discrete-time Kalman filter: we estimate the ambiguity of each satellite, and we model this
ambiguity to be constant in the state transition model. However, in practice, cycle slips happen. If we suppose that the ambiguity
is constant, then the positioning algorithms solutions will be degraded when cycle slips happen.

This work uses factor graph optimization in order to detect and identify cycle slips on GNSS carrier phase observations from
a single frequency receiver. This is done in a two-step process. It starts with a theoretical and very general approach to detect
faults on measurements, as a binary decision. This is done with a theoretical distribution of a residual-based statistic (difference
between observation models and measurements), and a comparison of the observed statistic with its theoretical distribution. In the
case of detected fault, then comes step two of the process: by building multiple models and an optimization problem over a finite
and discrete set of hypotheses, we are able to identify the observation where a fault was introduced. Following this theoretical
approach to detect and identify faults, factor graph optimization is introduced. This is the strength of our approach: we are able
to apply the procedure of detection and identification of faults for any factor graph, i.e., for any set of observations and states to
estimate. Finally, the detection method is implemented in a GNSS simulator. We build a factor graph that estimates a receiver
position from multiple carrier phase measurements. We apply the detection method to detect cycle slips on phase measurements.
We show that, depending on the duration of the observation window, our detection method works for very small cycle slips, of
one wavelength. We also compare Monte-Carlo simulations against theoretical probabilities of detection.
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I. INTRODUCTION
Carrier phase GNSS observations are of upmost interest for precise positioning and navigation applications, since these obser-
vations are very precise, compared to code range measurements [Roberts, 2019]. However, these observations are ambiguous,
meaning that for a given wavelength corresponding to a given carrier phase frequency, and for a given satellite, the observations
are corrupted by an integer number of wavelengths [Wang et al., 2022]. Most precise positioning applications will assume that
this integer number of wavelengths remains constant throughout time for a tracked satellite, and will use this information in order
to estimate this number, leading to precise positioning. Unfortunately, this integer number can change over time and make the
assumptions wrong, leading to a so called "cycle slip". A cycle slip occurs due to loss of lock of a receiver’s phase tracking
loops [Langley, 2014] that can be due to multiple reasons: obstruction of signal, a low C/N0, an interference, or even a bug in
the receiver software [Hofmann-Wellenhof et al., 2008]. Many applications exist that rely on constant ambiguities. Precise Point
Positioning (PPP) assumes a constant transition model for the ambiguities in a Kalman filter, along with other transition models
for the other state variables [Lotfy et al., 2022]. Other authors use this assumption to build temporal differences between carrier
phase observations without ambiguity in their models [Kirkko-Jaakkola et al., 2009].

Regarding cycle slips, many authors have proposed techniques to detect and correct them. For detection purposes, most of
them [Farooq et al., 2018] build a quantity and use it to make a decision. Hopefully, the test will provide the lowest probability
of false alarm and the highest probability of detection. For example, in a Kalman filter, this is typically done by computing the
norm of the innovation vector [Kerhascoet et al., 2017], [Hajiyev, 2016]. In the GNSS community, there are ways to improve
this decision: some authors use carrier phase observations at multiple frequencies, and by combining observations, they are able
to increase the wavelength, leading to larger cycle slips [Li and Melachroinos, 2019]. Others build larger observation systems
containing fault-free measurements, in order to increase their detection capability [Wen and Hsu, 2022], and some use geometric
constraints [Knowles and Gao, 2023]. The cycle slip detector proposed in this article relies on the factor graph framework. The
factor graph framework has been used in many applications. For example, in GNSS positioning [Wen and Hsu, 2021], in GNSS
odometry [Congram and Barfoot, 2022], for hybridization of sensors [Bai et al., 2022]. From the factor graph outcome, an
hypothesis testing is proposed to detect the presence of a faulty measurement. This principle is then transposed to a cycle slip
detector, using carrier phase observations. Then, if a fault is detected, a new set of factor graphs is generated to catch the faulty
satellite. The motivation behind this theory is that most cycle slip detectors can be modelled by a factor graph. We will start
by a very general theory of least-squares estimation, followed by statistics on residuals. We will propose a set of conditions on
faults that we will be able to detect and exclude, followed by the actual tests to detect and identify them. Then, the factor graph
framework will be introduced, and we will see the link with the previously explained theory. Finally, we will propose a factor
graph made of GNSS carrier phase observations, and will see how our theory can detect cycle slips.

II. LINEAR SYSTEM, ESTIMATION AND RESIDUAL
The following sections are very general, as done in [Joerger et al., 2014], but will be the building blocks of the proposed factor
graph detector. Readers aware of Receiver Autonomous Integrity Monitoring (RAIM) and integrity monitoring might be familiar
with the following sections [Kirkko-Jaakkola et al., 2009].

1. Linear system estimation
We start with a full-rank linear observation system:

yR = HRx+ εR (1)

with x ∈ Rn a hidden state vector to estimate, yR ∈ Rm a known measurement vector, HR ∈ Mm,n(R) with m ≥ n a known
full-rank observation model, i.e., HR is injective, εR ∈ Rm, εR ∼ N (µR,R) an unknown additive Gaussian noise, with known
covariance matrix R but unknown mean µR.

By left-multiplying equation (1) by R−1/2 (R1/2 ∈Mm(R) a lower triangular matrix such that R1/2RT/2 = R), we obtain:

y = Hx+ ε (2)

with y = R−1/2yR,H = R−1/2HR, ε = R−1/2εR ∼ N (µ, Im), where µ = R−1/2µR.

The noise impacting the measurement vector in equation (2) can be written as:

ε = µ+ ε0 (3)

with ε0 ∼ N (0, Im).

We are looking for the estimate that best explains the measurement vector y under the hypothesis that µ = 0.
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We have the well known least-squares estimate:

x̂ls = argmin
x̂

||y −Hx̂||2 = (HTH)−1HTy. (4)

For commodity, we define:
S ≜ (HTH)−1HT (5)

so we can write equation (4) as:
x̂ls = Sy. (6)

2. Linear system residuals
For any estimator x̂ of x, the residual vector is defined as:

ẑ ≜ y −Hx̂ (7)

with x̂ an estimate of x. By definition, the least-squares estimate x̂ls is the one that minimizes the euclidean norm of ẑ in equation
(7). The corresponding residual vector is:

ẑls = y −Hx̂ls. (8)
Injecting equation (6) into equation (8) and using equation (2), one obtains:

ẑls = (Im −HS)y = (Im −HS)ε (9)

and by left-multiplying equation (6) by H:
Hx̂ls = HSy = Hx+HSε. (10)

For commodity, we define:
ΠIm(H) ≜ HS, ΠIm(H)⊥ ≜ Im −HS. (11)

One can show that ΠIm(H) is an orthogonal projector onto Im(H), and that ΠIm(H)⊥ is an orthogonal projector onto Im(H)⊥,
see Figure 1 for a visualization.

Im(H), dim(Im(H)) = n

Im(H)⊥, dim(Im(H)⊥) = m− n

y

Hx

ε

Hx̂ls = ΠIm(H)y

ẑls

ΠIm(H)⊥y = ẑls
Rm = Im(H)⊕ Im(H)⊥

Figure 1: The measurement space Rm is the direct sum of two orthogonal vector spaces: Im(H) and Im(H)⊥, the least-squares estimate is
obtained by an orthogonal projection of y onto Im(H), the residual vector ẑls is obtained by an orthogonal projection of y onto Im(H)⊥.

We define the squared norm of the residual vector:

z ≜ ẑT
ls ẑls = εTΠT

Im(H)⊥ΠIm(H)⊥ε = εTΠIm(H)⊥ε. (12)

If µ = 0, Cochran’s theorem [Potter and Suman, 1977] states that z follows a central chi-squared distribution (from equation (9)):
z ∼ χ2

m−n(0) (13)

with χ2
m−n(0) the chi-squared distribution with m− n degrees of freedom.

If µ ̸= 0, then z follows a noncentral chi-squared distribution (from equations (9) and (3)):

z ∼ χ2
m−n(λ), with λ = µTΠIm(H)⊥µ (14)

with χ2
m−n(λ) the noncentral chi-squared distribution with m− n degrees of freedom and noncentrality parameter λ.
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III. FAULT DETECTION AND IDENTIFICATION
When computing the least-squares estimate, it is assumed that µ = 0. The aim of the following sections is to test this hypothesis.
Often, we will refer to this quantity as a vector of biases, or bias vector, as these biases are unknown deterministic quantities that
impact the measurement vector, and that are not related to the true state that we try to estimate, so it will affect the quality of the
estimation of x. We will try to identify such a bias vector, and exclude it to obtain the best estimate of x that is achievable. A
two step process is followed: step 1 consists of deciding whether or not there is a bias in the measurement vector, and if so, step
2 two will identify the biased measurement to be able to exclude it from the solution.

1. Hypothesis/boundaries
In the case µ = 0, then equation (13) holds. If µ ̸= 0, then we omitted the mean of ε, equation (14) holds. These two equations
imply that to detect a bias, we have the necessary condition: m− n > 0.

We do not know the bias that actually impacts the measurement vector, so we cannot compute λ in equation (14). In our
application, we will define a worst-case bias µwc:

• we will assume that a single component of µwc is non-null,

• the amplitude of this bias lives in a discrete set, so we define the smallest amplitude, in absolute value, of this set as µwc,

• it happens on worst measurement, i.e., on component of µ such that the noncentrality parameter λ in equation (14) is
minimum.

Therefore, we can write:
µwc = µwcewc (15)

with ewc a vector of the canonical basis of Rm, and the worst-case noncentrality parameter is defined:

λwc ≜ µT
wcΠIm(H)⊥µwc. (16)

2. Single fault detection
The first test is a binary hypothesis testing, deciding whether the bias is null or not. To answer it, we write the two hypotheses
(the upper index indicates step 1 of the detection and exclusion process) as:{

H
(1)
0 : µ = 0

H
(1)
1 : µ ̸= 0.

(17)

We will predict that H(1)
1 holds if the residual becomes too large, that is if [Kay, 2009]:

z ≥ T (18)

with T a decision threshold and z as in equation (12). We will set T by a false-alarm constraint, making T depending only on the
distribution equation (13) and on a manually set probability of false alarm.

Most of the time, the true bias µ will be different from µwc, but if it contains at most a single fault, under the conditions on µwc,
the true noncentrality parameter λ will be larger than λwc, so the test will deliver a lower bound on probability of detection.

If we made the decision H
(1)
1 , the second step is to identify which component of µ is non-null.

3. Fault identification
If we made a decision that a bias is present (i.e., we decided H

(1)
1 in the previous step), we can try to identify the fault.

We denote ei the ith vector of the canonical basis of Rm, i ∈ {1, . . . ,m}. We made the assumption that a single fault is present
at most, let us assume that it affects component j with an amplitude µ:

µ = µej . (19)

Then, injecting equations (3) and (19) into equation (2), we can rewrite the measurement model as:

y = (H ej)

(
x
µ

)
+ ε0. (20)
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For commodity, we define for any i:
Hi ≜ (H ei) (21)

so equation (20) becomes:

y = Hj

(
x
µ

)
+ ε0. (22)

It is important to remark that we can treat equation (22) as a measurement model if and only if Hj is injective, i.e., if it is of
rank n + 1. The same applies to all matrices Hi. Put another way, it means that if H is full rank and Hi is not, then the ith

measurement cannot be discarded to estimate x.

As we do not know j, we will build m new hypotheses H(2)
i , i ∈ {1, . . . ,m}:

H
(2)
i : i = j (23)

and test each one of them. The hypothesis H(2)
i can be interpreted as measurement i being faulty. The upper index indicates step

2 of the detection and identification process.

For commodity, we define:
Si ≜ (HT

i Hi)
−1HT

i . (24)

Under hypothesis H(2)
i , we can compute a least-squares estimate:(

x̂lsi
µ̂i

)
= Siy (25)

with y as in equation (22), and build a residual vector as:

ẑlsi = y −Hi

(
x̂lsi
µ̂i

)
(26)

and we define:
zi ≜ ẑT

lsi ẑlsi . (27)

In Appendix A we show that:

• if i = j, both x̂lsi and µ̂ will be centered on the hidden states, hence zi follows a central chi-squared distribution with
m− n− 1 degrees of freedom,

• if i ̸= j, the estimates will not be centered on the hidden states, a bias will remain in the residual vector, hence zi follows a
noncentral chi-squared distribution with m− n− 1 degrees of freedom.

This implies that to identify the bias, we have the necessary condition: m− n− 1 > 0.

In the case of i ̸= j, we will not be able to compute the true noncentrality parameter, since we do not know j nor the hidden
parameters and bias. But what we know is that if the model i is not the true model j, then the squared norm of its residual vector
does not follow a central chi-squared distribution. From this assessment, we can build a maximum likelihood estimation problem.
We will decide i such that:

î = argmax
i∈{1,...,m}

χ2
m−n−1(0)(zi). (28)

The model with the correct vector ei, i.e., with i = j, will generate a residual vector whose squared norm follows a central
chi-squared distribution, i.e., it will statistically have the highest likelihood of being central. For the other models, a bias will
remain in the residual vector, and the likelihood of the residual squared norm being central is statistically lower or equal.

It is important to keep in mind that under the proposed hypothesis, in the presence of two or more biases, we can have a
noncentrality parameter λ lower than λwc. Unfortunately, under such conditions, this test does not deliver a lower bound on
probability of detection.

Now that we have seen how to detect and identify a single fault in a linear observation model, we can move onto factor graph, as
they will handle the case of nonlinear observation models.
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IV. FACTOR GRAPH OPTIMIZATION
A factor graph is a bipartite graph, with two set of nodes, the first one being states to estimate, called variables, the second one
being what we call factors. A factor contains a measurement vector, an observation model, and a noise model. Each factor is
connected to the subset of variables appearing in its observation model. The aim of a factor graph is to represent an estimation
problem.

For K factors in the factor graph, k ∈ {1, . . . ,K}, we have the observation model of factor k:

yk = hk(x) + εk (29)

with x ∈ Rn a hidden state vector, yk ∈ Rmk a known measurement vector, hk : Rn → Rmk a known (possibly nonlinear)
model, εk ∈ Rmk , εk ∼ N (0mk,1,Rk) an unknown additive Gaussian noise, with known covariance matrix Rk. From equation
(29), the conditional probability density function of observing yk given x is:

pk(yk|x) =
1√

(2π)mk |Rk|
exp(−1

2
||yk − hk(x)||2Rk

) (30)

with the Mahalanobis norm:
||v||2Ω ≜ vTΩ−1v. (31)

The likelihood is defined as any function proportional to pk(yk|x̂), so we define the likelihood:

lk(x̂;yk) ≜ exp(−1

2
||yk − hk(x̂)||2Rk

) ∝ pk(yk|x̂) (32)

with the notation indicating that the likelihood is not a function of yk, which acts as a parameter here, but a function of x̂. We
define the residual vector:

zk(x̂) ≜ yk − hk(x̂) (33)

so the likelihood (32) becomes:
lk(x̂;yk) = exp(−1

2
||zk(x̂)||2Rk

). (34)

We can vertically stack all the measurements:

y ≜
(
yT
1 . . . yT

K

)T ∈ Rm, m =

K∑
k=1

mk. (35)

If the noises impacting the K factors are all independent, i.e., if ∀(k, k′), k ̸= k′ we have E[εkεTk′ ] = 0mk,mk′ , pk(yk|x) and
pk′(yk′ |x) are independent, so:

p(y|x) =
K∏

k=1

pk(yk|x) (36)

and the likelihood l(x̂;y) is the product of the likelihoods:

l(x̂;y) =

K∏
k=1

lk(x̂;yk). (37)

From this, we can define the maximum likelihood vector x̂∗:

x̂∗ ≜ argmax
x̂

l(x̂;y). (38)

Solving the optimization problem equation (38) is equivalent to minimizing its negative log, i.e.,

argmax
x̂

l(x̂;y) = argmin
x̂

− log l(x̂;y) = argmin
x̂

K∑
k=1

||zk(x̂)||2Rk
(39)
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which is a nonlinear least-squares problem. To solve such a problem, we can use the Gauss-Newton algorithm: it is an iterative
solver, i.e., it starts from an initial point x0, finds a step ∆x∗, applies it, and iterates until a convergence criterion is met:

∆x∗ = argmin
∆x

K∑
k=1

||zk(x0 +∆x)||2Rk
(40)

= argmin
∆x

K∑
k=1

||R−1/2
k zk(x0 +∆x)||2. (41)

To do so, the Gauss-Newton approximation consists of writing the first-order Taylor development of the observation model hk in
equation (33). Equation (40) becomes:

∆x∗ = argmin
∆x

K∑
k=1

||zk(x0)− Jk|x0∆x||2Rk
(42)

= argmin
∆x

K∑
k=1

||R−1/2
k zk(x0)−R

−1/2
k Jk|x0

∆x||2 (43)

with Jk|x0
the Jacobian matrix of hk computed at x0. To get rid of the sum in equation (43), we can vertically stack all the

whitened residuals:
z(x0) ≜

(
(R

−1/2
1 z1(x0))

T . . . (R
−1/2
K zK(x0))

T
)T

(44)

and do the same to the Jacobian matrices:

J |x0 ≜
(
(R

−1/2
1 J1|x0

)T . . . (R
−1/2
K JK |x0

)T
)T

(45)

so that equation (43) becomes:
∆x∗ = argmin

∆x
||z(x0)− J |x0∆x||2. (46)

The solution to this optimization problem is given in equation (4). Once this problem is solved, we apply the update:

x0 ← x0 + α∆x∗ (47)

with α a step size hyperparameter. In the linear case presented in the previous section, we had a condition on the rank of our
observation model. Here, the observations models of the factors might be nonlinear, so in order to converge, we will iterate until
the convergence criterion is met, which will always be the case if the hk models are Lipschitz continuously differentiable, if the
Jacobian matrices are uniformly full rank, and if the Armĳo and Wolfe step size conditions are met [Nocedal and Wright, 2006].

Equation (46) has the same form as equation (4), so once at convergence (∆x∗ ≈ 0), we will apply the detection theory that we
saw in the previous section to the current problem.

V. APPLICATION TO GNSS
We are going to build a factor graph containing carrier phase observations, as we target precise positioning applications.

1. Carrier phase observation model
In order to reach centimeter level positioning, we can use GNSS carrier phase measurements, as these measurements are impacted
by a very small random noise. The drawback of these measurements is that they are ambiguous, i.e., there is an unknown number
of wavelengths between our receiver and a given satellite. This number is called the ambiguity. In theory, if a receiver is tracking a
satellite, then this ambiguity should stay constant. However, the phase tracking process can converge to a different stable tracking
point, which will result in a change in the ambiguity. This type of event is called a cycle slip, and can be due to perturbation of
the signal reception due to excessive noise (low elevation satellite, interference), excessive signal dynamics (dynamic maneuver
of the receiver) or propagation impairments (multipath). A receiver at epoch t of coordinates xt = (xt yt zt)

T is tracking a
satellite with an identifier q and of coordinates xq

t =
(
xq
t yqt zqt

)T , we denote rqt = xq
t − xt the vector receiver to satellite q,

at epoch t. The carrier phase measurement used in this experiment is the GPS L1 (a wavelength of 19 cm), and is modeled as
follows:

λL1Φ̃
q
t = ||rqt ||+ c(dtt − dtqt ) + λL1N

q
t − Iqt + T q

t + δqepht
+mq

t + ε̃qt (48)
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where Φ̃q
t is the carrier phase raw measurement of satellite q at epoch t, λL1 is the wavelength of the GPS L1 band, c is the speed

of light, dtt the receiver clock bias with respect to GPS time at epoch t, dtqt the satellite clock bias with respect to GPS time at
epoch t, Iqt the ionospheric delay at epoch t, T q

t the tropospheric delay at epoch t, δqepht
the ephemeris error of satellite q at epoch

t, mq
t the multipath error at epoch t, Nq

t ∈ Z the integer ambiguity, and εqt a centered Gaussian noise.

After correction of the ionospheric delay, tropospheric delay, satellite and receiver clock biases, ephemeris and multipath
errors [Sanz et al., 2013], the model becomes:

λL1Φ
q
t = ||rqt ||+ λL1N

q
t + εqt (49)

with εqt ∼ N (0, σq
Φt

2
) the error made of all the residuals errors after correction.

If we assume that, for all satellite tracked during a time window of w epochs, the ambiguity remains constant at all epochs
(Nq

1 = Nq
2 = . . . = Nq

w = Nq), we can model the observations by the graph in Figure 2.

x1 x2 x3 ... xw

N1 ...N2

...

Figure 2: A factor graph made of corrected carrier phase measurements. Each ambiguity N corresponds to a satellite, each xt corresponds to
a 3D position at a given epoch t.

If a cycle slip happens, then all the carrier phase observations after that cycle slip will be faulty. This leads to more than one fault.
Our theory does not provide results on multiple faults, so we need to transform our graph in a way to be in the single fault case.

2. Consecutive time difference carrier phase
For a satellite q tracked through all epochs from 1 to w, we denote Φq the vector of all carrier phase observations of this satellite:

λL1Φ
q =

λL1Φ
q
1

...
λL1Φ

q
w

 =

 ||r
q
1||+ λL1N

q
1

...
||rqw||+ λL1N

q
w

+

εq1
...
εqw


︸ ︷︷ ︸

∼N (0,Rq)

(50)

with Rq =

σq
Φ1

2

. . .
σq
Φw

2

 a diagonal matrix. This is the reason why Figure 2 is made of a lot of sparse scalar factors.

In the case of a single cycle slip, one way to be in the single fault case is to compute time differences between consecutive
observations. To do so, we multiply equation (50) by a differentiation matrix:

D =

−1 1
. . . . . .

−1 1

 (51)

leading to:

TDCPq = DλL1Φ
q =

 ||rq2|| − ||r
q
1||+ λL1(N

q
2 −Nq

1 )
...

||rqw|| − ||r
q
w−1||+ λL1(N

q
w −Nq

w−1)

+ D

εq1
...
εqw


︸ ︷︷ ︸

∼N (0,DRqDT )

. (52)
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If we assume constant ambiguity, then the system becomes:

TDCPq =

 ||rq2|| − ||r
q
1||

...
||rqw|| − ||r

q
w−1||

+ D

εq1
...
εqw


︸ ︷︷ ︸

∼N (0,DRqDT )

. (53)

We can represent the following system with the factor graph in Figure 3. The reader can check that the matrix DRqDT is not
diagonal, there are correlations between TDCPs. Therefore, the factors are connected to all the variables.

x1 x2 x3 ... xw

N1 ...N2

...

Figure 3: A factor graph made of TDCP measurements. The factors are connected to all the variables, excepted the ambiguities, indicating
correlation between scalar TDCPs.

In the case of a single cycle slip, only the TDCP with the two different ambiguities will be faulty. Indeed, as the ambiguities
are not connected to any factor, they are not observable, which goes against observability/injectivity conditions required in the
theory. But as they do not appear in the observation model, we are in the trivial case where we can simply remove them from the
graph, thereby recovering observability for the remaining system.

3. Experiments
To test the proposed application, we built a simulator, where we used a fixed receiver, precise ephemeris of the GPS constellation,
with a period of 5 minutes between epochs. In order to have a ground truth regarding cycle slips, we generated carrier phase
measurement from the receiver, following equation (49). The noise level of these observations was set to σq

Φt
= 5 cm, ∀t, ∀q,

and with no correlation between carrier phase measurements, as in Figure 2. For programming reasons, for a graph of TDCP
measurements of length w epochs, we kept in the graph the subset of satellites that are visible from epoch 1 through w, without
discontinuity. w ranges from 2 to the highest value possible, until the graph becomes unobservable, due to lack of enough
observations. So as w increases, the number of satellites kept will decrease. From these carrier phase observations, we built the
TDCP measurements.

To test our cycle slip detector, we generated 300 graphs for each value of w, with a probability of 0.5 to have exactly one cycle
slip, of smallest amplitude (Nq

t+1 − Nq
t = ±1). This cycle slip can happen on any satellite and at any epoch. Thanks to our

hypothesis on the noncentrality parameter, the empirical probability of detection should be higher than the lower bound. The
lower bound of probability of detection is given by the theoretical development. The probability of false alarm was set to a value
of 0.05. The results are given in Figure 4.

What comes out from these experiments is that if we consider a constant number of visible satellites, for example for w ∈
{2, . . . , 8}, excepted when we move from 2 to 3 epochs, the lower bound of probability of detection decreases, so the worst case
becomes worst as w increases. On the other hand, the number of factor increases as w increases, so in our experiments, the
probability of having a cycle slip on the worst TDCP decreases as w increases, hence a higher empirical probability of detection,
that is increasing with w.

Then, we did the same experiment, but this time, with a lower noise level: σq
Φt

= 2 cm, ∀t,∀q. Compared to the previous
experiment, the noncentrality parameter equation (16) is increased, leading to a higher probability of detection, as in Figure 5.

The improved detection indicates that the better the correction of atmospheric errors, clock biases, and all the other terms
appearing in equation (48), the better the detection capability.

The motivation behind the use of synthetic measurements is that we have a ground truth regarding cycle slips. Moreover, the use
of real measurements would not have changed the lower bound of probability of detection, as it only depends on the geometry,
not on the actual measurements, under the proposed hypotheses.
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Figure 4: Probability of detection of single cycle slip using a factor graph with TDCP factors, with σq
Φt

= 5 cm, ∀t,∀q. Bottom axis: number
of epochs (w), left axis: probabilities of detection, right axis: number of visible satellites throughout all epochs. The lower bound of probability
of detection is the probability of having the squared norm of the residual vector greater to the threshold T when there is a cycle slip of one
wavelength on the worst factor.
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Figure 5: Probability of detection of single cycle slip using a factor graph with TDCP factors, with σq
Φt

= 2 cm, ∀t,∀q. Bottom axis: number
of epochs (w), left axis: probabilities of detection, right axis: number of visible satellites throughout all epochs. The lower bound of probability
of detection is the probability of having the squared norm of the residual vector greater to the threshold T when there is a cycle slip of one
wavelength on the worst factor.
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CONCLUSION
We have proposed a very general theory of least-squares estimation under linear and nonlinear models with an additive Gaussian
perturbation. Then, we provided a geometric approach of this theory, and wrote statistics of the squared norm of the residual, in
the case of faults on the measurements. We proposed to investigate a set of possible faults, and from this, provided statistics of
detection. This theory allows us to deliver a lower bound of probability of detection of single faults living in a discrete set, given
a probability of false alarm. Then, we built an optimization problem over a finite set to identify the fault. We then moved onto
factor graph optimization, and wrote it in a way that allows us to use the fault detection and identification theory to problems that
can be modelled by a factor graph. We then transposed our general theory to cycle slip detection and identification, as we target
precise GNSS positioning applications. We proposed a graph structure that fits our theory, so we were able to deliver a lower
bound of probability of detection of a single cycle slip of smallest amplitude. We saw that the lowest probability of detection
does not necessarily increases as the degree of freedom of the model increases. The reader must keep in mind that in the case
of multiple faults, our theory does not provide results, nor if the fault does not live in a discrete set. Multiple studies could be
carried, about multiple faults living in a discrete set, about the use of prior information on cycle slip for a better detection and
identification of fault.
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A. MULTIPLE MODELS AND MULTIPLE HYPOTHESIS
We remind that the true measurement model follows hypothesis H(2)

j .

If i = j, then equation (25) becomes: (
x̂lsi
µ̂i

)
= Si(Hi

(
x
µ

)
+ ε0) =

(
x
µ

)
+ Siε0 (54)

so the estimate is centered on the true parameters, since ε0 is of null mean. Still in the case i = j, we can write the residual vector
equation (26) of this estimate:

ẑlsi = y −Hi

(
x̂lsi
µ̂i

)
= (Im −HiSi)ε0 = ΠIm(Hi)⊥ε0. (55)

The state vector that we estimate is of dimension n + 1, so Im(Hi)
⊥ is of dimension m − n − 1, the residual vector is of null

mean, so the residual squared norm will follow a central chi-squared distribution with m− n− 1 degrees of freedom.

On the other hand, if i ̸= j, then equation (25) becomes:(
x̂lsi
µ̂i

)
= Siy = Si(Hj

(
x
µ

)
+ ε0) (56)

and the residual vector equation (26) becomes:

ẑlsi = y −Hi

(
x̂lsi
µ̂i

)
(57)

= y −HiSiy (58)
= (Im −HiSi)y (59)

= (Im −HiSi)(Hj

(
x
µ

)
+ ε0). (60)

Here, the estimate is of mean SiHj

(
x
µ

)
, and the residual squared norm follows a noncentral chi-squared distribution, with

m− n− 1 degrees of freedom and a noncentrality parameter:

λi =

(
x
µ

)T

HT
j ΠIm(Hi)⊥Hj

(
x
µ

)
. (61)
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