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Abstract

Shape from shading is an ill-posed inverse problem for which there is no completely satisfactory

solution in the existing literature. In this paper, we address shape from shading as an energy minimization

problem. We first show that the deterministic approach provides efficient algorithms in terms of CPU time,

but reaches its limits since the energy associated to shape from shading can contain multiple deep local

minima. We derive an alternative stochastic approach using simulated annealing. The obtained results

strongly outperform the results of the deterministic approach. The shortcoming is an extreme slowness

of the optimization. Therefore, we propose an hybrid approach which combines the deterministic and

stochastic approaches in a multiresolution framework.
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I. Introduction

Shape from shading (SFS) is a well-known problem in computer vision [1], that consists

in recovering the 3D-shape of a scene through the analysis of the greylevels in a single

image of this scene. This problem is ill-posed, except if some additional assumptions,

which are recalled in [2], are made.

If the visible part of a scene can be described by the equation z = h(x, y), where Oz

coincides with the optical axis, then, at each point (x, y) in the image where h is derivable,

the basic equation of SFS is the “image irradiance equation” [3]:

R(
−→
S , p(x, y), q(x, y)) = E(x, y) (1)

where E designates the greylevel, R the reflectance map,
−→
S the lighting beam, and p and

q are the usual notations for ∂h/∂x and ∂h/∂y. In (1), the unknowns are
−→
S , p and q.

The methods of resolution of SFS can be classified into three groups: the classical

methods of resolution of PDEs (characteristic strips expansion [3], level sets methods [4],

power series expansion [5] and viscosity solutions [6], [7], [8]); the methods based on

optimization, on which we will focus further on; all other methods, among which the

method by Tsai and Shah [9] gives rather good results [10] and is surprisingly simple to

implement. In their survey [11], Zhang et al. concluded that the best results, in terms

of accuracy, were given by the optimization methods, although they are also the slowest.

1



In this paper, we address optimization also because it offers a general framework which

is very adaptable to various situations. Indeed, the problem is modeled by a functional

which has to be minimized [12], defined by the sum of several terms. The first term reflects

the data and is minimal when (1) is satisfied everywhere on the reconstruction domain Ω.

For the problem to be well-posed, some extra terms, reflecting some a priori knowledge

on the solution, are added. A certain number of local deterministic algorithms have been

proposed to minimize various functionals [13], [14], [15], [16], [17], [18]. In this paper, we

obtain more costly but global solutions by a simulated annealing (SA) scheme.

If, as most authors, we suppose that
−→
S is known, thanks to preprocessing by a spe-

cific method, then we can write R(p(x, y), q(x, y)). Using the excellent discussion on the

variational formulation of SFS made in [12], we use the following functional:

F1 (p, q) =

∫∫

(x,y)∈Ω

[R(p(x, y), q(x, y)) − E(x, y)]2 dx dy

+ λint

∫∫

(x,y)∈Ω

[∂p/∂y(x, y) − ∂q/∂x(x, y)]2 dx dy

+ λsmo

∫∫

(x,y)∈Ω

[
|∇p(x, y)|2 + |∇q(x, y)|2

]
dx dy (2)

where the unknowns are the functions p and q, and where λint and λsmo are two positive

constants named “integrability factor” and “smoothing factor”. Besides the problem of

selecting adequate values for the constants λint and λsmo, the choice of (p, q) as unknowns

poses another important problem: that of the computation of h from (p, q). The equations

linking these functions being ∂h/∂x = p and ∂h/∂y = q, we will then use, in a second

stage, the following functional proposed by Horn and Brooks in [12]:

F2 (h) =

∫∫

(x,y)∈Ω

[
(∂h/∂x(x, y) − p(x, y))2 + (∂h/∂y(x, y) − q(x, y))2] dx dy (3)

The two main strategies allowing to numerically find the minimum of a functional

are [16]: on the one hand, to directly minimize the discrete formulation of the func-

tional, named an “energy” and denoted by ε; on the other hand, to produce one Euler

equation for each unknown function (a discrete version of the Euler equations can be ob-

tained either by discretizing them, or by differentiating the energy, as shown in [12]). It is
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surprising to find out that most of the algorithms of SFS use the second choice. As quoted

by Szeliski [16], solving the discrete Euler equations is not strictly equivalent to minimiz-

ing the energy, since all local minima and maxima (and inflexion points) of the energy

are solutions of these equations. Moreover, when the Euler equations are non linear (as in

SFS), they have to be solved iteratively, and there exists no general proof of convergence

for the produced schemes (proofs of divergence have even been given for two such methods

in [19]). Finally, a third important advantage in directly minimizing the energy is that

no knowledge on h, p or q on the boundary of Ω is necessary (a discussion on this point

can be found in [2], where it is shown why boundary conditions are not necessary to make

the problem well-posed, apart from the classical concave/convex ambiguity). Two kinds

of methods of minimization can be distinguished:

• The first family of optimization methods are the deterministic methods. At each step

k of the iteration, the computation of the new configuration ωk+1 uses the gradient of ε

at the step k (and, sometimes, at the steps 0, · · · , k − 1) and needs, most of the time,

the search for a minimiser dk of the function φk(d) = ε(ωk − d vk), where vk is a “descent

direction” (this task is named “line search”). The conjugate gradient descent, which is

used by Szeliski in [16], provides good results. The first method that we propose in this

paper, named M1, uses, on the one hand, the very classical optimal gradient descent and,

on the other hand, a method of line search based on parabolic interpolation (see [2]).

• The second family of optimization methods are the stochastic methods, which allow to

find a global minimum of an energy, contrary to the other methods. In section III, we will

use the SA algorithm (method M2).

In section II, we present a first new method, named M1, for which some results are

shown. In section III, we embed the SFS problem in a Bayesian framework and present a

SA scheme, named M2, which is shown to work better than M1 on a complex image. In

section IV, we show that the main problem with M2 i.e., slowness, can be diminished by

using a multiresolution version of M1, after having applied M2 to the image of smallest

resolution. This leads to a third new method named M3. Conclusion and future work are

covered in section V.
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II. Deterministic minimization for shape from shading

From now on, we suppose that
−→
S = (0 0 1)T and that the surface is Lambertian,

so that the image irradiance equation (1) takes the particular form called the “eikonal

equation” [20], whose discrete form is:

Emax√
1 + pi,j

2 + qi,j
2

= Ei,j (4)

where Emax is the maximal value of E (this value is reached at points where ∇h = 0). For

the synthetic images which will be used in the tests, the greylevels will be computed from

equation (4), with Emax = 255. Consider the distance δ = 0.1 between two neighbouring

pixels and denote as D the discrete domain corresponding to Ω. Using forward finite

differences, the energy ε1 corresponding to the functional F1 is:

ε1(ω1) = δ2
∑

(i,j)∈D

(
Emax√

1 + pi,j
2 + qi,j

2
− Ei,j

)2

+ λint

∑

(i,j)∈D̃

[(pi,j+1 − pi,j) − (qi+1,j − qi,j)]
2 (5)

+ λsmo

∑

(i,j)∈D̃

[
(pi+1,j − pi,j)

2 + (pi,j+1 − pi,j)
2 + (qi+1,j − qi,j)

2 + (qi,j+1 − qi,j)
2
]

where ω1 = (pi,j, qi,j)(i,j)∈D and where D̃ is the subset of D containing the pixels (i, j)

such that (i + 1, j) and (i, j + 1) are in D. It has been proved in [12] that this energy is

essentially independent of the image resolution, which will be of importance when we will

deal with multiresolution. In the same way, the energy ε2 associated with F2 is:

ε2(ω2) =
∑

(i,j)∈D̃

[
(hi+1,j − hi,j − δ pi,j)

2 + (hi,j+1 − hi,j − δ qi,j)
2
]

(6)

where ω2 = (hi,j)(i,j)∈D.

Given an initial configuration ω0
1 = (p0

i,j, q
0
i,j)(i,j)∈D, the first stage of our first method,

named M1, is an iterative process defined by the following steps:

1. Compute ∇ε1 at the current configuration ωk
1 .

2. Line search for a local minimiser dk of the function φk(d) = ε1(ω
k
1 − d∇ε1(ω

k
1)).

3. Compute the new configuration ωk+1
1 = ωk

1 − dk ∇ε1(ω
k
1).
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The iteration is stopped at the first configuration ω?
1 for which |∇ε1(ω

?
1)| < β

√
2N (in our

tests, β is equal to 1.0). The factor
√

2N , with N = card(D), means that the norm of

∇ε1 is roughly proportional to the square root of its number of coordinates. Given ω?
1 and

an initial configuration ω0
2 = (h0

i,j)(i,j)∈D, the second stage of M1 is an iterative process

which is, in all points, similar to the previous one. The first configuration ω?
2 verifying

|∇ε2(ω
?
2)| < β

√
N is the final result of the method. Now, let us comment on the tests.

First of all, it must be said that all our tests are performed without any boundary

condition (see [2] for further details). We tested M1 on three synthetic images of size

64×64, represented in figures 1(b), 2(b) and 3(b). For each image, the domain D contains

all the pixels. However, for the image 2(b), we will see that M1 is improved if D is shared

into two parts: one part containing the pixels of the vase and the other the pixels of the

background.

Image 1(b) corresponds to the simple shape represented in figure 1(a). The values used

for the factors λint and λsmo are respectively equal to 10 and to 50. Starting from the

initial configurations ω0
1 and ω0

2 corresponding to the shape in figure 1(c), the method M1

converges towards the shape represented in figure 1(d) in about 3 sec. of CPU time on a

733 MHz PC. The L2-distance between 1(d) and the real shape 1(a), using the same scale

as on the z axis, is equal to 0.015.

Consider now the more complex image shown in figure 2(b), which corresponds to a vase

on a background (figure 2(a)). The values used for the factors λint and λsmo are the same

as previously. Starting from the shape 1(c), the solution is represented in figure 2(c). It

is not as satisfactory as the previous result. Indeed, compared to 1(a), the shape 2(a) is

much more complex, because there are sharp edges at the top and at the bottom of the

vase, as well as silhouettes on both sides. When a pixel (i, j) is situated on the background

and (i + 1, j) is situated on the vase, it has no sense to keep terms like (pi+1,j − pi,j)
2 or

(hi+1,j−hi,j−δ pi,j)
2 in the energies ε1 or ε2, because h, p and q are not differentiable there.

To overcome this difficulty, we remove, in ε1 and in ε2, the terms which simultaneously

imply pixels lying on the background and pixels lying on the vase. Doing so, each new

energy can be separated into two parts: ε(ω) = εback(ωback) + εvase(ωvase), where ωback

contains the unknowns for the background pixels and ωvase the unknowns for the vase
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Fig. 1. (a) Spherical cap on a background and (b) associated image. (c) Starting shape and (d) result

by M1 (λint = 10; λsmo = 50).

pixels, so that ω = (ωback, ωvase). Therefore, the minimization of ε can be separated into

two independent problems: the minimization of εback, and that of εvase. The only additional

problem with this way of processing is that ωback
2 and ωvase

2 will be known only up to two

independent constants, so we will have to join the two reconstructed shapes (see [2]). The

result obtained with this new version of M1 is shown in figure 2(d), a result which is more

satisfactory. The CPU time is about 20 sec. and the L2-distance between 2(d) and the

real shape 2(a) is equal to 0.761.

Now, let us study a much more complex shape, named DEM and represented in 3(a),

associated to the image shown in 3(b). The values of the factors λint and λsmo are now

equal, respectively, to 500 and to 20 (the problem consisting in choosing “good values” for

these factors is left out for future work). Starting from a shape “similar” to the real shape,

represented in 3(c), M1 yields 3(d) as a solution, which is a good result. But, starting

from 3(e), the result obtained (see 3(f)) is not satisfactory at all, even from a qualitative

point of view. This last result shows that M1 has a crucial weakness: the choice of the
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starting shape is of great importance (compare 3(d) and 3(f)), as ever with deterministic

minimization.

Now, we address SA to overcome this major problem.

0
10

20
30

40
50

60

0

20

40

60
0

1

2

3

4

5

6

x
y

z

(a) (b)

0
10

20
30

40
50

60

0

20

40

60
0

1

2

3

4

5

6

x
y

z

0
10

20
30

40
50

60

0

20

40

60
0

1

2

3

4

5

6

x
y

z

(c) (d)

Fig. 2. (a) Vase on a background and (b) associated image. M1 applied (c) to the whole image and (d)

to two subparts (λint = 10; λsmo = 50).

III. A Bayesian approach for shape from shading

Hereafter, we reformulate the SFS problem into a Bayesian framework.

Let E denote the data, S ⊂ Z
2 the lattice (set of sites) and Λ ⊂ R

2 the set of states. A

configuration in Λcard(S) is denoted by ω and the state of the site s = (i, j) by ωs = (ps, qs).

We want to find the configuration which maximizes the a posteriori probability P (ω|E).

Using the Bayes rule, we have:

P (ω|E) =
P (E|ω)P (ω)

P (E)
∝ P (E|ω)P (ω) (7)

The first factor of the right hand side is the likelihood and represents the information

provided by the data. The second factor P (ω) is referred to as the prior. This probability

distribution embeds some a priori properties, such as smoothness, which constrain the
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Fig. 3. (a) DEM and (b) associated image. (c) First starting shape and (d) result by M1 (λint = 500;

λsmo = 20). (e) Second starting shape and (f) result by M1 (λint = 500; λsmo = 20).

solution. The Markov Random Fields (MRF) are common and efficient models in this

framework [21]. MRF are discrete stochastic processes whose global properties are con-

trolled by means of local properties [22]. The Hammersley-Clifford theorem [22] allows us

to write an MRF as a Gibbs field:

P (ω) =
1

Z
exp [−U(ω)] =

1

Z
exp

[
−
∑

c∈C

Vc(ωs, s ∈ c)

]
(8)

where U is the energy, Vc is a function from Λcard(c) onto R
+ and Z is the partition function.

Here, Vc refers to the potential associated with the clique c, which is a finite subset of S,
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and C is the set of cliques.

We derive a Markov Random Field, adapted to the SFS problem, which contains four

factors P (E|ω)P1(ω)P2(ω)P3(ω). The three last factors define the prior and respectively

define a smoothing constraint, an integrability constraint and a prior on the (p, q) distri-

bution.

In the previous section, we have derived an energy ε1 (see equation (5)) modelling the

SFS problem (in fact, the first stage of the problem). This energy embeds the eikonal

equation, the integrability constraint and a smoothing constraint. Besides, this energy

can be written as a sum of local functions which depend only on neighbouring pixels.

Therefore, ε1 can be considered as the energy associated with a Gibbs field. We thus

propose to write the three first factors as follows:

P (E|ω)P1(ω)P2(ω) =
1

Z
exp [−ε1(ω)] (9)

To define the prior on the (p, q) distribution, we consider the sites to be independent, with

respect to the factor P3(ω), and we assume that the normal to the surface is uniformly

distributed on the Northern hemisphere of the Gaussian sphere. This induces the following

(see [2]):

P3(ω) =
∏

s∈S

π3(ωs) ∝
∏

s∈S

ρs

(1 + ρs
2)3/2

(10)

where π3(ωs) is the prior probability density of ωs and ρs =
√

ps
2 + qs

2. We obtain the

Maximum A Posteriori (MAP) by minimizing the so-called energy which, if we assume a

conditional independency of the likelihood, is given by the following functional:

U(ω) =
∑

s∈S

− log(π(Es|ωs)) +
∑

c∈C

Vc(ωs, s ∈ c) (11)

where π denotes the local likelihood. This energy is usually not convex. To obtain the

MAP criterion, we run a SA algorithm which escapes from the local minima [23]. It is

expressed as follows:

1. Initialize a random configuration ω0 = (ω0
s , s ∈ S), set T = T0 and k = 1.

2. For each site s (the sites being empirically numbered from 1 to card(S)):

2.a. Choose a random value new in Λ following a proposal distribution Q(ωk
s = cur →

ωk+1
s = new) where cur is the current state of s and new is the proposed state.

9



2.b. Compute the acceptation ratio:

R =

(
P (ωnew)

P (ωcur)

)1/Tk Q(ωk
s = new → ωk+1

s = cur)

Q(ωk
s = cur → ωk+1

s = new)
(12)

where ωvalue = (ωk+1
1 , · · · , ωk+1

s−1 , ωs = value, ωk
s+1, · · · , ωk

card(S)), for value = cur, new.

2.c. Accept the proposition with probability min(1, R). If the proposition is accepted set

ωk+1
s to new, else set ωk+1

s to cur.

3. If the stopping criterion is not reached, decrease the temperature Tk+1 = fdec(T0, k),

increment k and go to 2.

To reduce the CPU time of the optimization, we have to reduce the time necessary to

simulate the proposal and the number of steps necessary to reach the convergence. To

reduce the number of steps, we have to consider a proposal similar to the considered model.

In the case of a model with interactions, this leads to a proposal which takes a long time

to simulate. If we consider the data values in the proposal, we have to compute a different

proposal at each site. Therefore, we propose to consider only the non interacting factor of

the prior model in the proposal distribution.

The proposal defined in the SA algorithm is as follows:

Q(ωk
s = cur → ωk+1

s = new) = Q(ωk+1
s = new) = π3(new) (13)

Denote ω\{s} = (ωnew
1 , · · · , ωnew

s−1 , ωnew
s+1 , · · · , ωnew

card(S)) = (ωcur
1 , · · · , ωcur

s−1, ω
cur
s+1, · · · , ωcur

card(S)).

The acceptation ratio is then given by:

R =

(
π(Es|ωnew

s )P1(ω
new
s |ω\{s})P2(ω

new
s |ω\{s})

π(Es|ωcur
s )P1(ωcur

s |ω\{s})P2(ωcur
s |ω\{s})

)1/T (
π3(new)

π3(cur)

)1/T−1

(14)

where π(Es|ωs) ∝ exp

[
−δ2

(
Emax/

√
1 + ps

2 + qs
2 − Es

)2
]
.

So, using the Markov property, we have to compute:

R = exp

[
−F (pnew

s , qnew
s ) − F (pcur

s , qcur
s )

T

] (
ρnew

s (1 + (ρcur
s )2)3/2

ρcur
s (1 + (ρnew

s )2)3/2

)1/T−1

(15)

with:

F (ps, qs) = δ2

(
Emax√

1 + ps
2 + qs

2
− Es

)2

+ λsmo

∑

s′∈{s1,s2,s3,s4}

[
(ps′ − ps)

2 + (qs′ − qs)
2
]

+λint

{
[(ps1

− ps) − (qs2
− qs)]

2 + [(ps − ps3
) − (qs6

− qs3
)]2 + [(ps5

− ps4
) − (qs − qs4

)]2
}
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where s1 = s + (0, 1), s2 = s + (1, 0), s3 = s + (0,−1), s4 = s + (−1, 0), s5 = s + (−1, 1),

s6 = s + (1,−1).

We show results on the DEM, for which the method M1 fails. The cooling scheme

Tk = fdec(T0, k), which should be of the form Tk = T0

log(k+1)
(see [23]), is crucial in a

SA scheme. In practice, a geometrical scheme Tk = αkT0 is often used to speed up

the convergence. In image segmentation or image restoration, the values of α reported

in the literature lie between 0.95 and 0.99. The tests that we performed have revealed

that this cooling scheme is too fast for the SFS problem. Using this, the SA algorithm

converges to a local minimum which is far from the actual surface (see the result obtained

with α = 0.99 in figure 4(a)). To actually converge to the global minimum we have to

use α = 0.999998 which leads to 6.106 iterations. The result is shown in figure 4(b),

using a plane as initial configuration. We have obtained similar results using a random

configuration as initialization. Because of the stochastic perturbations during the iterative

scheme, the configuration has escaped from the local minima. The result is very close to

the true surface1. It has been obtained on an image of the DEM of size 32 × 32 and has

required about one hour of CPU time. The L2-distance between 4(b) and the real shape

3(a) is equal to 0.353.
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Fig. 4. M2 applied to image 3(b): (a) α = 0.99 and (b) α = 0.999998 (λint = 500; λsmo = 20).

1A movie corresponding to this processing can be found at the following address:

http://www.irit.fr/∼Jean-Denis.Durou/RECHERCHE/RECUIT/IMAGES/recuit.mpg
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IV. A multiresolution hybrid method

To handle images having a more realistic size than 32× 32, it is needed to speed up the

convergence. The SA is helpful to escape from the local minima but, if the configuration

is in the region of attraction of the global minimum, the method M1 is much more

efficient. This motivates a multiresolution approach M3. The idea is to run a SA at a

low resolution to obtain the global minimum at this resolution. We then compute M1

at higher resolutions, taking the previous result as initial configuration. Therefore, we

assume that the global minimum at low resolution belongs to the region of attraction of

the global minimum when projected at higher resolutions.

Multiresolution has already been used in the context of shape from shading [24], [16], [25]

in order to accelerate the convergence of classical algorithms. Multiresolution techniques

in image analysis are generally based on the construction of an image pyramid. For each

level, the image is obtained by blurring, then subsampling the image of the previous level.

If the low pass filter used is the Gaussian filter, the pyramid is called a Gaussian pyramid.

In the case of SFS, the relation between the data (the image) and the unknown (the

shape) is not linear. Consequently, reductions of the shape resolution and of the image

resolution do not product the same effects. For this reason, we use the non linear mul-

tiresolution algorithm proposed in [25], which gives a better approximation of the shape

resolution reduction. More precisely, the ideal situation would be to blur the shape, in

order to reduce its resolution, and then to calculate the corresponding images. Unfortu-

nately, the shape is the unknown of the problem, but the shape slopes ρi,j =
√

pi,j
2 + qi,j

2

can be computed from the greylevels using equation (4). Peleg and Ron [25] have shown

that blurring the slopes is an approximation giving a better estimate than directly blurring

the image.

If E0 denotes the initial image (finest resolution) and E l the image of size 2n × 2n at

level l, the coarser image E l+1 is computed using the following steps:

1. Calculate slopes ρl
i,j from greylevels using eikonal equation (4) at level l.

2. Blur the slope array using a Gaussian-like convolution mask.

3. Subsample the slope array by discarding every other row and column to form ρl+1 of

size n × n.
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4. Calculate the corresponding image using eikonal equation (4) at level l + 1.

After the pyramid construction, a first result is obtained on the coarser level and this

result is then oversampled by interpolation and used as the starting configuration for the

next level. This process is repeated until the result with the original resolution is obtained.

Method M1 can fail to lead to local minima and method M2 is time demanding.

Therefore, we chose to use method M2 at the coarser level of the pyramid in order to

avoid local minima and method M1 at the other levels. The slowest method is then only

used on a small image and, for the other levels, the number of iterations are reduced

because the starting configuration is close to the final one.

In our experiments we used linear interpolation for the result propagation of (p, q) be-

tween levels and the convolution mask recommended in [25] to blur the slope array during

pyramid construction. We tested M3 on the image 256 × 256 of the DEM represented

in figure 5(a). The pyramid was thus created with four different resolutions (256 × 256,

128 × 128, 64 × 64, 32 × 32). The result is represented in figure 5(b). It is a little less

satisfactory than 4(b) but the L2-distance between 5(b) and the real shape 3(a) is equal

to 0.471 only. Regarding the CPU time, it is almost totally due to the SA (about one

hour, as already stated). If we had applied M2 to image 5(a), the CPU time would have

been equal to something like 43 hours!
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Fig. 5. (a) Image 256 × 256 of the DEM and (b) result by M3 using 4 levels (λint = 500; λsmo = 20).

V. Conclusion

In this paper, we have dealt with SFS expressed as a minimization problem. The non

linearity of the SFS equation leads to the minimization of a highly non convex functional.
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In such a case, the deterministic approaches converge to a local minimum of the functional.

They provide accurate results in simple cases where the surface itself is convex or concave,

or when we can provide a good initial configuration, which means a configuration lying in

the region of attraction of the global minimum. An alternative is to consider a stochastic

algorithm which allows to escape from local minima. We have shown on a shape, referred to

as DEM, which contains several convex and concave areas, that the SA algorithm provides

accurate results, even in this difficult case. The local minima of the functional fall very

deeply and we had to consider an unusually slow cooling scheme for the temperature.

This fact may be one reason explaining that, up to our knowledge, the literature does

not mention the association of SFS and SA. The counterpart of the success of the SA in

minimizing such complex functionals is the slowness of this algorithm. In order to combine

the accuracy of the SA and the efficiency of the deterministic algorithm, we have proposed

a multiresolution approach for which the SA is used at the lowest resolution and provides

a good initial configuration for higher resolutions which are solved deterministically.

The functional we defined is written as the sum of local constraints and can be inter-

preted as the energy of a Markov Random Field. On each pixel, the acceptation ratio

depends only on six neighbours. Therefore, we are currently studying a parallel version of

the SA algorithm. In future work, we will also try to determine how factors λint and λsmo

could be automatically estimated.
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