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Abstract: In this note, we study skew cyclic and skew constacyclic codes over the mixed alphabet
R = FqR1R2, where q = pm, p is an odd prime with m odd and R1 = Fq + uFq with u2 = u, and
R2 = Fq + uFq + vFq with u2 = u, v2 = v, uv = vu = 0. Such codes consist of the juxtaposition
of three codes of the same size over Fq, R1, and R2, respectively. We investigate the generator
polynomial for skew cyclic codes over R. Furthermore, we discuss the structural properties of the
skew cyclic and skew constacyclic codes over R. We also study their q-ary images under suitable
Gray maps.

Keywords: linear codes; skew-cyclic codes; Gray map; skew constacyclic codes

MSC: 94B05; 94B15; 94B35; 94B60

1. Introduction

The most widely used family of linear codes consists of cyclic codes. Inspired by codes
for the Lee metric [1], Berlekamp adapted them to constacyclic codes. Since then, as the
following paragraphs demonstrate, they have happened in a number of circumstances.

Skew cyclic codes were first introduced as ideals in the skew polynomial ring F[x; θ]
in 2007 by Boucher et al. [2], where θ represents an automorphism of the finite field F. The
tables of the most well-known codes were enhanced by the numerous numerical samples
that this technique created. The fact that the factorization of the polynomial xn − 1 is not
unique gives skew polynomial rings an advantage over commutative polynomial rings.
For a given length, these numerous factorizations produce a large number of additional
codes. Boucher et al. further extended this technique to skew constacyclic codes in [3]. Siap
et al. [4] investigated skew cyclic codes of any length in 2011 and produced maps using
both classical and quasi-cyclic codes.

In 2012, Jitman et al. [5] studied skew constacyclic codes over finite chain rings and de-
scribed the algebraic structure of Euclidean and Hermitian dual codes. Abualrub et al. [6]
studied θ-cyclic codes over the semilocal ring F2 + uF2, v2 = v with respect to Euclidean
and Hermitian inner products.

These codes over semilocal rings were further studied in many contexts. The rings F3 +
vF3 in [7], Fq + vFq, v2 = v in [8], and Fq + uFq + vFq, u2 = u, v2 = v, uv = vu = 0 in [9]
were utilized as alphabets for skew cyclic codes, for example. Dertli and Cengellenmis [10]
and Yao et al. [11] also examined these codes over Fq + uFq + vFq + uvFq, u2 = u, v2 = v,
uv = vu. Skewed (−1+ 2v)-constacyclic codes were developed in 2017 by Gao et al. [12] af-
ter deriving the structure of skew constacyclic codes over the semilocal ringFq + vFq, v2 = v.
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In [13] and [14], respectively, Islam and Prakash established the algebraic structure of skew
constacyclic codes over Fq + uFq + vFq + uvFq, u2 = u, v2 = v, uv = vu.

Using two non-trivial automorphisms, Bhardwaj and Raka [15] investigated the skew
constacyclic codes over the ring Fq[u, v]⟨ f (u), g(v), uv − vu⟩ in 2019. Alternatively, Z2Z4-
linear codes, or codes over the mixed alphabet Z2Z4, where a subset of coordinates is
binary and the complement is quaternary, were introduced by Borges et al. [16]. They have
calculated their generator matrices and described their dual codes. Fernandez-Cordoba
et al. [17] obtained the rank and kernel of Z2Z4-linear codes in a follow-up experiment.
Steganography is one field in which these codes have found industrial use [18].

In [19], additive codes over the mixed alphabet Z2Z2s were examined. Next,
Refs. [20–23] examined the mixed alphabet ZpZps and, more broadly, ZprZps . Conversely,
Abualrub et al. [24] defined Z2Z4 in 2014, in line with the advancement of cyclic codes on
mixed alphabets. The code for -additive cyclics is Z4[x].-submodule of Z2[x]/⟨xr − 1⟩ ×
Z4[x]/⟨xs − 1⟩, from which the smallest spanning set and unique set of generators for these
codes, where s is an odd integer, were obtained.

Furthermore, generator polynomials and duals for Z2Z4-additive cyclic codes were
discovered by Borges et al. [25]. In [26], Aydogdu et al. [27] introduced the novel mixed
alphabets Z2Z2[u]-additive codes, where u2 = 0. They also studied constacyclic codes over
mixed alphabets by defining them as Z2[u][x]. ×Z2[u][x]/⟨xβ − (1 + u)⟩, -submodules of
Z2[x]/⟨xα − 1⟩.

As the Gray images of Z2Z2[u]-cyclic codes, they were able to derive several optimum
binary linear codes. In the meanwhile, Z2Z2[u]-additive cyclic and constacyclic codes
with the unit 1 + u, respectively, were explored algebraically by [28]. Consequently, the
predicted generalization in the continuation of these research should be Z2rZ2s [u].-additive
cyclic codes, u2 = 0, and constacyclic codes.

In this article, we examine a mixed alphabet R = FqR1R2, where R1 = Fq + uFq
with u2 = u and R2 = Fq + uFq + vFq with u2 = u, v2 = v, uv = vu = 0. Moreover, we
examine the cyclic codes θt and (θt, α) over R. The algebraic structure of these codes is
fully determined. We examine their q-ary representations under Gray maps and provide a
few brief numerical instances.

The contents are arranged as follows. The next section gathers some background
information. Gray maps are examined in Section 3. Skewed cyclic codes are covered in
Section 4, and skew constacyclic codes are covered in Section 5. The essay is concluded at
Section 6.

2. Preliminaries

Let p be an odd prime, and let q = pm with m being odd. Denote by Fq the finite field
of size q. The set Fn

q of all ordered n-tuples over Fq is equipped with the structure of an Fq
vector space by the usual addition and scalar multiplication of vectors.

A code of length n over Fq is just any non-empty subset C of Fn
q . It is said to be linear

if C is an Fq subspace of Fn
q . From now on, we write R1 = Fq + uFq, with u2 = u and

R2 = Fq + uFq + vFq, with u2 = u, v2 = v, uv = vu = 0.
Note that R1 and R2 are finite non-chain rings. Let a + ub + vc be an element of R2.

Then, we define two maps η and δ as follows:

η : R2 → Fq, δ : R2 → R1,

η(a + ub + vc) = a, δ(a + ub + vc) = a + ub,

It is clear that η and δ are ring homomorphisms. We consider the ring R:

R = FqR1R2 = {(x, y, z) | x ∈ Fq, y ∈ R1 and z ∈ R2}
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We define a R2-multiplication in this ring as follows:

⋆ : R2 ×R → R
r ⋆ (x, y, z) = (η(r)x, δ(r)y, rz)

This is a well defined multiplication and it can be extended componentwise to
R⃝ = Fn1

q ×Rn2
1 ×Rn3

2 by:

⋆ : R2 ×R⃝ → R⃝

r ⋆ (x1, · · · , xn1 , y1, · · · , yn2 , z1, · · · , zn3) = (η(r)x1, · · · , η(r)xn1 , δ(r)y1, · · · , δ(r)yn2 , rz1, · · · , rzn3)

where (x1, · · · , xn1 , y1, · · · , yn2 , z1, · · · , zn3) ∈ Rγ. Equipped with this multiplication, R⃝
becomes an R2 module. A non-empty subset C of R⃝ is said to be a R-linear code of
length (n1, n2, n3) if C is an R2-submodule of R⃝. Now we define the inner product by
the formula:

⟨c, c′⟩ =
n1

∑
1

xix′i +
n2

∑
1

yjy′j +
n3

∑
1

zkz′k,

where c = (x1, · · · , xn1 , y1, · · · , yn2 , z1, · · · , zn3), c′ = (x′1, · · · , x′n1
, y′1, · · · , y′n2

, z′1, · · · , z′n3
)

are in Rγ. Let C be an R-linear code of length (n1, n2, n3). Then, the dual code of C is
defined as:

C⊥ = {c′ ∈ Rγ | ⟨c, c′⟩ = 0 ∀ c ∈ C}

3. Decomposition and Properties of Gray Maps

Recall that, R1 = Fq + uFq, with u2 = u. Consider the idempotent orthogonal ele-
ments e1 = u and e2 = 1 − u. Then, we have the decomposition:

R1 = e1R1 ⊕ e2R1
∼= e1Fq ⊕ e2Fq,

where e1e2 = 0, e2
1 = e1, e1 + e2 = 1. Hence, R1 = {ae1 + be2 | a, b in Fq}. We now define

the Gray map:

φ1 : R1 → F2
q

φ1(ae1 + be2) = (a, b)

It can be extended to the length n by:

φ1 : Rn
1 → F2n

q

φ1((a1, · · · , an)e1 + (b1, · · · , bn)e2) = (a1, · · · , an, b1, · · · , bn)

Note that it is a linear map. We define the Gray weight of a codeword in R1 as:

wtG(ae1 + be2) = wtH(a, b)

where wtH denotes the Hamming weight. If x, y lie in Rn
1 , then their mutual distance is

given by:

dG(x, y) =
n

∑
1

wtG(xi − yi) =
2n

∑
1

wtH(φ1(x)− φ1(y)) = dH(φ1(x), φ1(y)).

Hence, φ1 is a weight preserving map. A non-empty subset C of Rn
i is said to be a

linear code of length n if C is Ri-submodule of Rn
i .

For i ∈ {1, 2}, Ai ⊆ R1:

A1 ⊕ A2 = {a1 + a2 | ai ∈ Ai} and A1 ⊗ A2 = {(a1, a2) | ai ∈ Ai}.
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Let Ce be a linear code of length n over R1. Then, we define:

Ce1 = {y1 ∈ Fn
q | e1y1 + e2y2 ∈ Ce, for some y2 ∈ Fn

q}

Ce2 = {y2 ∈ Fn
q | e1y1 + e2y2 ∈ Ce, for some y1 ∈ Fn

q}

Therefore, any linear code Ce over R1 can be represented as Ce = e1Ce1 ⊕ e2Ce2 and
φ1(Ce) = Ce1 ⊗ Ce2 . Hence, Ce1 and Ce2 are Fq-linear codes. Also note that φ1(C⊥

e ) =

φ1(Ce)⊥.
Recall that R2 = Fq + uFq + vFq, with u2 = u, v2 = v, uv = vu = 0. Let o1 =

(1 − u − v), o2 = u, o3 = v be idempotent orthogonal elements in R2, then:

R2 = o1R2 ⊕ o2R2 ⊕ o3R2 ∼= o1Fq ⊕ o2Fq ⊕ o2Fq,

where oioj = 0 (i ̸= j), o2
i = oi, o1 + o2 + o3 = 1. Hence, any element in R2 can be written

as ao1 + bo2 + o3c3. We now define a weight preserving linear Gray map φ2,:

φ2 : R2 → F3
q

φ2(ao1 + bo2 + co3) = (a, b, c)

It can be extended to length n by the formula:

φ2((a1, · · · , an)o1 + (b1, · · · , bn)o2 + (c1, · · · , cn)o2) = (a1, · · · , an, b1, · · · , bn, c1, · · · , cn).

We define the Gray weight of a codeword in R2 as:

wtG(ao1 + bo2 + co3) = wtH(a, b, c)

where wtH denotes the Hamming weight. If x, y are in Rn
2 , then their Gray distance is

given by:

dG(x, y) =
n

∑
1

wtG(xi − yi) =
3n

∑
1

wtH(φ2(x)− φ2(y)) = dH(φ2(x), φ2(y)).

For i ∈ {1, 2, 3}, Ai ⊆ R2:

A1 ⊕ A2 ⊕ A3 = {a1 + a2 + a3 | ai ∈ Ai} and A1 ⊗ A2 ⊗ A3 = {(a1, a2, a3) | ai ∈ Ai}.

Let Co be a linear code of length n over R2. We define the three codes:

Co1 = {z1 ∈ Fn
q | o1z1 + o2z2 + o3z3 ∈ Co, for some z2, z3 ∈ Fn

q},

Co2 = {z2 ∈ Fn
q | o1z1 + o2z2 + o3z3 ∈ Co, for some z1, z3 ∈ Fn

q},

Co3 = {z3 ∈ Fn
q | o1z1 + o2z2 + o3z3 ∈ Co, for some z1, z2 ∈ Fn

q}.

Then, any linear code Co over R2 can be represented as Co = o1Co1 ⊕ o2Co2 ⊕ o3Co3

and φ2(Co) = Co1 ⊗ Co2 ⊗ Co3 , where Co1 , Co2 , and Co3 are Fq-linear codes. Also note that
φ2(C⊥

o ) = φ2(Co)⊥.
Henceforth, we define the Gray map φ on R using the maps defined previously:

φ : R → F6
q

φ(x, y, z) = (x, φ1(y), φ2(z))

now we can extend this map to Rγ:

φ(x1, · · · , xn1 , y1, · · · , yn2 , z1, · · · , zn3) = (x1, · · · , xn1 , φ1(y1), · · · , φ1(yn2), φ2(z1), · · · , φ2(zn3))
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then, the Gray weight of an element in Rγ can be denoted by wtG(α) = wtH(φ(α)). Any
linear code C of Rγ can be represented by C = C1 ⊗ Ce ⊗ Co, where C1, Ce, and Co are linear
code over Fq,R1, and R2. Let GFq be the generator matrix for linear code over Fq. The
generator matrix GR1 for a linear code over R1 is denoted by:

GR1 =

[
e1Ge1

e2Ge2

]
where Gei is the generator matrix for the linear code Cei, for i = {1, 2}. The generator matrix
GR2 for the linear code over R2 is:

GR2 =

 o1Go1

o2Go2

o3Go3


where Goi is the generator matrix for the linear code Coi, for i = {1, 2, 3}. Using the generator
matrices above, we can say that the generator matrix G for the linear code over R is:

G =

 GFq 0 0
0 GR1 0
0 0 GR2

.

Note that the minimum distance of C is min{dH(C1), dH(φ1(Ce)), dH(φ2(Co))}. The
following theorem provides the weight preserving nature of the Gray map.

Theorem 1. The Gray map φ defined above is linear and weight preserving.

Proof. Let x = (x1, x2, x3), x′ = (x′1, x′2, x′3) be in Rγ where x1, x′1 ∈ Fn1
q , x2, x′2 ∈ Rn2

1 , x3,
x′3 ∈ Rn3

2 . We have:

φ(x + x′) = φ(x1 + x′1, x2 + x′2, x3 + x′3)

= (x1 + x′1, φ1(x2 + x′2), φ2(x3 + x′3))

= (x1, φ1(x2), φ2(x3)) + (x′1, φ1(x′2), φ2(x′3))(∵ φ1 and φ2 are linear)

= φ(x) + φ(x′)

Using the linear map φ,

dG(x, x′) = wtG(x − x′) = wtH(φ(x)− φ(x′)) = dH(φ(x), φ(x′))

Hence, φ is a weight preserving linear map.

The following theorem gives the parameters of the Gray image of a linear code.

Theorem 2. If C ⊆ Rγ is an (n1 + n2 + n3, dG) linear code then φ(C) is an (n1 + 2(n2) +
3(n3), dH) linear code over Fq, where dG = dH .

Proof. The proof can extended from the proof of Theorem 1.

The following Theorem characterizes φ(C):

Theorem 3. If C ⊆ Rγ is linear, then φ(C) = C1 ⊗i=2
i=1 Cei ⊗

j=3
j=1 Coj , | C |=| C1 | ∏i=2

i=1 | Cei |

∏
j=3
j=1 | Coj |.

Proof. Let:
φ(x, y, z) = (x, φ1(y), φ3(z)) = (a1, . . . , a6) ∈ φ(C) ⊆ F6

q.
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Note that φ is bijective and C = C1 ⊗Ce ⊗Co is linear. Thus, a1 = x ∈ C1. Also note that
φ1(y) = (a2, a3), φ2(z) = (a4, a5, a6). Since φ′

is are bijective, a2e1 + a3e2 ∈ e1Ce1 ⊕ e2Ce2 = Ce.
Hence, (a2, a3) ∈ Ce1 ⊗Ce2 and similarly (a4, a5, a6) ∈ Co1 ⊗Co2 ⊗Co2 . The converse holds in a
similar way. The second part of the statement follows from the fact that φ is bijective.

The following Theorem furnishes the decompostion of the dual of the linear code C.

Theorem 4. If C = C1 ⊗ Ce ⊗ Co is a linear code over R then C⊥ = C⊥
1 ⊗ C⊥

e ⊗ C⊥
o , where C⊥

1 ,
C⊥

e and C⊥
o are duals for the respective linear codes.

Proof. Let C⊥ = {c′ ∈ Rγ|⟨c, c′⟩ = 0 for all c ∈ C} = {(x′, y′, z′) ∈ R⃝|x′ ∈ Fn1
q ,

y′ ∈ Rn2
1 , z′ ∈ Rn3

2 }. Let c = (x, y, z) ∈ C = C1 ⊗ Ce ⊗ Co. Then:

⟨c, c′⟩ = xx′ + yy′ + zz′ = 0.

Thus, x′ ∈ C⊥1 , y′ ∈ C⊥e , z′ ∈ C⊥o and so C⊥ ⊆ C⊥1 ⊗C⊥e ⊗C⊥o . Since |C⊥| = |C⊥1 ||C⊥e ||C⊥o |,
the statement holds.

The next result shows that the Gray maps is compatible with duality.

Theorem 5. If C ⊆ Rγ is linear, then φ(C⊥) = φ(C)⊥.

Proof. Let (x, y, z) ∈ C and (x′, y′, z′) ∈ C⊥, where x ∈ C1, y ∈ Ce, z ∈ Co and x′ ∈
C⊥

1 , y′ ∈ C⊥
e , z′ ∈ C⊥

o , then ⟨(x|y|z, x′|y′|z′)⟩ = 0. Using Theorem 4, C⊥
1 , C⊥

e and C⊥
o

are duals for C1, Ce, and Co. Now, we have φ(x, y, z) = (x, φ1(y), φ2(z)), φ(x′, y′, z′) =
(x′, φ1(y′), φ2(z′)), then the inner product is given by:

⟨φ(x, y, z), φ(x′, y′, z′)⟩ = ⟨(x, φ1(y), φ2(z)), (x′, φ1(y′), φ2(z′))⟩
= ⟨(x, 0, 0), (x′, 0, 0)⟩+ ⟨(0, φ1(y), 0), (0, φ1(y′), 0)⟩

+⟨(0, 0, φ2(z)), (0, 0, φ2(z′))⟩
= 0 (∵ φ1(C⊥) = φ1(C)⊥, φ2(C⊥) = φ2(C)⊥)

Thus, φ(C⊥) ⊆ φ(C)⊥. Since the cardinality is the same on both sides, the statement
holds.

The following result provides the self duality nature of the linear code and its
Gray image.

Corollary 1. If C is a linear Rγ-code, then C is self-dual iff φ(C) is self-dual. Moreover, φ(C) is a
self-orthogonal code over Fq iff C is self-orthogonal.

Proof. Let C be a self-dual linear code of length n over R. Thus, C = C⊥. Then, φ(C) =
φ(C⊥), and hence, by Theorem 5, we have φ(C) = (φ(C))⊥. Thus, φ(C) is a self-dual linear
code of length n1 + 2n2 + 3n3 over Fq. Conversely, let φ(C) be a self-dual linear code of
length n1 + 2n2 + 3n3 over Fq. Then, φ(C) = (φ(C))⊥, and hence, by Theorem 5, we have
φ(C) = φ(C⊥). Since φ is bijection, C = C⊥. Therefore, C is a self-dual linear code over Rγ.
Similarly, the self orthogonal case holds.

4. Skew Cyclic R-Codes

Let θt be a non-trivial Frobenius automorphism defined by:

θt : Fq → Fq, θt(a) = apt
,



Axioms 2024, 13, 360 7 of 13

where t divides m. It can be extended to R1 and R2 by:

θt(a + ub) = θt(a) + uθt(b), θt(a + ub + vc) = θt(a) + uθt(b) + vθt(b).

Since t|m, the order of automorphism θt is m
t . We define a polynomial ring Ri[x, θt]

(1 ≤ i ≤ 2) as follows:

Ri[x, θt] = {a1 + · · ·+ anxn|aj ∈ Ri, 1 ≤ j ≤ n}

Clearly, Ri[x, θt] is a ring with respect to usual addition and the multiplication defined
by:

axmbxn = aθm
t (b)xm+n

Note that it is a non-commutative ring unless θt is an identity map. A non-empty set
C is said to be a linear code of length ni over Ri if it is a Ri submodule of Rni

i . Using the
above polynomial rings above, we extend the polynomial ring to R by:

R[x, θt] = {(a(x), b(x), c(x)) : a(x) ∈ Fq[x], b(x) ∈ R1[x], c(x) ∈ R2[x]}.

It can be seen that R[x, θt] is a R2[x; θt] submodule with respect to usual addition and
multiplication defined by:

⋆ : R2[x]×R[x, θt] → R[x, θt]

(axs) ⋆ (b1xi, b2xj, b3xk) = (η(a)xsb1xi, δ(a)xsb2xj, axsb3xk)

= (η(a)θs
t (b1)xs+i, δ(a)θs

t (b2)xs+j, aθs
t (b3)xs+k)

However, under associative and distributive laws, the multiplication can be extended

to Rγ[x; θt] =
Fq [x;θt ]

⟨xn1−1⟩ ×
R1[x;θt ]
⟨xn2−1⟩ ×

R2[x;θt ]
⟨xn3−1⟩ as follows:

⋆ : R2[x; θt]× Rγ[x; θt] → Rγ[x; θt]

r(x) ⋆ ( f1(x) + ⟨xn1 − 1⟩, f2(x) + ⟨xn2 − 1⟩, f3(x) + ⟨xn3 − 1⟩) = (η(r(x)) f1(x) + ⟨xn1 − 1⟩, δ(r(x)) f2(x) + ⟨xn2 − 1⟩,

r(x) f3(x) + ⟨xn3 − 1⟩).

Definition 1 ([2]). We say that an R-submodule C of Rn is a θt-cyclic code if for any
c = (c0, c1, . . . , cn−1) ∈ C, σ1(c) = (θt(cn−1), θt(c0), . . . , θt(cn−2)) ∈ C. The operator σ1 is
then said to be a θt-cyclic shift operator on Rn.

Definition 2. A non-trivial R2-submodule C of Rγ is called a θt-cyclic code if for any c =
(c0,1, c1,1, . . . , cn1−1,1, c0,e, c1,e, . . . , cn2−1,e, c0,o, c1,o, . . . , cn3−1,o) ∈ C, σ(c) = (θ(cn1−1,1), θ(c0,1)
, . . . , θ(cn1−2,1), θ(cn2−1,e), θ(c0,e), . . . , θ(cn2−2,e), θ(cn3−1,o), θ(c0,o), . . . , θ(cn3−2,o)) ∈ C. The
operator σ is called a θt-cyclic shift operator on Rn.

The following result yields the relationship between the θt-cyclic codes over R and Fq.

Theorem 6. Let C = C1 ⊗ Ce ⊗ Co ⊆ Rγ be linear. Then C is a θt-cyclic code if and only if C1, Ce
and Co are θt-cyclic codes of length n1, n2 and n3 over Fq,R1 and R2 respectively.

Proof. Let C = C1 ⊗ Ce ⊗ Co be a θt-cyclic code over R. Let z = (z1, ze, zo) ∈ C, that is:

z = (z0,1, z1,1, . . . , zn1−1,1, z0,e, z1,e, . . . , zn2−1,e, z0,o, z1,o, . . . , zn3−1,o) ∈ C.

Then, σ(z) = (θ(zn1−1,1), θ(z0,1), . . . , θ(zn1−2,1), θ(zn2−1,e), θ(z0,e), . . . , θ(zn2−2,e),
θ(zn3−1,o), θ(z0,o), . . . , θ(zn3−2,o)) = (σ(z1), σ(ze), σ(zo)) ∈ C. From this, we can conclude
that:

σ(z1) ∈ C1, σ(ze) ∈ Ce and σ(zo) ∈ Co
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Hence, C1, Ce, and Co are θt-cyclic code of length ni. The converse holds in a similar
way.

We recall the following Theorem from [9].

Theorem 7 ([9]). Let Co = o1Co1 ⊕ o2Co2 ⊕ o3Co3 be a linear code over R2 of length n3, then Co
is θt-cyclic code iff Coi (1 ≤ i ≤ 3) is a θt-cyclic code of length n3 over Fq.

The analogue of this result in our setting is as follows.

Theorem 8 ([8]). Let Ce = e1Ce1 ⊕ e2Ce2 be a linear code over R1 of length n2 then Ce is θt-cyclic
code iff Cei (1 ≤ i ≤ 2) is a θt-cyclic code of length n2 over Fq.

Theorem 9. If C = C1 ⊗ Ce ⊗ Co is a linear code of length γ = n1 + n2 + n3, then C is θt-cyclic
iff C1, Cei , Coj(1 ≤ i ≤ 2, 1 ≤ j ≤ 3) are θt-cyclic code of length n1, n2, n3 over Fq respecively.

Proof. We obtain the proof on combining proofs of Theorems 6–8.

These notions are well-behaved with respect to duality as the next result shows.

Theorem 10. If C is a θt-cyclic code of length n, then its dual C⊥ is also a θt-cyclic code.

Proof. From Theorem 9, C1, Cei , Coj(1 ≤ i ≤ 2, 1 ≤ j ≤ 3) are θt-cyclic codes over Fq. Then,
C⊥

1 , C⊥
ei

, C⊥
oj
(1 ≤ i ≤ 2, 1 ≤ j ≤ 3) are θt-cyclic codes over Fq from [29] and once again by

using Theorem 9, C⊥ becomes a θt-cylic code.

Recall the following result from [4].

Lemma 1 ([4]). Let C be a θt-cyclic code of length n over Fq. Then, there exists a polynomial
f (x) ∈ Fq[x; θt] such that C = ⟨ f (x)⟩ and xn − 1 = g(x) f (x) in Fq[x; θt].

By assuming o(θt)|n, the counterpart follows.

Theorem 11. Let C = C1 ⊗ Ce ⊗ Co be a θt-cyclic code of length n over R and assume that the
order of θt divides n. Then, C = ⟨B1, Be, Bo⟩, where B1 = ⟨( f1(x), 0, 0)⟩, Be = ⟨(0, fe(x), 0)⟩, and
Bo = ⟨(b1(x), be(x), fo(x))⟩, such that C1 = ⟨ f1(x)⟩, Ce = ⟨ fe(x)⟩, Co = ⟨ fo(x)⟩, b1(x) ∈ C1
and b2(x) ∈ Ce.

Proof. Let C = C1 ⊗ Ce ⊗ Co be a θt-cyclic code of length γ = n1 + n2 + n3 over R. Then,
by Thereom 6, C1, Ce, Co are θt-cyclic codes of length ni over Fq,R1 and R2. Define a
homomorphism from C to R as follows:

ψ : C 7→ R
ψ(c1(x), ce(x), co(x)) = (0, 0, co(x))

Define:
ker(ψ) = {(c1(x), ce(x), 0) : c1(x) ∈ C1, ce(x) ∈ Ce}

I = {(c1(x), ce(x)) ∈ Fq[x; θt]×R1[x; θt] : (c1(x), ce(x), 0) ∈ ker(ψ)}.

Clearly, I = I1 × Ie forms a submodule of Fq[x; θt]×R1[x; θt]. Therefore, there exist
a polynomial f1(x) and fe(x) in Fq[x; θt] and R1[x; θt], respectively, generating I1 and
Ie with f1(x)|xn1 − 1 and fe(x)|xne − 1. Thus, I = ⟨( f1(x), 0), (0, fe(x))⟩, then for any
(c1(x), ce(x), 0) ∈ ker(ψ), (c1(x), ce(x)) = v(x) ⋆ ( f1(x), 0), (0, fe(x)) for some v(x) ∈
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R1[x; θt]. Finally, it leads to ker(ψ) = ⟨( f1(x), 0, 0), (0, fe(x), 0)⟩. The fact that C is a sub-
module implies that ψ(C) is a submodule. By using the first isomorphism theorem:

C/ker(ψ) ∼= ψ(C).

Let (b1(x), be(x), fo(x)) ∈ C, then ψ(b1(x), be(x), fo(x)) = (0, 0, fo(x)). From this, any θt-
cyclic code of length n can be represented by C = ⟨( f1(x), 0, 0)(0, fe(x), 0), (b1(x), be(x), fo(x))⟩,
where f1(x)|(xn1 − 1), fe(x)|(xn2 − 1) and fo(x)|(xn3 − 1).

Furthermore, we have C is θt-cyclic, then Ck, where k ∈ {1, e1, e2, o1, o2, o3} is skew
θt-cyclic code over Fq with respective lengths. From Theorem 3, |C| =| C1 | ∏i=2

i=1 | Cei |
∏

j=3
j=1 | Coj |, since each Ck is θt-cyclic it is generated by a polynomial fk(x), and thus,

| C |= qγ−∑6
i=1 ϵk , where γ = n1 + 2(n2) + 3(n3). The following Theorem provides the

generator polynomials for θt-cylic codes over Fq.

Theorem 12. Let C = C1 ⊗ Ce ⊗ Co be a skew cyclic code over R of length γ = n1 + n2 + n3.
Then, there exists a polynomial:

(i) f1(x) ∈ Fq[x; θt] such that C1 = ⟨ f1(x)⟩ and xn1 − 1 = g1(x) f1(x).
(ii) fe(x) ∈ R1[x; θt] such that Ce = ⟨ fe(x)⟩ and xn2 − 1 = ge(x) fe(x) where fe(x) =

∑2
i=1 ei fei (x).

(iii) fo(x) ∈ R2[x; θt] such that Co = ⟨ fo(x)⟩ and xn3 − 1 = go(x) fo(x) where fo(x) =

∑3
i=1 oi foi (x).

Proof. Let C be a θt-cyclic code of length γ = n1 + n2 + n3. From Theorem 6, we have that
C1, Ce, and Co are θt-cyclic codes. Using Lemma 1, (i) follows.

Then, the proof of (ii) is as follows. Let Ce = e1Ce1 ⊕ e2Ce2 be a θt-cyclic code
of length n2 over R1. Thereom 7 says that, Ce1 and Ce2 are θt-cyclic codes of length
n2 over Fq. Lemma 1 says that we have Ci = ⟨ fei (x)⟩ and xn2 − 1 = gei (x) fei (x) in
Fq[x; θt] for i ∈ {1, 2}. Then, ei fei (x) ∈ C for i ∈ {1, 2}. Also, for any fe(x) ∈ C, we
have fe(x) = ∑2

i=1 eihei (x) fei (x), where hei (x) ∈ Fq[x; θt] for i ∈ {1, 2}. Thus, fe(x) ∈
⟨e1 fe1(x), e2 fe2(x)⟩. Therefore, C = ⟨e1 fe1(x), e2 fe2(x)⟩. As xn2 − 1 = gei (x) fei (x) in Fq[x; θt]
for i ∈ {1, 2}. Let fe(x) = e1 fe1(x) + e2 fe2(x) ∈ R1[x; θt]. Then, fe(x) ∈ C. On the
other hand ei fei (x) = ei fe(x) ∈ ⟨ fe(x)⟩ for i = 1, 2. Consequently, C = ⟨ fe(x)⟩. Fur-
thermore, [∑2

i=1 eigei (x)] fe(x) = ∑2
i=1 eigei (x) fei (x) = ∑2

i=1 ei(xn2 − 1) = xn2 − 1. Then,
xn2 − 1 = ge(x) fe(x) in R1[x; θt], where ge(x) = ∑2

i=1 eigei (x). Thus, (ii) follows. (iii) is
similar to the proof of (ii).

5. Skew Constacyclic Code over R
In this section, we study skew θt-constacyclic codes over R. We choose a unit element

α ∈ R∗
2 such that α satisfies the condition α2 = 1, (α = 1,−1, · · · ).

Definition 3. Let αi ∈ Fpt \ {0}. A linear code C ⊆ Rγ[x, θ] is called skew α = α1 + uα2 + vα3-
constacyclic code if it is invariant under the cyclic shift operator λα, which is whenever:

c = (x0, x1, · · · , xn1−1, y0, y1, · · · , yn2−1, z0, z1, · · · , zn3−1) ∈ C
λα(c) = (α1θt(xn1−1), θt(x0), · · · , θt(xn1), (α1 + uα2)θt(yn1−1), θt(y1), · · · , θt(yn2−2),

(α1 + uα2 + vα3)θt(zn3−1), θt(z0), · · · , θt(zn3−2)) ∈ C

The following two results translate symmetry conditions into algebraic constraints.
We give the first result without proof.

Theorem 13. Let Rn,λ = R[x; θt]/⟨xn − λ⟩. A linear code C of length n over R is (θt, λ)-cyclic
code if and only if C is a left R[x; θt]-submodule of Rn,λ.
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The second result is less immediate.

Theorem 14. A code C is skew α-cyclic code over Rγ =
Fq [x,θt ]
xn1−α

× R1[x,θt ]
xn2−α

× R2[x,θt ]
xn3−α

iff C is a left
R2[x, θt] module over Rγ.

Proof. Let C be a skew α-cyclic code. Then, by definition x ⋆ ( f (x)|g(x)|h(x)) ∈ C:

x ⋆ ( f (x)|g(x)|h(x)) = (θt( f0)x + θt( f1)x2 + · · ·+ α1θt( fn1−1), θt(g0)x + θt(g1)x2 + · · ·+ (α1 + uα2)θt(gn2−1),

θt(h0)x + θt(h1)x2 + · · ·+ (α1 + uα2 + vα3)θt(hn3−1)) ∈ C

Moreover, by using linearity of C:

r(x) ⋆ (g1(x)|g2(x)|g3(x)) ∈ C

for some r(x) ∈ R2[x, θt]. Hence, C is an left R2[x, θt] submodule over Rγ. Conversely,
assume that C is an left R2[x, θt] submodule over Rγ, then we have x ⋆ ( f (x)|g(x)|h(x)) ∈ C
implies C is skew α-cyclic code.

Theorem 15. The code Co ⊆ Rn
2 is skew α = α1 + uα2 + vα3-cyclic of length n iff Co1 , Co2 , and

Co3 are skew α1, α1 + α2, α1 + α3-cyclic codes over Fq of length n.

Proof. Let Co be a skew α-cyclic code. Let a = xo1 + yo2 + zo3 ∈ Co, where
x = (x0, x1, · · · , xn−1) ∈ Co1 , y = (y0, y1, · · · , yn−1) ∈ Co2 and x = (z0, z1, · · · , zn−1) ∈ Co3 .
Then, we have by definiton, λα(x) ∈ Co,:

λα(o1(x0, x1, · · · , xn−1) + o2(y0, y1, · · ·+ yn−1)

+o3(z0, z1, · · · , zn−1)) = ((α1 + uα2 + vα3) ⋆ o1(θt(xn−1), θt(x0), · · · , θt(xn−2)) +

(α1 + uα2 + vα3) ⋆ o2(θt(yn−1), θt(y0), · · ·+ θt(yn−2)) +

(α1 + uα2 + vα3) ⋆ o3(θt(zn−1), θt(z0), · · · , θt(zn−1)))

=⇒ λα1(x) + λα1+α2(y) + λα1+α3(z) ∈ Co

=⇒ λα1(x) ∈ Co1 , λα1+α2(y) ∈ Co2 , λα1+α3(z) ∈ Co3

Hence, Co1 , Co2 , and Co3 are skew α1, α1 + α2, α1 + α3-cyclic codes over Fq of length n.
Conversely, assume that Co1 , Co2 and Co3 are skew α1, α1 + α2, α1 + α3-cyclic codes over

Fq of length n. Let m0, m1, · · · , mn−1 be an element in Co, where mi = o1xi + o2yi + o3zi such
that x = (x0, x2, · · · , xn−1) ∈ Co1 , y = (y0, y2, · · · , yn−1) ∈ Co2 and z = (z0, z2, · · · , zn−1) ∈
Co3 . Then we have λα1(x) ∈ Co1 , λα1+α2(y) ∈ Co2 and λα1+α3(z) ∈ Co3 . So we get,

o1λα1(x) + o2λα1+α2(y) + o3λα1+α3(z) = o1λα1(x0, x1, · · · , xn−1) + o2λα1+α2(y0, y1, · · ·+ yn−1)

+o3λα1+α3(z0, z1, · · · , zn−1) ∈ C
= λα(m0, m1, · · · , mn−1) ∈ C

Hence, C is skew α−cyclic code over Rn
2 .

Theorem 16. Ce be a a skew α = α1 + uα2-cyclic code over R1 iff Ce1 and Ce2 are skew α1 + α2
and α1-cyclic codes over Fq.

Proof. The proof is similar to Theorem 15 taking mod v to the above condition.

Theorem 17. C be a skew α = α1 + uα2 + vα3-cyclic code over R of length γ = n1 + n2 + n3 iff
C1, Ce and Co are α1, α1 + uα2, and α1 + uα2 + vα3-cyclic codes over Fq,R1 and R2, respectively.
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Proof. C1,Ce and Co be α1, α1 +uα2, and α1 +uα2 +vα3-cyclic. Consider x = (x0, x1, · · · , xn1−1),
y = (y0, y1, · · · , yn2−1) and z = (z0, z1, · · · , zn3−1). Consider α1 + uα2 = β. Then, we have:

(x, y, z) ∈ C =⇒ (λα1(x), λβ(y), λα(y)) ∈ C

Hence, C is skew α-cyclic. The converse part holds similarly.

Theorem 18. C be a skew α-cyclic code of length γ = n1 + n2 + n3 iff C1 is skew α1-cyclic code
of length n1, Ce1 , and Ce2 are α1 + α2, α1-cyclic codes of length n2 and Co1 , Co2 , and Co3 are skew
α1, α1 + α2, α1 + α3-cyclic codes over Fq of length n3.

Proof. Using Theorems 15–17 the result follows.

Theorem 19. C be a skew α = α1 + uα2 + vα3-cyclic code over R of length γ = n1 + n2 + n3 iff
C⊥

1 , C⊥
e , and C⊥

o are (α1)
−1, (α1 + uα2)

−1, and (α1 + uα2 + vα3)
−1-cyclic.

Proof. Let C be a skew α-cyclic code, Lemma 3.1 [5] says that C⊥ is skew (α1 + uα2 + vα3)
−1-

cyclic code. From Theorem 17, we have C⊥
1 , C⊥

e and C⊥
o are skew (α1)

−1, (α1 + uα2)
−1 and

(α1 + uα2 + vα3)
−1-cyclic.

Corollary 2. Let C = C1 ⊗ Ce ⊗ Co. be a skew α = α1 + uα2 + vα3-cyclic code over R of length
γ = n1 + n2 + n3. Then, there exist polynomials:

(i) f1(x) ∈ Fq[x; θt] such that C1 = ⟨ f1(x)⟩ and xn1 − α1 = g1(x) f1(x) .
(ii) fe(x) ∈ R1[x; θt] such that Ce = ⟨ fe(x)⟩ and xn2 − (α1 + uα2) = ge(x) fe(x).
(iii) fo(x) ∈ R2[x; θt] such that Co = ⟨ fo(x)⟩ and xn3 − (α1 + uα2 + vα3) = go(x) fo(x).

Proof. The proof is similar to the proof of Theorem 12.

Theorem 20. Let C = C1 ⊗ Ce ⊗ Co be a θt-constacyclic code of length γ over R. Then C =
⟨B1,B2,Bo⟩, where B1 = ⟨( f1(x), 0, 0)⟩, B1 = ⟨(0, fe(x), 0)⟩, and B1 = ⟨(b1(x), be(x), fo(x))⟩.

Proof. The proof is similar to the proof of Theorem 11.

Example 1. Let q = 9 and F9 = F3[z] with z2 + 1 = 0. Consider the ring Rγ = F9[x,θ3]
x4−1 ×

R1[x,θ3]
x5−1 × R2[x,θ3]

x5−1 , where θ3 is the Frobenius automorphism defined by θ3(a) = a3 for any a ∈ F9.
Write:

x4 − 1 = (x + 1)(x + 2)(x + z)(x + 2z) ∈ F9[x, θ3]
x5 − 1 = (x + 2)(x4 + x3 + x2 + x + 1) ∈ F9[x, θ3]
f1(x) = ⟨(x + 1)⟩, fe(x) = ⟨e1(x + 2) + e2(x + 2)⟩, fo(x) = ⟨o1(x + 2) + o2(x + 2) +

o3(x + 2)⟩ By Theorem 12, we have that fi divides xni − 1 for (i = 1, e, o), yielding a code with
parameter [29, 18, 2] over F9.

Example 2. Let q = 25 and F25 = F5[z] with z2 + z + 1 = 0. Consider the ring Rγ =
F25[x,θ5]

x4−1 × R1[x,θ5]
x6−1 × R2[x,θ5]

x4−1 , where θ5 is the Frobenius automorphism defined by θ5(a) = a5 for
any a ∈ F25. Write

x4 − 1 = (x + 2)(x + 3)(x + z)(x + z + 1) ∈ F25[x, θ5]
x6 − 1 = (x2 − 1)(x2 + x + 1)(x2 − x + 1) ∈ F25[x, θ5]
f1(x) = ⟨(x + 2)⟩, fe(x) = ⟨e1(x2 − 1) + e2(x2 − 1)⟩, fo(x) = ⟨o1(x + z + 1) + o2(x +

z + 1) + o3(x + z + 1)⟩ By Theorem 12, we have that fi divides xni − 1 for (i = 1, e, o) yielding a
code with parameter [28, 20, 2] over F25.

6. Conclusions and Open Problems

In this note, we have studied the algebraic and metric structure of skew cyclic and
skew constacyclic codes over a special mixed alphabet. Thus, our codes have a structure of
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module over the largest of the three alphabets R2. Codes over the product ring Fq ×R1 ×
R2 would be modules over that larger ring. The two algebraic structures are different and
should not be confused.

The present work leads itself to two paths of generalization: consider different mixed
alphabets or replace the concepts of cyclicity by that of quasi-cyclicity. The former path
seems easier than the latter, in view of the many examples of rings that have been used as
alphabets of cyclic codes in recent years. On the other hand, the structure of quasi-cyclic
codes is always more subtle than that of cyclic codes.
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