HAL
open science

Skew Cyclic and Skew Constacyclic Codes over a Mixed Alphabet

Karthick Gowdhaman, Cruz Mohan, Chinnapillai Durairajan, Selda Çalkavur, Patrick Solé

- To cite this version:

Karthick Gowdhaman, Cruz Mohan, Chinnapillai Durairajan, Selda Çalkavur, Patrick Solé. Skew Cyclic and Skew Constacyclic Codes over a Mixed Alphabet. Axioms, 2024, 13 (6), pp.360. 10.3390/axioms13060360 . hal-04590697

HAL Id: hal-04590697

https://hal.science/hal-04590697

Submitted on 28 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Article

Skew Cyclic and Skew Constacyclic Codes over a Mixed Alphabet

Karthick Gowdhaman ${ }^{1}$, Cruz Mohan ${ }^{2, *}$ (©) Chinnapillai Durairajan ${ }^{3}$, Selda Çalkavur ${ }^{4}$ and Patrick Solé ${ }^{5}$ (D)
1 Department of Mathematics, Presidency University, Bengaluru 560064, Karnataka, India; karthygowtham@gmail.com
2 Department of Mathematics, Bishop Heber College, Bharathidasan University, Tiruchirapalli 620017, Tamil Nadu, India
3 Department of Mathematics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu, India; cdurai66@rediffmail.com
4 Department of Mathematics, Faculty of Arts and Science, Kocaeli University, Kocaeli 41001, Turkey; selda.calkavur@kocaeli.edu.tr
5 I2M, Aix Marseille University, CNRS, 13009 Marseille, France; patrick.sole@telecom-paris.fr
* Correspondence: cruzmohan@gmail.com

Citation: Gowdhaman, K.; Mohan, C. Durairajan, C.; Çalkavur, S.; Solé, P. Skew Cyclic and Skew Constacyclic Codes over a Mixed Alphabet. Axioms 2024, 13, 360. https://doi.org/ 10.3390/axioms13060360

Academic Editor: Clemente Cesarano

Received: 3 March 2024
Revised: 20 April 2024
Accepted: 22 May 2024
Published: 28 May 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this note, we study skew cyclic and skew constacyclic codes over the mixed alphabet $\mathcal{R}=\mathbb{F}_{q} \mathcal{R}_{1} \mathcal{R}_{2}$, where $q=p^{m}, \mathrm{p}$ is an odd prime with m odd and $\mathcal{R}_{1}=\mathbb{F}_{q}+u \mathbb{F}_{q}$ with $u^{2}=u$, and $\mathcal{R}_{2}=\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$ with $u^{2}=u, v^{2}=v, u v=v u=0$. Such codes consist of the juxtaposition of three codes of the same size over $\mathbb{F}_{q}, \mathcal{R}_{1}$, and \mathcal{R}_{2}, respectively. We investigate the generator polynomial for skew cyclic codes over \mathcal{R}. Furthermore, we discuss the structural properties of the skew cyclic and skew constacyclic codes over \mathcal{R}. We also study their q-ary images under suitable Gray maps.

Keywords: linear codes; skew-cyclic codes; Gray map; skew constacyclic codes

MSC: 94B05; 94B15; 94B35; 94B60

1. Introduction

The most widely used family of linear codes consists of cyclic codes. Inspired by codes for the Lee metric [1], Berlekamp adapted them to constacyclic codes. Since then, as the following paragraphs demonstrate, they have happened in a number of circumstances.

Skew cyclic codes were first introduced as ideals in the skew polynomial ring $\mathbb{F}[x ; \theta]$ in 2007 by Boucher et al. [2], where θ represents an automorphism of the finite field \mathbb{F}. The tables of the most well-known codes were enhanced by the numerous numerical samples that this technique created. The fact that the factorization of the polynomial $x^{n}-1$ is not unique gives skew polynomial rings an advantage over commutative polynomial rings. For a given length, these numerous factorizations produce a large number of additional codes. Boucher et al. further extended this technique to skew constacyclic codes in [3]. Siap et al. [4] investigated skew cyclic codes of any length in 2011 and produced maps using both classical and quasi-cyclic codes.

In 2012, Jitman et al. [5] studied skew constacyclic codes over finite chain rings and described the algebraic structure of Euclidean and Hermitian dual codes. Abualrub et al. [6] studied θ-cyclic codes over the semilocal ring $\mathbb{F}_{2}+u \mathbb{F}_{2}, v^{2}=v$ with respect to Euclidean and Hermitian inner products.

These codes over semilocal rings were further studied in many contexts. The rings $\mathbb{F}_{3}+$ $v \mathbb{F}_{3}$ in [7], $\mathbb{F}_{q}+v \mathbb{F}_{q}, v^{2}=v$ in [8], and $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}, u^{2}=u, v^{2}=v, u v=v u=0$ in [9] were utilized as alphabets for skew cyclic codes, for example. Dertli and Cengellenmis [10] and Yao et al. [11] also examined these codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}+u v \mathbb{F}_{q}, u^{2}=u, v^{2}=v$, $u v=v u$. Skewed $(-1+2 v)$-constacyclic codes were developed in 2017 by Gao et al. [12] after deriving the structure of skew constacyclic codes over the semilocal ring $\mathbb{F}_{q}+v \mathbb{F}_{q}, v^{2}=v$.

In [13] and [14], respectively, Islam and Prakash established the algebraic structure of skew constacyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}+u v \mathbb{F}_{q}, u^{2}=u, v^{2}=v, u v=v u$.

Using two non-trivial automorphisms, Bhardwaj and Raka [15] investigated the skew constacyclic codes over the ring $\mathbb{F}_{q}[u, v]\langle f(u), g(v), u v-v u\rangle$ in 2019. Alternatively, $\mathbb{Z}_{2} \mathbb{Z}_{4^{-}}$ linear codes, or codes over the mixed alphabet $\mathbb{Z}_{2} \mathbb{Z}_{4}$, where a subset of coordinates is binary and the complement is quaternary, were introduced by Borges et al. [16]. They have calculated their generator matrices and described their dual codes. Fernandez-Cordoba et al. [17] obtained the rank and kernel of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes in a follow-up experiment. Steganography is one field in which these codes have found industrial use [18].

In [19], additive codes over the mixed alphabet $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$ were examined. Next, Refs. [20-23] examined the mixed alphabet $\mathbb{Z}_{p} \mathbb{Z}_{p^{s}}$ and, more broadly, $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$. Conversely, Abualrub et al. [24] defined $\mathbb{Z}_{2} \mathbb{Z}_{4}$ in 2014, in line with the advancement of cyclic codes on mixed alphabets. The code for -additive cyclics is $\mathbb{Z}_{4}[x]$.-submodule of $\mathbb{Z}_{2}[x] /\left\langle x^{r}-1\right\rangle \times$ $\mathbb{Z}_{4}[x] /\left\langle x^{s}-1\right\rangle$, from which the smallest spanning set and unique set of generators for these codes, where s is an odd integer, were obtained.

Furthermore, generator polynomials and duals for $\mathbf{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes were discovered by Borges et al. [25]. In [26], Aydogdu et al. [27] introduced the novel mixed alphabets $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes, where $u^{2}=0$. They also studied constacyclic codes over mixed alphabets by defining them as $\mathbb{Z}_{2}[u][x] . \times \mathbb{Z}_{2}[u][x] /\left\langle x^{\beta}-(1+u)\right\rangle$, -submodules of $\mathbb{Z}_{2}[x] /\left\langle x^{\alpha}-1\right\rangle$.

As the Gray images of $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-cyclic codes, they were able to derive several optimum binary linear codes. In the meanwhile, $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive cyclic and constacyclic codes with the unit $1+u$, respectively, were explored algebraically by [28]. Consequently, the predicted generalization in the continuation of these research should be $\mathbb{Z}_{2^{r}} \mathbb{Z}_{2^{s}}[u]$.-additive cyclic codes, $u^{2}=0$, and constacyclic codes.

In this article, we examine a mixed alphabet $\mathcal{R}=\mathbb{F}_{q} \mathcal{R}_{1} \mathcal{R}_{2}$, where $\mathcal{R}_{1}=\mathbb{F}_{q}+u \mathbb{F}_{q}$ with $u^{2}=u$ and $\mathcal{R}_{2}=\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$ with $u^{2}=u, v^{2}=v, u v=v u=0$. Moreover, we examine the cyclic codes θ_{t} and $\left(\theta_{t}, \alpha\right)$ over \mathcal{R}. The algebraic structure of these codes is fully determined. We examine their q-ary representations under Gray maps and provide a few brief numerical instances.

The contents are arranged as follows. The next section gathers some background information. Gray maps are examined in Section 3. Skewed cyclic codes are covered in Section 4, and skew constacyclic codes are covered in Section 5. The essay is concluded at Section 6.

2. Preliminaries

Let p be an odd prime, and let $q=p^{m}$ with m being odd. Denote by \mathbb{F}_{q} the finite field of size q. The set \mathbb{F}_{q}^{n} of all ordered n-tuples over \mathbb{F}_{q} is equipped with the structure of an \mathbb{F}_{q} vector space by the usual addition and scalar multiplication of vectors.

A code of length n over \mathbb{F}_{q} is just any non-empty subset \mathcal{C} of \mathbb{F}_{q}^{n}. It is said to be linear if \mathcal{C} is an \mathbb{F}_{q} subspace of \mathbb{F}_{q}^{n}. From now on, we write $\mathcal{R}_{1}=\mathbb{F}_{q}+u \mathbb{F}_{q}$, with $u^{2}=u$ and $\mathcal{R}_{2}=\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$, with $u^{2}=u, v^{2}=v, u v=v u=0$.

Note that \mathcal{R}_{1} and \mathcal{R}_{2} are finite non-chain rings. Let $a+u b+v c$ be an element of \mathcal{R}_{2}. Then, we define two maps η and δ as follows:

$$
\begin{aligned}
\eta: \mathcal{R}_{2} \rightarrow \mathbb{F}_{q,} & \delta: \mathcal{R}_{2} \rightarrow \mathcal{R}_{1} \\
\eta(a+u b+v c)=a, & \delta(a+u b+v c)=a+u b
\end{aligned}
$$

It is clear that η and δ are ring homomorphisms. We consider the ring \mathcal{R} :

$$
\mathcal{R}=\mathbb{F}_{q} \mathcal{R}_{1} \mathcal{R}_{2}=\left\{(x, y, z) \mid x \in \mathbb{F}_{q}, y \in \mathcal{R}_{1} \text { and } z \in \mathcal{R}_{2}\right\}
$$

We define a \mathcal{R}_{2}-multiplication in this ring as follows:

$$
\begin{aligned}
\star: \mathcal{R}_{2} \times \mathcal{R} & \rightarrow \mathcal{R} \\
r \star(x, y, z) & =(\eta(r) x, \delta(r) y, r z)
\end{aligned}
$$

This is a well defined multiplication and it can be extended componentwise to $\mathcal{R}_{\bigcirc}=\mathbb{F}_{q}^{n_{1}} \times \mathcal{R}_{1}^{n_{2}} \times \mathcal{R}_{2}^{n_{3}}$ by:
$\star: \mathcal{R}_{2} \times \mathcal{R}_{\bigcirc} \rightarrow \mathcal{R}_{\bigcirc}$
$r \star\left(x_{1}, \cdots, x_{n_{1}}, y_{1}, \cdots, y_{n_{2}}, z_{1}, \cdots, z_{n_{3}}\right)=\left(\eta(r) x_{1}, \cdots, \eta(r) x_{n_{1}}, \delta(r) y_{1}, \cdots, \delta(r) y_{n_{2}}, r z_{1}, \cdots, r z_{n_{3}}\right)$
where $\left(x_{1}, \cdots, x_{n_{1}}, y_{1}, \cdots, y_{n_{2}}, z_{1}, \cdots, z_{n_{3}}\right) \in \mathcal{R}_{\gamma}$. Equipped with this multiplication, \mathcal{R}_{\bigcirc} becomes an \mathcal{R}_{2} module. A non-empty subset \mathcal{C} of \mathcal{R}_{\bigcirc} is said to be a \mathcal{R}-linear code of length $\left(n_{1}, n_{2}, n_{3}\right)$ if \mathcal{C} is an \mathcal{R}_{2}-submodule of $\mathcal{R} \bigcirc$. Now we define the inner product by the formula:

$$
\left\langle c, c^{\prime}\right\rangle=\sum_{1}^{n_{1}} x_{i} x_{i}^{\prime}+\sum_{1}^{n_{2}} y_{j} y_{j}^{\prime}+\sum_{1}^{n_{3}} z_{k} z_{k}^{\prime}
$$

where $c=\left(x_{1}, \cdots, x_{n_{1}}, y_{1}, \cdots, y_{n_{2}}, z_{1}, \cdots, z_{n_{3}}\right), c^{\prime}=\left(x_{1}^{\prime}, \cdots, x_{n_{1}}^{\prime}, y_{1}^{\prime}, \cdots, y_{n_{2}}^{\prime}, z_{1}^{\prime}, \cdots, z_{n_{3}}^{\prime}\right)$ are in \mathcal{R}_{γ}. Let \mathcal{C} be an \mathcal{R}-linear code of length $\left(n_{1}, n_{2}, n_{3}\right)$. Then, the dual code of \mathcal{C} is defined as:

$$
\mathcal{C}^{\perp}=\left\{c^{\prime} \in \mathcal{R}_{\gamma} \mid\left\langle c, c^{\prime}\right\rangle=0 \forall c \in \mathcal{C}\right\}
$$

3. Decomposition and Properties of Gray Maps

Recall that, $\mathcal{R}_{1}=\mathbb{F}_{q}+u \mathbb{F}_{q}$, with $u^{2}=u$. Consider the idempotent orthogonal elements $e_{1}=u$ and $e_{2}=1-u$. Then, we have the decomposition:

$$
\mathcal{R}_{1}=e_{1} \mathcal{R}_{1} \oplus e_{2} \mathcal{R}_{1} \cong e_{1} \mathbb{F}_{q} \oplus e_{2} \mathbb{F}_{q}
$$

where $e_{1} e_{2}=0, e_{1}^{2}=e_{1}, e_{1}+e_{2}=1$. Hence, $\mathcal{R}_{1}=\left\{a e_{1}+b e_{2} \mid a, b\right.$ in $\left.\mathbb{F}_{q}\right\}$. We now define the Gray map:

$$
\begin{aligned}
\varphi_{1}: \mathcal{R}_{1} & \rightarrow \mathbb{F}_{q}^{2} \\
\varphi_{1}\left(a e_{1}+b e_{2}\right) & =(a, b)
\end{aligned}
$$

It can be extended to the length n by:

$$
\begin{aligned}
\varphi_{1}: \mathcal{R}_{1}^{n} & \rightarrow \mathbb{F}_{q}^{2 n} \\
\varphi_{1}\left(\left(a_{1}, \cdots, a_{n}\right) e_{1}+\left(b_{1}, \cdots, b_{n}\right) e_{2}\right) & =\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right)
\end{aligned}
$$

Note that it is a linear map. We define the Gray weight of a codeword in \mathcal{R}_{1} as:

$$
w t_{G}\left(a e_{1}+b e_{2}\right)=w t_{H}(a, b)
$$

where $w t_{H}$ denotes the Hamming weight. If x, y lie in \mathcal{R}_{1}^{n}, then their mutual distance is given by:

$$
d_{G}(x, y)=\sum_{1}^{n} w t_{G}\left(x_{i}-y_{i}\right)=\sum_{1}^{2 n} w t_{H}\left(\varphi_{1}(x)-\varphi_{1}(y)\right)=d_{H}\left(\varphi_{1}(x), \varphi_{1}(y)\right)
$$

Hence, φ_{1} is a weight preserving map. A non-empty subset \mathcal{C} of \mathcal{R}_{i}^{n} is said to be a linear code of length n if \mathcal{C} is \mathcal{R}_{i}-submodule of \mathcal{R}_{i}^{n}.

For $i \in\{1,2\}, A_{i} \subseteq \mathcal{R}_{1}:$

$$
A_{1} \oplus A_{2}=\left\{a_{1}+a_{2} \mid a_{i} \in A_{i}\right\} \text { and } A_{1} \otimes A_{2}=\left\{\left(a_{1}, a_{2}\right) \mid a_{i} \in A_{i}\right\} .
$$

Let \mathcal{C}_{e} be a linear code of length n over \mathcal{R}_{1}. Then, we define:

$$
\begin{aligned}
& \mathcal{C}_{e_{1}}=\left\{y_{1} \in \mathbb{F}_{q}^{n} \mid e_{1} y_{1}+e_{2} y_{2} \in \mathcal{C}_{e}, \text { for some } y_{2} \in \mathbb{F}_{q}^{n}\right\} \\
& \mathcal{C}_{e_{2}}=\left\{y_{2} \in \mathbb{F}_{q}^{n} \mid e_{1} y_{1}+e_{2} y_{2} \in \mathcal{C}_{e}, \text { for some } y_{1} \in \mathbb{F}_{q}^{n}\right\}
\end{aligned}
$$

Therefore, any linear code \mathcal{C}_{e} over \mathcal{R}_{1} can be represented as $\mathcal{C}_{e}=e_{1} \mathcal{C}_{e_{1}} \oplus e_{2} \mathcal{C}_{e_{2}}$ and $\varphi_{1}\left(\mathcal{C}_{e}\right)=\mathcal{C}_{e_{1}} \otimes \mathcal{C}_{e_{2}}$. Hence, $\mathcal{C}_{e_{1}}$ and $\mathcal{C}_{e_{2}}$ are \mathbb{F}_{q}-linear codes. Also note that $\varphi_{1}\left(\mathcal{C}_{e}^{\perp}\right)=$ $\varphi_{1}\left(\mathcal{C}_{e}\right)^{\perp}$.

Recall that $\mathcal{R}_{2}=\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$, with $u^{2}=u, v^{2}=v, u v=v u=0$. Let $o_{1}=$ $(1-u-v), o_{2}=u, o_{3}=v$ be idempotent orthogonal elements in \mathcal{R}_{2}, then:

$$
\mathcal{R}_{2}=o_{1} \mathcal{R}_{2} \oplus o_{2} \mathcal{R}_{2} \oplus o_{3} \mathcal{R}_{2} \cong o_{1} \mathbb{F}_{q} \oplus o_{2} \mathbb{F}_{q} \oplus o_{2} \mathbb{F}_{q},
$$

where $o_{i} o_{j}=0(i \neq j), o_{i}^{2}=o_{i}, o_{1}+o_{2}+o_{3}=1$. Hence, any element in \mathcal{R}_{2} can be written as $a o_{1}+b o_{2}+o_{3} c_{3}$. We now define a weight preserving linear Gray map φ_{2}, :

$$
\begin{aligned}
\varphi_{2}: \mathcal{R}_{2} & \rightarrow \mathbb{F}_{q}^{3} \\
\varphi_{2}\left(a o_{1}+b o_{2}+c o_{3}\right) & =(a, b, c)
\end{aligned}
$$

It can be extended to length n by the formula:
$\varphi_{2}\left(\left(a_{1}, \cdots, a_{n}\right) o_{1}+\left(b_{1}, \cdots, b_{n}\right) o_{2}+\left(c_{1}, \cdots, c_{n}\right) o_{2}\right)=\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}, c_{1}, \cdots, c_{n}\right)$.
We define the Gray weight of a codeword in \mathcal{R}_{2} as:

$$
w t_{G}\left(a o_{1}+b o_{2}+c o_{3}\right)=w t_{H}(a, b, c)
$$

where $w t_{H}$ denotes the Hamming weight. If x, y are in \mathcal{R}_{2}^{n}, then their Gray distance is given by:

$$
d_{G}(x, y)=\sum_{1}^{n} w t_{G}\left(x_{i}-y_{i}\right)=\sum_{1}^{3 n} w t_{H}\left(\varphi_{2}(x)-\varphi_{2}(y)\right)=d_{H}\left(\varphi_{2}(x), \varphi_{2}(y)\right)
$$

For $i \in\{1,2,3\}, A_{i} \subseteq \mathcal{R}_{2}:$

$$
A_{1} \oplus A_{2} \oplus A_{3}=\left\{a_{1}+a_{2}+a_{3} \mid a_{i} \in A_{i}\right\} \text { and } A_{1} \otimes A_{2} \otimes A_{3}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \mid a_{i} \in A_{i}\right\}
$$

Let \mathcal{C}_{o} be a linear code of length n over \mathcal{R}_{2}. We define the three codes:

$$
\begin{aligned}
& \mathcal{C}_{o_{1}}=\left\{z_{1} \in \mathbb{F}_{q}^{n} \mid o_{1} z_{1}+o_{2} z_{2}+o_{3} z_{3} \in \mathcal{C}_{0}, \text { for some } z_{2}, z_{3} \in \mathbb{F}_{q}^{n}\right\}, \\
& \mathcal{C}_{o_{2}}=\left\{z_{2} \in \mathbb{F}_{q}^{n} \mid o_{1} z_{1}+o_{2} z_{2}+o_{3} z_{3} \in \mathcal{C}_{o}, \text { for some } z_{1}, z_{3} \in \mathbb{F}_{q}^{n}\right\}, \\
& \mathcal{C}_{o_{3}}=\left\{z_{3} \in \mathbb{F}_{q}^{n} \mid o_{1} z_{1}+o_{2} z_{2}+o_{3} z_{3} \in \mathcal{C}_{0}, \text { for some } z_{1}, z_{2} \in \mathbb{F}_{q}^{n}\right\} .
\end{aligned}
$$

Then, any linear code \mathcal{C}_{o} over \mathcal{R}_{2} can be represented as $\mathcal{C}_{o}=o_{1} \mathcal{C}_{o_{1}} \oplus o_{2} \mathcal{C}_{o_{2}} \oplus o_{3} \mathcal{C}_{o_{3}}$ and $\varphi_{2}\left(\mathcal{C}_{o}\right)=\mathcal{C}_{0_{1}} \otimes \mathcal{C}_{o_{2}} \otimes \mathcal{C}_{o_{3}}$, where $\mathcal{C}_{0_{1}}, \mathcal{C}_{o_{2}}$, and $\mathcal{C}_{o_{3}}$ are \mathbb{F}_{q}-linear codes. Also note that $\varphi_{2}\left(\mathcal{C}_{o}^{\perp}\right)=\varphi_{2}\left(\mathcal{C}_{o}\right)^{\perp}$.

Henceforth, we define the Gray map φ on \mathcal{R} using the maps defined previously:

$$
\begin{aligned}
\varphi: \mathcal{R} & \rightarrow \mathbb{F}_{q}^{6} \\
\varphi(x, y, z) & =\left(x, \varphi_{1}(y), \varphi_{2}(z)\right)
\end{aligned}
$$

now we can extend this map to \mathcal{R}_{γ} :

$$
\varphi\left(x_{1}, \cdots, x_{n_{1}}, y_{1}, \cdots, y_{n_{2}}, z_{1}, \cdots, z_{n_{3}}\right)=\left(x_{1}, \cdots, x_{n_{1}}, \varphi_{1}\left(y_{1}\right), \cdots, \varphi_{1}\left(y_{n_{2}}\right), \varphi_{2}\left(z_{1}\right), \cdots, \varphi_{2}\left(z_{n_{3}}\right)\right)
$$

then, the Gray weight of an element in \mathcal{R}_{γ} can be denoted by $w t_{G}(\alpha)=w t_{H}(\varphi(\alpha))$. Any linear code \mathcal{C} of \mathcal{R}_{γ} can be represented by $\mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{0}$, where $\mathcal{C}_{1}, \mathcal{C}_{e}$, and \mathcal{C}_{o} are linear code over $\mathbb{F}_{q}, \mathcal{R}_{1}$, and \mathcal{R}_{2}. Let $G_{\mathbb{F}_{q}}$ be the generator matrix for linear code over \mathbb{F}_{q}. The generator matrix $G_{\mathcal{R}_{1}}$ for a linear code over \mathcal{R}_{1} is denoted by:

$$
G_{\mathcal{R}_{1}}=\left[\begin{array}{l}
e_{1} G_{e_{1}} \\
e_{2} G_{e_{2}}
\end{array}\right]
$$

where $G_{e_{i}}$ is the generator matrix for the linear code $\mathcal{C}_{e i}$, for $i=\{1,2\}$. The generator matrix $G_{\mathcal{R}_{2}}$ for the linear code over \mathcal{R}_{2} is:

$$
G_{\mathcal{R}_{2}}=\left[\begin{array}{c}
o_{1} G_{o_{1}} \\
o_{2} G_{o_{2}} \\
o_{3} G_{o_{3}}
\end{array}\right]
$$

where $G_{o_{i}}$ is the generator matrix for the linear code $\mathcal{C}_{o i}$, for $i=\{1,2,3\}$. Using the generator matrices above, we can say that the generator matrix G for the linear code over \mathcal{R} is:

$$
G=\left[\begin{array}{ccc}
G_{\mathbb{F}_{q}} & 0 & 0 \\
0 & G_{\mathcal{R}_{1}} & 0 \\
0 & 0 & G_{\mathcal{R}_{2}}
\end{array}\right]
$$

Note that the minimum distance of \mathcal{C} is $\min \left\{d_{H}\left(\mathcal{C}_{1}\right), d_{H}\left(\varphi_{1}\left(\mathcal{C}_{e}\right)\right), d_{H}\left(\varphi_{2}\left(\mathcal{C}_{0}\right)\right)\right\}$. The following theorem provides the weight preserving nature of the Gray map.

Theorem 1. The Gray map φ defined above is linear and weight preserving.
Proof. Let $x=\left(x_{1}, x_{2}, x_{3}\right), x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ be in \mathcal{R}_{γ} where $x_{1}, x_{1}^{\prime} \in \mathbb{F}_{q}^{n_{1}}, x_{2}, x_{2}^{\prime} \in \mathcal{R}_{1}^{n_{2}}, x_{3}$, $x_{3}^{\prime} \in \mathcal{R}_{2}^{n_{3}}$. We have:

$$
\begin{aligned}
\varphi\left(x+x^{\prime}\right) & =\varphi\left(x_{1}+x_{1}^{\prime}, x_{2}+x_{2}^{\prime}, x_{3}+x_{3}^{\prime}\right) \\
& =\left(x_{1}+x_{1}^{\prime}, \varphi_{1}\left(x_{2}+x_{2}^{\prime}\right), \varphi_{2}\left(x_{3}+x_{3}^{\prime}\right)\right) \\
& =\left(x_{1}, \varphi_{1}\left(x_{2}\right), \varphi_{2}\left(x_{3}\right)\right)+\left(x_{1}^{\prime}, \varphi_{1}\left(x_{2}^{\prime}\right), \varphi_{2}\left(x_{3}^{\prime}\right)\right)\left(\because \varphi_{1} \text { and } \varphi_{2} \text { are linear }\right) \\
& =\varphi(x)+\varphi\left(x^{\prime}\right)
\end{aligned}
$$

Using the linear map φ,

$$
d_{G}\left(x, x^{\prime}\right)=w t_{G}\left(x-x^{\prime}\right)=w t_{H}\left(\varphi(x)-\varphi\left(x^{\prime}\right)\right)=d_{H}\left(\varphi(x), \varphi\left(x^{\prime}\right)\right)
$$

Hence, φ is a weight preserving linear map.
The following theorem gives the parameters of the Gray image of a linear code.
Theorem 2. If $\mathcal{C} \subseteq \mathcal{R}_{\gamma}$ is an $\left(n_{1}+n_{2}+n_{3}, d_{G}\right)$ linear code then $\varphi(\mathcal{C})$ is an $\left(n_{1}+2\left(n_{2}\right)+\right.$ $\left.3\left(n_{3}\right), d_{H}\right)$ linear code over \mathbb{F}_{q}, where $d_{G}=d_{H}$.

Proof. The proof can extended from the proof of Theorem 1.
The following Theorem characterizes $\varphi(\mathcal{C})$:
Theorem 3. If $\mathcal{C} \subseteq \mathcal{R}_{\gamma}$ is linear, then $\varphi(\mathcal{C})=\mathcal{C}_{1} \otimes_{i=1}^{i=2} \mathcal{C}_{e_{i}} \otimes_{j=1}^{j=3} \mathcal{C}_{o_{j}}|\mathcal{C}|=\left|\mathcal{C}_{1}\right| \prod_{i=1}^{i=2}\left|\mathcal{C}_{e_{i}}\right|$ $\prod_{j=1}^{j=3}\left|\mathcal{C}_{o_{j}}\right|$.

Proof. Let:

$$
\varphi(x, y, z)=\left(x, \varphi_{1}(y), \varphi_{3}(z)\right)=\left(a_{1}, \ldots, a_{6}\right) \in \varphi(\mathcal{C}) \subseteq \mathbb{F}_{q}^{6}
$$

Note that φ is bijective and $\mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{o}$ is linear. Thus, $a_{1}=x \in \mathcal{C}_{1}$. Also note that $\varphi_{1}(y)=\left(a_{2}, a_{3}\right), \varphi_{2}(z)=\left(a_{4}, a_{5}, a_{6}\right)$. Since $\varphi_{i}^{\prime} s$ are bijective, $a_{2} e_{1}+a_{3} e_{2} \in e_{1} \mathcal{C}_{e_{1}} \oplus e_{2} \mathcal{C}_{e_{2}}=\mathcal{C}_{e}$. Hence, $\left(a_{2}, a_{3}\right) \in \mathcal{C}_{e_{1}} \otimes \mathcal{C}_{e_{2}}$ and similarly $\left(a_{4}, a_{5}, a_{6}\right) \in \mathcal{C}_{o_{1}} \otimes \mathcal{C}_{o_{2}} \otimes \mathcal{C}_{o_{2}}$. The converse holds in a similar way. The second part of the statement follows from the fact that φ is bijective.

The following Theorem furnishes the decompostion of the dual of the linear code \mathcal{C}.
Theorem 4. If $\mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{o}$ is a linear code over \mathcal{R} then $\mathcal{C}^{\perp}=\mathcal{C}_{1}^{\perp} \otimes \mathcal{C}_{e}^{\perp} \otimes \mathcal{C}_{o}^{\perp}$, where \mathcal{C}_{1}^{\perp}, \mathcal{C}_{e}^{\perp} and \mathcal{C}_{o}^{\perp} are duals for the respective linear codes.

Proof. Let $\mathcal{C}^{\perp}=\left\{c^{\prime} \in \mathcal{R}_{\gamma} \mid\left\langle c, c^{\prime}\right\rangle=0\right.$ for all $\left.c \in \mathcal{C}\right\}=\left\{\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \mathcal{R}_{\bigcirc} \mid x^{\prime} \in \mathbb{F}_{q}^{n_{1}}\right.$, $\left.y^{\prime} \in \mathcal{R}_{1}^{n_{2}}, z^{\prime} \in \mathcal{R}_{2}^{n_{3}}\right\}$. Let $c=(x, y, z) \in \mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{0}$. Then:

$$
\left\langle c, c^{\prime}\right\rangle=x x^{\prime}+y y^{\prime}+z z^{\prime}=0 .
$$

Thus, $x^{\prime} \in \mathcal{C}_{1}^{\perp}, y^{\prime} \in \mathcal{C}_{e}^{\perp}, z^{\prime} \in \mathcal{C}_{o}^{\perp}$ and so $\mathcal{C}^{\perp} \subseteq \mathcal{C}_{1}^{\perp} \otimes \mathcal{C}_{e}^{\perp} \otimes \mathcal{C}_{o}^{\perp}$. Since $\left|\mathcal{C}^{\perp}\right|=\left|\mathcal{C}_{1}^{\perp}\right|\left|\mathcal{C}_{e}^{\perp}\right|\left|\mathcal{C}_{o}^{\perp}\right|$, the statement holds.

The next result shows that the Gray maps is compatible with duality.
Theorem 5. If $\mathcal{C} \subseteq \mathcal{R}_{\gamma}$ is linear, then $\varphi\left(\mathcal{C}^{\perp}\right)=\varphi(\mathcal{C})^{\perp}$.
Proof. Let $(x, y, z) \in \mathcal{C}$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \mathcal{C}^{\perp}$, where $x \in \mathcal{C}_{1}, y \in \mathcal{C}_{e}, z \in \mathcal{C}_{0}$ and $x^{\prime} \in$ $\mathcal{C}_{1}^{\perp}, y^{\prime} \in \mathcal{C}_{e}^{\perp}, z^{\prime} \in \mathcal{C}_{o}^{\perp}$, then $\left\langle\left(x|y| z, x^{\prime}\left|y^{\prime}\right| z^{\prime}\right)\right\rangle=0$. Using Theorem $4, \mathcal{C}_{1}^{\perp}, \mathcal{C}_{e}^{\perp}$ and \mathcal{C}_{o}^{\perp} are duals for $\mathcal{C}_{1}, \mathcal{C}_{e}$, and \mathcal{C}_{0}. Now, we have $\varphi(x, y, z)=\left(x, \varphi_{1}(y), \varphi_{2}(z)\right), \varphi\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=$ $\left(x^{\prime}, \varphi_{1}\left(y^{\prime}\right), \varphi_{2}\left(z^{\prime}\right)\right)$, then the inner product is given by:

$$
\begin{aligned}
\left\langle\varphi(x, y, z), \varphi\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\rangle= & \left\langle\left(x, \varphi_{1}(y), \varphi_{2}(z)\right),\left(x^{\prime}, \varphi_{1}\left(y^{\prime}\right), \varphi_{2}\left(z^{\prime}\right)\right)\right\rangle \\
= & \left\langle(x, 0,0),\left(x^{\prime}, 0,0\right)\right\rangle+\left\langle\left(0, \varphi_{1}(y), 0\right),\left(0, \varphi_{1}\left(y^{\prime}\right), 0\right)\right\rangle \\
& +\left\langle\left(0,0, \varphi_{2}(z)\right),\left(0,0, \varphi_{2}\left(z^{\prime}\right)\right)\right\rangle \\
= & 0 \quad\left(\because \varphi_{1}\left(C^{\perp}\right)=\varphi_{1}(C)^{\perp}, \varphi_{2}\left(C^{\perp}\right)=\varphi_{2}(C)^{\perp}\right)
\end{aligned}
$$

Thus, $\varphi\left(\mathcal{C}^{\perp}\right) \subseteq \varphi(\mathcal{C})^{\perp}$. Since the cardinality is the same on both sides, the statement holds.

The following result provides the self duality nature of the linear code and its Gray image.

Corollary 1. If \mathcal{C} is a linear \mathcal{R}_{γ}-code, then \mathcal{C} is self-dual iff $\varphi(C)$ is self-dual. Moreover, $\varphi(C)$ is a self-orthogonal code over \mathbb{F}_{q} iff C is self-orthogonal.

Proof. Let \mathcal{C} be a self-dual linear code of length n over \mathcal{R}. Thus, $\mathcal{C}=\mathcal{C}^{\perp}$. Then, $\varphi(C)=$ $\varphi\left(C^{\perp}\right)$, and hence, by Theorem 5, we have $\varphi(\mathcal{C})=(\varphi(\mathcal{C}))^{\perp}$. Thus, $\varphi(\mathcal{C})$ is a self-dual linear code of length $n_{1}+2 n_{2}+3 n_{3}$ over \mathbb{F}_{q}. Conversely, let $\varphi(\mathcal{C})$ be a self-dual linear code of length $n_{1}+2 n_{2}+3 n_{3}$ over \mathbb{F}_{q}. Then, $\varphi(C)=(\varphi(\mathcal{C}))^{\perp}$, and hence, by Theorem 5 , we have $\varphi(\mathcal{C})=\varphi\left(\mathcal{C}^{\perp}\right)$. Since φ is bijection, $\mathcal{C}=\mathcal{C}^{\perp}$. Therefore, \mathcal{C} is a self-dual linear code over \mathcal{R}_{γ}. Similarly, the self orthogonal case holds.

4. Skew Cyclic \mathcal{R}-Codes

Let θ_{t} be a non-trivial Frobenius automorphism defined by:

$$
\theta_{t}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, \theta_{t}(a)=a^{p^{t}}
$$

where t divides m. It can be extended to \mathcal{R}_{1} and \mathcal{R}_{2} by:

$$
\theta_{t}(a+u b)=\theta_{t}(a)+u \theta_{t}(b), \theta_{t}(a+u b+v c)=\theta_{t}(a)+u \theta_{t}(b)+v \theta_{t}(b) .
$$

Since $t \mid m$, the order of automorphism θ_{t} is $\frac{m}{t}$. We define a polynomial ring $\mathcal{R}_{i}\left[x, \theta_{t}\right]$ $(1 \leq i \leq 2)$ as follows:

$$
\mathcal{R}_{i}\left[x, \theta_{t}\right]=\left\{a_{1}+\cdots+a_{n} x^{n} \mid a_{j} \in \mathcal{R}_{i}, 1 \leq j \leq n\right\}
$$

Clearly, $\mathcal{R}_{i}\left[x, \theta_{t}\right]$ is a ring with respect to usual addition and the multiplication defined by:

$$
a x^{m} b x^{n}=a \theta_{t}^{m}(b) x^{m+n}
$$

Note that it is a non-commutative ring unless θ_{t} is an identity map. A non-empty set \mathcal{C} is said to be a linear code of length n_{i} over \mathcal{R}_{i} if it is a \mathcal{R}_{i} submodule of $\mathcal{R}_{i}^{n_{i}}$. Using the above polynomial rings above, we extend the polynomial ring to \mathcal{R} by:

$$
\mathcal{R}\left[x, \theta_{t}\right]=\left\{(a(x), b(x), c(x)): a(x) \in \mathbb{F}_{q}[x], b(x) \in \mathcal{R}_{1}[x], c(x) \in \mathcal{R}_{2}[x]\right\}
$$

It can be seen that $\mathcal{R}\left[x, \theta_{t}\right]$ is a $\mathcal{R}_{2}\left[x ; \theta_{t}\right]$ submodule with respect to usual addition and multiplication defined by:

$$
\begin{aligned}
\star: \mathcal{R}_{2}[x] \times \mathcal{R}\left[x, \theta_{t}\right] & \rightarrow \mathcal{R}\left[x, \theta_{t}\right] \\
\left(a x^{s}\right) \star\left(b_{1} x^{i}, b_{2} x^{j}, b_{3} x^{k}\right) & =\left(\eta(a) x^{s} b_{1} x^{i}, \delta(a) x^{s} b_{2} x^{j}, a x^{s} b_{3} x^{k}\right) \\
& =\left(\eta(a) \theta_{t}^{s}\left(b_{1}\right) x^{s+i}, \delta(a) \theta_{t}^{s}\left(b_{2}\right) x^{s+j}, a \theta_{t}^{s}\left(b_{3}\right) x^{s+k}\right)
\end{aligned}
$$

However, under associative and distributive laws, the multiplication can be extended to $\mathcal{R}_{\gamma}\left[x ; \theta_{t}\right]=\frac{F_{q}\left[x ; \theta_{]}\right]}{\left\langle x^{n_{1}}-1\right\rangle} \times \frac{R_{1}\left[x ; \theta_{t}\right]}{\left\langle x^{n_{2}}-1\right\rangle} \times \frac{R_{2}\left[x ; \theta_{t}\right]}{\left\langle x^{n_{3}}-1\right\rangle}$ as follows:

$$
\star: \mathcal{R}_{2}\left[x ; \theta_{t}\right] \times R_{\gamma}\left[x ; \theta_{t}\right] \rightarrow R_{\gamma}\left[x ; \theta_{t}\right]
$$

$$
\begin{gathered}
r(x) \star\left(f_{1}(x)+\left\langle x^{n_{1}}-1\right\rangle, f_{2}(x)+\left\langle x^{n_{2}}-1\right\rangle, f_{3}(x)+\left\langle x^{n_{3}}-1\right\rangle\right)=\left(\eta(r(x)) f_{1}(x)+\left\langle x^{n_{1}}-1\right\rangle, \delta(r(x)) f_{2}(x)+\left\langle x^{n_{2}}-1\right\rangle,\right. \\
\left.r(x) f_{3}(x)+\left\langle x^{n_{3}}-1\right\rangle\right) .
\end{gathered}
$$

Definition 1 ([2]). We say that an \mathcal{R}-submodule \mathcal{C} of \mathcal{R}^{n} is a θ_{t}-cyclic code if for any $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C, \sigma_{1}(c)=\left(\theta_{t}\left(c_{n-1}\right), \theta_{t}\left(c_{0}\right), \ldots, \theta_{t}\left(c_{n-2}\right)\right) \in \mathcal{C}$. The operator σ_{1} is then said to be a θ_{t}-cyclic shift operator on \mathcal{R}^{n}.

Definition 2. A non-trivial \mathcal{R}_{2}-submodule \mathcal{C} of \mathcal{R}_{γ} is called a θ_{t}-cyclic code if for any $c=$ $\left(c_{0,1}, c_{1,1}, \ldots, c_{n_{1}-1,1}, c_{0, e}, c_{1, e}, \ldots, c_{n_{2}-1, e}, c_{0,0}, c_{1, o}, \ldots, c_{n_{3}-1, o}\right) \in \mathcal{C}, \sigma(c)=\left(\theta\left(c_{n_{1}-1,1}\right), \theta\left(c_{0,1}\right)\right.$ $\left., \ldots, \theta\left(c_{n_{1}-2,1}\right), \theta\left(c_{n_{2}-1, e}\right), \theta\left(c_{0, e}\right), \ldots, \theta\left(c_{n_{2}-2, e}\right), \theta\left(c_{n_{3}-1, o}\right), \theta\left(c_{0, o}\right), \ldots, \theta\left(c_{n_{3}-2, o}\right)\right) \in \mathcal{C}$. The operator σ is called a θ_{t}-cyclic shift operator on \mathcal{R}^{n}.

The following result yields the relationship between the θ_{t}-cyclic codes over \mathcal{R} and \mathbb{F}_{q}.
Theorem 6. Let $\mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{o} \subseteq \mathcal{R}_{\gamma}$ be linear. Then \mathcal{C} is a θ_{t}-cyclic code if and only if $\mathcal{C}_{1}, \mathcal{C}_{e}$ and \mathcal{C}_{0} are θ_{t}-cyclic codes of length n_{1}, n_{2} and n_{3} over $\mathbb{F}_{q}, \mathcal{R}_{1}$ and \mathcal{R}_{2} respectively.

Proof. Let $C=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{0}$ be a θ_{t}-cyclic code over \mathcal{R}. Let $z=\left(z_{1}, z_{e}, z_{0}\right) \in \mathcal{C}$, that is:

$$
z=\left(z_{0,1}, z_{1,1}, \ldots, z_{n_{1}-1,1}, z_{0, e}, z_{1, e}, \ldots, z_{n_{2}-1, e}, z_{0, o}, z_{1,0}, \ldots, z_{n_{3}-1, o}\right) \in \mathcal{C}
$$

Then, $\sigma(z)=\left(\theta\left(z_{n_{1}-1,1}\right), \theta\left(z_{0,1}\right), \ldots, \theta\left(z_{n_{1}-2,1}\right), \theta\left(z_{n_{2}-1, e}\right), \theta\left(z_{0, e}\right), \ldots, \theta\left(z_{n_{2}-2, e}\right)\right.$, $\left.\theta\left(z_{n_{3}-1, o}\right), \theta\left(z_{0,0}\right), \ldots, \theta\left(z_{n_{3}-2, o}\right)\right)=\left(\sigma\left(z_{1}\right), \sigma\left(z_{e}\right), \sigma\left(z_{0}\right)\right) \in \mathcal{C}$. From this, we can conclude that:

$$
\sigma\left(z_{1}\right) \in \mathcal{C}_{1}, \sigma\left(z_{e}\right) \in \mathcal{C}_{e} \text { and } \sigma\left(z_{0}\right) \in \mathcal{C}_{o}
$$

Hence, $\mathcal{C}_{1}, \mathcal{C}_{e}$, and \mathcal{C}_{o} are θ_{t}-cyclic code of length n_{i}. The converse holds in a similar way.

We recall the following Theorem from [9].
Theorem 7 ([9]). Let $\mathcal{C}_{0}=o_{1} \mathcal{C}_{0_{1}} \oplus o_{2} \mathcal{C}_{o_{2}} \oplus o_{3} \mathcal{C}_{o_{3}}$ be a linear code over \mathcal{R}_{2} of length n_{3}, then \mathcal{C}_{o} is θ_{t}-cyclic code iff $\mathcal{C}_{o_{i}}(1 \leq i \leq 3)$ is a θ_{t}-cyclic code of length n_{3} over \mathbb{F}_{q}.

The analogue of this result in our setting is as follows.
Theorem 8 ([8]). Let $\mathcal{C}_{e}=e_{1} \mathcal{C}_{e_{1}} \oplus e_{2} \mathcal{C}_{e_{2}}$ be a linear code over \mathcal{R}_{1} of length n_{2} then \mathcal{C}_{e} is θ_{t}-cyclic code iff $\mathcal{C}_{e_{i}}(1 \leq i \leq 2)$ is a θ_{t}-cyclic code of length n_{2} over \mathbb{F}_{q}.

Theorem 9. If $\mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{o}$ is a linear code of length $\gamma=n_{1}+n_{2}+n_{3}$, then \mathcal{C} is θ_{t}-cyclic iff $\mathcal{C}_{1}, \mathcal{C}_{e_{i}}, \mathcal{C}_{0_{j}}(1 \leq i \leq 2,1 \leq j \leq 3)$ are θ_{t}-cyclic code of length n_{1}, n_{2}, n_{3} over \mathbb{F}_{q} respecively.

Proof. We obtain the proof on combining proofs of Theorems 6-8.
These notions are well-behaved with respect to duality as the next result shows.
Theorem 10. If \mathcal{C} is a θ_{t}-cyclic code of length n, then its dual \mathcal{C}^{\perp} is also a θ_{t}-cyclic code.
Proof. From Theorem $9, \mathcal{C}_{1}, \mathcal{C}_{e_{i}}, \mathcal{C}_{o_{j}}(1 \leq i \leq 2,1 \leq j \leq 3)$ are θ_{t}-cyclic codes over \mathbb{F}_{q}. Then, $\mathcal{C}_{1}^{\perp}, \mathcal{C}_{e_{i}}^{\perp}, \mathcal{C} \stackrel{\perp}{O_{j}}(1 \leq i \leq 2,1 \leq j \leq 3)$ are θ_{t}-cyclic codes over \mathbb{F}_{q} from [29] and once again by using Theorem $9, \mathcal{C}^{\perp}$ becomes a θ_{t}-cylic code.

Recall the following result from [4].
Lemma 1 ([4]). Let C be a θ_{t}-cyclic code of length n over \mathbb{F}_{q}. Then, there exists a polynomial $f(x) \in \mathbb{F}_{q}\left[x ; \theta_{t}\right]$ such that $C=\langle f(x)\rangle$ and $x^{n}-1=g(x) f(x)$ in $\mathbb{F}_{q}\left[x ; \theta_{t}\right]$.

By assuming $o\left(\theta_{t}\right) \mid n$, the counterpart follows.
Theorem 11. Let $\mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{0}$ be a θ_{t}-cyclic code of length n over \mathcal{R} and assume that the order of θ_{t} divides n. Then, $\mathcal{C}=\left\langle B_{1}, B_{e}, B_{o}\right\rangle$, where $B_{1}=\left\langle\left(f_{1}(x), 0,0\right)\right\rangle, B_{e}=\left\langle\left(0, f_{e}(x), 0\right)\right\rangle$, and $B_{o}=\left\langle\left(b_{1}(x), b_{e}(x), f_{o}(x)\right)\right\rangle$, such that $\mathcal{C}_{1}=\left\langle f_{1}(x)\right\rangle, \mathcal{C}_{e}=\left\langle f_{e}(x)\right\rangle, \mathcal{C}_{o}=\left\langle f_{0}(x)\right\rangle, b_{1}(x) \in \mathcal{C}_{1}$ and $b_{2}(x) \in \mathcal{C}_{e}$.

Proof. Let $\mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{o}$ be a θ_{t}-cyclic code of length $\gamma=n_{1}+n_{2}+n_{3}$ over \mathcal{R}. Then, by Thereom $6, \mathcal{C}_{1}, \mathcal{C}_{e}, \mathcal{C}_{0}$ are θ_{t}-cyclic codes of length n_{i} over $\mathbb{F}_{q}, \mathcal{R}_{1}$ and \mathcal{R}_{2}. Define a homomorphism from \mathcal{C} to \mathcal{R} as follows:

$$
\begin{aligned}
\psi: \mathcal{C} & \mapsto \mathcal{R} \\
\psi\left(c_{1}(x), c_{e}(x), c_{o}(x)\right) & =\left(0,0, c_{o}(x)\right)
\end{aligned}
$$

Define:

$$
\begin{gathered}
\operatorname{ker}(\psi)=\left\{\left(c_{1}(x), c_{e}(x), 0\right): c_{1}(x) \in \mathcal{C}_{1}, c_{e}(x) \in \mathcal{C}_{e}\right\} \\
\mathcal{I}=\left\{\left(c_{1}(x), c_{e}(x)\right) \in \mathbb{F}_{q}\left[x ; \theta_{t}\right] \times \mathcal{R}_{1}\left[x ; \theta_{t}\right]:\left(c_{1}(x), c_{e}(x), 0\right) \in \operatorname{ker}(\psi)\right\}
\end{gathered}
$$

Clearly, $\mathcal{I}=\mathcal{I}_{1} \times \mathcal{I}_{e}$ forms a submodule of $\mathbb{F}_{q}\left[x ; \theta_{t}\right] \times \mathcal{R}_{1}\left[x ; \theta_{t}\right]$. Therefore, there exist a polynomial $f_{1}(x)$ and $f_{e}(x)$ in $\mathbb{F}_{q}\left[x ; \theta_{t}\right]$ and $\mathcal{R}_{1}\left[x ; \theta_{t}\right]$, respectively, generating \mathcal{I}_{1} and \mathcal{I}_{e} with $f_{1}(x) \mid x^{n_{1}}-1$ and $f_{e}(x) \mid x^{n_{e}}-1$. Thus, $\mathcal{I}=\left\langle\left(f_{1}(x), 0\right),\left(0, f_{e}(x)\right)\right\rangle$, then for any $\left(c_{1}(x), c_{e}(x), 0\right) \in \operatorname{ker}(\psi),\left(c_{1}(x), c_{e}(x)\right)=v(x) \star\left(f_{1}(x), 0\right),\left(0, f_{e}(x)\right)$ for some $v(x) \in$
$\mathcal{R}_{1}\left[x ; \theta_{t}\right]$. Finally, it leads to $\operatorname{ker}(\psi)=\left\langle\left(f_{1}(x), 0,0\right),\left(0, f_{e}(x), 0\right)\right\rangle$. The fact that \mathcal{C} is a submodule implies that $\psi(\mathcal{C})$ is a submodule. By using the first isomorphism theorem:

$$
\mathcal{C} / \operatorname{ker}(\psi) \cong \psi(\mathcal{C})
$$

Let $\left(b_{1}(x), b_{e}(x), f_{o}(x)\right) \in \mathcal{C}$, then $\psi\left(b_{1}(x), b_{e}(x), f_{o}(x)\right)=\left(0,0, f_{o}(x)\right)$. From this, any $\theta_{t^{-}}$ cyclic code of length n can be represented by $\mathcal{C}=\left\langle\left(f_{1}(x), 0,0\right)\left(0, f_{e}(x), 0\right),\left(b_{1}(x), b_{e}(x), f_{0}(x)\right)\right\rangle$, where $f_{1}(x)\left|\left(x^{n_{1}}-1\right), f_{e}(x)\right|\left(x^{n_{2}}-1\right)$ and $f_{o}(x) \mid\left(x^{n_{3}}-1\right)$.

Furthermore, we have \mathcal{C} is θ_{t}-cyclic, then \mathcal{C}_{k}, where $k \in\left\{1, e_{1}, e_{2}, o_{1}, o_{2}, o_{3}\right\}$ is skew θ_{t}-cyclic code over \mathbb{F}_{q} with respective lengths. From Theorem $3,|\mathcal{C}|=\left|\mathcal{C}_{1}\right| \prod_{i=1}^{i=2}\left|C_{e_{i}}\right|$ $\prod_{j=1}^{j=3}\left|C_{o_{j}}\right|$, since each \mathcal{C}_{k} is θ_{t}-cyclic it is generated by a polynomial $f_{k}(x)$, and thus, $|\mathcal{C}|=q^{\gamma-\sum_{i=1}^{6} \epsilon_{k}}$, where $\gamma=n_{1}+2\left(n_{2}\right)+3\left(n_{3}\right)$. The following Theorem provides the generator polynomials for θ_{t}-cylic codes over \mathbb{F}_{q}.

Theorem 12. Let $\mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{o}$ be a skew cyclic code over \mathcal{R} of length $\gamma=n_{1}+n_{2}+n_{3}$. Then, there exists a polynomial:
(i) $f_{1}(x) \in \mathbb{F}_{q}\left[x ; \theta_{t}\right]$ such that $\mathcal{C}_{1}=\left\langle f_{1}(x)\right\rangle$ and $x^{n_{1}}-1=g_{1}(x) f_{1}(x)$.
(ii) $f_{e}(x) \in \mathcal{R}_{1}\left[x ; \theta_{t}\right]$ such that $\mathcal{C}_{e}=\left\langle f_{e}(x)\right\rangle$ and $x^{n_{2}}-1=g_{e}(x) f_{e}(x)$ where $f_{e}(x)=$ $\sum_{i=1}^{2} e_{i} f_{e_{i}}(x)$.
(iii) $f_{0}(x) \in \mathcal{R}_{2}\left[x ; \theta_{t}\right]$ such that $\mathcal{C}_{0}=\left\langle f_{0}(x)\right\rangle$ and $x^{n_{3}}-1=g_{o}(x) f_{o}(x)$ where $f_{o}(x)=$ $\sum_{i=1}^{3} o_{i} f_{o_{i}}(x)$.

Proof. Let \mathcal{C} be a θ_{t}-cyclic code of length $\gamma=n_{1}+n_{2}+n_{3}$. From Theorem 6, we have that $\mathcal{C}_{1}, \mathcal{C}_{e}$, and \mathcal{C}_{0} are θ_{t}-cyclic codes. Using Lemma 1 , (i) follows.

Then, the proof of (ii) is as follows. Let $\mathcal{C}_{e}=e_{1} \mathcal{C}_{e_{1}} \oplus e_{2} \mathcal{C}_{e_{2}}$ be a θ_{t}-cyclic code of length n_{2} over \mathcal{R}_{1}. Thereom 7 says that, $\mathcal{C}_{e_{1}}$ and $\mathcal{C}_{e_{2}}$ are θ_{t}-cyclic codes of length n_{2} over \mathbb{F}_{q}. Lemma 1 says that we have $\mathcal{C}_{i}=\left\langle f_{e_{i}}(x)\right\rangle$ and $x^{n_{2}}-1=g_{e_{i}}(x) f_{e_{i}}(x)$ in $\mathbb{F}_{q}\left[x ; \theta_{t}\right]$ for $i \in\{1,2\}$. Then, $e_{i} f_{e_{i}}(x) \in \mathcal{C}$ for $i \in\{1,2\}$. Also, for any $f_{e}(x) \in \mathcal{C}$, we have $f_{e}(x)=\sum_{i=1}^{2} e_{i} h_{e_{i}}(x) f_{e_{i}}(x)$, where $h_{e_{i}}(x) \in \mathbb{F}_{q}\left[x ; \theta_{t}\right]$ for $i \in\{1,2\}$. Thus, $f_{e}(x) \in$ $\left\langle e_{1} f_{e_{1}}(x), e_{2} f_{e_{2}}(x)\right\rangle$. Therefore, $\mathcal{C}=\left\langle e_{1} f_{e_{1}}(x), e_{2} f_{e_{2}}(x)\right\rangle$. As $x^{n_{2}}-1=g_{e_{i}}(x) f_{e_{i}}(x)$ in $\mathbb{F}_{q}\left[x ; \theta_{t}\right]$ for $i \in\{1,2\}$. Let $f_{e}(x)=e_{1} f_{e_{1}}(x)+e_{2} f_{e_{2}}(x) \in \mathcal{R}_{1}\left[x ; \theta_{t}\right]$. Then, $f_{e}(x) \in C$. On the other hand $e_{i} f_{e_{i}}(x)=e_{i} f_{e}(x) \in\left\langle f_{e}(x)\right\rangle$ for $i=1,2$. Consequently, $\mathcal{C}=\left\langle f_{e}(x)\right\rangle$. Furthermore, $\left[\sum_{i=1}^{2} e_{i} g_{e_{i}}(x)\right] f_{e}(x)=\sum_{i=1}^{2} e_{i} g_{e_{i}}(x) f_{e_{i}}(x)=\sum_{i=1}^{2} e_{i}\left(x^{n_{2}}-1\right)=x^{n_{2}}-1$. Then, $x^{n_{2}}-1=g_{e}(x) f_{e}(x)$ in $\mathcal{R}_{1}\left[x ; \theta_{t}\right]$, where $g_{e}(x)=\sum_{i=1}^{2} e_{i} g_{e_{i}}(x)$. Thus, (ii) follows. (iii) is similar to the proof of $(i i)$.

5. Skew Constacyclic Code over \mathcal{R}

In this section, we study skew θ_{t}-constacyclic codes over \mathcal{R}. We choose a unit element $\alpha \in \mathcal{R}_{2}^{*}$ such that α satisfies the condition $\alpha^{2}=1,(\alpha=1,-1, \cdots)$.

Definition 3. Let $\alpha_{i} \in \mathbb{F}_{p^{t}} \backslash\{0\}$. A linear code $\mathcal{C} \subseteq \mathcal{R}_{\gamma}[x, \theta]$ is called skew $\alpha=\alpha_{1}+u \alpha_{2}+v \alpha_{3}-$ constacyclic code if it is invariant under the cyclic shift operator λ_{α}, which is whenever:

$$
\begin{aligned}
c= & \left(x_{0}, x_{1}, \cdots, x_{n_{1}-1}, y_{0}, y_{1}, \cdots, y_{n_{2}-1}, z_{0}, z_{1}, \cdots, z_{n_{3}-1}\right) \in \mathcal{C} \\
\lambda_{\alpha}(c)= & \left(\alpha_{1} \theta_{t}\left(x_{n_{1}-1}\right), \theta_{t}\left(x_{0}\right), \cdots, \theta_{t}\left(x_{n_{1}}\right),\left(\alpha_{1}+u \alpha_{2}\right) \theta_{t}\left(y_{n_{1}-1}\right), \theta_{t}\left(y_{1}\right), \cdots, \theta_{t}\left(y_{n_{2}-2}\right),\right. \\
& \left.\left(\alpha_{1}+u \alpha_{2}+v \alpha_{3}\right) \theta_{t}\left(z_{n_{3}-1}\right), \theta_{t}\left(z_{0}\right), \cdots, \theta_{t}\left(z_{n_{3}-2}\right)\right) \in \mathcal{C}
\end{aligned}
$$

The following two results translate symmetry conditions into algebraic constraints. We give the first result without proof.

Theorem 13. Let $R_{n, \lambda}=R\left[x ; \theta_{t}\right] /\left\langle x^{n}-\lambda\right\rangle$. A linear code C of length n over R is $\left(\theta_{t}, \lambda\right)$-cyclic code if and only if C is a left $R\left[x ; \theta_{t}\right]$-submodule of $R_{n, \lambda}$.

The second result is less immediate.
Theorem 14. A code \mathcal{C} is skew α-cyclic code over $\mathcal{R}_{\gamma}=\frac{\mathbb{F}_{q}\left[x, \theta_{\theta}\right]}{x^{n_{1}}-\alpha} \times \frac{\mathcal{R}_{1}\left[x, \theta_{t}\right]}{x^{n} 2-\alpha} \times \frac{\mathcal{R}_{2}\left[x, \theta_{t}\right]}{x^{n} 3-\alpha}$ iff \mathcal{C} is a left $\mathcal{R}_{2}\left[x, \theta_{t}\right]$ module over \mathcal{R}_{γ}.

Proof. Let \mathcal{C} be a skew α-cyclic code. Then, by definition $x \star(f(x)|g(x)| h(x)) \in \mathcal{C}$:

$$
\begin{array}{r}
x \star(f(x)|g(x)| h(x))=\left(\theta_{t}\left(f_{0}\right) x+\theta_{t}\left(f_{1}\right) x^{2}+\cdots+\alpha_{1} \theta_{t}\left(f_{n_{1}-1}\right), \theta_{t}\left(g_{0}\right) x+\theta_{t}\left(g_{1}\right) x^{2}+\cdots+\left(\alpha_{1}+u \alpha_{2}\right) \theta_{t}\left(g_{n_{2}-1}\right),\right. \\
\left.\theta_{t}\left(h_{0}\right) x+\theta_{t}\left(h_{1}\right) x^{2}+\cdots+\left(\alpha_{1}+u \alpha_{2}+v \alpha_{3}\right) \theta_{t}\left(h_{n_{3}-1}\right)\right) \in \mathcal{C}
\end{array}
$$

Moreover, by using linearity of \mathcal{C} :

$$
r(x) \star\left(g_{1}(x)\left|g_{2}(x)\right| g_{3}(x)\right) \in \mathcal{C}
$$

for some $r(x) \in \mathcal{R}_{2}\left[x, \theta_{t}\right]$. Hence, \mathcal{C} is an left $\mathcal{R}_{2}\left[x, \theta_{t}\right]$ submodule over \mathcal{R}_{γ}. Conversely, assume that \mathcal{C} is an left $\mathcal{R}_{2}\left[x, \theta_{t}\right]$ submodule over \mathcal{R}_{γ}, then we have $x \star(f(x)|g(x)| h(x)) \in \mathcal{C}$ implies \mathcal{C} is skew α-cyclic code.

Theorem 15. The code $\mathcal{C}_{o} \subseteq \mathcal{R}_{2}^{n}$ is skew $\alpha=\alpha_{1}+u \alpha_{2}+v \alpha_{3}$-cyclic of length n iff $\mathcal{C}_{o_{1}}, \mathcal{C}_{o_{2}}$, and $\mathcal{C}_{0_{3}}$ are skew $\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}$-cyclic codes over \mathbb{F}_{q} of length n.

Proof. Let \mathcal{C}_{0} be a skew α-cyclic code. Let $a=x o_{1}+y o_{2}+z o_{3} \in \mathcal{C}_{0}$, where $x=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \in \mathcal{C}_{o_{1}}, y=\left(y_{0}, y_{1}, \cdots, y_{n-1}\right) \in \mathcal{C}_{o_{2}}$ and $x=\left(z_{0}, z_{1}, \cdots, z_{n-1}\right) \in \mathcal{C}_{o_{3}}$. Then, we have by definiton, $\lambda_{\alpha}(x) \in \mathcal{C}_{0}$,

$$
\left.\begin{array}{rl}
\lambda_{\alpha}\left(o_{1}\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)+o_{2}\left(y_{0}, y_{1}, \cdots+y_{n-1}\right)\right. \\
\left.+o_{3}\left(z_{0}, z_{1}, \cdots, z_{n-1}\right)\right)
\end{array} \quad=\quad \begin{array}{c}
\left(\left(\alpha_{1}+u \alpha_{2}+v \alpha_{3}\right) \star o_{1}\left(\theta_{t}\left(x_{n-1}\right), \theta_{t}\left(x_{0}\right), \cdots, \theta_{t}\left(x_{n-2}\right)\right)+\right. \\
\\
\\
\left(\alpha_{1}+u \alpha_{2}+v \alpha_{3}\right) \star o_{2}\left(\theta_{t}\left(y_{n-1}\right), \theta_{t}\left(y_{0}\right), \cdots+\theta_{t}\left(y_{n-2}\right)\right)+ \\
\\
\\
\\
\\
\\
\\
\\
\end{array} \alpha_{1}+u \alpha_{2}+v \alpha_{3}\right) \star o_{o_{1}}\left(\theta_{t}\left(z_{n-1}\right), \theta_{t}\left(z_{0}\right), \cdots, \lambda_{\alpha_{1}+\alpha_{2}}(y)+\lambda_{\alpha_{1}+\alpha_{3}}(z) \in \mathcal{C}_{0}\right)
$$

Hence, $\mathcal{C}_{0_{1}}, \mathcal{C}_{o_{2}}$, and $\mathcal{C}_{o_{3}}$ are skew $\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}$-cyclic codes over \mathbb{F}_{q} of length n.
Conversely, assume that $\mathcal{C}_{0_{1}}, \mathcal{C}_{0_{2}}$ and $\mathcal{C}_{0_{3}}$ are skew $\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}$-cyclic codes over \mathbb{F}_{q} of length n. Let $m_{0}, m_{1}, \cdots, m_{n-1}$ be an element in \mathcal{C}_{0}, where $m_{i}=o_{1} x_{i}+o_{2} y_{i}+o_{3} z_{i}$ such that $x=\left(x_{0}, x_{2}, \cdots, x_{n-1}\right) \in \mathcal{C}_{o_{1}}, y=\left(y_{0}, y_{2}, \cdots, y_{n-1}\right) \in \mathcal{C}_{o_{2}}$ and $z=\left(z_{0}, z_{2}, \cdots, z_{n-1}\right) \in$ $\mathcal{C}_{0_{3}}$. Then we have $\lambda_{\alpha_{1}}(x) \in \mathcal{C}_{0_{1}}, \lambda_{\alpha_{1}+\alpha_{2}}(y) \in \mathcal{C}_{o_{2}}$ and $\lambda_{\alpha_{1}+\alpha_{3}}(z) \in \mathcal{C}_{0_{3}}$. So we get,

$$
\begin{aligned}
o_{1} \lambda_{\alpha_{1}}(x)+o_{2} \lambda_{\alpha_{1}+\alpha_{2}}(y)+o_{3} \lambda_{\alpha_{1}+\alpha_{3}}(z)= & o_{1} \lambda_{\alpha_{1}}\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)+o_{2} \lambda_{\alpha_{1}+\alpha_{2}}\left(y_{0}, y_{1}, \cdots+y_{n-1}\right) \\
& +o_{3} \lambda_{\alpha_{1}+\alpha_{3}}\left(z_{0}, z_{1}, \cdots, z_{n-1}\right) \in \mathcal{C} \\
= & \lambda_{\alpha}\left(m_{0}, m_{1}, \cdots, m_{n-1}\right) \in \mathcal{C}
\end{aligned}
$$

Hence, \mathcal{C} is skew α-cyclic code over \mathcal{R}_{2}^{n}.
Theorem 16. \mathcal{C}_{e} be a a skew $\alpha=\alpha_{1}+u \alpha_{2}$-cyclic code over \mathcal{R}_{1} iff $\mathcal{C}_{e_{1}}$ and $\mathcal{C}_{e_{2}}$ are skew $\alpha_{1}+\alpha_{2}$ and α_{1}-cyclic codes over $\mathbb{F}_{\|}$.

Proof. The proof is similar to Theorem 15 taking mod v to the above condition.
Theorem 17. \mathcal{C} be a skew $\alpha=\alpha_{1}+u \alpha_{2}+v \alpha_{3}$-cyclic code over \mathcal{R} of length $\gamma=n_{1}+n_{2}+n_{3}$ iff $\mathcal{C}_{1}, \mathcal{C}_{e}$ and \mathcal{C}_{o} are $\alpha_{1}, \alpha_{1}+u \alpha_{2}$, and $\alpha_{1}+u \alpha_{2}+v \alpha_{3}$-cyclic codes over $\mathbb{F}_{q}, \mathcal{R}_{1}$ and \mathcal{R}_{2}, respectively.

Proof. $\mathcal{C}_{1}, \mathcal{C}_{e}$ and \mathcal{C}_{0} be $\alpha_{1}, \alpha_{1}+u \alpha_{2}$, and $\alpha_{1}+u \alpha_{2}+v \alpha_{3}$-cyclic. Consider $x=\left(x_{0}, x_{1}, \cdots, x_{n_{1}-1}\right)$, $y=\left(y_{0}, y_{1}, \cdots, y_{n_{2}-1}\right)$ and $z=\left(z_{0}, z_{1}, \cdots, z_{n_{3}-1}\right)$. Consider $\alpha_{1}+u \alpha_{2}=\beta$. Then, we have:

$$
(x, y, z) \in \mathcal{C} \Longrightarrow\left(\lambda_{\alpha_{1}}(x), \lambda_{\beta}(y), \lambda_{\alpha}(y)\right) \in \mathcal{C}
$$

Hence, \mathcal{C} is skew α-cyclic. The converse part holds similarly.
Theorem 18. \mathcal{C} be a skew α-cyclic code of length $\gamma=n_{1}+n_{2}+n_{3}$ iff \mathcal{C}_{1} is skew α_{1}-cyclic code of length $n_{1}, \mathcal{C}_{e_{1}}$, and $\mathcal{C}_{e_{2}}$ are $\alpha_{1}+\alpha_{2}, \alpha_{1}$-cyclic codes of length n_{2} and $\mathcal{C}_{0_{1}}, \mathcal{C}_{0_{2}}$, and $\mathcal{C}_{0_{3}}$ are skew $\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{3}$-cyclic codes over \mathbb{F}_{q} of length n_{3}.

Proof. Using Theorems 15-17 the result follows.
Theorem 19. \mathcal{C} be a skew $\alpha=\alpha_{1}+u \alpha_{2}+v \alpha_{3}$-cyclic code over \mathcal{R} of length $\gamma=n_{1}+n_{2}+n_{3}$ iff $\mathcal{C}_{1}^{\perp}, \mathcal{C}_{e}^{\perp}$, and \mathcal{C}_{o}^{\perp} are $\left(\alpha_{1}\right)^{-1},\left(\alpha_{1}+u \alpha_{2}\right)^{-1}$, and $\left(\alpha_{1}+u \alpha_{2}+v \alpha_{3}\right)^{-1}$-cyclic.

Proof. Let \mathcal{C} be a skew α-cyclic code, Lemma 3.1 [5] says that \mathcal{C}^{\perp} is skew $\left(\alpha_{1}+u \alpha_{2}+v \alpha_{3}\right)^{-1}{ }_{-}$ cyclic code. From Theorem 17, we have $\mathcal{C}_{1}^{\perp}, \mathcal{C}_{e}^{\perp}$ and \mathcal{C}_{o}^{\perp} are skew $\left(\alpha_{1}\right)^{-1},\left(\alpha_{1}+u \alpha_{2}\right)^{-1}$ and $\left(\alpha_{1}+u \alpha_{2}+v \alpha_{3}\right)^{-1}$-cyclic.

Corollary 2. Let $\mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{0}$. be a skew $\alpha=\alpha_{1}+u \alpha_{2}+v \alpha_{3}$-cyclic code over \mathcal{R} of length $\gamma=n_{1}+n_{2}+n_{3}$. Then, there exist polynomials:
(i) $f_{1}(x) \in \mathbb{F}_{q}\left[x ; \theta_{t}\right]$ such that $\mathcal{C}_{1}=\left\langle f_{1}(x)\right\rangle$ and $x^{n_{1}}-\alpha_{1}=g_{1}(x) f_{1}(x)$.
(ii) $f_{e}(x) \in \mathcal{R}_{1}\left[x ; \theta_{t}\right]$ such that $\mathcal{C}_{e}=\left\langle f_{e}(x)\right\rangle$ and $x^{n_{2}}-\left(\alpha_{1}+u \alpha_{2}\right)=g_{e}(x) f_{e}(x)$.
(iii) $f_{o}(x) \in \mathcal{R}_{2}\left[x ; \theta_{t}\right]$ such that $\mathcal{C}_{o}=\left\langle f_{o}(x)\right\rangle$ and $x^{n_{3}}-\left(\alpha_{1}+u \alpha_{2}+v \alpha_{3}\right)=g_{o}(x) f_{o}(x)$.

Proof. The proof is similar to the proof of Theorem 12.
Theorem 20. Let $\mathcal{C}=\mathcal{C}_{1} \otimes \mathcal{C}_{e} \otimes \mathcal{C}_{0}$ be a θ_{t}-constacyclic code of length γ over \mathcal{R}. Then $\mathcal{C}=$ $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{o}\right\rangle$, where $\mathcal{B}_{1}=\left\langle\left(f_{1}(x), 0,0\right)\right\rangle, B_{1}=\left\langle\left(0, f_{e}(x), 0\right)\right\rangle$, and $B_{1}=\left\langle\left(b_{1}(x), b_{e}(x), f_{o}(x)\right)\right\rangle$.

Proof. The proof is similar to the proof of Theorem 11.
Example 1. Let $q=9$ and $\mathbb{F}_{9}=\mathbb{F}_{3}[z]$ with $z^{2}+1=0$. Consider the ring $R_{\gamma}=\frac{\mathbb{F}_{9}\left[x, \theta_{3}\right]}{x^{4}-1} \times$ $\frac{\mathcal{R}_{1}\left[x, \theta_{3}\right]}{x^{5}-1} \times \frac{\mathcal{R}_{2}\left[x, \theta_{3}\right]}{x^{5}-1}$, where θ_{3} is the Frobenius automorphism defined by $\theta_{3}(a)=a^{3}$ for any $a \in \mathbb{F}_{9}$.
$x^{4}-1=(x+1)(x+2)(x+z)(x+2 z) \in \mathbb{F}_{9}\left[x, \theta_{3}\right]$
$x^{5}-1=(x+2)\left(x^{4}+x^{3}+x^{2}+x+1\right) \in \mathbb{F}_{9}\left[x, \theta_{3}\right]$
$f_{1}(x)=\langle(x+1)\rangle, f_{e}(x)=\left\langle e_{1}(x+2)+e_{2}(x+2)\right\rangle, f_{o}(x)=\left\langle o_{1}(x+2)+o_{2}(x+2)+\right.$
$\left.o_{3}(x+2)\right\rangle$ By Theorem 12, we have that f_{i} divides $x^{n_{i}}-1$ for $(i=1, e, o)$, yielding a code with parameter $[29,18,2]$ over \mathbb{F}_{9}.

Example 2. Let $q=25$ and $\mathbb{F}_{25}=\mathbb{F}_{5}[z]$ with $z^{2}+z+1=0$. Consider the ring $R_{\gamma}=$ $\frac{\mathbb{F}_{25}\left[x, \theta_{5}\right]}{x^{4}-1} \times \frac{\mathcal{R}_{1}\left[x, \theta_{5}\right]}{x^{6}-1} \times \frac{\mathcal{R}_{2}\left[x, \theta_{5}\right]}{x^{4}-1}$, where θ_{5} is the Frobenius automorphism defined by $\theta_{5}(a)=a^{5}$ for any $a \in \mathbb{F}_{25}$. Write

$$
x^{4}-1=(x+2)(x+3)(x+z)(x+z+1) \in \mathbb{F}_{25}\left[x, \theta_{5}\right]
$$

$x^{6}-1=\left(x^{2}-1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) \in \mathbb{F}_{25}\left[x, \theta_{5}\right]$
$f_{1}(x)=\langle(x+2)\rangle, f_{e}(x)=\left\langle e_{1}\left(x^{2}-1\right)+e_{2}\left(x^{2}-1\right)\right\rangle, f_{o}(x)=\left\langle o_{1}(x+z+1)+o_{2}(x+\right.$ $\left.z+1)+o_{3}(x+z+1)\right\rangle$ By Theorem 12, we have that f_{i} divides $x^{n_{i}}-1$ for $(i=1, e, o)$ yielding a code with parameter $[28,20,2]$ over \mathbb{F}_{25}.

6. Conclusions and Open Problems

In this note, we have studied the algebraic and metric structure of skew cyclic and skew constacyclic codes over a special mixed alphabet. Thus, our codes have a structure of
module over the largest of the three alphabets \mathcal{R}_{2}. Codes over the product ring $\mathbb{F}_{q} \times \mathcal{R}_{1} \times$ \mathcal{R}_{2} would be modules over that larger ring. The two algebraic structures are different and should not be confused.

The present work leads itself to two paths of generalization: consider different mixed alphabets or replace the concepts of cyclicity by that of quasi-cyclicity. The former path seems easier than the latter, in view of the many examples of rings that have been used as alphabets of cyclic codes in recent years. On the other hand, the structure of quasi-cyclic codes is always more subtle than that of cyclic codes.

Author Contributions: Conceptualization, K.G., C.D., S.Ç. and P.S.; Methodology, C.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Berlekamp, E.R. Negacyclic codes for the Lee metric. In Combinatorial Mathematics; Bose, R.C., Dowling, T.A., Eds.; University of North Carolian Press: Chapel Hill, NC, USA, 1969; pp. 298-316.
2. Boucher, D.; Geiselmann, W.; Ulmer, F. Skew cyclic codes. Appl. Algebra Eng. Comm. 2007, 18, 379-389. [CrossRef]
3. Boucher, D.; Sol, P.; Ulmer, F. Skew constacyclic codes over Galois rings. Adv. Math. Commun. 2011, 2, 273-292. [CrossRef]
4. Siap, I.; Abualrub, T.; Aydin, N.; Seneviratne, P. Skew cyclic codes of arbitrary length. Int. J. Inf. Coding Theory 2011, 2, $10-20$. [CrossRef]
5. Jitman, S.; Ling, S.; Udomkavanich, P. Skew constacyclic codes over finite chain ring. Adv. Math. Commun. 2012, 6, 39-63.
6. Abualrub, T.; Aydin, N.; Seneviratne, P. On θ-cyclic codes over $F_{2}+v F_{2}$. Aust. J. Comb. 2012, 54, 115-126.
7. Ashraf, M.; Mohammad, G. Skew cyclic codes $\mathbb{F}_{3}+v \mathbb{F}_{3}$. Int. J. Inf. Coding Theory 2014, 24, 218-225.
8. Gursoy, F.; Siap, I.; Yildiz, B. Construction of skew cyclic codes over $\mathbb{F}_{q}+v \mathbb{F}_{q}$. Adv. Math. Commun. 2014, 8, 313-322. [CrossRef]
9. Ashraf, M.; Mohammad, G. Skew cyclic codes $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$. Asian-Eur. J. Math. 2018, 115, 1850072. [CrossRef]
10. Dertli, A.; Cengellenmis, Y. Skew cyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}+u v \mathbb{F}_{q}$. J. Sci. Arts 2017, 2, 215-222.
11. Yao, T.; Shi, M.; Sole, P. On Skew cyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}+u v \mathbb{F}_{q}$. J. Algebra Comb. Discret. Struct. Appl. 2015, 2, 163-168.
12. Gao, J.; Ma, F ; Fu, F. Skew constacyclic codes over the ring $\mathbb{F}_{q}+v \mathbb{F}_{q}$. Appl. Comput. Math. 2017, 6, 286-295.
13. Islam, H.; Prakash, O . Skew cyclic and skew $\left(\alpha_{1}+u \alpha_{2}+v \alpha_{3}+u v \alpha_{4}\right)$-constacyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}+u v \mathbb{F}_{q}$. Int. J. Inf. Coding Theory 2018, 5, 101-116.
14. Islam, H.; Prakash, O. A note on skew constacyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$. Discret. Math. Algorithms Appl. 2019, 11, 1950030. [CrossRef]
15. Bhardwaj, S.; Raka, M. Skew constacyclic codes over a non-chain ring $\mathbb{F}_{q}[u, v] /\langle f(u), g(v), u v-v u\rangle$. arXiv 2019, arXiv:1905.12933.
16. Borges, J.; Fernandez-Cordoba, C.; Pujol, J.; Rifa, J. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: Generator matrices and duality. Des. Codes Cryptogr. 2010, 54, 167-179. [CrossRef]
17. Fernandez-Cordoba, C.; Pujol, J.; Villanueva, M. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: Rank and kernel. Des. Codes Cryptogr. 2010, 56, 43-59. [CrossRef]
18. Rifa-Pous, H.; Rifa, J.; Ronquillo, L. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive perfect codes in steganography. Adv. Math. Commun. 2011, 5, 425-433.
19. Aydogdu, I.; Siap, I. The structure of $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$-additive codes: Bounds on the minimum distance. Appl. Math. Inf. Sci. 2013, 7, 2271-2278. [CrossRef]
20. Aydogdu, I.; Siap, I. On $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive codes. Linear Multilinear Algebra 2015, 63, 2089-2102. [CrossRef]
21. Shi, M.; Wu, R.; Krotov, D.S. On $\mathbb{Z}_{p} \mathbb{Z}_{p^{k}}$-additive codes and their duality. IEEE Trans. Inf. Theory 2018, 65, 3842-3847.
22. Yao, T.; Zhu, S. $\mathbb{Z}_{p} \mathbb{Z}_{p}$-additive cyclic codes are asymptotically good. Cryptogr. Commun. 2020, 12, 253-264. [CrossRef]
23. Yao, T.; Zhu, S.; Kai, X. Asymptotically good $\mathbb{Z}_{p^{r}} \mathbb{Z}_{p^{s}}$-additive cyclic codes. Finite Fields Appl. 2020, 63, 101633. [CrossRef]
24. Abualrub, T.; Siap, I.; Aydin, N. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Additive cyclic codes. IEEE Trans. Inform. Theory 2014, 60, 1508-1514. [CrossRef]
25. Borges, J.; Fernandez-Cordoba, C.; Ten-Valls, R. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inform. Theory 2016, 62, 6348-6354. [CrossRef]
26. Aydogdu, I.; Abualrub, T.; Siap, I. On $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive codes. Int. J. Comput. Math. 2015, 92, 1806-1814. [CrossRef]
27. Aydogdu, I.; Abualrub, T.; Siap, I. The $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-cyclic and constacyclic codes. IEEE Trans. Inform. Theory 2016, 63, 4883-4893. [CrossRef]
28. Srinivasulu, B.; Maheshanand, B. The $\mathbb{Z}_{2}\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)$-additive cyclic codes and their duals. Discret. Math. Algorithms Appl. 2016, 8, 1793-8317. [CrossRef]
29. Boucher, D.; Ulmer, F. Coding with skew polynomial rings. J. Symb. Comput. 2009, 44, 1644-1656. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

