
HAL Id: hal-04590586
https://hal.science/hal-04590586v1

Preprint submitted on 11 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ktirio Urban Building: A Computational Framework for
City Energy Simulations Enhanced by CI/CD

Innovations on EuroHPC Systems
Christophe Prud’Homme, Vincent Chabannes, Luca Berti, Maryam Maslek,

Philippe Pincon, Javier Cladellas, Abdoulaye Diallo

To cite this version:
Christophe Prud’Homme, Vincent Chabannes, Luca Berti, Maryam Maslek, Philippe Pincon, et al..
Ktirio Urban Building: A Computational Framework for City Energy Simulations Enhanced by CI/CD
Innovations on EuroHPC Systems. 2024. �hal-04590586�

https://hal.science/hal-04590586v1
https://hal.archives-ouvertes.fr

Ktirio Urban Building: A Computational Framework for City
Energy Simulations Enhanced by CI/CD Innovations on EuroHPC

Systems

Luca Berti1, Vincent Chabannes1[0009−0005−3602−3524], Javier Cladellas1[0009−0003−8687−7881], Abdoulaye
Diallo1[0009−0006−8731−0547], Maryam Maslek Elayam1[0000−0003−0880−5180], Philippe

Pinçon1[0009−0009−7724−3055], and Christophe Prud’homme1[0000−0003−2287−2961]

Cemosis, IRMA UMR 7501, University of Strasbourg, CNRS
{vincent.chabannes,christophe.prudhomme}@cemosis.fr

Abstract. The building sector in the European Union significantly impacts energy consumption and
greenhouse gas emissions. The EU’s Horizon 2050 initiative sets ambitious goals to reduce these impacts
through enhanced building renovation rates. The CoE HiDALGO2 supports this initiative by develop-
ing high-performance computing solutions, specifically through the Urban Building pilot application,
which utilizes advanced CI/CD methodologies to streamline simulation and deployment across various
computational platforms, such as the EuroHPC JU supercomputers. The present work provides an
overview of the Ktirio Urban Building framework (KUB), starting with an overview of the workflow
and a description of some of the main ingredients of the software stack and discusses some current
results performed on EuroHPC JU supercomputers using an innovative CI/CD pipeline.

Keywords: HPC, HPCOps, Urban building, City Energy Simulation.

1 Introduction

The building sector accounts for approximately 40% of final energy consumption and 36% of greenhouse
gas emissions within the European Union [5]. In response, the EU has established ambitious targets under
the Horizon 2050 framework to double energy renovation rates over the next decade [6], highlighting the
need for innovative solutions to drive these initiatives forward. The Centre of Excellence (CoE) HiDALGO2
project, focusing on high-performance computing and advanced simulations, is at the forefront of tackling
this challenge, mainly through its Urban Building pilot application.

The Ktirio Urban Building (KUB) pilot in CoE HiDALGO2 aims to leverage high-performance computing
to enhance city energy simulation for better energy management and air quality assessment. Advanced
simulation tools predict energy consumption, thermal comfort, and indoor air quality across both the building
and urban scales. These simulations support detailed individual building-level analysis and extend to broader
urban environments, influencing urban planning and policy-making. KUB is part of the platform Ktirio [3]
which itself is based on Feel++ [10].

Building on the foundations of the Feel++ framework, our project introduces an innovative CI/CD envi-
ronment specifically designed for deployment on EuroHPC JU supercomputers. This environment enhances
our ability to develop and test simulations rapidly and provides a robust platform for deploying these sim-
ulations at scale. Integrating EuroHPC JU infrastructures represents a significant advancement in making
high-performance computing resources accessible for urban simulation studies.

Thanks to synergies with another CoE HiDALGO2 pilot, the KUB project is set to integrate building
simulations with urban air pollution (UAP) models to comprehensively assess the environmental impact of
building stocks soon. This integration improves the predictive accuracy of the simulations by incorporating
real-time data such as wind speed and solar radiation, enhancing the models’ responsiveness to environmental
conditions.

Implementing these objectives will facilitate more informed urban planning decisions, support policy
development for energy efficiency, and contribute to reducing urban greenhouse gas emissions. The project

also focuses on enhancing the interaction between different environmental models to provide a holistic view
of urban ecosystems.

The paper is organized as follows: Section 2 discusses KUB’s current workflow, Section 3 provides an
overview of some modeling and simulation components, and finally, Section 4 delves into the CI/CD processes
from standard DevOps to HPCops tailored for EuroHPC environments.

2 Ktirio Urban Building Workflow

UBEM generator

Weather file

weather data

gis
data

gis2mo

Ktirio
GUI

Buildings data

site
information

gis
data

Location

WRF

mo2fmu

mo files

Process

Manual input

Preparation

Data

Stored data

Developed by UBM

Other HIDALGO2 use cases

----- Optional operation

3D
mesh

gis2feelpp

feelpp2fmu

feel++ files

partitionner

Partitionned
3D mesh

Partitionned
gis data

Coupling

Radiative Heat
Transfer

Shading masks

View factors

Urban Building
Energy Model

scenarios scenarios +
intgains

UBEM Simulator Final output

UAP
Simulator

Intermediate
UBEM output

Intermediate
UAP output

Open- Source
weather data

Regulatory
weather data

Weather Data
Transformer

Inference data from
construction year

Urban scale
energy analysis

Not yet implemented

Other Pilot

Generated/computed by UBM

Fig. 1: Current Urban Building Workflow from localization to city energy simulation report.

The Ktirio urban building workflow, see Figure 1, integrates various data sources and computational
tools to simulate and analyze urban building energy and its impact on urban environments. The process en-
compasses data acquisition, processing, simulation, and analysis, eventually coupled with urban air pollution
(UAP) models.

2.1 Data Handling and Simulation Process

The workflow begins with collecting and preparing GIS and weather data, transforming it into a format
usable for simulations. This data is then partitioned for scalable processing and converted into Modelica and
Feel++[10] compatible formats through the UBEM Generator.

This processed data is employed to simulate energy consumption and indoor environmental quality using
the Urban Building Energy Model (UBEM). The simulation focuses on radiative heat transfer, enhancing
the accuracy of the energy models. It also computes view factors and shading masks, assessing how buildings
affect each other’s exposure to natural light and heat, influencing the urban heat island effect and overall
building energy needs.

2

The building simulation outputs are then optionally fed into the urban air pollution (UAP) simulator to
evaluate the impact of building emissions on urban air quality. A feedback loop refines the building simulation
scenarios based on intermediate outputs from the UAP simulator, ensuring that the models accurately reflect
the complex interdependencies between urban building energy usage and urban air quality.

2.2 Final Analysis and Urban Scale Energy Evaluation

The final step involves the UBEM Simulator, which generates large-scale outputs that summarize the overall
energy consumption and environmental impact of buildings on an urban scale. This comprehensive urban
scale analysis merges data from the building energy and air quality models to provide a holistic view of
urban environmental quality.

This streamlined workflow is critical for accurately simulating and understanding urban sustainability
challenges, supporting our application’s broader objectives of improving urban living conditions and envi-
ronmental impact.

3 Overview of Urban Building Modeling and Simulation

We now provide an overview of the geometrical and physical modeling and simulation components of the
Urban building application.

3.1 Geometry Reconstruction of the KUB Urban Model

The geometric reconstruction of urban environments within KUB involves a sophisticated approach to cre-
ating multi-fidelity representations of buildings, terrain, vegetation, roads, and other urban elements. This
section outlines the methodologies employed and the various levels of detail (LOD) used in the models.

The primary challenge lies in accurately representing the complex urban landscape to support various
simulations. A tiled web map approach is adopted, which allows for distributed data management and adapts
the Level of Detail (LOD) based on specific needs. However, this approach requires carefully integrating tiles
to ensure seamless representation.

We describe our definition of Levels of Detail for Buildings such as:

– LOD-0: The most straightforward form, representing buildings as oriented bounding boxes. This level
is typically used for large-scale preliminary analyses and quick visual assessments.

– LOD-1: Buildings are represented as polygonal extrusions, with added roof structures to improve the
visual accuracy and utility in simulations that do not require detailed internal features.

– LOD-2: At this level, buildings are detailed using Industry Foundation Classes (IFC) standards, sup-
porting detailed thermal and structural analyses. This includes detailed geometries for each building
entity, often using complex surface models like B-REP, swept solids, or CSG techniques.

In the figure 2, we illustrate the different levels of details. Panel 2a displays the LOD-0 of a building
with its bounding box. Panel 2b displays the LOD-1 of a building using its footprint elevated to its height.
Panel 2c and 2d display the LOD-2 representation using BIM. In the figure 3, we display an illustration of
the center of the city of Strasbourg with LOD-0, see panel 3a, and LOD-1, see panel 3b, representations.

Building Modeling Building meshes are generated from metadata fetched from web services like Open-
StreetMap [9], which provides multi-polygons with holes representing the complex urban fabric. For LOD-0
and LOD-1, buildings are modeled from 2D footprints extruded to form three-dimensional volumes. These
volumes are then combined or subtracted to represent the district or the entire city, applying union opera-
tions on buildings that touch or intersect. In LOD-2, the focus shifts to creating conformal and watertight
meshes suitable for detailed simulation tasks. These meshes are generated from Building Information Mod-
eling (BIM) data in IFC format, enabling a detailed representation of each building component.

3

(a) LOD-0: a building is repre-
sented by its bounding box

(b) LOD-1: a building is repre-
sented by its ground footprint ele-
vated to its height

(c) LOD-2: a building in full detail
using BIM. Note that LOD-2 and
LOD-1 are mixed.

(d) LOD-2: A zoom on the LOD-2
building.

Fig. 2: Different representations of a building using our LOD def-
inition

Terrain Modeling The terrain mod-
eling process utilizes elevation data ex-
tracted from raster images. The initial
step involves creating a uniform mesh
based on the size of the raster image. Fol-
lowing this, the elevation at each node
is evaluated. However, this method pro-
vides a very refined mesh, even when the
terrain is flat. For this reason, we plan to
apply the following procedure:

– Compute an arbitrary number of iso-
lines for elevation,

– Build a new terrain mesh conform
with the isolines nodes and adapt to
terrain elevation gradient.

Vegetation Modeling Including veg-
etation (trees) in this geometric model
is essential for the simulation of build-
ings. The shading provided by trees and
the cooling provided by wooded areas has
a significant impact. We use the Open-
StreetMap database to obtain the meta-
data associated with the vegetation. In
addition to the position of the trees, we
can also obtain other information, such as
the tree’s height and species. The current
strategy is as follows:

– Definition of a reference tree library that lists a certain number of tree species at different levels of
precision (LOD). These geometric entities are parameterized so that a transformation can be applied.

– Fetching vegetation metadata via OpenStreetMap. The attributes (height, species) are not always avail-
able, so we try to define them as best we can (by searching around).

– Creating a tree geometric model using an affine transformation of the reference tree model.

Integration of all urban geometric components This process involves creating a conforming mesh that
includes both components (buildings, terrains, vegetation). Moreover, this step requires accomplishing some
challenges by using complex geometric algorithms to realize the following points: (i) Ensure that buildings
on slopes are accurately modeled by adapting their height and embedding them into the terrain mesh. The
figure 3c illustrates this aspect; (ii) applies the intersection of buildings and consequently defines contact
zones that can be included in building thermal models (coupling). (iii) Apply the intersection of vegetation
with buildings and terrain. And (iv) Improve mesh quality after the previous geometric operations (mesh
adaption).

Visual Representation Advanced rendering techniques visualize the multi-fidelity urban models, support-
ing detailed analysis and general urban planning discussions. These visualizations are crucial for assessing
the impact of urban changes and for stakeholder engagement.

This approach enhances urban models’ accuracy, utility, and scalability, making them vital for compre-
hensive urban analysis and planning in the HiDALGO2 project.

4

(a) LOD-0

(b) LOD-1

(c) LOD-1 terrain

Fig. 3: Various representations of cities and terrain. Representa-
tion of Strasbourg center with LOD-0 in the top left panel and
LOD-1 in the top right. LOD-1 city (Grenoble, France) represen-
tation with terrain elevation.

Computational Tools for Meshes
Generation In the urban modeling pro-
cess, particularly in generating build-
ing meshes, the Computational Geome-
try Algorithms Library (CGAL) plays a
pivotal role. CGAL, [12] is renowned for
its robust and efficient algorithms, which
are crucial for handling complex geo-
metric data and generating high-quality
meshes. This library is currently used for
the following operations: boolean oper-
ation of polygon, multi-polygon repairs,
mesh generation, mesh intersection, mesh
adaptation, and building roof skeleton.

All the features described above are
not yet operational in our framework. We
can reconstruct a geometric model of an
urban area whose location is arbitrary so
that the user can select an area anywhere
in the world. The final mesh comprises
all buildings LOD-0 or LOD-1 and the
terrain with elevation. The integration of
all the urban components is currently be-
ing investigated. This part requires fairly
costly algorithms (mesh intersection), for
which it will be necessary to form groups
intelligently to reduce the computational
cost.

Current Mesh Generation Strategy The
current strategy for mesh generation em-
ploys multi-threading (MT) to handle
various stages of the mesh construction
process. Initially, the tiles used are de-
termined based on the specified location,
a task performed sequentially. Following
this, GIS data, including buildings and
elevation information, is downloaded in
parallel. Next, polygons are repaired to
ensure they are suitable for mesh gener-
ation, with this process executed in parallel using MT. The terrain mesh is then generated in parallel,
employing CGAL’s algorithms to ensure precision and efficiency. Union operations at tile junctions are per-
formed to ensure continuity, a step that is currently sequential. Finally, building meshes are generated using
a parallel MT approach, leveraging CGAL for its advanced mesh generation capabilities.

Advancing Towards Full Parallelism The following steps in enhancing the mesh generation process involve
moving towards a fully parallel approach using both Multi-threading (MT) and Message Passing Interface
(MPI). The goal is to scale the process to handle entire cities or larger urban areas. This scale-up involves
utilizing MPI to manage distributed computing resources effectively. To achieve this, partitions of tiles with
overlapping regions are created to ensure complete and accurate building descriptions without requiring
extensive MPI communications. Furthermore, each process uses an MT strategy to generate meshes inde-
pendently, with overlapping zones allowing for the creation of complete building structures.

5

Partitioning Strategies Depending on Simulation Use Cases Data partitioning is a crucial stage in
the deployment of the supercomputer simulator. We need to partition the geometry of the city in such a
way as to distribute the simulation computation correctly. Different partitioning strategies are considered
depending on the specific requirements of the simulation use cases :

– Case 0: simple scenarios where buildings do not interact with their environment, a basic listing and
weighting strategy is sufficient

– Case 1: buildings interact with environmental elements, a more complex partitioning strategy is necessary
that considers both the buildings and their immediate non-building surroundings. The build meshes and
environment meshes (terrain, vegetation) are integrated conformably; each component can be partitioned
separately.

– Case 2: for full interaction models, the partitioning strategy starts with the buildings and extends to the
entire urban mesh, ensuring all elements are considered to minimize communication overhead.

– Case 3: Regarding scenarios with extreme partitioning needs, Test Case 3 employs a multi-grid approach,
defining coarse and fine meshes to manage computational resources efficiently. This multi-fidelity ap-
proach enhances the accuracy and applicability of urban models in simulations and ensures scalability
across different computational platforms, making it a cornerstone of urban analysis.

The current version of our simulation framework has implemented case 0 and case 1. Cases 2 and 3
require a full conformal mesh, which is not yet available. Moreover, these partitioning strategies are costly,
so we have planned to use other third-party tools, such as Zoltan2 [13], to improve efficiency.

(a) Partitioning Case 0 (b) Partitioning Case 1

Fig. 4: Mesh partitioning illustrations

The figure 4 illustrates the differ-
ent strategies discussed previously and
presents a reconstruction of New York
City in figure 5. This geometric model
has an area of 400 km2 (20 km square
side of 20 km) and has generated around
450000 buildings. This example requires
the large-scale approach discussed but
not yet implemented or tested.

Conclusion on mesh construction
Our strategy aims to improve the effi-
ciency and scalability of the mesh gen-
eration process and enhance the fidelity
and accuracy of the urban models used
in simulations.

3.2 Modeling and simulations

We now turn to describing the physical modeling of city energy simulation. To do this, we built on two main
tools: Feel++ and Modelica.

KUB is based on the Feel++ toolchain Feel++ is a comprehensive framework designed to tackle
problems based on Ordinary Differential Equations (ODEs) and Partial Differential Equations (PDEs).
Using modern C++ (C++17 and C++20) standards coupled with a Python layer through Pybind11, Feel++
enables seamless parallelism and is equipped with default communicators that simplify handling complex
computational tasks. The framework’s versatility is evident in its deployment across various platforms,
including research and educational environments and cloud services tailored for high-performance computing
needs.

Key features of the Feel++ framework encompass an extensive range of numerical methods designed to
address Partial Differential Equations (PDEs), see [10]. These methods include continuous Galerkin (cG),

6

(a) View on whole 3D mesh (b) Zoom on Manhattan buildings

(c) Focus on Manhattan (d) Central Park

Fig. 5: 20× 20km2 geometric reconstruction of New York City (LOD-1)

discontinuous Galerkin (dG), hybrid discontinuous Galerkin (hdG), and reduced basis methods (rb/mor).
A Domain Specific Language (DSL) for Galerkin methods significantly enhances the ease of implementing
and experimenting with new numerical methods. The de Rham complex provides a comprehensive toolkit
for constructing finite element spaces of arbitrary order, facilitating precise mathematical modeling. The
framework’s automatic differentiation and symbolic integration capabilities effectively bridge the gap between
mathematical expressions and their computational implementation. Feel++ supports diverse applications,
from fluid dynamics and structural mechanics to heat transfer and electrostatics, demonstrating its flexibility
and broad applicability. Furthermore, its integration with Specx for task-based parallel execution optimizes
performance and scalability on modern computational architectures.

Documentation and further details can be accessed through Feel++ Toolboxes Documentation1. This
powerful toolchain is essential for KUB.

Computing Shading Masks and View Factors with Feel++ In city energy simulations, the compu-
tation of shading masks and view factors is crucial for accurately modeling the impact of solar radiation on
building surfaces. Shading masks quantify the percentage of blocked solar radiation for each building surface
(including walls and roofs) depending on the sun’s direction. This is influenced by nearby structures such
as other buildings, vegetation, and urban furniture. The view factors describe the fraction of radiation that
leaves one surface and strikes another, essential for calculating radiative heat exchanges between building
surfaces.

1 https://docs.feelpp.org/toolboxes/latest/

7

https://docs.feelpp.org/toolboxes/latest/

Numerical Methods and Challenges Both shading masks and view factors are computed using Monte Carlo
and ray tracing techniques, which allow for handling complex geometries with various obstructions. Despite
being purely geometric quantities, these calculations face significant challenges such as:

– Efficient computation of integrals for view factors, especially when considering specular surfaces that
require multiple ray bounces.

– Managing large-scale mesh computations and data storage, particularly when detailed urban environ-
ments are modeled.

Implementation in Feel++ Feel++ facilitates these computations through its robust numerical methods
optimized for high performance and parallel execution. For each face of a building, Feel++ computes solar
masks using a Monte Carlo approach for various sun positions, ensuring efficient and scalable processing
across multiple CPU cores. This enables the integration of dynamic solar shading effects into the simulation
of building energy performance, providing a more accurate representation of real-world conditions.

(a) LOD-0 (b) LOD-1

(c) LOD-1 Large scale (d) Heat transfer benchmark in 2D including view fac-
tors [4]

Fig. 6: Solar masks and view factors computations

In the figure 6, we illustrate (i) the solar masks of building face oriented eastwise for a discretization
of the sun position in the panel 6a, (ii) the solar masks for an entire building for discretization of the sun
position in the panel 6b, (iii) a visualization of the solar mask early morning of the city center of Strasbourg

8

in panel 6c and (iv) an image of a standard benchmark [4] for the computation of view-factors and solving
the heat transfer problems between three building blocks in 2D subsequently in panel 6d.

Heat Transfer Modeling with Feel++ and Modelica In the Urban Building Energy Model (UBEM),
heat transfer analysis is crucial for predicting energy consumption, internal air temperature variations, and
overall building energy performance. This analysis is facilitated by a combination of Feel++ and Modelica,
enabling detailed simulations of heat dynamics within urban buildings.

Modelica for Multizone Heat Transfer Modelica offers extensive capabilities for multizone building energy
simulations, utilizing models that range from simple (LOD-0) to more complex (LOD-1) representations.
The multizone approach in Modelica is beneficial for modular and scalable simulations, where each building
zone can be modeled with different fidelity based on the simulation requirements. This method leverages the
generation of Functional Mock-up Units (FMUs), which integrate seamlessly into larger C/C++ applications,
providing a robust framework for handling complex simulations involving multiple interacting systems.

Finite Element Analysis with Feel++ Complementing Modelica’s capabilities, Feel++ provides robust tools
for finite element analysis, particularly in handling the detailed aspects of heat transfer within urban en-
vironments. It uses advanced numerical methods like reduced basis methods for rapid scenario testing and
parallel-in-time algorithms for efficient simulations. This is particularly important for assessing the impact
of solar radiation and external shading, which are modeled using geometric and dynamic shading masks
derived from solar paths.

Integrated Approach The integration of Feel++ and Modelica is exemplified in their use of shading masks
and view factors, which are critical for accurate solar heat gain calculations. These masks are computed
using Monte Carlo simulations and ray tracing methods to assess the percentage of solar radiation impacting
various building surfaces. This data feeds into the Modelica simulations, enhancing the accuracy of the
thermal load predictions.

Challenges and Solutions One of the main challenges in urban building simulation is managing the computa-
tional load, which is addressed through computing strategies that leverage currently CPUs but in the GPUs
but, in the future, will enable hybrid computing with both CPUs and GPUs. This approach ensures that
large-scale simulations, necessary for city-wide energy analysis, remain feasible and efficient. Additionally,
the mesh partitioning techniques discussed earlier are employed to optimize the data handling and processing
times, further integrating the spatial data management with the thermal modeling processes.

4 CI/CD Framework for the Urban Building Pilot

The Urban Building pilot utilizes the Feel++ framework, supported by a robust CI/CD framework that
facilitates efficient development and deployment.

4.1 Standard CI/CD DevOps

The development and deployment of KUB builds on top of the Feel++ CI/CD framework. It employs
GitHub Actions and Docker: GitHub Actions automate real-time workflows to compile, test, and validate code
changes, facilitating rapid development cycles and ensuring code quality. On the other hand, Docker provides
a containerized environment that encapsulates Feel++ and its dependencies, ensuring consistent operations
across diverse computing environments. These Docker images, customized for various system requirements,
are maintained on the GitHub Container Registry (ghcr.io) to accommodate multiple deployment scenarios.

The CI/CD workflow, see Figure 7, is crucial for efficiently integrating and deploying updates across
all projects that utilize the Feel++ framework. The workflow leverages various main ingredients of GitHub
Actions features.

9

Fig. 7: CI/CD DevOps for Feel++

1. Pull Requests and Merges: Triggering CI to verify that new code integrations meet all tests and
standards.

2. Graphical User Interface (GUI) thanks to workflow_dispatch: Enabling developers to manually
trigger pipelines through a GUI, which facilitates rapid deployment or testing.

3. Scheduled Runs: Conducting regular updates and maintenance checks to ensure continuous system
integrity and responsiveness.

4.2 HPC DevOps (HPCOps)

Feel++ CI/CD workflow for high-performance computing applications incorporates specialized HPCOps
(HPC DevOps) practices that ensure the software performs consistently across various HPC systems.

Figure 8 illustrates the HPC CI/CD or HPCOps workflow for Feel++.
The tools and strategies for HPCOps are (i) Reframe-HPC: Utilized to define and manage systematic

benchmarks that are reproducible across different HPC environments, facilitating the testing of performance
and scalability, see [8]; (ii)SLURM: Employs its REST API if available, e.g. on MeLuXiNa, otherwise
scripted SLURM usage for CI/CD for scheduling and managing jobs on integrated HPC systems, allowing
programmable job submission and monitoring directly from CI workflows, see [11]; and (iii) Apptainer: En-
sures that Docker containers can be deployed securely and efficiently in HPC settings, supporting portability
and consistency, see [1].

Integration with EuroHPC JU supercomputers such as LUMI, Karolina, Meluxina, Discoverer, Vega, and
Leonardo enhances the capability to perform large-scale simulations and check the parallel properties and
correctness of Feel++. The operations include automatic testing that triggers larger-scale tests on designated
HPC nodes once new changes are integrated and verified by standard CI/CD pipelines.

Regarding monitoring and reporting, performance results from these operations are automatically cap-
tured and uploaded to the data storage system, such as the performance reports

This framework leverages cutting-edge computational technologies, ensuring the high performance and
accuracy of the Feel++ framework and Feel++-based applications. It sets a benchmark for integrating mod-
ern software frameworks with advanced HPC infrastructure to significantly advance computational research
and applications.

Figure 9 shows that the CI/CD standard DevOps framework for KUB uses similar steps.
Figure 10 finally shows the HPCOps deployed on EuroHPC systems to check the parallel properties and

correctness of the pilot on large-scale cases. It extends Feel++ HPC ops with additional steps to handle our
complex pre- and post-processing steps.

10

Fig. 8: CI/CD HPCOps for Feel++

Data
Management

platform

GitHub
Container
Registry

Check
Apptainer

image

Check
HPC

runners

HPC- Ops

Check
datasets

EuroHPC
Supercomputers

LUMI

MeluXina

Karolina

Discoverer

Vega

Leonardo

Execute on all
available selected
EuroHPC systems

Reframe Reports

Generates

Massive
Output

Datasets

Generates

Comprehensive
Energy Simulation

Report

Postpro
cessing

Generates

Data
Management

platform

Upload
Dataset

Upload
report

GitHub Pages

Trigger
Website
update

Pull updated
building and city

reports

Upload report

Trigger
Bencharming/Regression

website updates

UB Dev- Ops
Workflow

New Apptainer
image generated

Trigger

Pull Apptainer
image

Pull
Datasets

Fig. 10: Ktirio Urban Building HPCOps workflow

11

4.3 Benchmarking KUB

Pull Requests
Branch
updates

Build
Wheel

Build
package

Trigger

Trigger

GitHub
release

Tag, Release

Build
Docker
image

Build
Apptainer

image
Trigger

Data
Mangement

platform

Decision

Antora WebsiteBuild docs

Trigger

Generates

if
success

Run Tests

uses datasets

GitHub
Pages

GitHub
Container
Registry

Deploy Documentation Website

Pulls Feel++ Image

Push UB image

Push
Apptainer

image

Tag, Release

HPC- Ops
Workflow

If Apptainer
upload is

successful
then trigger

Fig. 9: KUB standard DevOps

Finally, we display some re-
sults of our benchmarking ac-
tivities [7] for the KUB appli-
cation regarding HPC perfor-
mance. Running these experi-
ments regularly is essential for
maintaining the program’s ef-
ficiency when developing the
application and after machine
updates. Hence, we have used
the KUB application in the
Strasbourg city center, with a
square area of 4km2 (approx-
imately 17K buildings). The
scalability results were real-
ized on EuroHPC JU systems
obtained with our HPCOps
pipeline; see Figure 10. Figure 11a depicts the speedup achieved on Discoverer, Karolina, and MeluXina. They
present results for the total execution (end-to-end) of the KUB application and the simulation component.

The pipeline’s simulation part scales almost linearly, which is expected as the buildings are not coupled
together in the model currently used for the simulation. On the other hand, the total execution of the pilot’s
pipeline does not scale; as more nodes are employed, the performance degrades.

To better understand what causes this degradation, we measure the computing times of the different
stages of the pipeline and present the execution breakdown in Figure 11b. This figure reports the portion of
the total execution taken by:

– Pre-processing (Pre-proc): The time elapsed in initialization before entering the time loop of the simu-
lation

– Simulation (Simulation): The cumulative time spent calculating the new solution at each time step
– Post-processing (Post-proc): The cumulative time spent exporting results, i.e., generating files containing

the output of the UB model.

Pre-processing does not scale. However, it occupies only a small part of the total execution, and thus it
is not performance-critical. On the other hand, as more nodes are employed and the time spent in the actual
simulation is decreased, the post-processing stage dominates the execution. It becomes the main bottleneck,
causing the previously observed performance degradation. This behavior is caused by the multiple files being
written in parallel on the shared file system. More specifically, most of the writing time is spent in opening
and closing files in parallel. We are investigating potential solutions, such as asynchronous writes, data
caching, etc. Finally, as the project progresses, we expect the urban building models used in the simulation
to become more complex, leading to an increase in the time occupied by the simulation part and, hence, to
a reduction of the impact of post-processing on the total execution time of the pilot.

5 Conclusion

We are developing the computational Ktirio Urban Building(KUB) framework: assembling this very com-
pelling application encompasses challenges in mathematics — scalable modeling and simulation, large-scale
watertight robust mesh generation, advanced analysis including data simulation — and computer science —
scalable framework, software architecture, modern development, testing and packaging environment includ-
ing standard DevOps and now HPCOps.— The overall programming, integration, delivery, and deployment
environment is critical to develop such an application. To our knowledge, this is the first application that

12

can be automatically benchmarked and executed on EuroHPC JU systems thanks to CI/CD or HPCOps.
Moreover, the workflow from Feel++ to KUB provides a considerable gain in terms of development and
testing time, automated as much as possible, and enabling researchers and developers to focus their work
better.

(a) Scalability tests on a few EuroHPC systems from 1 to 32 nodes
of 128 cores per node

(b) Execution breakdown on a few EuroHPC systems from 1 to
32 nodes of 128 cores per node

Fig. 11: Detailed performance metrics for scalability and execu-
tion on EuroHPC systems

Our next steps include (i) enabling
tasks-based parallelism using the C++
framework Specx, see [2]; (ii) improv-
ing the modeling and simulation compo-
nents, including mesh generation, han-
dling of vegetation and urban furniture,
and enabling view factors as well as pro-
viding a variety of configurable build-
ing energy models; (iii) enhanced parallel
strategies particularly in terms of parti-
tioning and improved large scale I/O; and
of course (iv) pursue our benchmarking
activities on EuroHPC JU supercomput-
ers.

Acknowledgments. Funded by the Euro-
pean Union. This work has received fund-
ing from the European High-Performance
Computing Joint Undertaking (EuroHPC
JU) and Poland, Germany, Spain, Hun-
gary, France, and Greece under grant agree-
ment number 101093457. This publication
expresses the opinions of the authors and not
necessarily those of the EuroHPC JU and
Associated Countries which are not respon-
sible for any use of the information contained
in this publication

Part of this work was also funded by (i)
the France 2030 NumPEx Exa-MA (ANR-
22-EXNU-0002) project managed by the
French National Research Agency (ANR),
(ii) AMIES, the french agency for interac-
tion between mathematics and enterprises
and (iii) CNRS through its prematuration
programme.

We acknowledge the EuroHPC Joint Undertaking for awarding this project access through EuroHPC Development
Access grants EHPC-DEV-2024D05-025 and EHPC-DEV-2023D08-047 to the EuroHPC JU supercomputers : (i)
Kumi, hosted by CSC (Finland) and the Lumi consortium, (ii) MeluXina hosted by LuxProvide, Luxembourg, (iii)
Karolina hosted by IT4Innovations National Supercomputing Center, Czechia, (iv) Discoverer hosted by Sofia Tech
Park, Bulgaria, (v) Vega hosted by IZUM, Slovenia, and (vi) Leonardo hosted by CINECA, Italy.

Finally the authors would like to acknowledge the many fruitful discussions with our partners Luc Kern from
Synapse Concept and Leopold Fischer from Cisco Meraki, our colleagues (i) from Hidalgo2 ICCS Kostis Nikas,
Aristomenis Theodoridis and Petros Anastasiadis for the discussions on Reframe and joining their EuroHPC access
grant, (ii) Hidalgo2 HLRS Sameer Haroon for the discussions on CI/CD, (iii) Pierre Alliez from INRIA Titane and
Andreas Fabri from Geometry Factory regarding the discussions on CGAL and using Polygon Repair, and finally (iv)
our former colleague Zohra Djatouti, now at Kipsum, which whom we initiated this endeavor.

References

1. Apptainer Contributors: Apptainer User Documentation (2024), https://apptainer.org/docs

13

https://apptainer.org/docs

2. Cardosi, P., Bramas, B.: Specx: a C++ task-based runtime system for heterogeneous distributed architectures.
Tech. rep., inria (Jul 2022), https://inria.hal.science/hal-04191350

3. Cemosis: Ktirio: The platform for building energy modeling and simulation (2024), https://www.ktirio.fr/
4. van Eck, R., Klep, M., van Schijndel, A.W.M.: Surface to Surface Radiation Benchmarks. In: COMSOL Confer-

ence. pp. 1–6. Munich, Germany (Oct 2016), https://research.tue.nl/files/39877969/Eck_Klep_Schijndel_
Radiation_Munich_16v3.pdf

5. European Commision: Energy efficiency in buildings. Tech. rep. (Feb 2020), https://ec.europa.eu/info/news/
focus-energy-efficiency-buildings-2020-lut-17_en

6. European Commision: Stakeholder consultation on the renovation wave initiative. Tech. rep., Brussels
(Sep 2021), https://energy.ec.europa.eu/document/download/a1869a12-cd74-43d2-82e7-92a846166646_
en?filename=stakeholder_consultation_on_the_renovation_wave_initiative.pdf

7. HiDALGO2: D3.1 Scalability, Optimization and Co- Design Activities_v1.1 (Mar 2024). https://doi.org/10.
5281/zenodo.10731050, https://doi.org/10.5281/zenodo.10731050

8. Karakasis, V., Manitaras, T., Otero, J., Koutsaniti, E., jgp, rsarm, Bignamini, C., victorusu, Jocksch, A., kraushm,
lucamar, Keller, S., Omlin, S., Kliavinek, S., Mendonça, H., Giordano, M., MarkLTurner, GiuseppeLoRe, Gras-
sano, D., Boissonneault, M., Leak, S., Paipuri, M., jfavre, Vanessasaurus, Morrison, J., Moors, S., You, Z.Q., Sand-
gren, Ã., brandon-biggs: reframe-hpc/reframe: ReFrame 4.6.0 (Apr 2024). https://doi.org/10.5281/zenodo.
11002528, https://doi.org/10.5281/zenodo.11002528

9. OpenStreetMap contributors: Planet dump retrieved from https://planet.osm.org (2017), https://www.
openstreetmap.org

10. Prud’homme, C., Chabannes, V., Metivet, T., Saigre, T., Trophime, Berti, L., SAMAKE, A., Landeghem, C.V.:
feelpp/feelpp: Feel++ Release V111 preview.9 (Mar 2024). https://doi.org/10.5281/ZENODO.10837178, https:
//zenodo.org/doi/10.5281/zenodo.10837178

11. SLURM Development Team: SLURM Workload Manager (2024), https://slurm.schedmd.com/documentation.
html

12. The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board, 5.6.1 edn. (2024), https:
//doc.cgal.org/5.6.1/Manual/packages.html

13. The Zoltan2 Team: The Zoltan2 Project Website. https://trilinos.github.io/zoltan2

14

https://inria.hal.science/hal-04191350
https://www.ktirio.fr/
https://research.tue.nl/files/39877969/Eck_Klep_Schijndel_Radiation_Munich_16v3.pdf
https://research.tue.nl/files/39877969/Eck_Klep_Schijndel_Radiation_Munich_16v3.pdf
https://ec.europa.eu/info/news/focus-energy-efficiency-buildings-2020-lut-17_en
https://ec.europa.eu/info/news/focus-energy-efficiency-buildings-2020-lut-17_en
https://energy.ec.europa.eu/document/download/a1869a12-cd74-43d2-82e7-92a846166646_en?filename=stakeholder_consultation_on_the_renovation_wave_initiative.pdf
https://energy.ec.europa.eu/document/download/a1869a12-cd74-43d2-82e7-92a846166646_en?filename=stakeholder_consultation_on_the_renovation_wave_initiative.pdf
https://doi.org/10.5281/zenodo.10731050
https://doi.org/10.5281/zenodo.10731050
https://doi.org/10.5281/zenodo.10731050
https://doi.org/10.5281/zenodo.10731050
https://doi.org/10.5281/zenodo.10731050
https://doi.org/10.5281/zenodo.11002528
https://doi.org/10.5281/zenodo.11002528
https://doi.org/10.5281/zenodo.11002528
https://doi.org/10.5281/zenodo.11002528
https://doi.org/10.5281/zenodo.11002528
https://www.openstreetmap.org
https://www.openstreetmap.org
https://doi.org/10.5281/ZENODO.10837178
https://doi.org/10.5281/ZENODO.10837178
https://zenodo.org/doi/10.5281/zenodo.10837178
https://zenodo.org/doi/10.5281/zenodo.10837178
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
https://doc.cgal.org/5.6.1/Manual/packages.html
https://doc.cgal.org/5.6.1/Manual/packages.html
https://trilinos.github.io/zoltan2

	Ktirio Urban Building: A Computational Framework for City Energy Simulations Enhanced by CI/CD Innovations on EuroHPC Systems

