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Asymptotics of Cholesky GARCH Models and Time-Varying
Conditional Betas

Serge Darolles∗, Christian Francq†and Sébastien Laurent‡

Abstract

This paper proposes a new observation-driven model with time-varying slope coefficients. Our
model, called CHAR, is a Cholesky-GARCH model, based on the Cholesky decomposition of
the conditional variance matrix introduced by Pourahmadi (1999) in the context of longitudinal
data. We derive stationarity and invertibility conditions and proof consistency and asymptotic
normality of the Full and equation-by-equation QML estimators of this model. We then show
that this class of models is useful to estimate conditional betas and compare it to the approach
proposed by Engle (2016). Finally, we use real data in a portfolio and risk management exercise.
We find that the CHAR model outperforms a model with constant betas as well as the dynamic
conditional beta model of Engle (2016).

JEL Classification: C13, C32, C53, C58.
Keywords: Multivariate-GARCH, conditional betas, covariance.

1 Introduction and motivations

The estimation of linear models on time series data is common in finance, especially in the context

of factor models. The standard practice is to assume that the slope coefficients are constant over

time. However, wrongly assuming the constancy of the parameters leads to misspecified models

and potentially wrong financial decisions. For example, testing an asset pricing model such as the

Capital Asset Pricing Model (CAPM) (Sharpe, 1964) with constant regression parameters may lead
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to a wrong rejection of the model if the parameters are changing over time. Similarly, attempting

to evaluate the performance of an active management fund using the Sharpe Style Analysis Model

(Sharpe, 1992) with constant parameters may lead to an over-valuation of the manager’s skills. It

is therefore important to develop simple statistical approaches capturing all the dynamic aspects of

the financial series.

Using the terminology of Cox (1981), time series models with time-varying parameters can be

categorized into two classes: parameter-driven and observation-driven models. In parameter-driven

models, the slope coefficients are modeled as stochastic processes that are subject to their own source

of error. These models, known as state space models, are however difficult to estimate, reason why

they are less popular than the second class (see Durbin and Koopman, 2012, for a comprehensive

review of state space models). The advantage of the observation-driven approach is that time

variation of the parameters is introduced by allowing them to dependent on exogenous variables and

past observations. Although parameters are time-varying, they are predictable given the information

set at time t− 1, which simplifies the derivation of the likelihood function. The simplest solution to

address this question within this class of models is to rely on interaction variables. This requires of

course assuming that the source of randomness of the slope coefficients depends only on exogenous

variables, which rules out the interesting case of autoregressive dynamics.

Recently, Engle (2016) proposed a new model called Dynamic Conditional Beta (DCB in short)

to obtain time-varying slope coefficients using an observation-driven model by extending Boller-

slev, Engle and Wolldbridge (1988) to the case of more than one explanatory variable (or factor).1

Assuming joint conditional normality of the variables appearing in the model (i.e., dependent and

independent variables), Engle (2016) shows how to recover indirectly the time-varying slope coeffi-

cients of the independent variables using an estimate of the full conditional covariance matrix. In

his application, he relies on a DCC model to obtain the conditional betas of the Fama-French three

factor model. While this approach is easy to implement, testing and imposing the constancy of

the conditional betas is cumbersome. Furthermore, identifying the variables determining the evo-

lution of the betas is impossible because conditional betas are not modeled directly but recovered

afterwards by a non-linear transformation of the elements of the estimated conditional covariance

matrix.
1Maheu and Shamsi (2016) propose a nonparametric DCB model in a Bayesian framework.
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In this paper, we propose a different approach essentially based on a natural orthogonalization of

the observed time series, initially proposed by Pourahmadi (1999) in the context of longitudinal data.

We first study an observation-driven model, called CHAR (for Cholesky-GARCH), that specifies

directly the dynamics of time varying slope coefficients. We extend this work by considering time

varying slope coefficients that depend on their lagged values and past shocks. We derive stationarity

and invertibility conditions and proof consistency and asymptotic normality of the Full and equation-

by-equation (EbE) QML estimators of this model. Our approach is very flexible because it allows

to impose easily the constancy of some of the conditional betas. Furthermore, unlike conditional

correlations, conditional betas can take any real values, which allows the use of general specifications.

We compare the numerical properties of the two estimators using a Monte-Carlo simulation

study. Our results suggest that both the Full and EbE QML deliver satisfactory results in the sense

that biases are very small for all parameters. In an empirical application, we show that this class of

models is useful to estimate conditional betas in the context of the Fama-French three factor model.

We consider four competing models to obtain one-step-ahead forecasts of the three conditional

betas, i.e., two DCB models based on a CCC-GARCH(1,1) or a DCC-GARCH(1,1), our proposed

model with time-varying betas and a special case of this model where the constancy of the betas is

imposed. We use these forecasts to build tracking portfolios for the 12 US industry portfolios (Data

are from Ken French’s web site and cover the period spanning from February 1994 to August 2016).

We rely on two loss functions (i.e., mean square error or mean absolute deviation) to quantify the

magnitude of the tracking errors (i.e., difference between the observed returns and the tracking

portfolios) of the four models and apply the Model Confidence Set (MCS) test of Hansen, Lunde

and Nason (2011) to discriminate between them. We find that on the whole forecasting period (i.e.,

2010-2016), our proposed model with time-varying betas belongs to the set of superior models in

all cases while the DCB based on the DCC model belongs to this set in only 3 and 2 cases, when

relying respectively on the MSE and MAD loss functions. Interestingly, the DCB-CCC model and

the CHAR model with constant betas never show up in the MCS. We also show that our proposed

model has forecasted betas that are much smoother than those obtained with the DCB-DCC model,

which translates into smaller transaction costs.

The paper is organized as follows. In Section 2, we review the DCB model of Engle (2016) and

present the CHAR model. Stationarity conditions for the CHAR model are studied in Section 3.
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The Full and EbE QML estimators of this model are presented in Section 4 as well as invertibility

conditions. Monte Carlo simulation results are reported in Section 5 and an application in Section

6. Finally, Section 7 concludes.

2 Direct versus indirect specification of conditional betas

Before studying in more detail the properties of our proposed model, let us present some notation

and a competing approach for obtaining observation-driven time-series models with time-varying

slope coefficients. Let εt = (ε1t, . . . , εmt)
′ be a vector of m ≥ 2 returns with mean zero and satisfying

a general volatility model of the form

εt = Σ
1/2
t (ϑ0)ηt, t = 1, . . . , n, (2.1)

where (ηt) is a sequence of independent and identically distributed (i.i.d.) random vectors with

zero mean and identity covariance matrix, and

Σt = Σt(ϑ0) = Σ(εt−1, εt−2, . . . ;ϑ0)

is almost surely a positive definitem×m matrix, parametrized by a d-dimensional parameter ϑ0 and

depending on the information Ft−1 generated by the past values of εt. Assuming that (2) admits a

non anticipative stationary solution (the stationarity conditions are discussed in the sequel), Σt is

the conditional variance-covariance matrix of εt.

Multivariate GARCH (MGARCH) models are very well suited for empirical applications needing

an estimate or a forecast of Σt (see Bauwens, Laurent, and Rombouts, 2006 and Silvennoinen, and

Teräsvirta, 2008 for a survey of MGARCH models). A natural example is the computation of the

value-at-risk of a portfolio, when the portfolio’s composition is observable and time-varying (see

e.g., Francq and Zakoian, 2017). However, MGARCH models are also used in financial applications

involving a non-linear transformation of Σt. For instance, in the mean-variance framework (see

e.g., Markowitz, 1952 in a static case), the optimal weights of a portfolio depend on an estimate

of Σ−1
t . Another example is the estimation of conditional betas using the DCB model of Engle

(2016) presented in the next subsection. In this paper, we advocate the use of a model that specifies

directly the dynamics of the conditional betas instead Σt.
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2.1 Indirect specification of dynamic conditional betas

In some empirical finance applications, it is necessary to give a special role to one of the asset

embedded in the vector εt, for example when a particular return series, say yt = εmt, is regressed on

the other components of the vector εt, i.e., xt = (ε1t, . . . , εm−1t)
′. The coefficients of the multivariate

regression of yt on xt are usually called betas. To obtain time-varying betas, Engle (2016) assumes

that εt = (xt, yt)
′ has a a multivariate normal distribution (conditional on Ft−1) with conditional

covariance Σt, i.e.,  xt

yt

 |Ft−1 ∼ N

 0m−1

0

 ,

 Σxx,t Σxy,t

Σyx,t Σyy,t

,

where subscripts represent natural partitions. Engle (2016) uses the fact that the conditional dis-

tribution of yt on xt is

yt|xt ∼ N
(
Σyx,tΣ

−1
xx,txt,Σyy,t −Σyx,tΣ

−1
xx,tΣxy,t

)
to derive an estimate of the conditional betas. Indeed, estimates of the time-varying coefficients of

the regression of yt on xt can be recovered from Σt by the formula Σ−1
xx,tΣxy,t or Σxy,t/Σxx,t if there

is only one explanatory variable (like in Bollerslev, Engle and Wooldridge, 1988). Engle (2016)

advocates the use of a Dynamic Conditional Correlation (DCC) model to estimate Σt, but any

multivariate GARCH model can be used. The DCC approach relies on the following decomposition

of Σt:

Σt = DtRtDt, (2.2)

where Dt and Rt are respectively a diagonal matrix with the conditional volatilities of εt and

its conditional correlation matrix. Matrix Dt is typically modeled using m univariate GARCH

models on εt and Rt using a scalar BEKK specification on the devolatilized series D−1
t εt (which is

transformed afterwards to get a correlation matrix). The Constant Conditional Correlation (CCC)

model of Bollerslev (1990) is obtained by setting Rt = R.

2.2 Direct specification of dynamic conditional betas

The specificity of the previous approach is to deduce the conditional betas from an estimate of Σt.

Our approach is radically different because it allows to directly model these conditional betas. It is
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based on a natural orthogonalization of εt, initially proposed by Pourahmadi (1999) in the case of

longitudinal data. We extend his work by allowing the slope coefficients to vary over time using an

observation-driven model with an autoregressive structure.

We follow Tsay (2010, Chapter 7) and introduce recursively the orthogonal factors obtained

from εt. Let `21,t be the time-varying coefficient in the regression of ε2t on v1t := ε1t, conditional

on Ft−1. One can write

ε2t = `21,tv1t + v2t = β21,tε1t + v2t,

where β21,t = `21,t ∈ Ft−1 is the conditional beta in the regression of ε2t on ε1t, and v2t is orthogonal

to ε1t conditionally on Ft−1. More generally, we have

εit =

i−1∑
j=1

`ij,tvjt + vit =

i−1∑
j=1

βij,tεjt + vit, for i = 2, . . . ,m, (2.3)

where vit is uncorrelated to v1t, . . . , vi−1,t, and thus uncorrelated to ε1t, . . . , εi−1,t, conditionally on

Ft−1. In particular, we obtain

β31,t = `31,t − `32,t`21,t, β32,t = `32,t.

In matrix form, (2.2) can be written

εt = Ltvt and Btεt = vt,

where Lt and Bt = L−1
t are lower unitriangular (i.e., lower triangular with 1 on the diagonal)

matrices, with `ij,t (resp. −βij,t) at the row i and column j of Lt (resp. Bt) for i > j. For instance,

for m = 3, we have

Lt =


1 0 0

`21,t 1 0

`31,t `32,t 1

 and Bt =


1 0 0

−β21,t 1 0

−β31,t −β32,t 1

 .

The vector vt = (v1t, . . . , vmt)
′ can be interpreted as a vector of orthogonal factors, whose covariance

matrix Gt is therefore diagonal but not necessarily constant over time, i.e., Gt = diag (g1t, . . . , gmt)

with git > 0 a.s., for i = 1, . . . ,m (since Σt is positive definite).2

2We follow the R language convention that diag(v) is a diagonal matrix with the vector v on the diagonal, and

diag(M) is the vector of the diagonal of M , when M is a square matrix.
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We end up with the Cholesky decomposition of Pourahmadi (1999), i.e.,

Σt(ϑ0) = Σt = Var(Ltvt) = LtGtL
′
t, (2.4)

which is an alternative to (2.1). Using (2.2), (2) can be rewritten as

εt = LtG
1/2
t ηt,

where (ηt) is defined as above.

Interestingly, when i = m, (2.2) corresponds to the regression of yt on xt with time-varying

coefficients (in the case of demeaned series), i.e., εmt =
∑m−1

j=1 βmj,tεjt + vmt, that are directly

comparable with those obtained indirectly with the DCB model of Engle (2016). However, our

approach allows to directly specify a model for the βij,t coefficients without having to impose any

constraint appart from the stationarity constraint discussed in Section 3.

2.3 Examples of parameterization

An attractive feature of the Cholesky-GARCH (CHAR) model is that the dynamics of εt can be

defined by specifying successively the dynamics of the vector vt of the orthogonal factors and the

dynamics of the vector `t = vech0Lt of the subdiagonal elements of Lt, or alternatively the dynamics

of βt = −vech0Bt.3

We illustrate our general framework by first considering, for the dynamics of this specification,

the Extended Constant Conditional correlation GARCH model studied by Jeantheau (1998), Ling

and McAleer (2003), He and Teräsvirta (2004), Aue, Hörmann, Horváth, and Reimherr (2009),

Francq and Zakoïan (2010) and Pedersen (2017), among others. This model assumes that

gt = ω0 +

q∑
i=1

A0iv
2
t−i +

p∑
j=1

B0jgt−j , (2.5)

where gt = (g1t, . . . , gmt)
′. To guarantee strict positivity of the components of gt, it is assumed

that ω0 is a vector of strictly positive coefficients, and that A0i and B0j are matrices of positive

coefficients. Model (2.3) is an extension of the initial model introduced by Bollerslev (1990) for

which the matrices A0i and B0j are assumed to be diagonal. The variances defined by (2.3) are

functions of squared returns, and thus the model is not able to take into account the leverage effect
3vech0 denotes the operator stacking the sub-diagonal elements of a square matrix.
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commonly observed on financial series of daily returns, i.e., the fact that negative returns tend to

have an higher impact on the future volatility that positive returns of the same magnitude. An

extension of (2.3) allowing asymmetric responses of positive and negative past returns on the future

volatility is the Asymmetric GARCH (AGARCH) model studied by McAleer, Hoti and Chan (2009)

and Francq and Zakoian (2012), among others. This model can be seen as a multivariate extension

of the GJR model (Glosten, Jaganathan and Runkle, 1993). More precisely, we assume that

gt = ω0 +

q∑
i=1

{
A0i,+v

2+
t−i +A0i,−v

2−
t−i
}

+

p∑
j=1

B0jgt−j , (2.6)

where

v2+
t =

({
v+

1t

}2
, · · · ,

{
v+
mt

}2
)′
, v2−

t =
({
v−1t
}2
, · · · ,

{
v−mt
}2
)′

with x+ = max(x, 0) = (−x)−. To guarantee strict positivity of the components of gt, the parame-

ters ω0 and B0j are as in (2.3), and A0i,+, A0i,− are matrices of positive coefficients.

Note that for the above-mentioned traditional multivariate GARCH processes, a model of the

form (2.3) or (2.3) is applied to the vector of the individual volatilities of εt in a first step. In

a second step, the model is completed by specifying either a fixed or a time-varying conditional

correlation, leading to the classification of the CCC- and DCC-GARCH models (see Bauwens, Lau-

rent and Rombouts (2006), Silvennoinen and Teräsvirta (2009), Francq and Zakoïan (2010, Chapter

11), Tsay (2010, Chapter 7), Bauwens, Hafner and Laurent (2012) for general references). Models

for the conditional correlation are complicated, in particular because the modeling of conditional

correlations require imposing strong restrictions on the type of dynamics and in some cases the use

of a non-linear transformation to recover the conditional correlations from quasi conditional corre-

lations. This is the reason why no complete asymptotic theory is currently available for estimating

DCC-GARCH models.

The Cholesky-GARCH approach avoids specifying a correlation structure but requires specifying

how conditionally orthogonal factors vt are obtained from εt as well as the dynamics of their

conditional variances. Moreover, the Cholesky-GARCH approach presents the strong advantage

that the vector `t, of size m0 = m(m− 1)/2, is not constrained. One can thus consider a model of

the form

`t = c0

(
vt−1, . . . ,vt−r, g

1/2
t−1, . . . , g

1/2
t−r

)
+

s∑
j=1

C0j`t−j , (2.7)
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where c0 is a general measurable function from Rm × · · · × Rm to Rm0 and where the C0j ’s are

m0×m0 matrices of coefficients, in particular not constrained to be positive. Alternatively to (2.3),

one could specify a dynamic model directly on the beta’s:

βt = c0

(
vt−1, . . . ,vt−r, g

1/2
t−1, . . . , g

1/2
t−r

)
+

s∑
j=1

C0jβt−j . (2.8)

Stationarity conditions are derived in Section 3 for Models (2.3)-(2.3) and (2.3)-(2.3) while

consistency and asymptotic normality of the Full QMLE of these models are proved under very

general assumptions in Section 4.

To get more explicit conditions for stationarity and invertibility of the CHAR model as well as

consistency and asymptotic normality of the Full and EbE QMLE of this model, we consider a more

specific parametrization than (2.3)-(2.3).

For the conditional variance of the factors we assume that

git = ω0i + γ0i+

(
ε+1,t−1

)2
+ γ0i−

(
ε−1,t−1

)2
+

i∑
k=2

α
(k)
0i v

2
k,t−1 + b0igi,t−1 (2.9)

for i = 1, . . . ,m, with positivity constraints on the coefficients. By convention, any term of the form∑i
k=2 vanishes when i < 2. Note that the volatility of the i-th factor can depend on the past values

of the factors of indices k ≤ i. This model allows volatility spillovers between the factors. Note

also that, although the factors are, by definition, conditionally uncorrelated, and thus marginally

uncorrelated when second-order moments exist, they are not independent.

For the conditional betas, we adopt the following specification:

βij,t = $0ij + ς0ij+ε
+
1,t−1 + ς0ij−ε

−
1,t−1 +

i∑
k=2

τ
(k)
0ij vk,t−1 + c0ijβij,t−1 (2.10)

for any index (i, j) belonging to the set

Tm = {(i, j) : i = 2, . . . ,m and j = 1, . . . , i− 1}.

Importantly, no further positivity constraint is required in (2.3) to ensure the positivite-definiteness

of Σt. The same equation could be considered for the `ij,t’s but we decided not to study in detail

such a specification because the main objective of this paper is to model conditional betas. Note

that Tsay (2010) uses a specification where `ij,t depends on a constant, `ij,t−1 and εi,t−1. However,

the statistical properties of this model have not been studied yet in the literature.
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Equations (2.3)-(2.3) defines a triangular system in which the dynamics of the i-th row depends

only on the dynamics of the previous rows. We will see in Subsection 4.2 that this structure facilitates

the estimation of the system. In (2.3)-(2.3), the asymmetric effects are introduced via only the first

factor, which plays a particular role in our applications. This allows keeping a reasonable number

of parameters, and avoids differentiability problems entailed by the fact that the latent factors vk,t

depend on parameters when k > 1.

We also consider another specification of the CHAR model for which the EbE QMLE can be

parallelized, i.e.,

git = ω0i + γ0i+

(
ε+1,t−1

)2
+ γ0i−

(
ε−1,t−1

)2
+ α0iv

2
i,t−1 + b0igi,t−1, (2.11)

βij,t = $0ij + ς0ij+ε
+
1,t−1 + ς0ij−ε

−
1,t−1 + τ0ijvi,t−1 + ξ0ijvi,t−1v1,t−1 + c0ijβij,t−1, (2.12)

where the terms α0iv
2
i,t−1 and τ0ijvi,t−1 + ξ0ijvi,t−1v1,t−1 appear only when i > 1. Because of the

presence of the product term vi,t−1v1,t−1, (2.3) is not a particular case of (2.3).

3 Stationarity of the CHAR model

The objective of this section is to study the stationarity conditions for the CHAR model. Proofs are

gathered in Section 8. Let η2+
t =

({
η+

1t

}2
, · · · ,

{
η+
mt

}2
)′

and η2−
t =

({
η−1t
}2
, · · · ,

{
η−mt
}2
)′
, where

ηt = (η1t, · · · , ηmt)′. For any integer k and any sequence of vectors (xt), let xt:t−k = (x′t, . . . ,x
′
t−k)

′.

With these notations, (2.3) can be rewritten as

zt = ht +Htzt−1,

where zt =
(
v2+′

t:(t−q+1),v
2−′
t:(t−q+1), g

′
t:(t−p+1)

)′
and

ht =
(
ω′0Υ

+′

t , 0
′
m(q−1),ω

′
0Υ
−′
t , 0

′
(q−1)m,ω

′
0, 0
′
(p−1)m

)′
,

where Υ+
t = diag

(
η2+
t

)
and Υ−t = diag

(
η2−
t

)
. The matrixHt depends on θ0 and ηt. For example,

when p = q = 1 we have

Ht =


Υ+
t A01,+ Υ+

t A01,− Υ+
t B01

Υ−t A01,+ Υ−t A01,− Υ−t B01

A01,+ A01,− B01

 .
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The top Lyapunov exponent of the sequence (Ht) is defined by

γ0 = inf
t≥1

1

t
E(log ‖HtHt−1 . . .H1‖)

for any norm ‖ · ‖. Denote by %(M) the spectral radius of a square matrix M , and let ⊗ be the

Kronecker product of matrices.

Theorem 3.1 Consider the CHAR model (2). A sufficient condition for the existence of a strictly

stationary, non anticipative4 and ergodic CHAR process (εt)t satisfying Equations (2.3)-(2.3), or

Equations (2.3)-(2.3), is i) γ0 < 0 and ii) det
{
Im0 −

∑s
i=1C0iz

i
}
6= 0 for all |z| ≤ 1. Suppose in

addition that c0 satisfies the Hölder condition iii) ‖c0(x)− c0(y)‖ ≤ K ‖x− y‖a, for some constant

K > 0, a ∈ (0, 1] and all x and y in R2rm. Then there exists s0 > 0 such that E‖ε1‖2s0 < ∞ and

E‖Σ1‖s0 <∞. If γ0 ≥ 0 then there exists no stationary solution to (2.3).

Let m1 be a positive integer. If

E‖η1‖2m1 <∞ and %(EH⊗m1
1 ) < 1, (3.1)

then E‖vt‖2m1 <∞. If, in addition, conditions ii) and iii) hold, then E ‖ε1‖2m1 <∞.

For models (2.3)-(2.3) and (2.3)-(2.3), the stationarity conditions are more explicit.

Corollary 3.1 There exists a strictly stationary, non anticipative and ergodic process satisfying (2)

with (2.3)-(2.3) or (2.3)–(2.3) when

1) E log

{
γ01+

(
η+

1,t−1

)2
+ γ01−

(
η−1,t−1

)2
+ b01

}
< 0,

2) E log
{
α

(i)
0i η

2
it + b0i

}
< 0 for i = 2, . . . ,m,

3) |c0ij | < 1 for all (i, j) ∈ Tm.

Moreover, the stationary solution satisfies E‖ε1‖2s0 <∞, E‖g1‖s0 <∞, E‖v1‖s0 <∞, E‖β1‖s0 <

∞ and E‖Σ1‖s0 <∞ for some s0 > 0.

4 One-step and multi-step QMLE

The parameter ϑ0 can be estimated by the standard Gaussian QMLE. For models with a "trian-

gular structure", such as (2.3)-(2.3), a numerically more convenient equation-by-equation estimator

(EbEE) can also be used. Proofs are gathered in Section 8.
4i.e εt measurable with respect to the sigma-field generated by {ηu, u ≤ t}.
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4.1 Full QMLE

Let Θ be a compact parameter space which contains ϑ0. For all ϑ ∈ Θ, assume that the variance

Σt(ϑ) is well-defined, and consider its Cholesky decomposition Σt(ϑ) = Lt(ϑ)Gt(ϑ)L′t(ϑ). We also

introduce the vector gt(ϑ) of generic element git(ϑ) such that gt = gt(ϑ0) = g(εt−1, εt−2, . . . ;ϑ0),

and the vectors βt(ϑ) and `t(ϑ) such that βt = βt(ϑ0) = β(εt−1, εt−2, . . . ;ϑ0) and `t = `t(ϑ0) =

`(εt−1, εt−2, . . . ;ϑ0). Given observations ε1, . . . , εn, and arbitrary fixed initial values ε̃i for i ≤ 0,

let the statistics

Σ̃t(ϑ) = Σ (εt−1, . . . , ε1, ε̃0, ε̃−1, . . . ;ϑ)

and similarly define L̃t(ϑ), G̃t(ϑ) = diag {g̃t(ϑ)}, B̃t(ϑ), ˜̀t(ϑ) = vec0L̃t(ϑ) and β̃t(ϑ) =

−vec0B̃t(ϑ). A QMLE of ϑ0 is defined as any measurable solution ϑ̂n of

ϑ̂n = arg min
ϑ∈Θ

Õn(ϑ), Õn(ϑ) = n−1
n∑
t=1

q̃t(ϑ), (4.1)

where

q̃t(ϑ) = ε′tΣ̃
−1

t (ϑ)εt + log
∣∣∣Σ̃t(ϑ)

∣∣∣ = ε′tB̃
′
t(ϑ)G̃

−1

t (ϑ)B̃t(ϑ)εt +

m∑
i=1

log g̃it(ϑ).

It is worth noting that for computing the QMLE, it is not necessary to inverse matrices (G̃t(ϑ)

being diagonal). This constitutes an attractive feature of the CHAR models.

4.1.1 General CHAR model

We now give high-level assumptions which entail the strong consistency and asymptotic normality

(CAN) of the QML estimator for the general CHAR model. These assumptions will be made

explicit for the particular model (2.3)-(2.3). In the sequel ρ denotes a generic constant belonging

to [0, 1), and K denotes a positive constant or a positive random variable measurable with respect

to {εu, u < 0} (and thus which does not depend on n).

A1: supϑ∈Θ

∥∥∥g̃−1
t (ϑ)

∥∥∥ ≤ K, supϑ∈Θ

∥∥g−1
t (ϑ)

∥∥ ≤ K, a.s.

A2: supϑ∈Θ

{
‖gt(ϑ)− g̃t(ϑ)‖+ ‖βt(ϑ)− β̃t(ϑ)‖

}
≤ Kρt where the random variable ρt satisfies∑∞

t=1 {Eρ
s1
t }

1/3 <∞ for all s1 ∈ (0, s0] and some s0 > 0.

A3: E {‖εt‖s0 + ‖gt(ϑ0)‖s0 + supϑ∈Θ ‖βt(ϑ)‖s0} <∞ for some s0 > 0.
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A4: For ϑ ∈ Θ, {gt(ϑ),βt(ϑ)} = {gt(ϑ0),βt(ϑ0)} a.s. implies ϑ = ϑ0.

A5: For any sequence x1,x2, . . . of vectors of Rm, the functions ϑ 7→ g(x1,x2, . . . ;ϑ) from Θ to

(0,+∞)m and ϑ 7→ β(x1,x2, . . . ;ϑ) from Θ to Rm0 are continuous on Θ.

A6: ϑ0 belongs to the interior Θ̊ of Θ.

A7: For any sequence x1,x2, . . . of vectors of Rm, the functions ϑ 7→ g(x1,x2, . . . ;ϑ) and ϑ 7→

β(x1,x2, . . . ;ϑ) admit continuous second-order derivatives.

A8: For some neighbourhood V (ϑ0) of ϑ0, there exists s0 > 0 such that

sup
ϑ∈V (ϑ0)

{∥∥∥∥∂gt(ϑ)

∂ϑ
− ∂g̃t(ϑ)

∂ϑ

∥∥∥∥+

∥∥∥∥∥∂βt(ϑ)

∂ϑ
− ∂β̃t(ϑ)

∂ϑ

∥∥∥∥∥
}
≤ Kρt

with ρt as in A2.

A9: For some neighborhood V (ϑ0) of ϑ0, for all i, j ∈ {1, . . . ,m} and p > 0, q > 0 and r > 0 such

that 2q−1 + 2r−1 = 1 and p−1 + 2r−1 = 1, we have

E sup
ϑ∈V (ϑ0)

∥∥∥∥Σ−1/2′

t (ϑ)
∂2Σt(ϑ)

∂ϑi∂ϑj
Σ
−1/2
t (ϑ)

∥∥∥∥p <∞,
E sup
ϑ∈V (ϑ0)

∥∥∥∥Σ−1/2′

t (ϑ)
∂Σt(ϑ)

∂ϑi
Σ
−1/2
t (ϑ)

∥∥∥∥q <∞,
E sup
ϑ∈V (ϑ0)

∥∥∥Σ1/2′

t (ϑ0)Σ
−1/2
t (ϑ)

∥∥∥r <∞,
where ϑi denotes the i-th element of the vector ϑ.

A10: E‖ηt‖4 <∞.

A11: The matrices {∂Σt(ϑ0)/∂ϑi, i = 1, . . . , d} are linearly independent with nonzero probability.

Theorem 4.1 (CAN of the QMLE in the general CHAR case) Let (εt) be a non anticipa-

tive solution to the CHAR model (2). Let (ϑ̂n) be a sequence of QML estimators satisfying (4.1).

Under A1-A5 we have

ϑ̂n → ϑ0, almost surely as n→∞.

Under the additional assumptions A6-A10, we have the existence of the d× d matrix

J = ED′t
{
Σ−1
t (ϑ0)⊗Σ−1

t (ϑ0)
}
Dt, Dt =

∂vecΣt(ϑ0)

∂ϑ′
,
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and of the d× d matrix I of generic term

I(i, j) = Tr
{
KECi,tC

′
j,t

}
,

with K = Evec(Im − ηtη′t)vec′(Im − ηtη′t) and

Ci,t =
{

Σ
−1/2
t (ϑ0)⊗Σ

−1/2
t (ϑ0)

}
vec

∂Σt(ϑ0)

∂ϑi
.

Moreover, under the additional assumption A11, J is invertible and

√
n
(
ϑ̂n − ϑ0

)
L→ N

{
0,J−1IJ−1

}
as n→∞.

We also have the Bahadur representation

ϑ̂n − ϑ0 = J−1 1

n

n∑
t=1

∇tvec(ηtη
′
t − Im) + oP (n−1/2), (4.2)

where ∇t = D′t

{
Σ
−1/2′

t (ϑ0)⊗Σ
−1/2′

t (ϑ0)
}
.

4.1.2 QMLE for a specific parameterization

Now consider the case where (εt) is a stationary and ergodic solution to model (2.3)-(2.3), whose

unknown parameter ϑ0 belongs to a compact set Θ of Rd, with d = m(m + 1)(m + 5)/3. Let

θ
(1)
0 = (ω01, γ01+, γ01−, b01)′ and, for i = 2, . . . ,m, let

θ
(i)
0 = (ω0i, γ0i+, γ0i−, α

(2)
0i , . . . , α

(i)
0i , b0i)

′

be the vector of the i + 3 parameters involved in git. Assume that θ(i)
0 belongs to a compact set

Θ
(i)
θ ⊂ (0,∞)× [0,∞)i+2. For (i, j) ∈ Tm, set

ϕ
(ij)
0 = ($0ij , ς0ij+, ς0ij−, τ

(2)
0ij , . . . , τ

(i)
0ij , c0ij)

′,

and ϕ(i)
0 = (ϕ

(i1)′

0 , . . . ,ϕ
(i,i−1)′

0 )′. For i ≥ 2, let Θ
(i)
ϕ be the parameter space of ϕ(i)

0 , a compact

subspace of R(i−1)(i+3). The parameter ϕ0 := (ϕ
(2)′

0 , . . . ,ϕ
(m)′

0 )′ belongs to the compact subset

Θϕ = Θ
(2)
ϕ × · · · ×Θ

(m)
ϕ of the Euclidean space of dimension m(m− 1)(2m+ 11)/6. Let ϑ(1)

0 = θ
(1)
0

and ϑ(i)
0 = (θ

(i)′

0 ,ϕ
(i)′

0 )′ for i = 2, . . . ,m. The parameter space Θ(i) = Θ
(i)
θ × Θ

(i)
ϕ of ϑ(i)

0 (with

the convention Θ(1) = Θ
(1)
θ ) is a compact subset of Rdi , with di = i(i + 3). We have ϑ0 =

(ϑ
(1)′

0 , . . . ,ϑ
(m)′

0 )′. Let ϑ = (ϑ(1)′ , . . . ,ϑ(m)′)′ be a generic element of the parameter space Θ and
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ϕ = (ϕ(2)′ , . . . ,ϕ(m)′)′ a generic element of Θϕ. Using (2.2) to compute vk,t−1 in (2.3), one can see

that βij,t actually depends on

ϕ
(+i)
0 =

(
ϕ

(i)′

0 ,ϕ
(−i)′
0

)′
, ϕ

(−i)
0 =

(
ϕ

(i−1)′

0 , . . . ,ϕ
(2)′

0

)′
,

with the convention ϕ(+2)
0 = ϕ

(2)
0 . We thus consider the function βij,t(ϕ

(+i)) such that βij,t =

βij,t(ϕ
(+i)
0 ). Introduce also the notation

ϑ
(+i)
0 =

(
ϑ

(i)′

0 ,ϕ
(−i)′
0

)′
=
(
θ

(i)′

0 ,ϕ
(+i)′

0

)′
, (4.3)

dropping the subscript "0" when considering a generic element of a parameter space denoted by

Θ(+i), and using the convention ϑ(+i) = ϑ(i) for i = 1, 2. The QMLE of ϑ0 is the solution to (4.1)

where, with some abuse of notation,

q̃t(ϑ) =

m∑
i=1

q̃it(ϑ
(+i)), (4.4)

with, for t = 1, . . . , n,

q̃it(ϑ
(+i)) =

ṽ2
it(ϕ

(+i))

g̃it(ϑ
(+i))

+ log g̃it(ϑ
(+i)), (4.5)

g̃it(ϑ
(+i)) = ωi,t−1 +

i∑
k=2

α
(k)
i ṽ2

k,t−1(ϕ(+k)) + big̃i,t−1(ϑ(+i)), (4.6)

ṽkt(ϕ
(+k)) = εkt −

k−1∑
j=1

β̃kj,t(ϕ
(+k))εjt, (4.7)

β̃ij,t(ϕ
(+i)) = ωij,t−1 +

i∑
k=2

τ
(k)
ij ṽk,t−1(ϕ(+k)) + cij β̃ij,t−1(ϕ(+i)), (4.8)

using the convention ṽ2
1t(ϕ

(+i)) = ε21t, the notations ωit = ωi + γi+
(
ε+1t
)2

+ γi−
(
ε−1t
)2 and ωijt =

$ij + ςij+ε
+
1t + ςij−ε

−
1t, and fixed initial values for β̃ij,0(·), ε0 and g̃i,0(·).

4.1.3 Invertibility condition

Starting with the initial values and using (4.1.2) for t = 0 and successively (4.1.2) and (4.1.2) for

t = 1, 2, . . . , one can define β̃ij,t(ϕ(+i)) for any value of ϕ(+i). One can expect that the initial

values be asymptotically negligible, in the sense that, as t→∞, β̃ij,t(ϕ(+i)) be arbitrarily close to

some function βij,t(ϕ(+i)) measurable with respect to the past observations Ft−1. From (4.1.2), we

then consistently approximate ṽit(ϕ(+i)) by a measurable function vit(ϕ(+i)) of Ft−1. By imposing
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|bi| < 1 in (4.1.2), one can also consistently approximate g̃it(ϑ(+i)) by some function git(ϑ(+i)) of

Ft−1. When these consistent Ft−1-approximations hold for all values of i and j, the model (2.3)-

(2.3) is said to be invertible. For prediction or estimation purposes, it is important that the model

possesses this property. Indeed, if the invertibility does not hold, the approximate volatility Σ̃t(ϑ)

is likely to depend strongly on the initial values, even for large t, and thus the model would provide

unstable predictions that depend much on the initial values. The noninvertibility would also entail

estimation inconsistency, because the objective functions Õ(i)
n (ϑ(+i)) could asymptotically depend

on the initial values. Problems of invertibility have been documented in Wintenberger (2013) for the

EGARCH model of Nelson (1991) and more recently Blasques et al. (2016) for the Beta-t GARCH

of Harvey (2013). In both models, the conditional variance (or its log) depends in a very nonlinear

way on past innovations.

We now give conditions for the uniform invertibility of Model (2.3)-(2.3).

For all ϕ ∈ Θϕ, let

β̃t(ϕ) =
(
β̃21,t(ϕ

(2)), β̃31,t(ϕ
(+3)) . . . , β̃m,m−1,t(ϕ

(+m))
)′

= −vech0B̃t(ϕ),

where B̃t(ϕ) is a lower unitriangular matrix. In vectorial form, the equations (4.1.2)-(4.1.2) write

β̃t(ϕ) = wt−1 + TB̃t−1(ϕ)εt−1 +Cβ̃t−1(ϕ), t ≥ 1, (4.9)

with a fixed initial values for β̃0(ϕ). If the `-th element of βt contains βij,t, then the `-th element of

the random vectorwt is ωijt, row ` of T is (0, τ
(2)
ij , . . . , τ

(i)
ij ,0

′
m−i), andC is a diagonal matrix with cij

as `-th diagonal element. Let D0
m be the matrix with elements 0 or 1 such that vecA = D0

mvech
0A

for any strictly lower triangular m ×m matrix A. Noting that vecB̃t(ϕ) = −D0
mβ̃t(ϕ) + vecIm,

we obtain

TB̃t(ϕ)εt = Tεt − (ε′t ⊗ T )D0
mβ̃t(ϕ)

and

β̃t(ϕ) = w∗t−1 +

t−1∑
i=1

 i∏
j=1

St−j

w∗t−i−1 +

(
t−1∏
i=1

St−i

)(
w∗0 + β̃0(ϕ)

)
,

with w∗t = wt +Tεt and St = St(ϕ) = C− (ε′t⊗T )D0
m. By the Cauchy rule, under the conditions

E log+ sup
ϕ∈Θϕ

‖w1 + Tε1‖ <∞, (4.10)

γS := lim sup
n→∞

1

n
log sup

ϕ∈Θϕ

∥∥∥∥∥
n∏
i=1

St−i

∥∥∥∥∥ < 0, (4.11)
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where ‖ · ‖ denotes any multiplicative norm, the series

βt(ϕ) = w∗t−1 +
∞∑
i=1

 i∏
j=1

St−j

w∗t−i−1 (4.12)

converges absolutely (and uniformly) with probability one. Moreover,

sup
ϕ∈Θϕ

∥∥∥βt(ϕ)− β̃t(ϕ)
∥∥∥ = sup

ϕ∈Θϕ

∥∥∥∥∥
(
t−2∏
i=1

St−i

){
β1(ϕ)− β̃1(ϕ)

}∥∥∥∥∥ ≤ Kρt, (4.13)

where K is a positive random variable measurable with respect to {εu, u ≤ 0} and 0 ≤

exp {γS(ϕ)} < ρ < 1 (see Bougerol and Picard, 1992a and 1992b for conditions under which

(4.1.3) is not only sufficient but also necessary for the existence of (4.1.3)).

Note that for any s0 > 0, there existsK > 0 such that log+ ‖w1‖ ≤ K+‖w1+Tε1‖s0 . Therefore

E log+ ‖w1+Tε1‖ <∞ if E ‖ε1‖s0 <∞ for some s0 > 0, regardless of the value of ϕ. Consequently,

in view of Corollary 3.1, Condition (4.1.3) does not constrain the compact parameter space Θϕ. By

contrast, (4.1.3) entails non explicit constraints on ϕ. By Jensen’s inequality, the condition γS < 0

is satisfied if E supϕ∈Θϕ
‖S1‖ < 1 for some multiplicative norm ‖ · ‖. Take the spectral norm,

defined by ‖A‖2 =
√
%(A∗A), with % the spectral radius and other standard notations. Noting

that
∥∥D0

m

∥∥
2

=
√

2 and ‖ε′t ⊗ T ‖2 =
√
%(εtε′t ⊗ T ′T ) =

√
ε′tεt ‖T ‖2, and using the compactness of

Θϕ, we obtain that the uniform invertibility holds if

max
i,j
|cij |+

√
2 ‖T ‖2E

√
ε′1ε1 < 1, ∀ϕ ∈ Θϕ. (4.14)

Note that, although slightly more explicit, Condition (4.1.3) is more restrictive than Condition

(4.1.3). In particular, (4.1.3) requires a finite second order moment for ‖εt‖ when T 6= 0. Note also

that if the term
∑i

k=2 τ
(k)
0ij vk,t−1 does not appear in (2.3), then the model is invertible, i.e., (4.1.3)

holds, if maxi,j |cij | < 1 for all ϕ ∈ Θϕ.

4.1.4 Asymptotic property of the QMLE

Let us define the following empirical information matrices:

Jn =
∂2Õn(ϑ̂n)

∂ϑ∂ϑ′
and In =

1

n

n∑
t=1

∂q̃t(ϑ̂n)

∂ϑ

∂q̃t(ϑ̂n)

∂ϑ′
.

We need the following assumptions.
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B1: Conditions 1), 2) and 3) of Corollary 3.1 are satisfied.

B2: For i = 2, . . . ,m, the distribution of η2
it conditionally on {ηjt, j 6= i} is non degenerated. The

support of η1t contains at least two positive points and two negative points.

B3: For (i, j) ∈ Tm and all ϑ(i) ∈ Θ(i) we have θ(i) ≥ 0 componentwise, ωi > 0, |bi| < 1 and

|cij | < 1.

B4: For i = 1, . . . ,m, we have (γ0i+, γ0i−, α
(2)
0i , . . . , α

(i)
0i ) 6= 0 and (ς0ij+, ς0ij−, τ

(2)
0ij , . . . , τ

(i)
0ij) 6= 0.

B5: The uniform invertibility condition (4.1.3) holds true.

B6: There exist three pairs of Hölder conjugate numbers, (pi, qi) with p−1
i +q−1

i = 1 for i ∈ {1, 2, 3},

such that E ‖εt‖4p1q2 < ∞, E ‖εt‖2q1q3 < ∞, and there exists a neighbourhood V (ϕ0) of ϕ0

such that

E sup
ϕ∈V (ϕ0)

‖βt(ϕ)‖4p1p2 <∞, E sup
ϕ∈V (ϕ0)

∥∥∥∥∂βt(ϕ)

∂ϕ′

∥∥∥∥2q1q3

<∞, (4.15)

where βt(ϕ) is defined by (4.1.3).

In the case where the conditional betas are constant, (4.1.4) holds true for any value of the Hölder

conjugates. Therefore one can choose q1 = 3 and q2, q3 arbitrarily close to 1, which shows that, in

this case, B6 is satisfied when ‖εt‖ admits a moment larger than 6.

As shown by Corollary 3.1, B1 ensures the existence of a strictly stationary solution to (2.3)-

(2.3). Assumption B2 is an identifiability assumption. Assumption B3 guarantees the existence

and positivity of g̃it(ϑ(i)), as well as the existence of β̃ij,t(ϑ(i)). The first part of B4 avoids the

well-known identifiability issue git = ω0i/(1 − b0i) = ω0i − b0igi,t−1 that arises when the inequality

does not hold. The second part is an analogous identifiability condition for βij,t. Assumption B5

ensures that the initial values are asymptotically negligible.

The moment conditions in B6 are required for the asymptotic normality (see the example given

after the next theorem). It must be acknowledged that they are restrictive and not explicit. Indeed,

Theorem 3.1 provides more explicit conditions for even-order moments only. Even for the simplest

univariate ARCH processes εt, the precise conditions for the existence of E|εt|p1 are unknown when

p1 is not an even integer. To our knowledge, the only asymptotic theory available for multivariate

GARCH models with dynamic conditional correlation has been provided by Comte and Lieberman

(2003) and concerns the BEKK model. These authors assume, in particular, a moment of order two
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for the consistency and of order eight for the asymptotic normality. Actually, Avarucci, Beutner and

Zaffaroni (2013) give evidence that moment conditions are necessary for the CAN of the QMLE in

the case of the simplest VEC-GARCH model, which contrasts with the univariate GARCH models

for which the CAN can be established without moment conditions on the observed process.

Theorem 4.2 (CAN of the QMLE) Consider the CHAR model (2) satisfying (2.3)-(2.3). Un-

der B1-B5, the QMLE ϑ̂n defined by (4.1) and (4.1.2)-(4.1.2) satisfies

ϑ̂n → ϑ0, almost surely as n→∞.

Under the additional assumptions A6, A10 and B6, the matrices In and Jn converge almost surely

to positive-definite matrices I and J as n→∞. Moreover,

√
n
(
ϑ̂n − ϑ0

)
L→ N (0,Ω) , Ω = J−1IJ−1. (4.16)

In order to emphasize the need of the moment conditions involved in B6, let us consider an

elementary bivariate example. Assume g1t = ω01 + γ01+

(
ε+1,t−1

)2
+ γ01+

(
ε+1,t−1

)2
+ b01g1,t−1,

g2t = ω02 and β21,t = $0 + ς0+ε
+
1,t−1 + ς0−ε

−
1,t−1. There are 8 unknown parameters and, in view of

(8) in the proof of Theorem 4.2, we have

I(8, 8) = Var
(

2η2t
1
√
g2t

∂v2t

∂ς−

)
=

4

ω02
Eε21,t

(
ε−1,t−1

)2
.

Therefore, even in this simplistic example, at least moments of order 4 are required.

4.2 Multi-step QMLE

Recall that (2.3)-(2.3) defines a triangular system in which the dynamics of the i-th row depends

only on the dynamics of the previous rows. Therefore, instead of estimating simultaneously the d

components of ϑ0, one can estimate the parameters equation-by-equation (EbE) (see e.g., Francq

and Zakoian, 2016 for an EbE estimator in another class of multivariate GARCH models).

4.2.1 Definition of the estimator

For simplicity, the EbE estimator (EbEE) of ϑ0 is described in the case of Model (2.3)-(2.3), but

the estimator can be readily extended to other models.
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In a first step we estimate ϑ(1)
0 by

ϑ̂
(1)

n = arg min
ϑ(1)∈Θ(1)

Õ(1)
n (ϑ(1)), Õ(1)

n (ϑ(1)) =
1

n

n∑
t=1

q̃1t(ϑ
(1)), (4.17)

where, according to (4.1.2), q̃1t(ϑ
(1)) is defined by

q̃1t(ϑ
(1)) =

ε21t

g̃1t(ϑ
(1))

+ log g̃1t(ϑ
(1)), g̃1t(ϑ

(1)) = ω1,t−1 + b1g̃1,t−1(ϑ(1)).

The estimation of ϑ(2)
0 can be done independently or in parallel to ϑ(1)

0 by using

ϑ̂
(2)

n = arg min
ϑ(2)∈Θ(2)

Õ(2)
n (ϑ(2)), Õ(2)

n (ϑ(2)) =
1

n

n∑
t=1

q̃2t(ϑ
(2)), (4.18)

where, following again (4.1.2),

q̃2t(ϑ
(2)) =

ṽ2
2t(ϕ

(2))

g̃2t(ϑ
(2))

+ log g̃2t(ϑ
(2)),

g̃2t(ϑ
(2)) = ω2,t−1 + α

(2)
2 ṽ2

2,t−1(ϕ(2)) + b2g̃2,t−1(ϕ(2)),

ṽ2t(ϕ
(2)) = ε2t − β̃21,t(ϕ

(2))ε1t,

β̃21,t(ϕ
(2)) = ω21,t−1 + τ

(2)
21 ṽ2,t−1(ϕ(2)) + c21β̃21,t−1(ϕ(2)).

For i = 3, . . . ,m, the estimation of ϑ(i)
0 depends on the estimates ϕ̂(−i)

n =
(
ϕ̂(i−1)′

n , . . . , ϕ̂(2)′

n

)′
obtained in previous steps (i.e., j < i). We then estimate ϑ(i)

0 , for i = 3, . . . ,m, by

ϑ̂
(i)

n = arg min
ϑ(i)∈Θ(i)

Õ(i)
n

 ϑ(i)

ϕ̂(−i)
n

 , Õ(i)
n (ϑ(+i)) =

1

n

n∑
t=1

q̃it(ϑ
(+i)), (4.19)

where q̃it is defined in (4.1.2).

4.2.2 Asymptotic behavior of the EbEE

Let us define the following empirical information matrices:

J (i)
n =

∂2Õ
(i)
n (ϑ̂

(+i)

n )

∂ϑ(i)∂ϑ(i)′
, I(i)

n =
1

n

n∑
t=1

∂q̃it(ϑ̂
(+i)

n )

∂ϑ(i)

∂q̃it(ϑ̂
(+i)

n )

∂ϑ(i)′
, K(i)

n =
∂2Õ

(i)
n (ϑ̂

(+i)

n )

∂ϑ(i)∂ϕ(−i)′

with the notation ϑ̂
(+i)

n = ϑ̂
(i)

n for i = 1, 2 and ϑ̂
(+i)

n = (ϑ̂
(i)′

n , ϕ̂(−i)′
n )′ for i = 3, . . . ,m. By definition,

the components of ηt are uncorrelated. The form of the asymptotic variance of the EbEE can be

simplified under the assumption that the components of ηt are independent, or more generally under

the following assumption.
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B7: The components of ηt are such that Eηitη2
jt = 0 and Eη2

itη
2
jt = 1 when i 6= j.

Theorem 4.3 (CAN of the EbEE) Consider Model (2), satisfying (2.3)-(2.3). Under B1-B5,

the EbEE ϑ̂
EbE

n =

(
ϑ̂

(1)′

n , . . . , ϑ̂
(m)′

n

)′
defined by (4.2.1), (4.2.1) and (4.2.1) satisfies

ϑ̂
EbE

n → ϑ0, almost surely as n→∞.

Under the additional assumptions A6, A10 and B6, for i = 1, . . . ,m, the matrices J (i)
n , I(i)

n and

K
(i)
n converge almost surely, respectively, to a positive-definite matrix J (i), to a semi positive-definite

matrix I(i), and to a matrix K(i), as n→∞. Moreover,

√
n
(
ϑ̂

(i)

n − ϑ
(i)
0

)
L→ N

{
0,Σ(i) :=

(
J (i)

)−1
I(i)

(
J (i)

)−1
}

(4.20)

for i = 1 and i = 2. According to (4.1.2), denote by Σ
(+i)
ϕ− (or by Σ

(+(i−1))
ϕ+ ) the bottom-right sub-

matrix of Σ(+i) (or of Σ(+(i−1))) corresponding to the asymptotic variance of ϕ̂(−i)
n (which is equal

to ϕ̂(+(i−1))
n ). Using this notation and the convention Σ(+2) = Σ(2), for i = 3, . . . ,m, we have

√
n
(
ϑ̂

(+i)

n − ϑ(+i)
0

)
L→ N

(
0,Σ(+i)

)
(4.21)

with, under B7,

Σ(+i) =

 Σ
(i)
ϑ −

(
J (i)

)−1
K(i)Σ

(+(i−1))
ϕ+

−Σ
(+(i−1))
ϕ+ K(i)′

(
J (i)

)−1
Σ

(+(i−1))
ϕ+


and Σ

(i)
ϑ =

(
J (i)

)−1 {
I(i) +K(i)Σ

(+(i−1))
ϕ+ K(i)′

}(
J (i)

)−1
.

4.3 Comparison between the Full QMLE and the EbEE

Consider the CHAR model (2) satisfying (2.3)-(2.3). If m = 2, the one-step full QMLE and the

two-step EbEE are exactly the same because

Q̃n(ϑ) = Q̃(1)
n (ϑ(1)) + Q̃(2)

n (ϑ(2))

in this case. For m ≥ 3, the two estimators are generally different. In order to compare their

asymptotic accuracies, we consider a simplistic static model with git = 1 for i ∈ {1, 2, 3}, `21,t = `21,
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`32,t = `32 and `31,t = 0 (or equivalently β21,t = β21, β32,t = β32 and β31,t = −β21β32). The unknown

parameter is thus ϑ = (β21, β32). The full QMLE is

ϑ̂n = arg min
ϑ∈Θ

n∑
t=1

qt(ϑ),

where qt(ϑ) = (ε2t− β21ε1t)
2 + (ε3t− β32ε2t + β21β32ε1t)

2 and Θ is a compact parameter space such

that ϑ0 ∈ Θ̊. We have

∂qt(ϑ)

∂ϑ
=

 −2ε1tv2t(ϑ) + 2β32ε1tv3t(ϑ)

−2v2t(ϑ)v3t(ϑ)


and

∂2qt(ϑ)

∂ϑ∂ϑ′
=

 2ε21t + 2β2
32ε

2
1t 2ε1tv3t(ϑ)− 2β32ε1tv2t(ϑ)

2ε1tv3t(ϑ)− 2β32ε1tv2t(ϑ) 2v2
2t(ϑ)


with

v2t(ϑ) = ε2t − β21ε1t, v3t(ϑ) = ε3t − β32ε2t + β21β32ε1t.

Assume for instance that the variable η2t is independent of the vector (η1t, η3t)
′ and that this vector

is distributed as the product ηu, where the random variable η and the vector u are independent,

e.g., u ∼ N (0, I2) and Eη2 = 1. In view of Theorem 4.1, and noting that vit(ϑ0) = ηit, we then

have

√
n
(
ϑ̂n − ϑ0

)
oP (1)

=

{
E
∂2qt(ϑ0)

∂ϑ∂ϑ′

}−1
1√
n

n∑
t=1

∂qt(ϑ0)

∂ϑ

L→ N

0,Ω :=

 1+β2
32Eη

4

(1+β2
32)2

0

0 Eη4

 .

The EbEE of the parameter β21 is defined by

β̂21 = arg min
β21∈Θ(1)

n∑
t=1

(ε2t − β21ε1t)
2

and satisfies
√
n
(
β̂21 − β0,21

)
=
n−1/2

∑n
t=1 η2tε1t

n−1
∑n

t=1 ε
2
1t

L→ N (0, 1) .

It follows that when Eη4 is large enough, the EbEE of β21 is asymptotically more accurate than

its Full QMLE. By contrast, it can be shown that the EbEE and Full QMLE of β32 have the same

asymptotic distribution.

To illustrate the gain of efficiency of the EbE over the QML in this particular setting, Figure

1 reports the ratio between the asymptotic variance of the QML estimator of β21 and its EbE
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Figure 1: Ratio between the asymptotic variance of the QML estimator of β21 and its EbE coun-
terpart as a function of the degree of freedom ν and β32.

counterpart, i.e. 1+β2
32Eη

4

(1+β2
32)2

, as a function of β32 and Eη4. We consider values of β32 ranging between

−2 and 2. Instead of taking different values for Eη4, we assume that η follows a standardized

Student-t distribution with degree of freedom ν such that Eη4 = 3 + 6/(ν − 4) for ν > 4.

Figure 1 confirms that the gain of efficiency of the EbE estimator of β21 is inversely proportional

to ν (and therefore increases with Eη4). The loss of efficiency of the Full QMLE can be very large

for values of ν < 5, i.e. Eη4 > 9.

Of course, we considered in the section a particular example, and one can easily find other

examples for which the Full QMLE is more efficient than the EbEE.

4.4 Case where the estimation can be parallelized

Now consider the CHAR model (2.3)-(2.3). We adapt the notations used in Section 4.1.2 for model

(2.3)-(2.3), by setting

θ(i) = (ωi, γi+, γi−, αi, bi)
′, ϕ(ij) = ($ij , ςij+, ςij−, τij , ξij , cij)

′,
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for (i, j) ∈ Tm, keeping the convention of adding the subscript "0" to denote the true parameter

value. Note that, with this new model, ṽit(ϕ(+i)) and g̃it(ϑ
(+i)) depend only on ϕ(i) and ϑ(i),

respectively. Indeed the QMLE is the solution to (4.1), with

q̃t(ϑ) =
m∑
i=1

q̃it(ϑ
(i)),

and, for t = 1, . . . , n,

q̃it(ϑ
(i)) =

ṽ2
it(ϕ

(+i))

g̃it(ϑ
(i))

+ log g̃it(ϑ
(i)),

g̃it(ϑ
(i)) = ωi,t−1 + αiṽ

2
i,t−1(ϕ(i)) + big̃i,t−1(ϑ(i)),

ṽit(ϕ
(i)) = εit −

i−1∑
j=1

β̃ij,t(ϕ
(i))εjt,

β̃ij,t(ϕ
(i)) = ωij,t−1 + τij ṽi,t−1(ϕ(i)) + ξij ṽi,t−1(ϕ(i))ε1,t−1 + cij β̃ij,t−1(ϕ(i)),

and fixed initial values for β̃ij,0(ϕ(i)), ε0 and g̃i,0(ϑ(i)). The QMLE and EbEE of ϑ(i)
0 thus coincide,

and can be obtained by solving

ϑ̂
(i)

n = arg min
ϑ(i)∈Θ(i)

n∑
t=1

q̃it(ϑ
(i)),

in parallel (or successively but without any particular order) for all i ∈ {1, . . . ,m}. The analog

of Theorem 4.2 can be obtained, with a block-diagonal matrix Ω, if the conditions in B4 are

modified in an obvious way, and if the matrix T involved in St (see (4.1.3)-(4.1.3)), with `-th row

(0, τ
(2)
ij , . . . , τ

(i)
ij ,0

′
m−i), is replaced by the matrix T t with `-th row (0′i−1, τij + ξijε1t,0

′
m−i).

5 Monte-Carlo simulation

In this section, we first illustrate the invertibility condition and also confirm the good finite sample

properties of the QML and EbE estimators with a Monte Carlo study.

5.1 Illustration of the invertibility condition

To illustrate the importance of the invertibility condition, consider a trivariate stochastic process

εt = (ε1t, ε2t, ε3t)
′ = Σ

1/2
t ηt, compatible with (2)-(2.3)-(2.3), with the additional restrictions that

Σ
1/2
t = B−1

t G
1/2
t , with Gt = G = ω0I3, ηt

i.i.d.∼ N(0, I3) and βij,t = $ + τ
(i)
ij vi,t−1 for (i, j) ∈ T3.
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This model corresponds to a CHAR model with i.i.d. Gaussian innovations, homoscedastic

orthogonal factors (v1t, v2t, v3t)
′ and time varying betas depending only on past shocks vi,t−1. For

simplicity, the constants in the variance of the factors and the conditional betas are restricted to

be the same in all equations. The three equations describing the conditional betas can be written

more compactly as follows:

βt :=


β21,t

β31,t

β32,t

 =


$

$

$

+


0 τ

(2)
21 0

0 0 τ
(3)
31

0 0 τ
(3)
32

vt−1

=


$

$

$

+


0 τ

(2)
21 0

0 0 τ
(3)
31

0 0 τ
(3)
32




1 0 0

−β21,t−1 1 0

−β31,t−1 −β32,t−1 1

 εt−1

= w∗t−1 + St−1βt−1,

with w∗t =


$ + τ

(2)
21 ε2,t

$ + τ
(3)
31 ε3,t

$ + τ
(3)
32 ε3,t

 and St =


−τ (2)

21 ε1,t 0 0

0 −τ (3)
31 ε1,t −τ

(3)
31 ε2,t

0 −τ (3)
32 ε1,t −τ

(3)
32 ε2,t

 .

Figure 2 plots n = 1, 000 observations of εt generated using the above model with parameters

ω0 = 2, $ = 0.5 and τ (1)
21 = τ

(2)
31 = τ

(2)
32 = 0.5.

Figure 3 plots the simulated betas and the filtered betas obtained using the following recursive

formulas:

vkt = εkt −
k−1∑
j=1

βkj,tεjt

βij,t = $ + τ
(i)
ij vi,t−1

for k = 1, 2 and 3 and (i, j) ∈ T3. Importantly, the parameters $ and τ (i)
ij are not estimated but

set to their true values and the same initial value βij,0 = $ is used in the simulation of the data

and in the computation of the betas using the above formulas. Note that this model implies that

β31,t = β32,t∀t because they both depend only on v3,t−1 and furthermore τ (2)
31 = τ

(2)
32 .

The invertibility condition stated in (4.1.3) implies that when n → ∞, γ̃S =

1
n log ‖

∏n
i=1 Sn−i+1‖ < 0 for all ϕ ∈ Θϕ and in particular for ϕ0. Using the Frobenius norm

for ‖ · ‖, we obtain a value of γ̃S = −0.41 < 0 satisfying the invertibility condition. Note that in

this case, filtered and true conditional betas are indistinguishable.
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Figure 2: Simulated returns for the case satisfying the invertibility condition

Figure 4 plots 1,000 observations generated using the same model as above except that τ (1)
21 =

τ
(2)
31 = τ

(2)
32 = 0.85. For this simulation, we have an estimate of γ̃S = 0.09 > 0 implying γS > 0

(provided that n is sufficiently large), which implies that the invertibility condition is not satisfied

in this case. Interestingly, the filtered values of β31,t and β32,t plotted in Figure 5 diverge completely

at the end of the sample, which illustrates the impact of the rejection of the invertibility condition.

5.2 Finite sample properties of the QML and EbE estimators

To study the finite sample properties of the QML and EbE estimators of the CHAR model, we

perform a Monte Carlo simulation.

Simulation setup: We generate T = 1000, 2000 or 4000 observations of a m(= 5)-dimensional return

process εt = Σ
1/2
t ηt (t = 1, . . . , T ), where Σ

1/2
t = B−1

t G
1/2
t . In the first simulation (i.e., Gaussian

case) ηt
i.i.d.∼ N(0, I5) while in the second simulation (i.e., Student-t case) innovations follow inde-

pendent standardized Student-t distributions with 7 degrees of freedom, i.e., ηt = (η1t, . . . , ηmt),

where ηit
i.i.d.∼ T (0, 1, 7) for i = 1, . . . ,m with ηit⊥ηjt for i 6= j.
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Figure 3: True and filtered conditional beta for the case satisfying the invertibility condition

The respectively m and m(m − 1)/2 elements git and βij,t defining Gt and Bt are specified as

restricted versions of (2.3)-(2.3), i.e.

git = ω0i + α0iv
2
i,t−1 + b0igi,t−1

βij,t = $0ij + τ0ijvi,t−1 + c0ijβij,t−1.

We set the parameters governing the dynamics in the conditional variances to ω0i = 0.1, α0i = 0.1

and b0i = 0.8 (for i = 1, . . . ,M) so that all elements of vt have a unit unconditional variance and

GARCH effects. Parameters of the conditional betas are set to $0ij = 0.1 τ0ij = 0.2 and c0ij = 0.8.

Results reported below are based on programs written by the authors using Ox version 7.1 (Doornik,

2012).

Results: Summary statistics on the Monte Carlo simulation are reported in Tables 1 and 2. The

left part of both tables corresponds to the Full QMLE while the right part is for the EbEE. Due

to the high number of parameters, results are not reported for each parameter separately. Instead,

we report averages across the number of series for the GARCH parameters entering in θ (i.e., ω, α

and β) or across the number of conditional betas for the parameters entering in ϕ (i.e., $, τ and
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Figure 4: Simulated returns for the case not satisfying the invertibility condition

c). Note that for ω, α and β, averages are taken over m = 5 values while for $, τ and c, they

are taken over m(m − 1)/2 = 10 values. Averages across all parameters are also reported in rows

labelled “ALL” .

Columns “BIAS” correspond to the empirical bias of the estimates over 1,000 replications. More

specifically, the biases reported in rows “ω” are computed as follows:

BIAS of ω̂ =
1

1, 000

1,000∑
r=1

1

5

5∑
i=1

(ω̂
(r)
i − ω0i),

where ω̂(r)
i is either the Full QMLE or EbEE of ωi obtained at the r-th replication. Similarly, the

RMSE of ω̂ is computed as follows:

RMSE of ω̂ =

√√√√ 1

1, 000

1,000∑
r=1

1

5

5∑
i=1

(ω̂
(r)
i − ω0i)2.

The relative efficiency of the EbEE with respect to the Full QMLE is reported in column “RE”.

For each row of the tables, RE is defined as the ratio between the RMSE of the EbE divided by the

RMSE of the Full QML. A value of RE greater than 1 therefore means that the Full QML is more
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Figure 5: True and filtered conditional beta for the case not satisfying the invertibility condition

efficient than the EbE. Finally, columns “5% CB” and “95% CB” correspond to the frequencies of

true parameters falling below the bands of a 90% confidence interval computed using Theorems 4.2

and 4.3, respectively for the Full QMLE and EbEE. Again these frequencies are averaged over the

number of GARCH equations or conditional betas.

Results suggest that both the Full QML and EbE deliver satisfactory results in the sense that

biases are very small for all parameters (particularly for T = 2, 000 and 4, 000). In the Gaussian case

(i.e. Table 1), the Full QML is about 9%, 16% and 30% more efficient than the EbE, respectively

for T=1, 000, 2, 000 and 4, 000. In the case of Student-t, innovations the RE of the Full QML is

slightly greater.

About the validity of Theorems 4.2 and 4.3 in finite samples, the rejection frequencies reported

in columns “5% CB” and “95% CB” are close to the theoretical values for all parameters both for

Gaussian and Student-t innovations.

Unreported simulation results (available upon request) suggest very similar finite sample be-

haviors of the Full and EbE QML for a specification of the conditional betas of the type
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Table 1: Monte-Carlo simulation – Gaussian case
Full QML EbE

BIAS RMSE 5% CB 95% CB BIAS RMSE 5% CB 95% CB RE

T = 1, 000

ω 0.0160 0.0614 3.5988 93.4440 0.0190 0.0672 4.070 92.251 1.10

α 0.0030 0.0295 3.2265 92.9470 0.0036 0.0322 3.659 91.696 1.09

β -0.0196 0.0804 6.2461 95.1600 -0.0230 0.0876 7.379 94.347 1.09

$ 0.0006 0.0121 4.2192 93.4950 0.0007 0.0132 4.604 92.559 1.08

τ 0.0009 0.0149 5.6256 95.2640 0.0011 0.0165 6.208 94.779 1.10

c -0.0013 0.0230 6.1531 95.3980 -0.0016 0.0250 7.009 94.913 1.09

ALL 0.0000 0.0301 5.0075 94.4300 0.0000 0.0329 5.639 93.644 1.09

T = 2, 000

ω 0.0068 0.0320 2.4869 95.4020 0.0087 0.0370 3.305 93.138 1.16

α 0.0013 0.0185 2.6750 95.2560 0.0017 0.0217 3.766 93.410 1.17

β -0.0082 0.0439 4.2633 96.6140 -0.0104 0.0510 6.130 95.460 1.16

$ 0.0001 0.0067 3.8454 94.5140 0.0002 0.0079 4.550 93.410 1.17

τ 0.0002 0.0088 4.6290 95.6010 0.0004 0.0102 5.690 94.812 1.17

c -0.0003 0.0126 5.0888 96.2800 -0.0004 0.0148 6.266 95.690 1.18

ALL 0.0000 0.0167 4.0613 95.5630 0.0000 0.0195 5.135 94.426 1.17

T = 4, 000

ω 0.0024 0.0172 2.1475 96.3990 0.0039 0.0225 3.442 93.831 1.31

α 0.0005 0.0113 2.2993 96.8980 0.0006 0.0148 3.831 94.372 1.30

β -0.0030 0.0248 3.4924 97.2450 -0.0046 0.0321 5.649 95.909 1.29

$ 0.0000 0.0037 2.8850 96.1710 0.0000 0.0049 4.058 94.177 1.31

τ 0.0001 0.0049 3.4924 96.7140 0.0001 0.0065 5.336 95.249 1.33

c -0.0001 0.0071 3.5792 96.9310 -0.0001 0.0092 5.487 95.747 1.30

ALL 0.0000 0.0094 3.0947 96.6860 0.0000 0.0123 4.743 94.940 1.30

Note: Monte-Carlo simulation results based on 1,000 replications. DGP is a m(= 5)-dimensional

return process εt = Σ
1/2
t ηt, where Σ

1/2
t = B−1

t G
1/2
t , ηt

i.i.d.∼ N(0, I5), git = ω0i + α0iv
2
i,t−1 +

b0igi,t−1 (with ω0i = 0.1, α0i = 0.1, b0i = 0.8) for i = 1, . . . ,m, βij,t = $0ij + τ0ijvi,t−1 + c0ijβij,t−1

(with $0ij = 0.1 τ0ij = 0.2 and c0ij = 0.8) for i = 1, . . . ,m, j < i. Columns “BIAS” and “RMSE”

correspond to the empirical bias and root mean square error. Columns “5% CB” and “95% CB”

correspond to the frequencies of true parameters falling below the bands of a 90% confidence interval.

Column “RE” is the ratio between the RMSE of the EbE and that of Full QML. Entries in this

table are averages across the m series for ω, α and β, across the m(m− 1)/2 conditional betas for

the parameters $, τ and c and across all parameters for rows labelled “All”.
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Table 2: Monte-Carlo simulation – Student-t case
Full QML EbE

BIAS RMSE 5% CB 95% CB BIAS RMSE 5% CB 95% CB RE

T=1,000

ω 0.0179 0.0689 3.3720 92.4130 0.0225 0.0771 4.227 90.284 1.12

α 0.0039 0.0355 2.2339 91.9070 0.0057 0.0414 2.860 90.074 1.17

β -0.0233 0.0919 6.9968 94.5840 -0.0293 0.1031 8.980 93.270 1.12

$ 0.0008 0.0135 4.0569 93.9520 0.0010 0.0144 4.532 92.650 1.06

τ 0.0010 0.0155 4.9104 95.9750 0.0012 0.0178 5.910 95.152 1.15

c -0.0016 0.0245 5.9536 95.7960 -0.0018 0.0271 7.308 95.226 1.10

ALL -0.0001 0.0337 4.7161 94.4830 -0.0001 0.0378 5.730 93.298 1.12

T=2,000

ω 0.0064 0.0337 2.1758 94.7250 0.0093 0.0416 3.141 91.734 1.23

α 0.0009 0.0215 1.7363 93.8460 0.0020 0.0266 2.748 91.189 1.24

β -0.0080 0.0478 5.0989 96.7470 -0.0120 0.0588 7.546 94.984 1.23

$ 0.0002 0.0065 3.0659 95.7030 0.0003 0.0080 4.308 94.079 1.22

τ 0.0003 0.0083 3.6813 96.6810 0.0005 0.0101 4.984 95.507 1.22

c -0.0005 0.0124 4.2088 96.9120 -0.0007 0.0150 5.965 95.725 1.21

ALL -0.0001 0.0175 3.4359 95.9900 0.0000 0.0215 4.883 94.281 1.23

T=4,000

ω 0.0023 0.0179 1.7156 97.0390 0.0049 0.0259 3.125 93.310 1.45

α 0.0002 0.0123 1.3631 96.6630 0.0008 0.0177 3.194 92.755 1.44

β -0.0028 0.0259 3.0552 97.7910 -0.0060 0.0374 6.505 95.370 1.44

$ 0.0001 0.0034 2.8555 96.7100 0.0001 0.0050 4.630 94.051 1.46

τ 0.0000 0.0045 2.7850 97.4150 0.0002 0.0065 4.792 95.567 1.45

c -0.0002 0.0064 3.4078 97.1210 -0.0002 0.0094 5.787 95.486 1.46

ALL 0.0000 0.0094 2.6923 97.1090 0.0000 0.0136 4.805 94.627 1.45

Note: See Table 1 expect that ηt = (η1t, . . . , ηmt), where ηit
i.i.d.∼ T (0, 1, 7) for i = 1, . . . ,m with

ηit⊥ηjt for i 6= j.
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βij,t = $0ij + τ0ijvj,t−1 + c0ijβij,t−1, βij,t = $0ij + τ0ijvi,t−1v1,t−1 + c0ijβij,t−1 and βij,t =

$0ij + τ0ijvi,t−1vj,t−1 + c0ijβij,t−1. The first two specifications are nested respectively in (2.3)

and (2.3). The third one satisfies the stationarity conditions stated in Section 3. When m > 2 it is

not embedded in the theoretical setting of Section 4 but this specification is found to be empirically

relevant (see next section).

6 Empirical Applications

The aim of this section is to illustrate the usefulness of the CHAR model in a portfolio and risk

management exercice. We start with the same dataset used in Engle (2016). We consider the 12

US industry portfolios (i.e., BusEq, Chems, Durbl, Enrgy, Hlth, Manuf, Money, NoDur, Other,

Shops, Telcm and Utils) and the three factors introduced in an asset pricing context by Fama and

French (1992, 2004). Daily data are obtained from Ken French’s website (French, 2014) and cover

the period 1994-August 2016. The three risk factors are the market factor MKT proxied by the

excess log-returns on the SP500 index as well as the standard Fama French size and value factors

SMB (Small Minus Big) and HML (High Minus Low). The 3 factors MKTt, SMBt, HMLt and

the 12 industry portfolios log-returns in excess to the risk free rate (i.e., rkt for k = 1, . . . , 12) are

plotted in Figures 6 and 7, respectively. All the familiar asset pricing results can be easily expressed

in terms of conditional betas, and in particular

Et−1(rkt) = βk,MKT,tEt−1(MKTt) + βk,SMB,tEt−1(SMBt) + βk,HML,tEt−1(HMLt), (6.1)

where βk,MKT,t, βk,SMB,t and βk,HML,t are the three time-varying parameters of interest to be

estimated from the data. In this asset pricing context, expected returns on any asset is linear in

the betas and only depend upon the risk premiums embedded in the factors. In other terms, there

is no alpha or intercept in (6). This property can be directly used to build an in-sample test of the

asset pricing model (see e.g., Engle, 2016).

We follow the approach initially proposed by Patton and Verardo (2012) that consists in building

hedged portfolios to offset some unwanted exposures to predetermined factors. Let us consider

an industry portfolio with a clear small caps biais. The over/underperformance of this portfolio

compared to the market can be explained by a statistically significant βk,SMB,t coefficient. The only

way to control for this effect is to build a portfolio that buys the industry portfolio and sells the
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Figure 6: Time series graph of the three factors (MKTt, SMBt and HMLt) for the whole sample
(i.e., in- and out-of-sample period)

implied SMB exposure. If βk,SMB,t is time-varying, out-of-sample forecasts are needed to adjust

the position. Generalizing this idea to the three factors, Equation (6) leads to an hedged portfolio

or equivalently a tracking error series with zero mean.

To implement this strategy, four competing models are used to estimate the three conditional

betas and obtain one-step-ahead forecasts, i.e., two DCB models and two CHAR models. For the

DCB models, we consider a CCC-GARCH(1,1) model and a DCC-GARCH(1,1) estimated on 4-

dimensional systems εt = (xt, yt)
′ with xt = (MKTt, SMBt, HMLt)

′ and yt = rkt using the same

notation as in Section 2. In-sample conditional betas estimates of the DCB models are obtained

using the formula Σyx,tΣ
−1
xx,t while one-step-ahead forecasts are obtained as Σyx,t+1|tΣ

−1
xx,t+1|t.

The third model is a CHAR model with constant betas (denoted C-CHAR) and a GARCH(1,1)

specification for the conditional variance of the factors, i.e.,

git = ωi + αiv
2
i,t−1 + bigi,t−1, βij,t = $ij . (6.2)

The main pitfall of dynamic specifications of the elements of a Cholesky decomposition is that
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Figure 7: Time series graph of the log-returns of the 12 industry portfolios for the whole sample
(i.e., in- and out-of-sample period)
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the order of the series matters and that most of the times all possible permutations of the series

are plausible.5 In our case, the last series of the vector εt is known and corresponds to the k-th

industry portfolio so that β41,t, β42,t and β43,t correspond to βk,MKT,t, βk,SMB,t and βk,HML,t (in

a certain order). The choice of ε1,t is also natural because it makes more sense to dynamically

orthogonalize the SMB and the HML factors with respect to the MKT factor rather than the

opposite. Indeed, the size and value factors are generated using long/short dollar neutral strategies

to get approximatively market neutral returns. The order between SMB and HML is however not

known apriori and has been chosen using the Schwartz Information Criterion (SIC). We fixed the

order as follows: εt = (MKTt, SMBt, HMLt, rkt)
′.

The last model (simply denoted CHAR) relaxes the assumption of constancy of the conditional

betas. We start by discussing the specification of the conditional betas of the first three compo-

nents of εt, as they are identical whatever the industry portfolio we consider. We tested several

specifications for the βij,t’s and found that the best one is

βij,t = $ij + τijvi,t−1vj,t−1 + cijβij,t−1 (6.3)

for (i, j) belonging to the set T3. With this choice, we can empirically check for instance whether the

factors are already orthogonal on average (i.e, $ij = 0), or need to be conditionally orthogonalized

(i.e, $ij , τij , cij 6= 0).

In a second step, and to model the remaining βk,MKT,t, βk,SMB,t and βk,HML,t terms relative

to a given industry portfolio, several specifications are considered. We allow each conditional beta

to be either constant like in (6) or time-varying according to (6). The best specification (chosen

using the SIC) is used to obtain one-step ahead forecasts of the three conditional betas of interest.

Note that in almost all cases, the best model is found to be the one where all conditional betas

follow Equation (6). One-step-ahead forecasts, denoted βij,t+1|t, are obtained using either (6) or by

translating (6) one step into the future because (6) only depends on quantities that are observed at

time t.

The first two models are estimated by Gaussian QML while the two CHAR models are estimated
5The CholCov of Boudt et al. (2017) is a nonparametric estimator of the quadratic variation of log-prices under

asynchronicity and microstructure noise. Like the CHAR model it is relies on the Cholesky decomposition and allows

a sequential estimation of the covariance matrix. The order of the series also matters in this case. To make optimal

use of the data, Boudt et al. (2017) propose an ordering of the series in terms of decreasing liquidity.
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by the EbE QMLE described in Section 4. All models are estimated on demeaned log-returns (the

empirical means are computed on in-sample observations and not the whole sample) on rolling

windows of 4,000 observations. Models are reestimated every 3 steps (parameters are therefore kept

constant to produce three consecutive forecasts before being reevaluated).

Before presenting the results of the forecasting exercise, we report in Table 3 the estimation

results of a CHAR model for series BusEq and the period spanning from 2000-02-08 to 2015-12-31,

i.e., the values used to produce the forecasts of the CHAR model for the first working day in 2016.

The left part of the table corresponds to the Full QMLE and the right part to the EbE QMLE (i.e.,

the method used to produce the forecasts). We choose to comment this example because it is one

of the few cases where not all conditional betas are time-varying.

Table 3: Full and EbE QMLE of the CHAR model for BusEq
Full QML EbE QML

Coefficient Std-Err p-value Coefficient Std-Err p-value

ω1 0.01924 0.00495 0.00010 0.01924 0.00495 0.00010

α1 0.09558 0.01134 0.00000 0.09558 0.01134 0.00000

b1 0.89050 0.01184 0.00000 0.89050 0.01184 0.00000

ω2 0.00575 0.00173 0.00090 0.00575 0.00173 0.00090

α2 0.06644 0.01176 0.00000 0.06644 0.01176 0.00000

b2 0.91329 0.01574 0.00000 0.91329 0.01573 0.00000

$21 0.00057 0.00043 0.18980 0.00058 0.00043 0.17750

τ21 0.02128 0.00334 0.00000 0.02128 0.00305 0.00000

c21 0.99620 0.00162 0.00000 0.99621 0.00160 0.00000

ω3 0.00163 0.00071 0.02160 0.00163 0.00071 0.02070

α3 0.08838 0.01965 0.00000 0.08838 0.01942 0.00000

b3 0.90699 0.02020 0.00000 0.90699 0.01996 0.00000

$31 0.00004 0.00015 0.79040 0.00003 0.00015 0.85730

τ31 0.02336 0.00779 0.00270 0.02336 0.00689 0.00070

c31 0.99546 0.00150 0.00000 0.99547 0.00148 0.00000

$32 -0.24824 0.06639 0.00020 -0.24824 0.07138 0.00050

τ32 0.09610 0.01117 0.00000 0.09610 0.01076 0.00000

c32 -0.30902 0.31845 0.33190 -0.30902 0.35103 0.37870

ω4 0.00106 0.00060 0.07700 0.00106 0.00061 0.07940

α4 0.04480 0.01468 0.00230 0.04480 0.01481 0.00250

b4 0.95173 0.01554 0.00000 0.95173 0.01566 0.00000

$41 0.00394 0.00140 0.00480 0.00394 0.00143 0.00600

τ41 0.01036 0.00223 0.00000 0.01036 0.00223 0.00000

c41 0.99630 0.00126 0.00000 0.99630 0.00130 0.00000

$42 0.08221 0.01696 0.00000 0.08221 0.01734 0.00000

$43 -0.00242 0.00176 0.16800 -0.00242 0.00192 0.20820

τ43 0.04332 0.02636 0.10040 0.04332 0.02665 0.10420

c43 0.99509 0.00365 0.00000 0.99509 0.00405 0.00000

Note: Full QMLE (left panel) and EbE QMLE (right panel) of the CHAR model

for BusEq and the period spanning from 2000-02-08 to 2015-12-31. Standard

errors are computed using the formulas described in Theorems 4.2 and 4.3.

Importantly, results of the two estimation methods are found to be almost identical, reason
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why we rely on the EbE estimator in the forecasting exercise because convergence is achieved much

faster with this multi-step method. First, Table 3 suggests that all factors have GARCH effects

as the αi and bi, i = 1, ..., 4 coefficients are statistically significant. Second, the two SMB and

HML factors are marginally orthogonal to theMKT factor as the parameters $21 and $31 are not

statistically significant and the estimates of the unconditional betas are 0.15 and −0.19, respectively

for E(β21,t) and E(β31,t). However, the two corresponding conditional market betas show a time-

varying behavior with long term persistence (the two autoregressive coefficients c21 and c31 are close

to 1), meaning that we can use current information to predict non zero conditional market betas

for the value and size factors. Concerning the projection of HML on the SMB factor, we observe

a negative marginal value but a simpler time-varying behavior with no long term persistance as

the parameter c3,2 parameter is not statistically different from zero. This last result on SMB and

HML justifies our choice to orthogonalize the three factors. Third, we now study the dynamic

properties of the industry portfolio returns. While βBusEq,SMB,t is constant and slightly positive

(β42,t = $42 = 0.08), time-varying behaviors are detected in βBusEq,MKT,t and βBusEq,HML,t, which

are found to be very persistent (with estimates of the autoregressive coefficients c41 and c43 again

close to 1).

The estimated conditional betas βBusEq,MKT,t, βBusEq,SMB,t and βBusEq,HML,t are plotted in

Figure 8. Each graph contains the estimated betas for the four competing models. It is interesting to

notice that conditional betas filtered with the CHAR model are much smoother than those obtained

with the DCC-DCB model. In the case of βBusEq,MKT,t for example, we expect to get a conditional

beta stable and close to 1. We observe this result for all models, except at the burst of the internet

bubble (i.e., 2000-2002). In particular, the CCC model gives very erratic conditional betas during

this period, while conditional market betas of the DCC and CHAR models are much more realistic.

Next, we compute one-step-ahead forecasts βk,MKT,t+1|t, βk,SMB,t+1|t and βk,HML,t+1|t, for the

four models and the 12 industry portfolios. The sample-size has been chosen so that the first forecast

corresponds to the first working day of year 2010 (i.e., 4th of January 2010), which is highlighted by

a vertical line in Figures 6 and 7. The total number of forecasts is 1,678. For the sake of illustration,

the predicted betas of the first portfolio (BusEq) are plotted in Figure 9. Recall that the models are

reevaluated every 3 steps, reason why the forecasts of the model with constant betas (i.e., C-CHAR)

are slowly changing over-time. Several comments are in order.
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Figure 8: Conditional betas (βBusEq,MKT,t, βBusEq,SMB,t and βBusEq,HML,t) of the four competing
models for the period spanning from 2000-02-08 to 2015-12-31
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Figure 9: One-step ahead forecasts of the conditional betas of BusEq for the 4 competing models

First, we observe huge differences between the forecasts produced by the four models. Focusing

on the conditional market beta (i.e., the top graph in Figure 9), the CHAR forecasts (red continuous

line) are much smoother than those of the CCC-DCB and DCC-DCB models (green and purple

dotted lines, respectively). The same comment applies to the other industry portfolios (graphs are

not reported to save place but are available upon request).

Second, the CHAR model gives a tradeoff between the too smooth behavior of the C-CHAR

model and the shaky behavior of the two DCB models. Interestingly, forecasts of the conditional

HML beta of the DCC model deviate much from the forecasts of the other models between March-

2013 and August-2013. Indeed, the DCC predicts an almost zero beta while the other 3 models

keep predicting conditional betas close to their sample mean. In a risk management perspective, if

the objective is to offset the impact of the HML factor onto the Buseq portfolio, the message given

by the DCC during this period is to cut the hedging component of the portfolio, while the message

of the other three models is to continue with the same risk management policy.

Finally, for each model, the predicted conditional betas are used to build a hedging portfolio
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used to immunize industry portfolios against all factors. The returns of this portfolio are easily

obtained using the forecasted conditional betas, i.e.,

Zk,t+1|t = βk,MKT,t+1|tMKTt+1 + βk,SMB,t+1|tSMBt+1 + βk,HML,t+1|tHMLt+1,

where MKTt+1, SMBt+1 and HMLt+1 are the realized (non-demeaned) log-returns of the three

factors. Economically, this hedging portfolio corresponds to the portfolio invested in the risk factors

that optimally tracks the corresponding industry portfolio return. The term hedging means that

we can short sell this portfolio to cover the main risks of a given portfolio.

For each of the 12 industry portfolios and the four different hedging portfolios, we compute the

realized tracking error as follows:

TEk,t+1 = rk,t+1 − Zk,t+1|t

and seek for the model with the smallest sample mean square error (MSE) or mean absolute deviation

(MAD) over the 1,678 values of the tracking error by means of the Model Confidence Set of Hansen

et al. (2011). A similar approach has been used by Hansen et al. (2014) in the context of Realized

Beta GARCH models and more recently by Boudt et al. (2017) on the one-step-ahead forecasts

of the CholCov estimator. The Fama French three factor model, predicts that these factors are

sufficient to price industry portfolios and therefore the tracking error is expected to have a zero

mean (or zero alpha). Before reporting the results of the MCS test, we test the validity of this

assumption for the four competing model by regressing TEk,t+1 on a constant (on the whole out-

of-sample period). Robust (HAC) t-statistics for the null hypothesis that this constant is zero are

reported in Table 4. Results are in favor of this assumption in all but one case for the C-CHAR,

CHAR and DCC-DCB models and for 9 cases for the CCC-DCB. The only industry portfolios for

which this assumption is violated at the 5% significance level is NoDur.

Table 5 contains the results of the MCS test with a MSE loss function, with a significance level

of 20%, and 10,000 bootstrap samples (with a block length of 5 observations). Models highlighted

with the symbol X are contained in the model confidence set (or set of superior models). The

CHAR tracking portfolios always belong to the set of superior models while the DCC-DCB appears

in the MCS in only 3 cases.6 Interestingly, the C-CHAR is always rejected from the MCS suggesting
6While summary statistics on the realized tracking errors are not reported in Table 5, it is worth to mention that

the CHAR model has the smallest MSE (and MAD) in 11 cases.
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Table 4: Robust (HAC) t-statistic of the regression of the tracking errors on a constant

C-CHAR CHAR CCC DCC

BusEq -1.025 -0.442 0.133 -0.889

Chems 0.683 0.150 1.187 0.252

Durbl -0.059 -0.402 -0.123 -0.720

Enrgy -1.191 -1.865 -0.528 -1.665

Hlth 1.664 1.123 1.777 1.325

Manuf -0.101 -0.269 0.064 -0.197

Money -0.699 -0.648 -0.837 -0.541

NoDur 2.731 2.180 2.961 2.343

Other -0.193 -0.436 -0.394 -0.415

Shops 1.746 1.947 2.447 1.768

Telcm 1.392 1.604 2.247 1.858

Utils 1.053 0.858 1.549 1.010

Note: Robust (HAC) t-statistics for the null

hypothesis that the coefficient in the regres-

sion of TEk,t+1 on a constant is zero. Values

in bold are greater (in absolute value) than

the critical value at the 5% significance level.

that the assumption of constant betas leads to inferior tracking portfolios. The CCC-DCB models

is also rejected from the MCS in all cases despite the fact that although this model imposes the

constancy of the correlations it allows the conditional betas to be time-varying. Very similar results

are obtained (but not reported to save place) with a MAD loss function (the only difference is that

the DCC model appears in the MCS in only 2 cases instead of 3). The main conclusion drawn from

Table 5 is that the conditional beta forecasts produced by the CHAR model give the best tracking

portfolios and that the DCC-DCB model is not statistically inferior in 3 cases when relying on a

MSE loss function.

A natural question arises on whether, the conditional beta forecasts of the CHAR model lead to

more or less transaction costs than the DCC-DCB model. To answer this question let ∆βk,MKT
=
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∑1,678
t=2 |βk,MKT,t+1|t−βk,MKT,t|t−1| be the sum of the absolute value of the variations of the predicted

conditional stock market betas of the k-th industry portfolio for a given model. A higher value of

∆βk,MKT
translates naturally into more transaction costs. Column MKT in Table 6 corresponds

to the ratio between the value of ∆βk,MKT
obtained for the CHAR and the DCC-DCB models.

Columns SMB and HML correspond to the same ratio but for the other two factors. A value close

to 1 means that the two models deliver equally stable beta forecasts while a value smaller (resp.

greater) than 1 means that the CHAR (resp. DCC-DCB) model delivers more stable beta forecasts

and therefore less (resp. more) transaction costs. Interestingly, all ratios are well below 1 (i.e.,

between about 0.3 and 0.7) suggesting that the conditional beta forecasts of the CHAR model are

much smoother than those of the DCC-DCB model and therefore the CHAR model induces much

less transaction costs.

7 Conclusion

This paper introduces a new model to estimate time series regressions with time-varying coefficients,

called conditional betas in some financial applications. The CHAR model (for Cholesky-GARCH

model), is inspired by the model of Pourahmadi (1999), originally proposed in a longitudinal data

framework. Unlike in the case of conditional correlations, conditional betas do not need to be

constrained except for the stationarity condition, which makes this approach very appealing.

Our model is flexible enough to directly specify the dynamics of conditional betas and impose

the constancy of some of these coefficients. We study several specifications of the conditional beta

dynamics and derive some stationarity and invertibility conditions. We also prove consistency and

asymptotic normality of the Full and Equation-by-Equation QML estimators. The finite sample

behavior of these two estimators is also numerically investigated by means of a Monte Carlo simu-

lation.

We illustrate the usefulness of the CHAR model in a portfolio and risk management exercise. We

follow Patton and Verardo (2012) and build hedged portfolios to offset some unwanted exposures to

the three factors introduced in an asset pricing context by Fama and French (1992, 2004). We use

four different models to forecast conditional betas, build tracking portfolios and compute tracking

errors between forecasted and realized portfolio returns. We find that the CHAR model with

time-varying betas is the one tracking the best the 12 US industry portfolios. Indeed, this model
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outperforms the three competing models and delivers much smoother conditional beta forecasts,

which translates into smaller transaction costs.

We limit our investigations to dynamic specifications only involving past shocks and past condi-

tional betas. Adding exogenous explanatory variables like in Patton and Verardo (2012) would allow

the identification of variables influencing betas over time. As this would complicate the derivation

of its statistical properties, we leave this for future work.

8 Proofs

Proof of Theorem 3.1. First note that the top Lyapunov γ0 is well defined in [−∞,∞) because

E log+ ‖H1‖ < ∞. Using Bougerol and Picard (1992a), it is shown in Francq and Zakoian (2012)

that (2.3) admits a strictly stationary (and non anticipative) solution if and only if γ0 < 0. Assume

γ0 < 0. The stationary and non anticipative solution is unique and ergodic, and is given by the

(2q + 1)-th component of

zt = ht +
∞∑
k=1

(
k−1∏
i=0

Ht−i

)
ht−k. (8.1)

The process (v′t, g
′
t)
′ is then stationary and ergodic. By the ergodic theorem, the process (c0t)t,

where c0t = c0

(
vt, . . . ,vt−r+1, gt, . . . , gt−r+1

)
, is also stationary and ergodic. Under the condition

ii), a strictly stationary non anticipative and ergodic solution to (2.3) (or (2.3)) and is defined by

`t (or βt) equal to {
Im0 −

s∑
i=1

C0iB
i

}−1

c0,t−1 = c0,t−1 +

∞∑
k=1

Πkc0,t−k−1,

where B denotes the Backward operator. The solution of the CHAR model is then defined by

εt = Ltvt.

Lemma 2.3 in Berkes, Horváth and Kokoszka (2003) (see also Corollary 2.3 in Francq and

Zakoian, 2010) shows that the strict stationarity condition i) implies the existence of s0 > 0 such

that E‖z1‖s0 < ∞. The condition iii) then entails E ‖c01‖2s0 < ∞. Under the condition ii), we

have ‖Πk‖ ≤ Kρk for some K > 0 and ρ ∈ [0, 1). We thus have E ‖`1‖s0 <∞ for some s0 > 0. By

the Hölder inequality, we conclude that ‖εt‖ and ‖Σt‖ admit a small order moment.

Without loss of generality, we now take the matrix norm defined by ‖M‖ =
∑

i,j |mi,j | for any

matrix M whose generic element is mi,j . Noting that ‖A‖‖B‖ = ‖A ⊗B‖ and using elementary
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properties of the Kroneker product, we obtain

E

∥∥∥∥∥
k−1∏
i=0

Ht−iht−k

∥∥∥∥∥
m

= E

∥∥∥∥∥
k−1∏
i=0

H⊗m1
t−i h

⊗m1
t−k

∥∥∥∥∥ =
∥∥∥(EH⊗m1

1 )kEh⊗m1
1

∥∥∥ .
Therefore, under the conditions (3.1), the Lm1-norm of the k-th term of the sum (8) is bounded

by Kρk, and thus E ‖zt‖m1 < ∞, which entails E ‖vt‖2m1 < ∞ and E ‖gt‖
m1 < ∞. Under the

condition iii), we then have E ‖c0t‖2m1 <∞, and thus E ‖ε1‖2m1 <∞ under ii). 2

Proof of Corollary 3.1. We write the proof for Model (2.3)-(2.3), the proof for Model (2.3)–

(2.3) being identical. Under the Condition 1) it is well known that g1t is well defined and that

v1t =
√
g1tη1t is a stationary GJR process. Assume that there exist stationary, non anticipative

and ergodic processes (v1,t, . . . , vi0−1,t) and (g1,t, . . . , gi0−1,t) satisfying (2.3) for i < i0 then, by the

ergodic theorem, the process

zi0,t = ω0i0 + γ0i0+

(
ε+1,t−1

)2
+ γ0i0−

(
ε−1,t−1

)2
+

i0−1∑
k=2

α
(k)
0i0
v2
k,t−1

and, under 3), the processes

βij =
∞∑
`=0

c`0ijuij,t−1−`, uij,t = $0ij + ς0ij+ε
+
1,t−1 + ς0ij−ε

−
1,t−1 +

i∑
k=2

τ
(k)
0ij vk,t−1,

for i < i0 and (i, j) ∈ Tm inherit the property of being stationary, non anticipative and ergodic. By

Cauchy’s rule, under Condition 2), the process

gi0,t = zi0,t +
∞∑
`=1

zi0,t−`
∏̀
k=1

{
α

(i0)
0i0
η2
i0,t−k + b0i0

}
is also stationary, non anticipative and ergodic. The existence of the strictly stationary solution

is thus obtained by mathematical induction on i0. The existence of the moments is shown as in

Theorem 3.1. 2

Proof of Theorem 4.1. By compactness of Θ, using the arguments of Wald (1949), to establish

the strong consistency it suffices to show that for all ϑ 6= ϑ0, there exists a neighborhood V (ϑ) of

ϑ such that

lim inf
n→∞

inf
ϑ∗∈V (ϑ)

Õn(ϑ∗) > lim
n→∞

Õn(ϑ0), a.s. (8.2)

We first show that Õn can be replaced by On, where

On(ϑ) =
1

n

n∑
t=1

qt(ϑ), qt(ϑ) = ε′tB
′
t(ϑ)G−1

t (ϑ)Bt(ϑ)εt +

m∑
i=1

log git(ϑ).
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Omitting the subscript "(ϑ)" in the notations, we have

sup
ϑ∈Θ
|On − Õn| ≤

1

n

n∑
t=1

sup
ϑ∈Θ

∣∣∣ε′t (BtG
−1
t B

′
t − B̃tG̃

−1

t B̃t

)
εt

∣∣∣ (8.3)

+
1

n

n∑
t=1

m∑
i=1

sup
ϑ∈Θ
|log git − log g̃it| .

Note that we have the decomposition BtG
−1
t B

′
t − B̃tG̃

−1

t B̃t = At +Bt + Ct, with

At = (Bt − B̃t)G
−1
t B

′
t, Bt = B̃tG

−1
t (G̃t −Gt)G̃

−1

t Bt, Ct = B̃tG̃
−1

t (Bt − B̃t).

In the sequel, we take the spectral norm as matrix norm and the Euclidean norm as vector norm.

Using A1-A2, we obtain

1

n

n∑
t=1

sup
ϑ∈Θ

∣∣ε′tAtεt∣∣ =
1

n

n∑
t=1

sup
ϑ∈Θ

∣∣∣ Tr {(Bt − B̃t)G
−1
t B

′
tεtε

′
t

}∣∣∣
≤K 1

n

n∑
t=1

sup
ϑ∈Θ
‖βt − β̃t‖‖g−1

t ‖‖βt‖‖εtε′t‖ ≤ K
1

n

n∑
t=1

ρt‖εtε′t‖ sup
ϑ∈Θ
‖βt‖.

Moreover
∑∞

t=1 ρt‖εtε′t‖ supϑ∈Θ ‖βt‖ is finite a.s. since

E

( ∞∑
t=1

ρt
∥∥ε′tεt∥∥ sup

ϑ∈Θ
‖βt‖

)s0
≤
{
E ‖ε1‖6s0

}1/3
{
E

(
sup
ϑ∈Θ
‖β1‖

)3s0
}1/3 ∞∑

t=1

{
Eρ3s0

t

}1/3
<∞

for s0 small enough, by A2 and A3. The same bounds are obtained when At is replaced by Bt or

Ct. Therefore the first term of the right-hand side of the inequality (8) is of order O(n−1) a.s. Now,

consider the second term. The elementary inequality log(x) ≤ x+ 1 and A1-A2 entail

sup
ϑ∈Θ
|log git − log g̃it| = sup

ϑ∈Θ

∣∣∣∣log

(
1 +

g̃it − git
git

)∣∣∣∣ ≤ Kρt,
noting that g−1

it ≤ ‖g
−1
t ‖. We thus have shown that

sup
ϑ∈Θ
|On(ϑ)− Õn(ϑ)| = O(n−1) a.s. (8.4)

We now show that Eqt(ϑ) is well defined in R ∪ {+∞} for all ϑ, and in R for ϑ = ϑ0. By A1

we have

Eq−t (ϑ) ≤
∑m

i=1E log− git(ϑ) <∞.
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At ϑ0, Jensen’s inequality and A3 entail

Eqt(ϑ0) = Eη′tηt +

m∑
i=1

1

s
E log gsit(ϑ0) <∞.

The previous results and the ergodic theorem then entail that

lim
n→∞

Õn(ϑ0) = lim
n→∞

On(ϑ0) = Eqt(ϑ0).

Similarly, (8) and the ergodic theorem applied to the stationary process (Xt) with Xt =

infϑ∗∈Vm(ϑ) qt(ϑ
∗) show that

lim inf
n→∞

inf
ϑ∗∈Vm(ϑ)

Õn(ϑ∗) ≥ lim
n→∞

1

n

n∑
t=1

inf
ϑ∗∈Vm(ϑ)

qt(ϑ
∗) = E inf

ϑ∗∈Vm(ϑ)
qt(ϑ

∗),

where Vm(ϑ) denotes the ball of center ϑ and radius 1/m. If E|qt(ϑ)| <∞, by Fatou’s lemma and

A5, for any ε > 0 there exists m sufficiently large such that

E inf
ϑ∗∈Vm(ϑ)

qt(ϑ
∗) > Eqt(ϑ)− ε.

If Eq+
t (ϑ) =∞, then the left-hand side of the previous inequality can be made arbitrarily large.

To show (8), it thus remains to show that Eqt(ϑ) is minimized at ϑ0. Without loss of generality,

assume that Eq+
t (ϑ) < ∞. Let λi,t be the eigenvalues of Σt(ϑ0)Σ−1

t (ϑ), which are positive. We

have

Eqt(ϑ)− Eqt(ϑ0) = E log{|Σt(ϑ)Σ−1
t (ϑ0)|}+ E

(
Tr
{

[Σt(ϑ0)Σ−1
t (ϑ)− Im]

})
= E

{
m∑
i=1

(λit − 1− log λit)

}
≥ 0,

where the inequality is strict unless if λit = 1 a.s. for all i, that is iff Σt(ϑ) = Σt(ϑ0) a.s., which

is equivalent to ϑ = ϑ0 under A4. The consistency follows.

Elementary matrix derivative computations yield

∂

∂ϑi
qt(ϑ0) = Tr

{
(Im − ηtη′t)Σ

−1/2
t (ϑ0)

∂Σt(ϑ0)

ϑi
Σ
−1/2′

t (ϑ0)

}
=
∂vec′Σt(ϑ0)

∂ϑi

{
Σ
−1/2′

t (ϑ0)⊗Σ
−1/2′

t (ϑ0)
}
vec(Im − ηtη′t),

where "Tr", "vec" and "⊗" of denote respectively the trace, vec and Kronecker operators. We also

have
∂2

∂ϑi∂ϑj
qt(ϑ) =

5∑
i=1

ci,
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with

c1 = ε′tΣ
−1
t (ϑ)

∂Σt(ϑ)

∂ϑi
Σ−1
t (ϑ)

∂Σt(ϑ)

∂ϑj
Σ−1
t (ϑ)εt,

c2 = ε′tΣ
−1
t (ϑ)

∂Σt(ϑ)

∂ϑj
Σ−1
t (ϑ)

∂Σt(ϑ)

∂ϑi
Σ−1
t (ϑ)εt

c3 = −ε′tΣ−1
t (ϑ)

∂2Σt(ϑ)

∂ϑi∂ϑj
Σ−1
t (ϑ)εt

c4 = −Tr
(
∂Σt(ϑ)

∂ϑi
Σ−1
t (ϑ)

∂Σt(ϑ)

∂ϑj
Σ−1
t (ϑ)

)
c5 = Tr

(
Σ−1
t (ϑ)

∂2Σt(ϑ)

∂ϑi∂ϑj

)
.

We thus have

E

{
∂2

∂ϑi∂ϑj
qt(ϑ0)

}
= Tr

(
Σ
−1/2
t (ϑ)

∂Σt(ϑ)

∂ϑi
Σ−1
t (ϑ)

∂Σt(ϑ)

∂ϑj
Σ
−1/2′

t (ϑ)

)
= vec

(
∂Σt(ϑ)

∂ϑi

)′
Σ−1
t (ϑ)⊗Σ−1

t (ϑ)vec
(
∂Σt(ϑ)

∂ϑi

)
,

using elementary properties of the vec and Kronecker operators "vec" and "⊗". By the consistency

and A6, we have ϑ̂n → ϑ0 ∈ Θ̊, and thus almost surely ∂
∑n

t=1 q̃t(ϑ̂n)/∂ϑ = 0 for n large enough.

Taylor expansions and A7- A8 thus show that almost surely

0 =
1√
n

n∑
t=1

∂qt(ϑ0)

∂ϑ
+

(
1

n

n∑
t=1

∂2

∂ϑi∂ϑj
qt(ϑ

∗
ij)

)
√
n
(
ϑ̂n − ϑ0

)
+ oP (1),

where the ϑ∗ij ’s are between ϑ̂n and ϑ0 componentwise. To show that the previous matrix into

brackets converges almost surely to J it suffices to use the ergodic theorem, the continuity of the

derivatives, and to show that

E sup
ϑ∈V (ϑ0)

∣∣∣∣∂2qt(ϑ)

∂ϑi∂ϑj

∣∣∣∣ <∞
for some neighborhood V (ϑ0) of ϑ0, which follows from A7 and A9.

If J was not invertible, there would exist some nonzero λ ∈ Rd such that λ′Jλ = 0. Since

Σ−1
t (ϑ0) ⊗ Σ−1

t (ϑ0) is almost surely positive definite, this entails that Dtλ = 0 with probability

one, which is excluded by A11. The Bahadur linearization (4.1) easily follows.

It is clear from (8), A10 and already given arguments that
{
∂
∂ϑqt(ϑ0)

}
t
is a square integrable

martingale difference. The conclusion then follows from the central limit theorem in Billingsley

(1961). 2

Proof of Theorem 4.2. First note that Corollary 3.1 and the condition |bi| < 1 uniformly in Θ
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entail that A3 is satisfied. Now recall that B5 entails (4.1.3). With the notation vt(ϕ) = Bt(ϕ)εt

and ṽt(ϕ) = B̃t(ϕ)εt, we thus have

sup
ϕ∈Θϕ

‖vt(ϕ)− ṽt(ϕ)‖ ≤ Kρt ‖εt‖ . (8.5)

Thanks to the condition |bi| < 1 in B3, one can then define gt(ϑ) =
(
g1t(ϑ

(+1), . . . , gmt(ϑ
(+m))

)′
by

git(ϑ
(+i)) =

∞∑
j=0

bji

{
ωi,t−j−1 +

i∑
k=2

α
(k)
i v2

k,t−j−1(ϕ(+k))

}
.

One can also define qt(ϑ) =
∑m

i=1 qit(ϑ
(+i)), where qit(ϑ(+i)) is obtained by replacing ṽkt(ϕ(+i))

and g̃it(ϑ(+i)) by vkt(ϕ(+i)) and git(ϑ(+i)) in q̃it(ϑ(+i)).

Using (8) and the compactness of Θ, we have∣∣∣git(ϑ(+i))− g̃it(ϑ(+i))
∣∣∣

=

∣∣∣∣∣
i∑

k=2

α
(k)
i

{
v2
k,t−1(ϕ(+k))− ṽ2

k,t−1(ϕ(+k))
}

+ bi

{
gi,t−1(ϑ(+i))− g̃i,t−1(ϑ(+i))

}∣∣∣∣∣
≤Kρt−1 ‖εt−1‖ (‖vt−1‖+ ‖εt−1‖) + ρ

∣∣∣gi,t−1(ϑ(+i))− g̃i,t−1(ϑ(+i))
∣∣∣ .

It follows that

sup
ϑ∈Θ
‖gt(ϑ)− g̃t(ϑ)‖ ≤ Kρt, ρt = ρt

t−1∑
i=1

‖εi‖ (‖vi‖+ ‖εi‖) .

For s1 < s0/2 and s0 < 1 satisfying A3, we have

∞∑
t=1

{Eρs1t }
1/3 ≤

∞∑
t=1

{
tρs1t

(
E‖ε1‖2s1 +

√
E‖ε1‖2s1E‖v1‖2s1

)}1/3
<∞.

It follows that A2 is satisfied. The positivity constraints in B3 entail that A1 holds true. We then

obtain the equation (8) that shows the asymptotic irrelevance of the initial values. Using the ergodic

theorem, it follows that Õn(ϑ) converges almost surely to Eqt(ϑ) =
∑m

i=1Eqit(ϑ
(+i)), which is well

defined in R ∪ {+∞} because

inf
ϑ(+i)∈Θ(+i)

git(ϑ
(+i)) > 0 (8.6)

from B3. Since E‖g1‖s0 <∞ for some s0 > 0 by Corollary 3.1, we have E log git(ϑ
(+i)
0 ) <∞, and
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thus E
∣∣∣qit(ϑ(+i)

0 )
∣∣∣ <∞. When Eqit(ϑ(+i)) <∞, we have

Eqit(ϑ
(+i))− Eqit(ϑ(+i)

0 ) =E

{
log

git(ϑ
(+i))

git(ϑ
(+i)
0 )

+
git(ϑ

(+i)
0 )

git(ϑ
(+i))

− 1

}
+ E

{
vit(ϕ

(+i))− vit(ϕ(+i)
0 )

}2

git(ϑ
(+i))

+ 2E
vit(ϕ

(+i)
0 )

{
vit(ϕ

(+i))− vit(ϕ(+i)
0 )

}
git(ϑ

(+i))
(8.7)

with the convention ϕ(+2) = ϕ(2) and v1t(ϕ
(+1)) = ε1t. The last expectation in (8) is equal to zero

because, when i > 1,

vit(ϕ
(+i))− vit(ϕ(+i)

0 ) = −
i−1∑
j=1

{
βij,t(ϕ

(+i))− βij,t(ϕ(+i)
0 )

}
εjt (8.8)

is orthogonal to vit = vit(ϕ
(+i)
0 ). By the inequality x − 1 ≥ log x for x > 0, it follows that

Eqit(ϑ
(+i)) ≥ Eqit(ϑ(+i)

0 ) with equality if and only if

vit(ϕ
(+i)) = vit(ϕ

(+i)
0 ) and git(ϑ

(+i)) = git(ϑ
(+i)
0 ) a.s. (8.9)

In view of (2.3) and (4.1.2), these equalities entail

0 = ω0i,t−1 − ωi,t−1 +
i∑

k=2

(
α

(k)
0i − α

(k)
i

)
v2
k,t−1 + (b0i − bi) gi,t−1.

We thus have (
α

(i)
0i − α

(i)
i

)
η2
i,t−1 = R

(−i)
t−1 ,

where R(−i)
t−1 is a random variable measurable with respect to the σ-field F (−i)

t−1 generated by Ft−2

and {ηj,t−1, j 6= i}. It follows that the distribution of
(
α

(i)
0i − α

(i)
i

)
η2
i,t−1 conditionally to F (−i)

t−1 is

degenerated. Since η2
i,t−1 is independent of Ft−2, the distribution of

(
α

(i)
0i − α

(i)
i

)
η2
i,t−1 conditionally

to {ηj,t−1, j 6= i} is degenerated. By the first part of B2, it follows that α(i)
i = α

(i)
0i . Repeating the

argument, we show that α(k)
i = α

(k)
0i for k = 2, . . . , i. Now, noting that

ω0i,t−1 − ωi,t−1 = ω0i − ωi + (γ0i+ − γi+)g1,t−1η
2
1,t−11{η1,t−1>0}

+ (γ0i− − γi−)g1,t−1η
2
1,t−11{η1,t−1<0}

we obtain

(γ0i+ − γi+)η2
1,t−11{η1,t−1>0} + (γ0i− − γi−)η2

1,t−11{η1,t−1<0} = Rt−2,
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where Rt is a random variable measurable with respect to Ft. An equation of the form ax21{x>0}+

b = 0 cannot admit two positive solutions when a 6= 0. Therefore the last part of B2 entails that

γ0i+ = γi+ and γ0i− = γi−. We then obtain

0 = ω0i − ωi + (b0i − bi) gi,t−1,

which entails ω0i = ωi and b0i = bi, when gi,t−1 is not constant with probability one (which is

guaranteed by B4 and B2). We have shown that (8) implies θ(i) = θ
(i)
0 . Without loss of generality,

assume i > 1. In view of (8), the first equality of (8) entails

i−1∑
j=1

{
βij,t(ϕ

(+i))− βij,t(ϕ(+i)
0 )

}√
gjtηjt = 0 a.s.

Since the variables η1t, . . . , ηi−1,t are not linearly dependent, and the variables gjt are strictly positive

(by B2 and B3), it follows that

βij,t(ϕ
(+i)) = βij,t(ϕ

(+i)
0 ) a.s., j = 1, . . . , i− 1. (8.10)

Using vit(ϕ(+i)) = vit(ϕ
(+i)
0 ) in (8), (2.3), (4.1.2) and (8) entails

0 =$ij −$0ij + (ςij+ − ς0ij+) ε+1,t−1 + (ςij− − ς0ij−) ε−1,t−1

+

i∑
k=2

(
τ

(k)
ij − τ

(k)
0ij

)
vk,t−1 + (cij − c0ij)βij,t−1.

We thus have (
τ

(i)
ij − τ

(i)
0ij

)
ηi,t−1 = R

(−i)
t−1 ,

where R(−i)
t−1 is F (−i)

t−1 -measurable. B2 then entails τ (i)
ij = τ

(i)
0ij . Continuing in this way, by B2 and B4

it follows that ϕ(ij) = ϕ
(ij)
0 , and finally we have shown that (8) implies ϑ(i)

0 = ϑ(i). The remainder

of the proof of the consistency of ϑ̂n then follows from a standard compactness argument, as in the

proof of Theorem 4.1.

Now we show the convergence in distribution (4.2). We first show that the effect of the initial

values becomes asymptotically negligible. In Section 4.1.3, we have seen that, under B5, for t ≥ 2

β̃t(ϕ) = w∗t−1 + St−1β̃t−1(ϕ), βt(ϕ) = w∗t−1 + St−1βt−1(ϕ),

with a fixed initial value β̃1(ϕ). Denoting by ϕk the k-th element of ϕ, we thus have

∂β̃t(ϕ)

∂ϕk
= w̃

(k)
t−1 + St−1

∂β̃t−1(ϕ)

∂ϕk
,

∂βt(ϕ)

∂ϕk
= w

(k)
t−1 + St−1

∂βt−1(ϕ)

∂ϕk
,
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with

w̃
(k)
t =

∂w∗t
∂ϕk

+
∂St
∂ϕk

β̃t(ϕ), w
(k)
t =

∂w∗t
∂ϕk

+
∂St
∂ϕk

βt(ϕ).

In view of (4.1.3), this entails that

sup
ϕ∈Θϕ

∥∥∥w̃(k)
t −w

(k)
t

∥∥∥ ≤ Kρt, sup
ϕ∈Θϕ

∥∥∥∥∥∂β̃t(ϕ)

∂ϕ′
− ∂βt(ϕ)

∂ϕ′

∥∥∥∥∥ ≤ Kρt,
where ρt is as in A2. It follows that

sup
ϑ∈Θ

∥∥∥∥∥∂On(ϑ)

∂ϑ
− ∂Õn(ϑ)

∂ϑ

∥∥∥∥∥ =O(n−1) a.s. (8.11)

By the consistency and A6, we thus have

0 =
1√
n

n∑
t=1

∂

∂ϑ
q̃t(ϑ̂n) =

1√
n

n∑
t=1

∂

∂ϑ
qt(ϑ̂n) + oP (1).

A Taylor expansion then gives

oP (1) =
1√
n

n∑
t=1

∂

∂ϑ
qt(ϑ0) +

[
1

n

n∑
t=1

∂2

∂ϑk∂ϑj
qt(ϑkl)

]
√
n
(
ϑ̂n − ϑ0

)
,

where, for the generic element (k, j) of the matrix into brackets, ϑkl is between ϑ0 and ϑ̂n. Omitting

the argument "(ϑ(+i))" in git(ϑ(+i)) and "(ϕ(+i))" in vit(ϕ(+i)), for i ≥ 2

∂qit(ϑ
(+i))

∂ϑ(+i)
=

(
1− v2

it

git

)
1

git

∂git

∂ϑ(+i)
+ 2

vit√
git

1
√
git

∂vit

∂ϑ(+i)
, (8.12)

and thus
∂qit(ϑ

(+i)
0 )

∂ϑ(+i)
=
(
1− η2

it

) 1

git

∂git

∂ϑ(+i)
(ϑ

(+i)
0 ) + 2ηit

1
√
git

∂vit

∂ϑ(+i)
(ϑ

(+i)
0 ). (8.13)

To establish that

lim
n→∞

In = I := E
∂qt(ϑ0)

∂ϑ

∂qt(ϑ0)

∂ϑ′
a.s.,

it suffices to use the ergodic theorem, the consistency of ϑ̂n, the arguments of Exercise 7.9 in Francq

and Zakoian (2010), and to show that for some neighbourhood V (ϑ0) of ϑ0

E sup
ϑ∈V (ϑ0)

∥∥∥∥∂qt(ϑ)

∂ϑ

∂qt(ϑ)

∂ϑ′

∥∥∥∥ <∞. (8.14)

Note that, by the arguments given in the proof of Corollary 3.1, under B5 we have

E sup
ϕ∈Θϕ

‖βt(ϕ)‖s0 <∞, E sup
ϕ∈Θϕ

‖vt(ϕ)‖s0 <∞

51



for some s0 > 0. Note that A6 entails that the first i+ 3 components ϑ(+i) ∈ V (ϑ
(+i)
0 ) are strictly

positive, for any sufficiently small neighbourhood V (ϑ
(+i)
0 ) of ϑ(+i)

0 . By an extension of (5.20) in

Hamadeh and Zakoïan (2011) and (42) in Francq and Thieu (2016), we then have

E sup
ϑ(+i)∈V (ϑ

(+i)
0 )

∥∥∥∥∥ 1

git

∂git(ϑ
(+i))

∂θ(i)

∥∥∥∥∥
d

<∞, E sup
ϑ(+i)∈V (ϑ

(+i)
0 )

∥∥∥∥∥ 1

git

∂2git(ϑ
(+i))

∂θ(i)∂θ(i)′

∥∥∥∥∥
d

<∞, (8.15)

for any integer d and some neighbourhood V (ϑ
(+i)
0 ) of ϑ(+i)

0 . Denote by ϕ(+i)
j the components of

ϕ(+i), for j = 1, . . . , i(i− 1)(2i+ 11)/6. Now, note that for i ≥ 2

∂git(ϑ
(+i))

∂ϕ
(+i)
j

= 2
∞∑
k=0

bki

i∑
`=2

α
(`)
i v`,t−k−1

∂v`,t−k−1(ϕ(+`))

∂ϕ
(+i)
j

.

For all p1 ≥ 1, using the inequality x/(1 + x2) ≤ 1/2 for all x, we thus have

∥∥∥∥∥ 1

git

∂git(ϑ
(+i))

∂ϕ
(i)
j

∥∥∥∥∥
p1

≤2

∞∑
k=0

i∑
`=2

∥∥∥∥∥∥∥
bki α

(`)
i v`,t−k−1

∂v`,t−k−1(ϕ(+`))

∂ϕ
(+i)
j

ωi + bki α
(`)
i v2

`,t−k−1

∥∥∥∥∥∥∥
p1

≤K
∞∑
k=0

ρk
i∑

`=2

∥∥∥∥∥∂v`,t−k−1(ϕ(+`))

∂ϕ
(+i)
j

∥∥∥∥∥
p1

.

In view of (8), the inequalities ‖vt(ϕ)‖ ≤ ‖Bt(ϕ)‖‖εt‖ and ‖∂vt(ϕ)
∂ϕk

‖ ≤ ‖∂Bt(ϕ)
∂ϕk

‖‖εt‖, and B6, for

some neighbourhood V (ϕ0) of ϕ0 we have

E sup
ϕ∈V (ϕ0)

‖vt(ϕ)‖4p1 <∞, (8.16)

E sup
ϕ∈V (ϕ0)

∥∥∥∥∂vt(ϕ)

∂ϕ

∥∥∥∥2q1

<∞,

E sup
ϑ(+i)∈V (ϑ

(+i)
0 )

∥∥∥∥∥ 1

git

∂git(ϑ
(+i))

∂ϑ(+i)

∥∥∥∥∥
2q1

<∞. (8.17)

In view of (8), we thus obtain (8) from the Hölder inequality, (8) and (8)-(8).

We now show that I is invertible. If this is not the case, then there exists a non zero vector

λ ∈ Rd such that
∑m

i=1 λ
′ ∂qit(ϑ

(+i)
0 )

∂ϑ = 0 a.s., which implies
m∑
i=1

(
1− η2

it

) 1

git
λ′
∂git
∂ϑ

(ϑ
(+i)
0 ) + 2ηit

1
√
git
λ′
∂vit
∂ϑ

(ϕ
(+i)
0 ) = 0 a.s.

By B2, this entails

λ′
∂git
∂ϑ

(ϑ
(+i)
0 ) = 0 and λ′

∂vit
∂ϑ

(ϕ
(+i)
0 ) = 0 a.s. for i = 1, . . . ,m. (8.18)
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Let the elimination matrices E0
θ(i)

and E0
ϕ(ij) (whose elements are zero or one) such that θ(i) = E0

θ(i)
ϑ

and ϕ(ij) = E0
ϕ(ij)ϑ. Let λθ(i) = E0

θ(i)
λ and λϕ(ij) = E0

ϕ(ij)λ. With this notation, from (2.3) we

have

λ′
∂git
∂ϑ

(ϑ
(+i)
0 ) =λ′

θ(i)
∂

∂θ(i)

{
ω0i + γ0i+

(
ε+1,t−1

)2
+ γ0i−

(
ε−1,t−1

)2
+

i∑
k=2

α
(k)
0i v

2
k,t−1(ϕ

(+k)
0 )

}

+ 2
i∑

k=2

α
(k)
0i vk,t−1λ

′∂vk,t−1

∂ϑ
(ϕ

(+k)
0 ) + λ′

∂gi,t−1

∂ϑ
(ϑ

(+i)
0 ).

Therefore (8) entails

(
1 (ε+t−1)2 (ε−t−1)2 v2

2,t−1 · · · v2
i,t−1 gi,t−1

)
λθ(i) = 0.

Then, as in Page 163 of Francq and Zakoian (2010), it can be shown that B2 and B4 imply that

λθ(i) = 0. Now note that the second equality of (8) implies

0 = λ′
ϕ(ij)

∂vit

∂ϕ(ij)
(ϕ

(+i)
0 ) = −

i−1∑
`=1

ε`,tλ
′
ϕ(ij)

∂βi`,t

∂ϕ(ij)
(ϕ

(+i)
0 ).

When ` 6= j, we have

λ′
ϕ(ij)

∂βi`,t

∂ϕ(ij)
(ϕ

(+i)
0 ) =τ

(i)
0i`λ

′
ϕ(ij)

∂vi,t−1

∂ϕ(ij)
(ϕ

(+i)
0 ) + c0i`λ

′
ϕ(ij)

∂βi`,t−1

∂ϕ(ij)
(ϕ

(+i)
0 )

=c0i`λ
′
ϕ(ij)

∂βi`,t−1

∂ϕ(ij)
(ϕ

(+i)
0 ) = 0

by stationarity. By B2, we thus have

0 = λ′
ϕ(ij)

∂βij,t

∂ϕ(ij)
(ϕ

(+i)
0 ) =

(
1 ε+t−1 ε

−
t−1 v2,t−1 · · · vi,t−1 βij,t−1

)
λϕ(ij) .

We then show that λϕ(ij) = 0 from B2 and B4. Since the previous results are true for all i ∈

{1, . . . ,m} and all (i, j) ∈ Tm, we have shown that λ = 0, which proves the invertibility by

contradiction.

Differentiating (8), we obtain

∂2qit(ϑ
(+i))

∂ϑ(+i)∂ϑ(+i)′
=

(
1− v2

it

git

)
1

git

∂2git

∂ϑ(+i)∂ϑ(+i)′
+

(
2v2
it

git
− 1

)
1

git

∂git

∂ϑ(+i)

1

git

∂git

∂ϑ(+i)′

+
2

git

∂vit

∂ϑ(+i)

∂vit

∂ϑ(+i)′
+

2vit
git

∂2vit

∂ϑ(+i)∂ϑ(+i)′

− 2vit
git

{
∂vit

∂ϑ(+i)

1

git

∂git

∂ϑ(+i)′
+

1

git

∂git

∂ϑ(+i)

∂vit

∂ϑ(+i)′

}
.
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We thus have

J :=

m∑
i=1

E
∂2qit(ϑ

(+i)
0 )

∂ϑ∂ϑ′
=

m∑
i=1

E
1

git

∂git
∂ϑ

1

git

∂git
∂ϑ′

+ 2E
1

git

∂vit
∂ϑ

∂vit
∂ϑ′

.

The invertibility of J and the convergence of Jn to J is shown by already given arguments. The

conclusion follows from the central limit theorem for squared integrable martingale differences. 2

Proof of Theorem 4.3. The consistency of ϑ̂
(1)

n and ϑ̂
(2)

n is obtained exactly as the consistency

in Theorem 4.2. We then continue the proof by induction on i, and assume that ϑ̂
(k)

n → ϑ
(k)
0 a.s.

for k = 1, . . . , i− 1. Let V (−i)(ϕ
(−i)
0 ) and V (i)(ϑ

(i)
0 ) be arbitrary neighbourhoods of ϕ(−i)

0 and ϑ(i)
0 ,

and let

V (+i)(ϑ
(+i)
0 ) = V (i)(ϑ

(i)
0 )× V (−i)(ϕ

(−i)
0 )

be the corresponding neighbourhood of ϑ(+i)
0 . For any ϑ(i)

1 6= ϑ
(i)
0 , by (8) and arguments given in

the proof of Theorem 4.1, there exists a neighbourhood V (i)(ϑ
(i)
1 ) of ϑ(i)

1 such that

lim inf
n→∞

1

n

n∑
t=1

inf
ϑ(i)∈V (i)(ϑ

(i)
1 )

qit(ϑ
(i), ϕ̂(−i)

n ) ≥ E inf
ϑ(+i)∈V (i)(ϑ

(i)
1 )×V (−i)(ϕ

(−i)
0 )

qit(ϑ
(+i)) > Eqit(ϑ

(+i)
0 ).

By compactness of the parameter space, this entails that, asymptotically, ϑ̂
(i)

n belongs to V (i)(ϑ
(i)
0 ),

which completes the proof of the consistency.

Now we show the convergence in distribution (4.3)-(4.3). For i = 1, the result comes from

already known results on the QMLE of univariate APARCH models (see Hamadeh and Zakoïan,

2011). Note that in the case i = 2 the EbEE still coincides with the one-step QMLE (see Subsection

4.2). Therefore (4.3) follows from Theorem 4.2 applied with m = 2. More precisely, in the proof of

this theorem, we have shown that for j = 2 one has the Bahadur representation

√
n

 ϑ̂
(j)

n − ϑ
(j)
0

ϕ̂(−j)
n −ϕ(−j)

0

 oP (1)
= M (j) 1√

n

n∑
t=1



∂qjt(ϑ
(+j)
0 )

∂ϑ(j)

∂qj−1,t(ϑ
(+(j−1))
0 )

∂ϕ(j−1)

...
∂q2t(ϑ

(2)
0 )

∂ϕ(2)


(8.19)

for some matrix of the form

M (j) =

 −(J (j)
ϑ

)−1
−
(
J

(j)
ϑ

)−1
K(j)M

(j)
ϕ−

0 M
(j)
ϕ−

 ,
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and the convention M (2) = −
(
J

(2)
ϑ

)−1
.

We now show (8) by induction on j, for 3 ≤ j ≤ m. Similarly to (8), one can show that

sup
ϑ(+i)∈Θ(+i)

∥∥∥∥∥∂O(i)
n (ϑ(+i))

∂ϑ(+i)
− ∂Õ

(i)
n (ϑ(+i))

∂ϑ(+i)

∥∥∥∥∥ =O(n−1) a.s. (8.20)

We have

0 =
1√
n

n∑
t=1

∂

∂ϑ(i)
q̃it(ϑ̂

(i)

n , ϕ̂
(−i)
n ) =

1√
n

n∑
t=1

∂

∂ϑ(i)
qit(ϑ̂

(i)

n , ϕ̂
(−i)
n ) + oP (1),

where the first equality comes from A6 and the consistency, and the second one from (8). A first

Taylor expansion thus gives

oP (1) =
1√
n

n∑
t=1

∂qit(ϑ
(i)
0 , ϕ̂(−i)

n )

∂ϑ(i)
+

[
1

n

n∑
t=1

∂2qit(ϑ
(+i)
kl )

∂ϑ
(i)
k ∂ϑ

(i)
j

]
√
n
(
ϑ̂

(i)

n − ϑ
(i)
0

)
,

where, for the generic element (k, j) of the matrix into brackets, ϑ(+i)
kl is between ϑ(+i)

0 and ϑ̂
(+i)

n .

Another Taylor expansion yields

1√
n

n∑
t=1

∂qit(ϑ
(i)
0 , ϕ̂(−i)

n )

∂ϑ(i)
=

1√
n

n∑
t=1

∂qit(ϑ
(+i)
0 )

∂ϑ(i)
+

[
1

n

n∑
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(i)
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(−i)
kl )

∂ϑ
(i)
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j

]
√
n
(
ϕ̂(−i)
n −ϕ(−i)

0

)
,

where the ϕ(−i)
kl ’s are between ϕ(−i)

0 and ϕ̂(−i)
n . By the arguments used to prove that In and Jn

converge to I and J in Theorem 4.2, one can show that

lim
n→∞

J (i)
n = lim

n→∞

[
1

n

n∑
t=1

∂2qit(ϑ
(+i)
kl )

∂ϑ
(i)
k ∂ϑ

(i)
j
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= J (i)

and
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kl )
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(i)
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(−i)
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= K(i),

where

J (i) = E
1
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∂git

∂ϑ(i)

1

git

∂git

∂ϑ(i)′
(ϑ

(+i)
0 ) + 2E

1

git

∂vit

∂ϑ(i)

∂vit
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(ϑ

(+i)
0 )

is a positive definite matrix, and

K(i) = E
∂2qit(ϑ

(+i)
0 )

∂ϑ(i)∂ϕ(−i)
.

We thus have

√
n
(
ϑ̂

(i)
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(i)
0

)
oP (1)

= −
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.
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By induction, one can assume that

√
n
(
ϕ̂(−i)
n −ϕ(−i)

0

)
=
√
n
(
ϕ̂(+(i−1))
n −ϕ(+(i−1))

0

)
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(i)
ϕ−

1√
n

n∑
t=1


∂qi−1,t(ϑ

(+(i−1))
0 )

∂ϕ(i−1)

...
∂q2t(ϑ

(2)
0 )

∂ϕ(2)

 ,

which holds true for i− 1 = 2. It follows that (4.1) holds for j = i. By (8), we have

1√
n

n∑
t=1



∂qjt(ϑ
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0 )
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
L→ N

(
0, I(+i)

)
.

Under B7, the matrix I(+i) is block-diagonal, and the conclusion follows. 2
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Table 5: Results of the MCS test

C-CHAR CHAR CCC DCC

BusEq X

Chems X

Durbl X

Enrgy X X

Hlth X X

Manuf X

Money X X

NoDur X

Other X

Shops X

Telcm X

Utils X

The table shows the models included in the Model

Confidence Set in the beta hedging exercise. Mod-

els highlighted with the symbol X are contained

in the model confidence set using a MSE loss

function. The significance level for the MCS is

set to 20%, and 10,000 bootstrap samples (with

a block length of 5 observations). The tracking

error is defined as TEk,t+1 = rk,t+1 − r0,t+1 −

Zk,t+1|t, where Zk,t+1|t = βk,MKT,t+1|tMKTt+1 +

βk,SMB,t+1|tSMBt+1 + βk,HML,t+1|tHMLt+1.
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Table 6: Transaction costs

MKT SMB HML

BusEq 0.356 0.380 0.341

Chems 0.310 0.263 0.376

Durbl 0.419 0.464 0.693

Enrgy 0.373 0.337 0.456

Hlth 0.461 0.667 0.397

Manuf 0.442 0.402 0.430

Money 0.390 0.397 0.366

NoDur 0.414 0.383 0.296

Other 0.273 0.343 0.335

Shops 0.344 0.297 0.395

Telcm 0.334 0.414 0.640

Utils 0.465 0.408 0.431

Note: let ∆βk,j =∑1,678
t=2 |βk,j,t+1|t − βk,j,t|t−1|

be the sum of the absolute

value of the variations of the

predicted conditional betas

between the k-th industry

portfolio and the j-th (where

j = MKT, SMB and HML)

factor for a given model.

For each column, the fig-

ures correspond to the ratio

between the value of ∆βk,j

obtained for the CHAR and

the DCC-DCB models.
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