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Dissipation of Stop-and-Go Waves in Traffic
Flows using Controlled Vehicles:

a Macroscopic Approach
Paola Goatin

Abstract— We study the boundary stabilization of
Generic Second Order Macroscopic traffic models in La-
grangian coordinates. These consist in 2 × 2 nonlinear
hyperbolic systems of balance equations with a relaxation-
type source term. We provide the existence of weak so-
lutions of the Initial Boundary Value problem for generic
relaxation terms. In particular, we do not require the sub-
characteristic stability condition to hold, so that equilibria
are unstable and perturbations may lead to the formation
of large oscillations, modeling the appearance and persis-
tence of stop-and-go waves. Moreover, since the largest
eigenvalue of the system is null, the boundaries are charac-
teristic, and the available results on boundary controllabil-
ity do not apply. Therefore, we perform a detailed analysis
of the Wave Front Tracking approximate solutions to show
that weak solutions can be steered to the corresponding
equilibrium state by prescribing the equilibrium speed at
the right boundary. This corresponds to controlling the
speed of one vehicle to stabilize the upstream traffic flow.
The result is illustrated through a numerical example.

Index Terms— Boundary control, hyperbolic systems
with relaxation, macroscopic traffic modeling.

I. INTRODUCTION

THE foreseen introduction of connected and automated
vehicles on public roads offers new perspectives in traffic

flow management, traditionally relying on approaches such as
ramp metering, traffic light control and variable speed limits,
which refer to an Eulerian description of the traffic dynamics.
In fact, recent studies have demonstrated the possibility of
controlling and stabilizing traffic flows by using a small
number of controlled vehicles acting as actuators, both in
model based (e.g. [1]–[3]) or machine learning (e.g. [4])
theoretical settings and by real world experiments (e.g. [5],
[6]). In particular, several works such as [7]–[9], have fo-
cused on the dissipation of stop-and-go waves, which can
spontaneously arise due to traffic instabilities [10]. In this
framework, model based analytical studies have been restricted
mostly to the microscopic setting [9], [11]. Indeed, classical
first order macroscopic models [12], [13], cannot capture the
formation and persistence of oscillations, due to the intrinsic
stabilizing effect of the non-increasing total variation of their
solutions. It is therefore mandatory to consider second order
models [14]–[16], consisting in 2 × 2 hyperbolic systems of
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balance equations with relaxation source terms. Yet, to allow
the solution total variation to increase, thus modeling stop-and-
go waves, one has to drop the dissipative condition usually
assumed to ensure well-posedness and convergence results as
the relaxation parameter tends to zero [17]–[19].
Aiming to assess the possibility of dampening stop-and-go
waves by controlled vehicles in the role of endogenous actua-
tors, in this work we therefore consider a class of second order
models with unstable relaxation terms. We rewrite the system
in Lagrangian coordinates, so that the control action of a single
vehicle translates into suitable boundary conditions. Note that,
due to the change of coordinates, domain boundaries become
characteristic, since second family waves have zero speed, and
boundary conditions can act only on one system component
at the downstream (right) boundary. A similar approach is
exploited in [20] to include trajectory data information in
a scalar model with time delay accounting for traffic string
instability.

Most of the literature about controllability of hyperbolic sys-
tems deals with classical solutions of quasilinear systems [21],
[22]. Moreover, boundary stabilization is usually derived under
the assumption of non-characteristic boundaries (i.e. wave
speeds bounded away from zero) [23], see e.g. [24], [25]
for traffic flow stabilization results. Nevertheless, solutions
to nonlinear hyperbolic equations generally develop jump
discontinuities. Therefore, in particular regarding traffic flow
applications, it is natural to consider weak solutions, possibly
satisfying additional admissibility conditions to single out the
physically relevant ones. In this context, control theory is less
developed. Lyapunov boundary stabilization is demonstrated
in [26] for scalar conservation laws with strictly convex flux
functions and in [27]–[29], for systems whose eigenvalues are
bounded away from zero. Since available results do not apply
to our problem, we are led to perform a detailed analysis
of the approximate solutions constructed via the Wave Front
Tracking (WFT) algorithm [30], which allows us to prove the
asymptotic stabilization of the solutions of the Initial Boundary
Value Problem (IBVP) for any initial data of bounded variation
to the corresponding equilibrium state.

The remaining of the paper is organized as follows. In
Section II we introduce the model under study. In Section III
we provide the well-posedness of the corresponding IBVP. The
main result on asymptotic boundary stabilization is proved
in Section IV and a numerical experiment is provided in
Section V. Some supplementary material is collected in the
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Appendix.

II. GENERIC SECOND ORDER MACROSCOPIC TRAFFIC
MODELS

We refer to the Generic Second Order Macroscopic model
(GSOM in short) [16] with relaxation. In Eulerian coordinates,
it reads∂tρ+ ∂x(ρv) = 0 ,

∂t(ρw) + ∂x(ρwv) = ρ
V (ρ)− v

τ
,

x ∈ R, t > 0. (1)

In (1), the average speed of vehicles v is a function of the
density ρ = ρ(t, x) and a Lagrangian vehicle property w =
w(t, x), namely v = V(ρ, w) for some speed function V :
Ω→ R≥0 satisfying [31]:

V(ρ, w) ≥ 0, V(0, w) = w, (2a)
2Vρ(ρ, w) + ρVρρ(ρ, w) < 0 for w > 0, (2b)
Vw(ρ, w) > 0, (2c)
∀w > 0 ∃ R(w) > 0 : V(R(w), w) = 0. (2d)

Moreover, we assume the equilibrium speed V : R≥0 → R≥0
is a non-increasing function (V ′(ρ) ≤ 0) such that V (ρ) = 0
for ρ ≥ ρmax > 0 and τ > 0 is the relaxation parameter
taking into account the reaction time of drivers. As in [31], we
observe that (2b) implies that Q(ρ, w) := ρV(ρ, w) is strictly
concave and Vρ(ρ, w) < 0 for w > 0, if V is a C2 function
in ρ. We also remark that in (2d) we can have R(w) = R̄ for
all w > 0.

Notice that, setting V(ρ, w) = w − p(ρ) for a suitable
“pressure” function p, system (1) corresponds to the Aw-
Rascle-Zhang (ARZ) model [14], [15]. Also, taking w = w̄
constant, we recover the classical Lighthill-Whitham-Richards
(LWR) model [12], [13].

Away from vacuum, system (1) can be rewritten into La-
grangian coordinates (t, n) (n = n(t, x) s.t. dn = ρ dx−ρv dt
[32]) as follows. Denoting by s the spacing, i.e. s = 1

ρ , and
using the notation

Ṽ(s, w) = V
(

1

s
, w

)
, Ṽ (s) = V

(
1

s

)
,

we obtain the following equivalent hyperbolic system∂ts− ∂nṼ = 0 ,

∂tw =
Ṽ (s)− Ṽ

τ
,

(3)

whose eigenvalues are

λ̃1(s, w) = −Ṽs(s, w) = Vρ(1/s, w)/s2 < 0 , (4a)

λ̃2(s, w) = 0 . (4b)

It is known [19] that, under the sub-characteristic condition

Ṽs(s, w) ≥ Ṽ ′(s) ≥ 0 for w s.t. Ṽ(s, w) = Ṽ (s), (5)

(entropy weak) solutions to (3) converge to the (entropy weak)
solution of the corresponding LWR equation

∂ts− ∂nṼ (s) = 0, x ∈ R, t > 0, (6)

as τ → 0+ or t → +∞, preventing the formation and
persistence of large oscillations around equilibria. Aiming at
capturing the formation of stop-and-go waves and their damp-
ing by boundary controls, in this work we drop condition (5)
and we study model (3) for a fixed τ > 0. The corresponding
Riemann problem and invariant domains are described in the
Appendix.

III. THE INITIAL BOUNDARY VALUE PROBLEM

In this work, we focus on the initial-boundary value problem
(IBVP) for (3) on the bounded interval I = ]0, N [ with initial
data

(s, w)(0, n) = (s0, w0)(n), n ∈ I , (7)

and right boundary condition

Ṽ(s, w)(t,N) = ṽc(t), t > 0. (8)

Notice that, as usual with hyperbolic equations, boundary
conditions are intended in weak sense. Due to (4), only
the speed boundary condition can be imposed at the right
boundary n = N . The IBVP solution cannot depend on
conditions on w and at the left boundary n = 0 [33]. Note
that, in Eulerian coordinates, (8) becomes a moving internal
condition V(ρ, w)(t, x(t,N)−) = ṽc(t), where x(t,N) is
the position at time t of the vehicle that was initially at
xN = x(0, N), i.e. N = n(0, xN ). Clearly, this is much harder
to treat both analytically and numerically.

Definition 1: Given an invariant domain E as in (20), let
U0 = (s0, w0) ∈ L1(I;E), Uc = (sc, wc) : [0, T ] → E and
T > 0 be given. Then U = (s, w) ∈ C0

(
[0, T ],L1(I;E)

)
is

a weak solution of IBVP (3), (7), (8) if

(i) for all ϕ ∈ C1
c (]−∞, T [×I;R), it holds

0 =

∫ T

0

∫ N

0

[U∂tϕ+ F (U)∂nϕ] (t, n) dndt

+

∫ T

0

∫ N

0

G(U)ϕ(t, n) dndt+

∫ L

0

U0(n)ϕ(0, n) dn,

where

F (U) =

[
−Ṽ(s, w)

0

]
, G(U) =

1

τ

[
0

Ṽ (s)− Ṽ(s, w)

]
;

(ii) the speed function admits a weak* trace Ψ : [0, T ] →
R at the boundary n = N (i.e. Ṽ(s, w)(·, n) ⇀∗ Ψ in
L∞([0, T ]) as n → N−) and Ψ(t) = Ṽ(sc, wc)(t) for
a.e. t ∈ [0, T ]. (See [34, Definition 2.2].)

We construct wave-front tracking (WFT) approximate so-
lutions of (3), (7), (8) following a two step process, which
iteratively solves approximately the homogenous system (17)
and the ODEs (18), as in [19], [35]. Let us consider initial
data U0 = (s0, w0) : I → E such that TV(U0) :=
TV(w0) + TV(ṽ0) < +∞ (ṽ0 := Ṽ(s0, w0)) and boundary
data Uc = (sc, wc) : [0, T ] → E such that TV(ṽc) < +∞
(ṽc := Ṽ(sc, wc)). We consider a sequence of time-steps
∆tν > 0, ν ∈ N, such that ∆tν → 0 as ν → +∞
and we partition the interval [0, T [ in intervals of the form
∆T k := [k∆tν , (k + 1)∆tν [, k ∈ N. We denote with Uν =
(sν , wν) : [0, T ]× I → E, the sequence of WFT approximate
solutions of (3), (7), (8) constructed as below:
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1) Define a sequence of piece-wise constant functions Uν0 =
(sν0 , w

ν
0 ) : I → E, ṽν0 = Ṽ(sν0 , w

ν
0 ), and Uνc = (sνc , w

ν
c ) :

[0, T ]→ E, ṽνc = Ṽ(sνc , w
ν
c ), satisfying

TV(ṽνi ) ≤ TV(ṽi) , TV(wν0 ) ≤ TV(w0) ,

‖ṽνi − ṽi‖L∞ ≤ ν−1 , ‖wν0 − w0‖L∞ ≤ ν−1 ,
‖sν0 − s0‖L1 ≤ ν−1 , ‖wν0 − w0‖L1 ≤ ν−1 ,

for i = 0, c, and, for each ν ∈ N, the piece-wise constant
function Uν0 has a finite number of discontinuities and ṽνc
is constant on ∆T k, k = 0, . . . , bT/∆tνc.

2) Solve the homogeneous system (17) corresponding to the
Riemann problems arising at each discontinuity and at the
right boundary n = N for t ∈ [0,∆tν [ using the classical
WFT method [36] and name Uν(t, ·) the corresponding
piece-wise constant function.

3) At t = ∆tν , we define
sν(∆tν , ·) = sν(∆tν−, ·) ,
wν(∆tν , ·) = wν(∆tν−, ·) (9)

+
∆tν

τ

[
Ṽ (sν(∆tν , ·))− Ṽ(Uν(∆tν−, ·))

]
.

Note that s is conserved during this second step, while w
(and ṽ = Ṽ(s, w)) is updated according to (18).

4) Treat Uν(∆tν , ·) as a new piece-wise constant initial
condition and repeat the previous steps 2–3 to define the
solution Uν(t, ·) for each t ∈ [0, T ].

Following [19], [35], [37], one can prove uniform L∞ and BV
estimates that allow to apply Helly’s Theorem and infer the
convergence (up to a subsequence) of Uν to a weak solution
of IBVP.

Theorem 1: Given any T > 0, let U0 : I → E with
TV(U0) < +∞, Uc : [0, T ] → E with TV(ṽc) < +∞ and
let (ṽ, w) be the limit function of the sequence {ṽν , wν}ν of
WFT approximate solutions as ν → ∞. Then U = (s, w),
with s implicitly defined by Ṽ(s, w) = ṽ, is a weak solution
of (3), (7), (8) in the sense of Definition 1. In particular,
TV(ṽ(t, ·)) < +∞ for a.e. t ∈ [0, T ] and ṽ admits a strong
trace at n = N .

IV. ASYMPTOTIC BOUNDARY STABILIZATION

Given any initial state U0 = (s0, w0) ∈ BV(I;E), the
corresponding equilibrium U∗ = (s∗, w∗) of (3) is implicitly
given by

s∗ :=
1

N

∫ N

0

s0(n) dn, Ṽ(s∗, w∗) = Ṽ (s∗) =: ṽ∗. (10)

We seek for a boundary condition (8) that steers U0 to U∗

under the general assumption that (5) does not hold at U∗.
Therefore, oscillations are not naturally damped by the source
term and can persist in time, see e.g. [35], [38] for an analysis
of the corresponding travelling waves.

Theorem 2: Assume
∂s[Ṽw(Ṽ − ṽ∗)](U) > 0 for all U ∈ E. (11)

Then, for any U0 : I → E with TV(U0) < +∞ and ε > 0,
there exists T > 0 such that, setting ṽc(t) = ṽ∗ for all t ∈
[0, T ] in (8), the weak solution U of (3), (7), (8) obtained as
limit of WFT approximations satisfies

‖U(T, ·)− U∗‖L∞ ≤ ε. (12)
Proof: At time t = 0, let us consider the rightmost

Riemann problem corresponding to UL = Uν0 (N−) and UR =
Uc, for some Uc = (sc, wc) such that Ṽ(sc, wc) = ṽ∗, whose
intermediate state is given by (sm, wL) such that Ṽ(sm, wL) =
ṽ∗. Iterating the argument at possible later wave interactions,
we observe that Ṽ(Uν(∆tν−, n)) = ṽ∗ for n > N−vmin∆tν ,
with vmin := minU∈E Ṽs(U) > 0. Applying the relaxation
step (9), we get

Ṽ(Uν(∆tν , n)) = ṽ∗
(

1− ∆tν

τ
Ṽw
)

+
∆tν

τ
ṼwṼ (sν(∆tν , n)) + o(∆tν),

with Ṽw = Ṽw(Uν(∆tν−, n)). Iterating the above process at
each time step tk = k∆tν , we get the (approximate) sequence
Uνk := Uν(tk, n) = (sk, wk) implicitly defined by

Ṽ(sk, wk+1) = ṽ∗ +
∆tν

τ
Ṽw(Uνk )

(
Ṽ (sk)− ṽ∗

)
,

Ṽ(sk+1, wk+1) = ṽ∗.

By the implicit function theorem, the above identities define
a function ω such that wk+1 = ω(sk) and

ω′(sk) =
1

Ṽw

(
∆tν

τ

(
ṼwṼ ′ + Ṽw,s(Ṽ − ṽ∗)

)
− Ṽs

)
(Uνk ),

and a function ϕ such that sk+1 = ϕ(sk) satisfying
Ṽ(ϕ(sk), ω(sk)) = ṽ∗ and

ϕ′(sk) = −Ṽw
Ṽs
ω′(sk) ∼ 1− ∆tν

τ

∂s[Ṽw(Ṽ − ṽ∗)]
Ṽs

(Uνk ).

Thanks to (11), there exists K > 0 such that 0 < ∂s[Ṽw(Ṽ −
ṽ∗)]/Ṽs(U) ≤ K for all U ∈ E. Thus, the recursive sequence
converges to the fixed point s∗ for ∆tν < 2τ/K and∣∣sν(tk, n)− s∗

∣∣ ≤ (‖ϕ′‖∞)k|s0(n)− s∗| ≤ ε/2

for k ≥ ln(ε/‖s0 − s∗‖∞)/ ln(‖ϕ′‖∞) and n > N−vmin∆tν .
Also, limk wk = limk ω(sk) = ω(s∗) = w∗, therefore
|wk − w∗| ≤ ε/2 for k large enough.
To extend the argument in the whole space domain I , let us
proceed by induction. Assume to have a sequence (sj,k, wj,k)
at some point n = nj ∈ I converging to (s∗, w∗), so that
also ṽj,k := Ṽ(sj,k, wj,k) converges to ṽ∗. Then, for n ∈
]nj − vmin∆tν , nj [, the WFT approximate solutions Uνj+1,k

satisfy the recursive relation

Ṽ(sj+1,k, wj+1,k+1) = ṽj,k

+
∆tν

τ
Ṽw(Uνj+1,k)

(
Ṽ (sj+1,k)− ṽj,k

)
,

Ṽ(sj+1,k+1, wj+1,k+1) = ṽj,k+1.

Reasoning as above, these relations define a sequence sj+1,k =
ϕj+1(sj+1,k) such that

ϕ′j+1(sj+1,k) ∼ 1− ∆tν

τ

∂s[Ṽw(Ṽ − ṽj,k)]

Ṽs
(Uνj+1,k),

whose limit must satisfy

lim
k
Ṽ(sj+1,k, wj+1,k) = lim

k
ṽj,k = ṽ∗ = lim

k
Ṽ (sj+1,k).
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Due to the strictly negative propagation speed of first family
waves, repeating the argument at most dN/(vmin∆tν)e times
allows to cover the whole interval I , showing that there exists
k̄ sufficiently large such that, setting T = k̄∆tν , for any n ∈ I
it holds |Uν(T, n)− U∗| ≤ ε.

Remark 1: Assumption (11) is equivalent to
[Ṽw,s(Ṽ − ṽ∗) + ṼwṼ ′](U) ≥ 0, (13)

which is satisfied for U such that Ṽ (s) ≥ ṽ∗ (i.e. s ≥ s∗) if
Ṽw,s(U) ≥ 0. For s < s∗, (13) is equivalent to

[ṼwṼ ′](U) ≥ [Ṽw,s(ṽ∗ − Ṽ )](U) ∼ Ṽw,s(U)Ṽ ′(s)(s∗ − s),

i.e. 2Ṽw(s, w) ≥ Ṽw(s∗, w), showing that assumption (11) is
not too restrictive.

V. NUMERICAL EXPERIMENT

We consider the IBVP (3), (7), (8) with

ṽc(t) =

{
Ṽ(s, w)(t, 0+) for 0 ≤ t < t̄,

ṽ∗ for t̄ ≤ t ≤ T,
(14)

modeling a ring road where Ṽ(s, w)(t,N) = Ṽ(s, w)(t, 0) for
t ∈ [0, t̄[ and the control is activated at time t = t̄. We fix
the space and time steps, respectively ∆n = N/J for some
J ∈ N and ∆t satisfying the stability condition [39]

∆t = 0.9 min
{

∆n/
∥∥∥Ṽs∥∥∥

∞
, 2τ/

∥∥∥Ṽw∥∥∥
∞

}
,

and we set nj−1/2 = j∆n, nj = (j + 1/2)∆n for j =
0, . . . , J , and tk = k∆t for k ∈ N.
We approximate the initial data (7) with piece-wise constant
functions

{
(s0j , w

0
j )
}J
j=1

and we dicretize (3) by a finite
volume upwind scheme with time-splitting: for j = 1, . . . , J
and k ∈ N, we set ṽkj = Ṽ(skj , w

k
j ) and

sk+1
j = skj +

∆t

∆n

(
ṽkj+1 − ṽkj

)
,

ṽ
k+1/2
j = Ṽ(sk+1

j , wkj ) ,

wk+1
j = wkj +

∆t

τ

(
Ṽ (sk+1

j )− ṽk+1/2
j

)
,

ṽk+1
j = Ṽ(sk+1

j , wk+1
j ) ,

with
ṽkJ+1 = ṽc(t

k) =

{
ṽk1 for 0 ≤ k∆t < t̄,

ṽ∗ for k∆t ≥ t̄.

We consider a ring road of length L = 125[m] containing
N = 50 vehicles of length ` = 1[m] (corresponding to a
maximal density R̄ = ρmax = 1[veh/m]) with initial spacing
and Lagrangian attribute

s0(n) = 2.5[m], w0(n) = 29 + 0.1 sin(10πn/N)[m/s],
(15)

corresponding, under the coordinate transformation x(n) =∫ n
0
s0(ν)dν, i.e. x = 2.5n, to the Eulerian quantities

ρ0(x) = 0.4[veh/m], w0(x) = 29 + 0.1 sin(10πx/L)[m/s].

Initial conditions (15) represent equidistributed vehicles with
small oscillations in the drivers’ preferred speed, which, due
to the instability of the system, generate persistent stop-and-go
waves [35], [38], see Figures 1 and 2.

Fig. 1: Spacing s(t, ·) (top), speed ṽ(t, ·) (middle) and La-
grangian marker w(t, ·) (bottom) profiles of the solution to (3),
(14), (15) at t = 20 < t̄.

Fig. 2: Evolution (heat map) of the spacing component s =
s(t, n) of the solution to (3), (14), (15). Stop-and-go waves
moving backward with respect to vehicles are clearly visible
in the time interval [10s, 40s].

The average and equilibrium speed functions are chosen
respectively as

Ṽ(s, w) = w

(
1− 1

s

)
,

Ṽ (s) = Vmax (1− exp (α (1− s))) ,

with Vmax = 25[m/s] the maximal speed and α = 0.8. With
these choices, we have s∗ = 2.5[m], w∗ = 29[m/s] and
ṽ∗ = 17.47[m/s]. We also set τ = 0.1[s].
The space mesh size is set to ∆n = 0.1 and the simulation
time horizon at T = 50[s], with control activation time at
t̄ = 30[s]. In Fig. 2 and 3 (bottom), we observe that the small
oscillations in the w component of the initial dadum (15) in-
duce the formation of large stop-and-go waves, which stabilize
after t = 20[s]. Once the control is activated (t = 30[s]),
the spacing total variation TV(s(t, ·)) starts immediately to
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Fig. 3: Time evolution of the L∞ distance to equilibrium
‖U(t, ·)− U∗‖L∞ (top) and spacing total variation TV(s(t, ·))
(bottom). The control action is activated at t = 30s.

decrease, to reach 0 in less than 15[s]. The L∞ distance to
equilibrium ‖U(t, ·)− U∗‖L∞ starts decreasing later, since the
information about the control acting at the right boundary
n = N needs to travel upstream the whole interval ]0, N [
to affect the L∞ norm, see Fig. 2.

VI. CONCLUSIONS

We have proved the asymptotic stabilization of the GSOM
traffic model by an open loop speed control acting at the
downstream boundary, for any number of vehicles and initial
conditions with bounded total variation. The result is in line
with the conclusions of the microscopic analysis provided
in [11]. The asymptotic decay of the total variation will
be investigated analytically in future studies. Also, control
actions ensuring the respect of the physical constraints, such
as
∫ N
0

s(t, n) dn ≤
∫ N
0

s(0, n) dn for all t > 0 in the case of
a ring road, should be designed.
We point out that the linearized version of system (3) does
not satisfy the conditions for Lyapunov stability [40] when
the sub-characteristic condition (5) is violated. This advocates
even further for the nonlinear setting adopted in this work.

APPENDIX: THE RIEMANN PROBLEM

Let us consider (3) with initial data of the form

(s, w)(0, n) =

{
UL = (sL, wL) if n < n̄,

UR = (sR, wR) if n ≥ n̄,
(16)

and set ṽL = Ṽ(sL, wL), ṽR = Ṽ(sR, wR). To construct the
(approximate) solution, we iteratively solve the homogenous
system {

∂ts− ∂nṼ = 0 ,

∂tw = 0 ,
(17)

which belongs to the Temple class [41] and whose Riemann
invariants are z1(s, w) = Ṽ(s, w) and z2(s, w) = w, and the
ODE system

∂ts = 0 ,

∂tw =
Ṽ (s)− Ṽ

τ
.

(18)

Solutions of (17), (16) consist in general of a first family wave
(rarefaction or shock) connecting UL to UM = (sM , wL)
travelling with strictly negative speed (with sM implicitly
defined by Ṽ(sM , wL) = ṽR), and a contact discontinuity with
zero speed connecting UM to UR. Notice that, if wL > ṽR,
an intermediate vacuum state appears, where s = +∞.

The solution to (18), (16) is instead given by the constant
in time component s(t, ·) = s(0, ·) and

w(t, ·) = w(0, ·) +
Ṽ (s(0, ·))

τ
t−
∫ t

0

Ṽ(s(0, ·), w(ξ, ·))
τ

dξ.

Let us now observe that, setting s = S(ṽ, w) and differentiat-
ing the identity Ṽ(S(ṽ, w), w) = ṽ, we get the identities

Sṽ = 1/Ṽs, Sw = −Ṽw/Ṽs. (19)

Thus, the equilibrium curve, which is implicitly defined by
Ṽ (s) = Ṽ(S(ṽ, φ(ṽ))) = ṽ, satisfies

φ′(ṽ) =
1

Sw

(
1

Ṽ ′(s)
− Sṽ

)
=

1

Ṽw

(
1− Ṽs

Ṽ ′(s)

)
.

Since Ṽw > 0 by (2c), we get φ′(ṽ) ≤ 0 if and only if
Ṽs ≥ Ṽ ′(s), i.e. the sub-characteristic condition (5) holds.
Let us assume there exists ṽcr, resp. wcr = φ(ṽcr) and scr =
S(ṽcr, wcr), such that φ′(ṽcr) = 0 (i.e. Ṽ(scr, wcr) = Ṽ ′(scr))
and φ′(ṽ) > 0 if ṽ < ṽcr, φ′(ṽ) < 0if ṽ > ṽcr. In this case,
the equilibrium curve intersects the congestion line ṽ = 0 at
ŵ implicitly defined by Ṽ(1/R(ŵ), ŵ) = 0. We also define
š, v̌ such that v̌ = Ṽ(š, ŵ) = Ṽ (š). See Fig. 4.

By the above analysis, we consider invariant domains for (3)
of the form

E = E[̄s, R(ŵ)] =
{
U = (s, w) : s ∈ [1/R(wM ), s̄],

Ṽ(s, w) ∈ [0, v̄], w ∈ [w̄, wM ]
}
, (20)

with s̄ ≥ š, wM ≥ wcr and v̄ = Ṽ(s̄, w̄) = Ṽ (s̄), which do
not include vacuum states. We refer to [35] for more details
on the structure of Riemann solutions and invariant domains.

ṽ

w

v̌

ŵ

ṽcr

w = φ(ṽ)

0 wM

wM

wm

wcr
E(š, R(ŵ))

Fig. 4: Example of minimal invariant domain E (continuous
red line) and general invariant domain (dashed red line)
considered in this paper.
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