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Abstract

By exploiting the intrinsic random nature of nanoscale devices, Memristor Monte
Carlo (MMC) is a promising enabler of edge learning systems. However, due
to multiple algorithmic and device-level limitations, existing demonstrations have
been restricted to very small neural network models and datasets. We discuss
these limitations, and describe how they can be overcome, by mapping the stochas-
tic gradient Langevin dynamics (SGLD) algorithm onto the physics of magnetic
domain-wall Memristors to scale-up MMC models by five orders of magnitude.
We propose the push-pull pulse programming method that realises SGLD in-
physics, and use it to train a domain-wall based ResNet18 on the CIFAR-10
dataset. On this task, we observe no performance degradation relative to a float-
ing point model down to an update precision of between 6 and 7-bits, indicating
we have made a step towards a large-scale edge learning system leveraging noisy
analogue devices.

1 Introduction

Autonomous machine learning algorithms running on distributed edge systems may open up a vari-
ety of exciting future applications and services. Before such systems may become a reality however,
a diverse set of challenges must be overcome. This is not only limited to algorithmic issues, such as
the scarce access to labels in a continuously evolving data stream [Fahy et al. (2022)] or privacy con-
cerns [Wang et al. (2020)], but also to hardware limitations - notably severe constraints in on-chip
memory and power supply [Christensen et al. (2022)]. With regards to the latter, a potential solution
may be the use of arrays of non-volatile programmable conductance elements (i.e., Memristors) to
reduce the cost of repeated memory accesses when evaluating the inner-product operation in neural
networks [Marković et al. (2020); Ielmini et al. (2021)]. Despite a number of circuit and system
level challenges [Hung et al. (2021)], arrays of Memristors may allow for a significant reduction in
energy relative to GPUs and CPUs by performing multiplication in-memory, with high parallelism
and in the analogue domain. While it is hoped that weight updates derived from diverse gradient cal-
culation or gradient approximation methods such as backpropagation [Rumelhart et al. (1986)], equi-
librium propagation [Scellier and Bengio (2017)] or eligibility propagation [Bellec et al. (2020)] can
be applied in-situ directly to Memristors during the course of a learning algorithm, it in fact often
proves challenging to implement these updates with a sufficiently high precision to learn a high per-
formance model. The intrinsically physical and random nature of non-volatile memory, for example
filamentary [Ambrogio et al. (2014)], phase-change [Wong et al. (2010)] or magnetic spin-based
[Shibata et al. (2020)] technologies, impose a limit on how precisely a calculated gradient can be
translated into a conductance change on a target device. Implementations of deterministic learn-
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Figure 1: Issues facing filamentary technologies for Memristor Monte Carlo. (a) Data measured
from a filamentary device [Dalgaty et al. (2021a)]. The mean (light blue) and variance (dark blue)
of the Memristor probability distribution are plotted as a function of programming current. A fila-
mentary device is shown as an inset. (b) Monte Carlo samples (points) of two conductances, G1 and
G2, illustrate the high conductance corner issue. Point colour shows sample order (blue to red).

ing algorithms, for example stochastic gradient descent, using Memristors in this fashion typically
incurs a performance degradation relative to an equivalent floating-point model [Li et al. (2018)].

An emerging alternative view however is that, by discretizing conductances into separable levels, we
may be masking the rich underlying physics of Memristors. Would it not be, as is perhaps the case
in our own nervous systems, preferable to find ways to compute using these phenomena instead?
This idea is gradually taking hold and has lead to innovations whereby Memristor physics have
been used to solve problems such as integer factorisation, Bayesian reasoning and random network
generation [Borders et al. (2019); Kaiser et al. (2022); Dalgaty et al. (2023)]. They have also been
directly mapped onto probabilistic machine learning algorithms such as Markov chain Monte Carlo
(MCMC) sampling [Dalgaty et al. (2021a)]. In this approach, which we will refer to as Memristor
Monte Carlo (MMC), rather than viewing a device as a discrete low-precision variable, Memristors
are considered to be probability distributions. Beyond the utility of allowing neural networks to bet-
ter model their uncertainty [Palacci and Hess (2018)], MCMC offers a grounded framework within
which these physical probability distributions can be manipulated. Upon programming, the conduc-
tance assumed by a Memristor is a sample from this distribution - the properties of which may be
determined as a function of the programming conditions. In the case of filamentary technologies
[Dalgaty et al. (2021a,b)], the mean or standard deviation of the Memristor’s Gaussian distribution
are defined by the programming current magnitude. MMC however has thus far been applied to very
small neural networks and datasets - severely limiting its applicability. The reasons for this, detailed
in section 2, are both algorithmic and consequences of device physics specific to filamentary Mem-
ristors. We describe in section 3 how, through a better choice of MCMC algorithm and Memristor
technology, MMC can overcome these issues and be scaled-up massively. Specifically, we propose
to leverage the physics of a three-terminal magnetic domain-wall Memristor [Shibata et al. (2020)]
(Fig.2(a)) that is currently under development, with a technique we refer to as push-pull pulse pro-
gramming. In section 4 we demonstrate that, using this technique, domain-wall MMC may be scaled
up to a dataset and model that are several orders of magnitude greater than previous demonstrations,
using a standard image classification task.

2 What has been limiting Memristor Monte Carlo?

Despite an appealing algorithm to device pairing, previous implementations of MMC have not
achieved an acceptable performance when scaled-up to large models and datasets. Principally, there
are four reasons for this. The first is purely algorithmic, while the other three are related to the
physical properties of filamentary Memristors:

1. Poor scalability of Metropolis-Hastings - The MCMC algorithm applied in [Dalgaty et al.
(2021a)] is the Metropolis-Hastings algorithm [Hastings (1970)]. The principle of
Metropolis-Hastings is to sample a proposed model based on a previous one using, typi-
cally, a Gaussian proposal distribution. The ratio of log-likelihoods and log-priors between
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the proposed and previous models determines a probability of accepting this proposal which
is otherwise rejected. However, this random-walk based chain converges too slowly to high
probability regions of high-dimensional posterior distributions to be practical in the context
of large neural networks. In addition, the log-likelihood of each sample must be calculated
with respect to the entire dataset such that, for even modest dataset sizes, the total calcula-
tion requirements over many training iterations becomes excessive.

2. Dependent mean and variance - The general principle of filamentary Memristor technolo-
gies is that, under the application of a sufficiently large voltage pulse, a conductive filament
is formed within a thin insulating layer (of some nanometers) between two electrodes. The
programming current which flows during this pulse determines the structure of the filament.
The measurements plotted in Fig.1(a) show that larger currents result in thicker filaments
with a higher conductance and less variability while smaller currents produce thinner, more
variable, filaments of lower conductance. As a result, the current determines not only the
mean of the resulting Gaussian conductance distribution, but also its variance. In practice
the variance is an important free parameter in MCMC sampling algorithms and should
certainly not be defined by the conductance value of the previous sample.

3. The high conductance corner - A direct result of this dependence is the high conductance
corner issue. Simply, since parameters with a high conductance sample from a tighter
distribution than parameters with a lower conductance, a bias exists that pushes the Markov
chain to increasingly higher conductance values. In Fig.1(b) we plot the Markov chain
resulting from one thousand Monte Carlo samples of two conductances described using a
filamentary device model. Indeed both parameters converge into a high conductance corner
from which it is difficult to escape and, in practice, may prevent the posterior from being
correctly modelled.

4. High variance to range ratio - While MCMC methods are rooted in the generation of
random samples from probability distributions, it is not the case that any distribution will
do. Often for an MCMC sampler to approximate the true posterior, the variance of the
proposal distribution must be tuned to lie within an optimal range of values. The range
of variances of the Memristor probability distribution used in [Dalgaty et al. (2021a)] are
extremely large with respect to the physical range of conductance values. At some tens
of micro Siemens for example, the probability distribution contained within three standard
deviations occupies over one fifth of the total conductance range.

In order to overcome these limitations, and crucially scale-up MMC, both the MCMC method and
the Memristor technology onto which it is mapped must be re-thought.

3 Domain-wall stochastic gradient Langevin dynamics

Since the Metropolis-Hastings algorithm was first proposed in the 1970s, a number
of modern approaches to Markov chain Monte Carlo sampling have been developed
[Welling and Teh (2011); Girolami and Calderhead (2011); Chen et al. (2014); Zhang et al. (2020,
2022); Javanbakhat and Lippert (2023)] such that MCMC can now be applied to deep learning
sized problems, often with state of the art results. One particularly appealing approach is the
stochastic gradient Langevin dynamics (SGLD) algorithm [Welling and Teh (2011)]. Relative to
Metropolis-Hastings, SGLD uses Langevin gradients to converge faster to high probability modes
of the posterior while also being compatible with mini-batches of data. Note that, while the re-
jection steps of Metropolis-Hastings are not required, they may be introduced between proposals
[Roberts and Stramer (2002)] in what is referred to as the Metropolis-adjusted Langevin algorithm.
Given a conductance model g, the conductance updates calculated by SGLD may be described as

∆g = τ∇gL(g) +
√
2τǫ, (1)

whereby a sample from a unit noise distribution ǫ is summed with a Langevin gradient ∇gL(g),
which is defined as the derivative of the sum of the scaled log-likelihoods over a mini-batch of d
data-points and the log prior over the model:
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Figure 2: SGLD with magnetic domain-walls. (a) Domain-wall Memristor programming - domain-
wall position (vertical black lines) before and after a write operation shown on the left and right. Ver-
tical arrows (upward and downward) denote parallel and anti-parallel spin. Write and read current
pulses are drawn as rectangles. (b) Simulated domain-wall position change histograms (500 trials)
for varying pulse-width, T . (c) The independence of the mean (blue) and variance (orange) and
the domain-wall position (normalised to the device length) for positive (cross) and negative (point)
polarity pulses of T = 5ns. (d) Effect of pulse-width on the mean (crosses) and variance (points) of
the Memristor probability distribution. (e) (left) The principle of SGLD. Stored samples are green
crosses, the Langevin gradient is a red arrow and the noise a blue Gaussian distribution. (right) A
push-pull current pulse pair is shown alongside the distributions resulting from the symmetric com-
ponent (blue) and the asymmetry (red).

L(g) = η

d
∑

i=1

− log p(yi|g)− log p(g). (2)

The hyper-parameter η acts to scale the contribution of the likelihood in order to compensate for
the noise in the stochastic gradients. The parameter τ , which may be interpreted as a learning rate,
scales both the unit noise, ǫ, and the Langevin gradient. In fact a key feature of SGLD is that
for τ < 1, due to the square root operation, the noise term typically dominates over the Langevin
gradient. This encourages the sampler to explore the posterior instead of settling into a single high
likelihood mode.

Magnetic domain-wall Memristors (Fig.2(a)) are based on a physical phenomenon referred to as tun-
nelling magneto-resistance [Julliere (1975); Miyazaki and Tezuka (1995)]. Given a pair of magnetic
materials separated by a thin insulating layer, the relative magnetic spin in the two layers influences
the extent of electron tunnelling between them - therefore the conductance of the device. This effect
is exploited in non-volatile memory technologies whereby the spin of a so-called free layer may be
programmed, via a spin-transfer or spin-orbit torque inducing current pulse, to be either parallel or
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anti-parallel with respect to the spin of the other pinned layer. A magnetic domain-wall is a special
architecture of device wherein both parallel and anti-parallel spins are present in the free layer - on
either side of a domain-wall. The location of the domain-wall, which can be moved in a linear and
symmetric fashion through application of current pulses, allows the extent of tunnelling magneto-
resistance between the two layers to be modified - thereby also changing the conductance. However,
the precision of these conductance updates will ultimately be limited by the inherent randomness
associated to domain-wall motion due to effects like surface roughness and thermal fluctuations
[Martinez (2011); Liu et al. (2021)]. We propose that this inherent probabilistic behaviour can be
leveraged through a Memristor Monte Carlo approach. Just as the programming current magnitude
determines the mean and variance of filamentary Memristor distributions (Fig.1(a)), the pulse-width
of the current applied to the free layer in a domain-wall device will determine the shape of its own
conductance change probability distribution. Numerical simulations of domain-wall motion give
examples in Fig.2(b) of the domain-wall position change probability distribution due to positive po-
larity pulses (P = +1) of different pulse-widths, T . We observe that this distribution can be well
described using a Gaussian - p(∆X |T, P ) = N (∆Xµ,∆Xσ) - with a mean, ∆Xµ, and variance,
∆Xσ , that both increase as a function of pulse-width (Fig.2(d)). Crucially however, with respect to
filamentary technologies, the mean and variance of these distributions are independent of the posi-
tion of the domain-wall. Fig.2(c) plots the mean and variance of the position change from different
initial positions along the length of the device for a fixed current pulse-width (T = 5ns). We ob-
serve that regardless of the domain-wall position, and therefore Memristor conductance, the mean
and variance of the resulting distribution remain constant for positive and negative polarity pulses.
A saturation effect is observed only when the domain-wall reaches the extremities of the free layer
and cannot physically be moved further. More detail on our domain-wall device model and these
simulations can be found in the supplementary material.

As discussed, due to tunnelling magneto-resistance, these position changes translate directly into a
conductance change distribution p(∆g|T, P ) = N (∆gµ,∆gσ), which can be leveraged within the
context of analogue machine learning. We propose to exploit this distribution by introducing a novel
push-pull pulse programming method which, using the physics of domain-wall motion, realises the
conductance update required by equation 1. By applying an asymmetrical pair of pulses with oppos-
ing polarities, labelled push and pull in Fig.2(e), the domain-wall position can be moved forwards
with a positive polarity pulse before being pulled backwards again with a negative polarity pulse.
The resulting conductance change will be sampled from the distribution

p(∆g) =
1

√

∆gσ,→2 +∆g2σ,←
√
2π

exp

[

−(∆gµ,→ −∆gµ,←)2

2
√

∆gσ,→2 +∆gσ,←2

]

, (3)

which is a result of summing the Gaussian distributions that result from the push and pull pulses,
p(∆g|T→, P = +1) and p(∆g|T←, P = −1). With respect to the update of equation 1, the
symmetrical push-pull component (shaded in blue in Fig.2(e)) serves to generate a sample from

a zero-centred conductance change distribution with a variance
√
2τǫ. The asymmetry introduced

by lengthening one of the pulses offsets this distribution by the Langevin gradient τ∇gL(g). In the
case of a negative Langevin gradient where the pull is lengthened with respect to the push (as in
Fig.2(e)), T← = T→ + TL, where TL is the pulse-width that offsets p(∆g) by τ∇gL(g). Crucially,

it should be noted that because the total variance of p(∆g) is
√

2∆gσ,→2 +∆gσ,L2, where ∆gσ,L
is the variance incurred by TL, the noise related to offsetting the domain-wall by τ∇gL(g) may

effectively be absorbed into
√
2τǫ by setting T→ appropriately. In spite of Memristor variability

therefore, the Langevin gradient is programmed into the Memristor precisely. Please refer to the
supplementary material for a further explanation of this surprising result.

4 Results

In order to evaluate whether our proposed domain-wall based SGLD push-pull update will indeed
allow Memristor Monte Carlo to scale-up, we train a ResNet18 [He et al. (2016)] model on the
CIFAR-10 benchmark. Relative to previous implementations of MMC using filamentary Memris-
tors, this represents a three order of magnitude increase in dataset size and a five order of magnitude
increase in model size [Dalgaty et al. (2021a)]. We assume that each parameter is defined by the
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Table 1: Accuracy, as a percentage, of domain-wall MMC on the CIFAR-10 test set over a range of
posterior samples (columns). The left-most column denotes the update precision.

Precision 64 32 16 8 4 2

32-bit FP 86.3 86.1 85.6 84.9 84.5 83.9
10-bit 86.2 85.8 85.4 84.9 84.3 83.7
9-bit 86.5 86.3 85.7 85.1 84.5 84.3
8-bit 86.0 85.6 85.4 85.0 84.1 84.0
7-bit 85.7 85.6 85.1 85.1 83.4 83.1
6-bit 81.6 81.2 80.1 80.0 78.4 76.3
5-bit 70.1 70.0 69.9 69.0 67.1 65.4
4-bit 51.6 51.2 50.1 48.2 47.7 42.3

subtraction of two domain-wall conductances and, by application of a scaling factor, the effective
synaptic weights are mapped onto a range of -1 to +1. We place a uniform prior over the weights
reflecting this - in equation 2, p(g) = U(−1,+1) and, based on the data from Fig.2, we model
the conductance change distribution for p(∆g|T, P ) as a Gaussian random variable. To account
for eventual programming limitations, we introduce Tmin. This is the shortest possible pulse and
results accordingly in a Gaussian distribution which, at three standard deviations, is equal to a given
minimum precision. For example, at 3-bits of precision, we assume that this minimum Gaussian
has an effective width spanning a range of 0.25 - i.e., 1/8th of the parameter range. More details of
the training method incorporating the proposed push-pull domain-wall update can be found in the
supplementary material.

In order to understand how device precision impacts domain-wall SGLD we report the effect of the
number of bits of update precision (limited by Tmin) as well as the number of posterior samples in
Table 1. Above 6-bits we observe that, despite an increasingly variable device, an accuracy equal
to that obtained by an equivalent floating-point precision model is achieved. It is in fact surprising
that the approach works so well at 7-bits since the noise contributed by the symmetric component of

the push-pull is in excess of the ideal value of
√
2τǫ. The first drop off in performance is observed

at an update precision of 6-bits. For sixty-four posterior samples, there is a loss of 4.9% relative to
the best accuracy (achieved at 9-bits). Below 6-bits, the parasitic noise due to ever increasing values
of Tmin begins to overwhelm the Langevin gradient signal and, as a result, the high probability
modes of the posterior are not effectively sampled from - degrading test accuracy. Furthermore, as
the update precision reduces, we note that task performance degradation can be mitigated by storing
more posterior samples. While we attempted to incorporate the filamentary MMC approach of
[Dalgaty et al. (2021a)] into our comparison, we did not succeed in training a model that surpassed
random guessing. This highlights the advance made by our approach relative to the current state of
the art. Finally, we emphasise that, in contrast to deterministic Memristor-based machine learning
whereby device variability limits how precisely a gradient update can be realised (see supplementary
material for a comparison with a deterministic method), our method permits the Langevin gradient
update to be realised precisely. This is not only because the variability incurred by the asymmetry
of the push-pull is absorbed into the symmetrical component but also the fact that the gradient value
is coded by a potentially fine difference between push and pull pulse-widths. Rather, it is the lower-
bound on the variance of the noise distribution, dictated by Tmin, that limits performance. It is
therefore important to understand how this quantity can be minimised in domain-wall Memristors
under development.

5 Conclusion

We have proposed the push-pull update which maps the stochastic gradient Langevin dynamics al-
gorithm onto the physics of magnetic domain-wall Memristors. We applied this update to train
a ResNet18 model, finding that, even with imprecise and noisy conductance updates, our results
were comparable to those of a floating-point precision model. Crucially, our method promises that
Memristor Monte Carlo can be scaled-up - here we used a model and a dataset five and three or-
ders of magnitude larger respectively than the current state of the art. Our next steps will be to
work towards a physical system using fabricated domain-wall Memristors that execute MMC to
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achieve on-chip adaptation and enable edge learning. Insights as to what this future system might
resemble may be gained by looking towards intriguing ideas in neuroscience which discuss how hu-
man brains,which are also subject to intrinsic noise, may too compute using Monte Carlo methods
[Aitchison and Lengyel (2016); Echeveste et al. (2020)].
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Dalgaty, T., Moro, F., Demirağ, Y., De Pra, A., Indiveri, G., Vianello, E., and Payvand, M. (2023).
The neuromorphic mosaic: in-memory computing and routing for small-world graphical net-
works.

Echeveste, R., Aitchison, L., Hennequin, G., and Lengyel, M. (2020). Cortical-like dynamics in
recurrent circuits optimized for sampling-based probabilistic inference. Nature neuroscience,
23(9):1138–1149.

Emori, S., Bauer, U., Ahn, S.-M., Martinez, E., and Beach, G. S. (2013). Current-driven dynamics
of chiral ferromagnetic domain walls. Nature materials, 12(7):611–616.

Fahy, C., Yang, S., and Gongora, M. (2022). Scarcity of labels in non-stationary data streams: A
survey. ACM Computing Surveys (CSUR), 55(2):1–39.

Girolami, M. and Calderhead, B. (2011). Riemann manifold langevin and hamiltonian monte carlo
methods. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(2):123–
214.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications.

7



He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Hung, J.-M., Jhang, C.-J., Wu, P.-C., Chiu, Y.-C., and Chang, M.-F. (2021). Challenges and trends
of nonvolatile in-memory-computation circuits for ai edge devices. IEEE Open Journal of the
Solid-State Circuits Society, 1:171–183.

Ielmini, D., Wang, Z., and Liu, Y. (2021). Brain-inspired computing via memory device physics.
APL Materials, 9(5).

Javanbakhat, M. and Lippert, C. (2023). A probabilistic approach to self-supervised learning using
cyclical stochastic gradient mcmc. arXiv preprint arXiv:2308.01271.

Julliere, M. (1975). Tunneling between ferromagnetic films. Physics letters A, 54(3):225–226.

Kaiser, J., Borders, W. A., Camsari, K. Y., Fukami, S., Ohno, H., and Datta, S. (2022). Hardware-
aware in situ learning based on stochastic magnetic tunnel junctions. Physical Review Applied,
17(1):014016.

Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., Jiang, H., Montgomery, E., Lin, P., Wang, Z.,
et al. (2018). Efficient and self-adaptive in-situ learning in multilayer memristor neural networks.
Nature communications, 9(1):2385.

Liu, S., Xiao, T. P., Cui, C., Incorvia, J. A. C., Bennett, C. H., and Marinella, M. J. (2021). A domain
wall-magnetic tunnel junction artificial synapse with notched geometry for accurate and efficient
training of deep neural networks. Applied Physics Letters, 118(20).
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7 Supplementary material

Detail on the learning approach

In our implementation of Memristor Monte Carlo we took inspiration principally from the paper
which originally proposed stochastic gradient Langevin dynamics [Welling and Teh (2011)]. How-
ever, instead of decaying τ from an initial value, we keep it fixed for the entire learning procedure.
This is something we observe is often done in practice in the literature. The optimal value for τ
across the studied range of update precision was found to be 2× 10−5 for a batch-size of size 48
and where η = 1× 105.

We assume that all convolutional and fully-connected layer parameters are realised by two domain-
wall Memristors. The effective parameter is the subtraction of the conductances of these two devices.
When the parameter is positive we assume that only the positive device has its domain-wall position
updated and that the negative device is programmed to its lowest conductance value. Conversely,
when updating negative values we suppose only the negative device is updated and the positive
device is programmed to its minimum value.

We propose that the affine transform parameters of the batch normalisation operation are performed
in the digital domain, using the weighted sums calculated by the Memristor arrays. They are there-
fore optimised at a precision of 32-bit floating-point with a learning rate of 2× 102. We believe this
is a practical choice, since batch normalisation is used to scale the neuron activations after evalua-
tion of the inner-product (calculated by the Memristor array) and it is not clear what the advantage
of doing this with Memristors would in fact be. In any case, the number of batch normalisation
parameters are relatively few compared to the large number of convolutional and fully-connected
parameters in ResNet18.

While typical digital MCMC approaches may collect a large number of samples which are thereafter
thinned, this is not feasible in a Memristor based system which may only have a capacity to store
N samples from the posterior distribution of the model. In an eventual system based on Memristors,
such a post-training thinning may need to be replaced by an online thinning procedure. This is what
was implemented in our experiments. In [Dalgaty et al. (2021a)] (where no thinning procedure is
considered) after a sample was accepted for a model sample at index n, the algorithm proceeds
immediately onto propose a model sample at index n + 1. A sample index may, for example, refer
to a collection of Memristor arrays that store one full version of the model. Each such collection is
referred to as an index. However, for a large model like a ResNet18, storing successive and highly
correlated samples in this fashion risks to provide a poor description of the posterior - in particular
if we are constrained in how many Memristors are at our disposal. In our simulations we therefore
incorporate an online thinning strategy whereby, after accepting a model sample at index n, the
algorithm will proceed to generate new models upon each successive mini-batch of data at the same
sample index n. Unlike [Dalgaty et al. (2021a)], we do not pass directly onto the next sample index,
n+1. We only pass to index n+1 - leaving modeln encoded by a collection of Memristors to be used
later in inference - after a thinning downcounter has been decremented from an initial value down
to 0. The thinning downcounter is set to an initial value Cth and then decremented by one after
generating a new model upon each mini-batch. When the downcounter is equal to zero the most
recently proposed model is stored definitively at index n, and the algorithm proceeds to generate
new models at sample index n + 1, and so on. In our experiments, Cth = 521. Furthermore, in
order to store samples from diverse regions of the posterior, we add a further thinning mechanism
whereby this downcounter is only decremented during a window at the end of a cycle of S mini-
batches. Although we do not use a cosine schedule, this was partially inspired by [Zhang et al.
(2020)] where samples are collected at the end of a cosine schedule after having, ideally, converged
to different high probability mode from the previous cycle. We use a cycle length of S = 20, 840
and only decrement the downcounter after sample 18, 756 - thereby recording four samples per cycle.
Samples were collected over 500 epochs. The test accuracy reported in the main text results from
an inference with the most recently recorded samples. The inference itself computes the average
softmax distribution of all stored samples and assigns a classifcation based on the peak probability.
Both the domain-wall Memristor based and the floating-point models were trained with the same set
of hyperparameters.

PyTorch was used to implement the algorithm and the Langevin gradients were calculated for each
parameter using the autograd module - no regularisation methods or momentum were used. The
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ResNet implementation was taken from the Torchvision package and the initial parameters were
randomly initialised within the range -1 to +1. The CIFAR-10 database was also taken from Torchvi-
sion and each image was normalised before being input into the first convolutional layer with the
recommended mean and standard deviation for the CIFAR-10 dataset.

Detail on the magnetic domain-wall simulations

The one-dimensional Landau-Lifshitz-Gilbert equation was used to calculate the current-driven
domain-wall motion [Emori et al. (2013)]. It can be represented by two coordinates, the domain-
wall position X and the domain-wall phase φ where

(1 + α2)
dX

dt
= (1 + αβ)

µBP

eMs

j +
γ0∆HK

2
sin(2φ) + αγ0∆(Hp +Hth), (4)

and

(1 + α2)
dφ

dt
= (β − α)

µBP

eMs∆
j − α

γ0HK

2
sin(2φ) + γ0(Hp +Hth). (5)

Here α is the Gilbert damping parameter, β is the parameter defining strength of non-adiabaticity,
µB is Bohr magnetron, P is the spin polarization, e is the electron charge, Ms is the saturation
magnetization, j is the current density, γ0 is the gyro magnetic ratio, ∆ is the domain-wall width
and HK is the anisotropy field.

A pinning effect Hp, which is introduced as a simple periodic function assuming irregularities in the
DW layer, and a thermal fluctuation Hth are introduced as effective magnetic fields:

Hp(X) = − 1

2µ0MsLyLz

V0π

p
sin(

2πX

p
), (6)

and

Hth(t) = η(t)

√

2αKBT

γ0µ0MsLyLz∆dt
. (7)

Here, V0 is the energy barrier between adjacent minima of the pinning profile, p is the spatial period-
icity, KB is the Boltzmann constant, µ0 is the vacuum permeability and η is a function that generates
unit Gaussian distributed random numbers.

In our simulations we have used α = 0.07 and β = 0.06 for the domain-wall layer by assuming
a [Co/Pd]-based multilayer system with perpendicular magnetic anisotropy (PMA) [Sajitha et al.
(2010)]. P , Ms and ∆ were assumed to be 0.55, 8 × 105A/m and 5nm, respectively. Since the
values of HK , V0, p and γ0 are not yet known for this system, values from a previous study of one-
dimensional simulation in a PMA film were used as in [Martinez (2011); Emori et al. (2013)]. The
dimensions of the domain-wall layer are Ly = 60nm in width and Lz = 7.5nm in thickness. The
temperature T and the temporal time step dt were set to 300K and 1ps respectively.

In the simulations which produced the results for Fig.2(b) and (d), the pulse current density was
fixed at |j| = 1 × 1012A/m2, and only the pulse width was swept in 5ns steps from 5ns to 50ns.
This was performed for both pulse polarities - positive and negative. For each pulse condition, the
domain-wall position before and after the application of the pulse was recorded as it progressed
along the length of the device. This was repeated five-hundred times, allowing us to characterise the
resulting distributions.

For the result of Fig.2(c), we performed a similar simulation where the pulse current density was
once again set to |j| = 1 × 1012A/m2 but the pulse-width was fixed at 5ns. A boundary condition
was introduced at the longitudinal end of the device whereby the movable region of the domain-wall
was limited, 0 < X < LDW . To generate each point on Fig.2(c), one hundred positive and negative
pulses were applied over a range of initial domain-wall positions X0, between 0 and LDW . The
results are normalised for LDW = 4µm.
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Table 2: Accuracy of a push-pull pulse pair based stochastic gradient descent update compared to
the stochastic gradient Langevin dynamics result for sixty-four stored samples.

Precision DW-SGD DW-MMC

10-bit 85.1 86.3
9-bit 82.1 86.6
8-bit 75.0 86.0
7-bit 61.1 85.7
6-bit 47.8 81.6
5-bit 26.5 70.1
4-bit 10.1 51.6

Comparison with SGD using push-pull updates

While we do not advocate that our proposed push-pull updates are a suitable method to realise
deterministic conductance updates to Memristors, we still find the comparison indicative of the the
ability of domain-wall SGLD to maintain a high test accuracy as the device precision reduces. In
these experiments we set the symmetric component of the push-pull equal to the minimum pulse-
width Tmin. This is because the noise that it generates is no longer viewed to be integral part of
the update but in fact as a parasitic contribution. The performance of this method was found to
be optimal when using a learning rate equal to 4 × 10−2. The rest of the hyper-parameters are
consistent with those described for the standard SGLD updates. The test accuracy over a range of
update precisions are reported in Table 2 and compared with the accuracy of our propsed domain-
wall SGLD method.

The results show an increasingly poor test accuracy as the update precision reduces - before a col-
lapse below 6-bits of precision. The accuracy obtained by domain-wall SGLD (corresponding to
the values reported in the main paper for 64 posterior samples) is shown alongside. While at 10-bits
the SGD actually obtains an impressive performance, very close to that of MMC, the test accuracy
quickly diminishes as the precision is reduced further. In particular at a precision of 7-bits and below
there is a vast difference between SGD and our proposed method.

More detail on the noise-free Langevin gradient update

If conductance variability is an intrinsic and unavoidable fact when working with Memristors, then
how can it be that we achieve a noise-free Langevin gradient domain-wall conductance update ? In
reality there is no free-lunch - the pulse-width TL does in fact incur a parasitic noise ∆gsigma,L that
increasses with pulse duration as observed in Fig.2(d). However, the SGLD update we aim to imple-
ment in our Memristor requires a second element - a zero-centred Gaussian sample. The variance of
this sample is determined by (for the case of a negative gradient as in Fig.3) the push pulse, T→. The
longer this pulse-width, the higher the variance of the zero-centred Gaussian component. Since, as
often happens to be the case in nature, our conductance change distributions are Gaussian we know
that, according to the Gaussian summing law, the total variance incurred in the push and the pull is
√

2σ2
→

+ σ2

L. Therefore, in order to obtain the desired variance
√
2τǫ, we will need to define T→

such that, when added to the variance incurred by TL, they sum to the this value. This may be also
understood as shortening T→ by a time defined by the variance incurred by the TL. By determining
the pulse-width T→ to achieve a desired total variance (when summed with the variance incurred by
TL), we can imagine that we are effectively absorbing the noise incurred in the application of the

Langevin gradient into the noise we in any case require to draw a sample with a variance of
√
2τǫ.

However it is important to note that this in only true between a lower and upper limit. The lower
limit, as discussed in the main body of the paper, is determined by a minimum pulse-width Tmin

which gives rise to the narrowest possible Gaussian distribution. There also however exists an upper
limit. This occurs when the desired Langevin gradient is sufficiently large that the variance incurred

due to a pulse duration of TL exceeds the desired variance value of
√
2τǫ. In practice, we have not

found exceeding the upper limit to be problematic on the CIFAR-10 task. Intuitively, if the gradient
is very large, it suffices to take a large step in the correct direction instead of realising this large
gradient very precisely in the conductance change of the Memristor.
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Figure 3: An example of the distributions and their sum resulting from the push and pull program-
ming operations.
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