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Abstract Partial Volume Effect impacts the spatial resolution of
SPECT images. We investigated the feasibility of a deep learning-
based Partial Volume Correction method (PVCNet) that compensates
for the effect of collimator blurring on 2D projections, before re-
construction. A large dataset containing 600,000 pairs of synthetic
projections was generated and used to train two consecutive UNets
(one for denoising, one for PVC). Scatter and attenuation were not yet
considered in the database. Our proposed PVCNet method achieves
12.8% NMAE reduction compared to conventional Resolution Model-
ing on the IEC phantom but Recovery Coefficients were not always
better for smallest spheres.

1 Introduction

Single-Photon Emission Computed Tomography (SPECT)
images are impacted by several physical effects that need to
be compensated in order to achieve a reasonable image qual-
ity [1]: photon attenuation, photon scatter and Partial Volume
Effect (PVE). Several works have been able to effectively
reduce the impact of the three effects [2–4], but PVE still
remains the main limiting factor, leading to inaccurate quan-
tification of the radioactive tracer uptake [5]. PVE is defined
as the apparent underestimation of activity in an object of
interest due to limited spatial resolution. It is particularly
an issue for objects whose size is smaller than the system’s
resolution volume [6], approximately defined as twice the
Full-Width at Half Maximum (FWHM) of the Point Spread
Function (PSF) obtained by imaging a point source located
at the center of the Field Of View (FOV). Several elements
contribute to degrade the spatial resolution: detector and elec-
tronics response, collimator septal penetration, collimator
scatter and collimator geometric response. The main one is
the geometrical response of the collimator that depends on
the source-to-collimator distance and the characteristic of the
collimator such as hole diameter, septal thickness, length and
material. Typical values for the FWHM at 10 cm from the
collimator front surface range between 5-15 mm according
to the collimator type.
A widely used Partial Volume Correction (PVC) is the Res-
olution Modeling (RM) method [7] applied in the system’s
matrix used for forward and back-projections of the Ordered
Subset Expectation Maximisation (OSEM) reconstruction
algorithm. This method has good noise reduction properties
and theoretically converges to the true activity distribution
but the resolution gain achieved in practice is limited because
of the loss of high frequency information leading to Gibbs
artefacts as the number of iteration increases [4]. For this
reason, a regularization can be applied, e.g. [8], resulting in
a smoother image and requiring additional parameter tuning.

Other PVC techniques [4] include image deconvolution [9] or
region-based correction [10]. A drawback of deconvolution
methods is that they tend to amplify noise. Region-based cor-
rections rely on a segmentation mask of Regions of Interest
(ROI) which may not be easy to define.
Recently, Deep Learning methods have shown promising
results in various tasks in nuclear medicine [11]. In SPECT,
recent works showed that some neural networks architec-
tures were able to perform scatter correction [12], image
reconstruction [13] or projection interpolation [14]. How-
ever, to our knowledge, only very few works investigated
deep learning-based PVC, e.g. in [15, 16] the net was trained
with small datasets and with ground truth images obtained
with conventional PVC.
In this work, we propose a deep learning framework trained
to compensate the effect of the PSF due to the collimator
on the 2D projections, before 3D reconstruction. A large
training dataset is first generated by simulation and contains
600,000 pairs of corresponding projections with and without
PVE+noise. Our PVC networks are two consecutive UNets
henceforth denoted as PVCNet.

2 Materials and Methods

2.1 Database

We generated a large dataset of simulated pairs of correspond-
ing input and target 2D SPECT projections. Input projections
are the realistic ones with PVE and noise, while target ones
are artefact-free.
We first created 3D sources of 99mTc made of a large el-
liptic cylinder background with variable axis size (90-260
mm) with several hot sources (between 1 and 8) of ellipsoidal
shapes (8-128 mm axis) randomly oriented and located within
the background. Hot source to background activity ratios
between 1/1000 and 1/8 were considered. A total of 5 000 3D
voxelized (2563 voxels of 2 mm size) activity sources were
randomly generated. Then, 2D projections were obtained by
forward-projecting each one of the 5 000 sources with ray-
tracing using RTK [17] in two different ways: once without
resolution modeling (PnoPVE projection) and once with reso-
lution modeling (PPVE projection). Resolution modeling was
performed during forward-projection operator by applying
depth-dependant Gaussian convolutional kernel [7] whose
parameters were derived from the dimensions of the Siemens-
Intevo LEHR collimator following the analytical analysis
provided by [6]. We obtain FWHM(d) = 0.048 + 1.11d
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where d is the distance from the source to the collimator front
face. For PnoPVE, the same operator was applied but with
FWHM(d) = 0, so that the simulated projection is the one
that would have been obtained without collimator blurring.
PnoPVE will thus serve as target projections. Each projection
contains 2562 pixels with a size of 2.39762 mm. Sources
were simulated in air to avoid attenuation and scattering, and
the 140 keV photo-peak window of 99mTc was considered.
Poisson noise was applied to PPVE to roughly mimic the
data detection process. The resulting projection was denoted
PPVE,noisy. For each of the 5000 sources, we applied the
same projection process for 120 evenly distributed angles
between 0° and 360°, resulting in 120 triplets (Pi

PVE,noisy,
Pi

PVE, Pi
noPVE), for i = 1, ...,120. The source distributions

were randomly scaled so that the total number of counts in
each projection was comprised between 5,000 and 500,000
such as in realistic clinical applications.

2.2 Networks and training

The database described in the previous section was employed
to train simultaneously two neural networks: a Denoiser and
a PVC network. The Denoiser network was trained to take
PPVE,noisy as inputs and to output projections close to the
corresponding unnoisy PPVE projections. Input and output of
the Denoiser have the same number of channels. The PVC
network then takes as input the output of the Denoiser and
is trained with PnoPVE as target to perform PVC with one
projection angle as output. The idea behind this is that since
the database generation is completely analytical, we have
access to useful intermediate information that can be used to
divide training into these two supervised tasks.
Both networks were UNets with 3 encoding/decoding
residual blocks with skip-connections. The first
layer was a Conv2d expanding the number of chan-
nels to 32. Then, each encoding (resp. decod-
ing) block was composed by a sequence of Conv2d
(resp. TransposeConv2d)-InstNorm-LeakyRelu-Conv2d-
LeakyRelu-InstNorm-MaxPooling(resp. Conv2d). Both net-
works end by a final convolution layer that outputs the needed
number of channels. All kernels were (3,3) convolutions.
The input of the Denoiser network was extended to consider
several PPVE,noisy projections corresponding to different pro-
jections angles of the same source. Considering that the
projection to be corrected is at angle i, the Denoiser takes
as input projections of angles : (i◦, i−3◦, i+3◦, i+90◦, i+
180◦, i+270◦), i.e. the projection to be corrected, two adja-
cent angles, two orthogonal and opposite ones. Moreover, we
further enrich the input of the Denoiser to take an additional
channel previously obtained by using the full sinogram (120
angles) PPVE,noisy to reconstruct a coarse volume with one
iteration of OSEM and RM and then forwardprojecting this
volume (without RM) on the same 120 angles to obtain one
additional channel per angle. The input/output of Denoiser
then have 7 channels whereas the PVC network has 7 chan-

nels as input and outputs only one channel (i.e. the estimated
projection P̂i

noPVE). The idea here was to exploit additional in-
formation contained in the data to help solving this ill-posed
inverse problem (different noise realisation, source depth,
RM) and to ensure a continuity in the corrected projections.
Parameters of both networks were optimized to minimize a
L1 loss functions. Networks were trained during 100 epochs
with Adam optimizer, with 4 GPUs, a batch size of 256 per
GPU and a learning rate of 10−4 halved every 20 epochs.

2.3 Evaluation data and metrics

Performance of the proposed method was evaluated with
three experiments. First, we considered an analytical version
of the standard NEMA IEC phantom composed of six spheres
with increasing diameters 10-37 mm, with 1/40 background
ratio and projections obtained with RTK like for the train-
ing database. Several reconstructed images were compared:
the images reconstructed from PnoPVE projections (noPVE-
noPVC), from PPVE,noisy projections and RM (PVE-RM),
from projections corrected by the networks (PVE-PVCNet)
and from projections without any PVC (PVE-noPVC). Then,
we evaluated the performance of our proposed method on
real acquisition of the NEMA IEC phantom, obtained with
a 1/10 background-to-source ratio and the Siemens-Intevo
SPECT/CT system. PVCNet was applied to the primary en-
ergy window and scatter window independently before scatter
correction with the DEW was applied (k=1.1). Finally, we
tested our proposed network on real patient data.
All reconstructions were performed with OSEM with 8 sub-
sets and 5 iterations (except for PVE-RM for which 20 it-
erations were needed), scatter and attenuation correction.
Resulting image resolutions were compared by computing
the hot sphere contrast Recovery Coefficient (RC) [18] for
each sphere and correction method. We also computed the
Normalized Root Mean Square Error (NRMSE), Normalized
Mean Absolute Error (NMAE), Peak Signal-to-Noise Ra-
tio (PSNR) and Structural Similarity Index (SSIM) of each
image.

3 Results

Database generation took 3 hours using one hundred parallel
CPUs. Training took 50 hours for 100 epochs using 4 GPUs.
The proposed PVCNet method was compared to the ground-
truth image (noPVE-noPVC), to the widely used Resolution
Modeling (RM) method and to the un-corrected one (PVE-
noPVC). From now on, FWHM refers to the collimator res-
olution value at a distance of 28 cm, which corresponds to
the employed isocenter-collimator distance to generate the
simulated projections and for the acquisition. Visualisation
and RC results for the analytical IEC phantom are shown in
Figure 1 and show promising results in terms of activity re-
covery, Gibbs artefact reduction and error reduction. NMAE
was divided by two and PVCNet was significantly better in
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term of all global metrics shown in Figure 1c. However,
small spheres (size<FWHM) were completely lost by the
network.
Reconstructed images and RC curves for the real IEC ac-
quisition are shown in Figure 2. Figure 2b underlines that
we only achieved better correction than RM on the largest
sphere (of size 37 mm) in terms of RC. Similarly to the pre-
vious experiment, the network struggles to correct PVE on
small spheres and some distortion artefacts are visible on the
corrected spheres. On the other side, Figure 1a shows that
for sphere with size>FWHM, the homogeneity was better
retrieved with PVE-PVCNet than PVE-RM and regarding the
other studied criteria, PVE-PVCNet outperfomed PVE-RM
(Figure 2c).
Real patient reconstructed images are shown in Figure 3 for
visual assessment only, as no reference was available.

4 Discussion and conclusion

For the first time, this work investigated the feasibility of
training a network from simulated projections to compensate
the effect of the PSF and to denoise projections, before re-
construction. We showed that building such a database is
feasible, and we designed an adapted deep learning archi-
tecture to correct both noise and PVE. On simple test cases,
PVCNet reduced Partial Volume Effect compared to standard
RM method, while requiring less iterations and no regular-
ization. However, on real data acquisition, while NRMSE,
NMAE, PSNR and SSIM were better than the values ob-
tained with RM, RC was not. Small spheres were not well
recovered. We now envision to improve the realism of the
training database by using tumor-like source shapes, hetero-
geneous activities and projections generated by (fast) Monte
Carlo simulations [19, 20]. Finally, considering more projec-
tion angles as input could be useful to increase source-depth
information.
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Figure 1: (a) Slice of the four reconstructed images (noPVE-noPVC, PVE-RM, PVE-noPVC, PVE-PVCNet), (b) the corresponding
Recovery Coefficient (RC) for each reconstructed sphere with respect to the ratio sphere diameter / FWHM (c) comparison of NRMSE,
NMAE, PSNR and SSIM. The reference image was the initial voxelised 3D source used for forward projection.
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Figure 2: (a) Slice of the four images (source, Reconstruction by the INTEVO SPECT system, PVE-RM, PVE-PVCNet) divided by the
total number of counts in each image (b) the corresponding Recovery Coefficient (RC) for each reconstructed sphere with respect to the
ratio sphere diameter / FWHM (c) NRMSE, NMAE, PSNR and SSIM with a manually contoured reference image knowing the injected
activity concentrations in spheres/background

Figure 3: Visual comparison of patient SPECT/CT images with different correction methods. All three images were reconstructed with
OSEM algorithm (20 iterations, 4 subsets), attenuation and scatter correction.
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