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Abstract 

Extreme events have the potential to significantly impact transportation infrastructure performance. 
For example, in the case of bridges, climate change impacts the river discharge, hence scouring 
patterns, which in turn, affects the bridge foundation stability. Therefore, extreme events (river flow) 
forecasting is mandatory in bridge reliability analysis. This paper approaches this river flow 
forecasting problem by developing a Markov-Switching Autoregressive model coupled with a 
conditional hidden seasonal Markov component. In addition, the proposed model is also combined 
with the deep machine learning neural networks method to forecast river flow from a dataset or from 
simulations. The proposed method is illustrated by using realistic data: historic river flow values of the 
Thames River. The results indicate that the proposed model well represented the extreme events within 
the dataset. In terms of river flow forecasting, the results indicate that the forecasts improve when the 
training period changes from 20 years to 40 years. 
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Notation and Acronyms:  

AR:	 Autoregressive.	
ARIMA:	 Autoregressive	Integrated	Moving	Average.		
𝑐:	 Constant	term	of	the	Autoregressive	process.	
𝐸:	 Severe	values	limit.	
𝐸𝑣!:	 Months	of	interest	effect	value.	
𝐻𝑆𝑀:	 Conditional	Hidden	Seasonal	Markov	component.	
𝐼	and	𝐽:	 Markovian	regimes	states.	
𝑘:	 Markovian	state.	
𝑀:	 Switching	regimes	number.	
𝑀𝐸𝑆":	 Monthly	effect	based	on	the	yearly	seasonality.	
ML: Machine	learning.	
𝑀𝑜𝑖!:	 Months	of	interest	increase	rate.	
MS:	 Markov-Switching.	
MSAR:	 Markov-Switching	Autoregressive.		
NHMSAR:	 (Non)-	Homogeneous	Markov-Switching	Autoregressive.	
NN:	 Deep	machine	learning	Neural	Networks	forecasting	method.	
𝑛!!"#:	 Number	of	months	of	interest.	
𝑝:	 Autoregressive	order.		
𝑄:	 Upper	quartile	of	the	dataset.	
𝒮#:	 Seasonal	transition	probability	matrix.	
SMSAR:	 Seasonal	Markov-Switching	Autoregressive.	
𝒮!:	 Hidden	Markov	chain.	
𝑆":	 Yearly	seasonality.	
𝑆"$:	 Yearly	seasonality	remainder.	
𝑡:	 Months	of	the	year.	
𝑡%&':	 Months	of	interest.	
𝑡":	 Yearly	time	series.	
𝑊𝑁:	 White	Noise.	
𝑋!:	 Time	state.	
𝑌!:	 Monthly	time	series	state.	
𝑍:	 Lower	quartile	of	the	dataset.	
𝜑:	 Autoregressive	model	parameter.	
𝛹: Current	state	of	the	probability	transition	matrix.	
𝜀!:	 Errors.	
𝜇:	 Mean	value.	
𝜀!: Random	white	noise.	
𝜎: Standard	deviation.	
𝛺: Transition	state	of	the	probability	transition	matrix.	
𝜎(: Variance.	

1. INTRODUCTION 
The lifetime of infrastructure assets depends on a variety of aspects, which include construction 
materials, the evolution of the demand, changes in the surrounding environment, as well as design 
assumptions, maintenance, and operation policies. All physical systems change and suffer a loss in 
capacity through time due to progressive deterioration (corrosion, fatigue, creep, etc.) [1–3] or shock-
based deterioration (extreme events) [4]. This decrease in capacity yields an increase in the likelihood 
of failure and therefore, regular inspections and maintenance are essential to ensure adherence to the 
necessary safety standards [5–7]. In the case of bridges crossing rivers, scouring poses a prevalent 
threat to the structure’s integrity. This phenomenon primarily occurs during periods of intense 
flooding, when the escalated forces of water displace sediments from the riverbed surrounding bridge 
foundations. It emerges as a significant contributor to the loss of structural capacity and potential 
failures of bridges crossing rivers [8–10]. For instance, scouring is responsible for 60 percent of bridge 
failures in the United States, resulting in an annual maintenance cost of $30 million [11].  
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Extreme weather events such as droughts and floods are expected to increase in frequency and intensity 
in some places due to climate change, which in turn will impact the infrastructure in several ways [12]. 
In the case of bridges crossing rivers, climate change may have a direct impact on the river discharge 
and, consequently, may modify the bridge scouring patterns since precipitation patterns could become 
more volatile and unpredictable, causing floods. Accordingly, forecasting river flow is essential for 
identifying potential problems such as droughts or floods, formulating mitigation plans, and increasing 
resilience. In addition, this is also important to make informed decisions about water allocation and 
management.  

Advancements in modelling capabilities have made it possible to generate flood simulations [13] and 
deploy comprehensive flood forecasting systems, which are large-scale systems based on differential 
equations, these systems play a pivotal role in informing warnings about potential floods [14]. 
Hydrological modelling systems, such as HEC-RAS and HEC-HMS can be used in investigating the 
multifaceted impacts of flooding events, encompassing phenomena such as, scour, sediment transport, 
and water quality [15]. Forecasting river flow is mostly based on climate models; however, it is 
essential to highlight the inherent uncertainties stemming from the climate models’ variability, forcing 
factors, aerosols, jet stream impact, resolution, etc. On the other hand, time series forecasting methods 
may be a preferable choice for short-term forecasts since they are based on actual data observed 
directly from the system.  

Hydrological time series models make forecasts based on historical data, from which it is possible to 
extract statistical information and associated seasonal and cyclic patterns [16,17]. For example, river 
flow discharge values can be simulated with non-linear models [18], however, those models are not 
able to simulate the long-term dependence of river flow. A quantum leap within the long-term 
dependence occurred by considering the fractionally integrated process within the Autoregressive 
Integrated Moving Average (ARIMA) model, this is achieved by inserting the long-term dependence 
into the Box & Jenkins framework, and the resulting model is the Autoregressive Fractional Integrated 
Moving Average (ARFIMA) model. This model can simulate the river flow, as it captures the long-
term memory and the non-stationary nature of the system. Nevertheless, even with seasonal effects, 
this model shows inaccurate hydrological forecasts due to the conservation of the mean value in the 
analysis. For example, in the case study of the Tisza River [19], the ARFIMA model with seasonal 
effects failed to simulate the river flow hydrological fact, i.e., high river flow values for a short time 
interval are followed by low river flow values for a long time interval.  

The regime-switching technique can be used to improve the model performance to simulate the river 
flow hydrological fact, i.e., high river flow values for a short time interval are followed by low river 
flow values for a long time interval. This is achieved by defining regimes equivalent to wet and dry 
periods [20–22]. Consequently, regime-switching models are a preferable choice within the framework 
of hydrological time series analysis. The regime-switching process improves the concept of stochastic 
processes within the context of time series analysis by using the hidden Markov process [23]; this 
process is a type of probabilistic model used to describe a sequence of events or observations where 
the state is not directly visible, but the output, dependent on the state, is visible, i.e., changes in mean 
and variance. The Markov-Switching (MS) process was proposed to capture the discrete changes as a 
result of the volatility behavior detected in economic applications [24].  

The Markov-Switching Autoregressive (MSAR) model is an improvement to the Markov-Switching 
(MS) process, providing a more comprehensive method for identifying structural breaks in the time 
series dynamics by embedding an autoregressive component. This helps to describe the time evolution 
of the series more accurately, in which the switching between the autoregressive processes is regulated 
by a hidden Markov chain. Accordingly, the MSAR model was first approached within the context of 
statistical climate analysis in 2007, as climatic conditions depend on past patterns [25], in which the 
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variations within the MSAR model were associated with periodic severe volatility [26]. Further 
investigations assured the ability of the MSAR model to accurately represent climatic changes [27,28]. 
In addition, the significance of the regime-switching process arose in modeling the seasonal 
accumulation of the river flow hydrological fact, i.e., high river flow values for a short time interval 
are followed by low river flow values for a long time interval [29]. However, the main limitation within 
the latest regime-switching models when simulating a hydrological time series dataset is the low 
quality of the simulations over a long period (hundreds of years), especially its ability to simulate 
extreme events/severe values. In other words, the Markov-Switching approach has neither been 
investigated in simulating a long-time series dataset nor extreme events. 

Recently, Machine Learning (ML) methods have been applied within the context of hydrological time 
series with great success due to their ability to make forecasts, in which the performance of ML 
methods has surpassed traditional mathematical models by effectively addressing complex regression 
mathematical problems [30,31]. In this context, the artificial intelligence Neural Network (NN) system 
is a deep learning method composed of interconnected neurons, which process and transmit 
information from the historical dataset to solve complex problems [32]. The NN systems, i.e., 
Recurrent, Random forest, Convolutional, and Multiple perceptions, have shown success within the 
context of hydrological time series forecasts [33–35]. The integration of a regime-switching process 
into the Recurrent NN system has been shown to improve the precision of the forecasts, as the regime-
switching process helps the NN system to better recognize and respond to changes in the data [36]. In 
addition, the length of the historical patterns fed into the model seems to impact the accuracy of the 
forecasts and should be further investigated [37,35]. 

Lately, time series forecasting models based on Short-term and Long-term memory processes were 
not able to simulate extreme events/severe values of a hydrological time series. In addition, the impact 
of the training period requires further investigation in the framework of hydrological time series data 
(river flow), and whether a fitted simulation can provide more accurate forecasts than forecasting 
directly the hydrological dataset.  

This paper overcomes the former limitations within the literature regarding modeling extreme river 
flow discharge values. This paper proposes a novel stochastic framework to simulate extreme values 
and forecast hydrological time series data. The objectives of this paper are outlined as follows.  

• Simulate the hydrological facts of rivers, i.e., high river flow values for a short time interval 
are followed by low river flow values for a long time interval, and recognize the dynamic 
pattern of the flow.  

• Simulate extreme river flow values. 

• Investigate the impact of the training period on the pattern recognition of the proposed SMSAR 
model forecasts using deep machine learning methods. 

• Investigate whether forecasting the database or forecasting the fitted SMSAR model simulation 
provides more accurate results using deep machine learning methods.  

In this paper, the proposed Seasonal Markov-Switching Autoregressive (SMSAR) model is initiated 
as MSAR model and is then coupled with a conditional Hidden Seasonal Markov (HSM) component 
to enhance its performance. Afterward, the SMSAR simulation and the dataset of a given period are 
then used for training the deep machine learning Neural Networks (NN) method, i.e., Recurrent NN 
system to evaluate whether forecasting the database or forecasting the fitted proposed simulation 
provides more accurate results and to investigate the impact of the training period on the pattern 



5 

recognition of the forecasts. All methodological developments are illustrated with the hydrological 
time-series analysis of the Thames River, and the results are compared with those of the MSAR model. 

This paper is organized as follows. Section 2.1 provides a flow diagram of the methodology and an 
overview of the numerical phases considered for simulating the SMSAR model, severe values, and 
forecasting; these numerical phases are also illustrated by a pseudo code algorithm in Appendix. 1. 
Section 2.2 provides an in-depth illustration of the SMSAR model. Section 2.3 sets out the threshold 
for determining severe values. Section 3 describes the case study that will be analyzed and discussed 
in Section 4.1 to assess the quality of the proposed SMSAR model. Section 4.2 investigates the ability 
of the SMSAR model in simulating severe values. Section 4.3 investigates using the Recurrent Neural 
Networks method; whether forecasting the dataset or forecasting the fitted simulation of the proposed 
SMSAR model provides better results. In addition, this section also investigates the training period’s 
impact on pattern recognition. 

2. METHODS 
2.1. General description 

This paper proposes a Conditional Seasonal Markov-Switching Autoregressive model to simulate 
severe river flow values and to predict potential flooding by using deep machine learning Recurrent 
NN method. The pseudo-algorithm in Appendix. 1 provides a detailed illustration of the simulation 
methodology. An overview of this methodology is presented in Fig. 1 to visualize the sequence of 
processes involved in this study and illustrated as follows. 

The time series analysis starts with the historical monthly river flow values of the Thames River as 
input.  A structural break test is performed to ascertain the suitability of the Markov-Switching 
Autoregressive process for simulating the dataset. If the test indicates a valid fit, the proposed 
framework proceeds; otherwise, alternative models capable of simulating the long-term dependence 
of hydrological time series, such as the SARFIMA model can be considered.  

Within the proposed framework, two regimes are determined to describe the transition between the 
latent regimes equivalent to wet and dry periods within the Markov-Switching process (Section 2.2.2), 
in which the evolution of the dynamics of each regime is controlled by the order of the autoregressive 
component (Section 2.2.1), which is estimated by using the Akaike Info Criterion (AIC) method. 
Subsequently, the simulation employs a conditional Hidden Seasonal Markov component (Section 
2.2.3) to enhance the accuracy of both simulations and forecasts. This component consists of state and 
condition phases. The state phase defines the months of interest and provides their effect value. In 
parallel, the condition phase determines the years of seasonality and allocates the months of interest 
effect value to the years of seasonality. 

The improvements of the proposed SMSAR model are demonstrated through a comprehensive analysis 
(Section 4.1). Subsequently, the SMSAR model’s efficacy in simulating extreme river flow values is 
investigated (Section 4.2), followed by an evaluation of its impact on improving the accuracy of 
predictions (Section 4.3). 
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Fig. 1. Flow diagram of the methodology. 

2.2. SMSAR Model 

The proposed Seasonal Markov-Switching Autoregressive (SMSAR) model is a discrete-time process 
based on three components that will be detailed below, i.e., Hidden Seasonal Markov process (HSM), 
Markov-Switching process (MS), and Autoregressive process (AR). The analysis of the MSAR model 
components is carried out by the NHMSAR package in R Statistical Software with the addition of the 
proposed Hidden Seasonal Markov component [38]. 

The SMSAR model dynamics are based on the statistical information of the historical dataset, in which 
the dynamics of the model are the result of the autoregressive process. Furthermore, the dynamics 
variation is based on the Markov-Switching process which is significant in the simulation of 
consecutive events since each regime includes the characteristics of a specific time domain. In a sense, 
two regimes are used to present the behavior of high and low river flow values. In addition, the 
proposed Hidden Seasonal Markov component aims to enhance the ability of the MSAR model to 
simulate extreme values by computing the months of interest and the years of seasonality, in which 
the months of interest effect value will be applied at those time states, i.e., years of seasonality. 

2.2.1. Autoregressive component 

The Autoregressive process [39] is based on the assumption that the current values 𝑋! of a time series 
are dependent on past values. This dependence offers profound insights into capturing the evolving 
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dynamics over time and is governed by parameters of the autoregressive process (Eq. (1)) to represent 
the decomposed components of the past values, i.e., level, trend, pattern, and random noise. The 
autoregressive order 𝑝 indicates the number of previous observations taken into account to estimate 
the current value by quantifying the extent of their influence.  In order to determine the optimal order, 
the model selection technique, i.e., Akaike’s information criteria is employed, balancing model 
complexity and goodness of fit [40]. The autoregressive process of order 𝑝 is symbolized as AR(𝑝)	at 
time 𝑡, writes: 

	
𝑋! = 𝑐 +,𝜑"𝑋!#" + 𝜀!

$

"%&

; 	𝜀! ∼ 	𝑊𝑁(0, 𝜎'(	)	 (1) 

where 𝜑 is a parameter of the model, 𝑐 is the constant term of the process, 𝜀! is a random white noise 
𝑊𝑁 which is a purely random process with a zero mean value and variance 𝜎'(. 

2.2.2. Markov switching component 

The Markov switching process [41] offers a robust framework for analyzing the evolving dynamics of 
a time series over time across a finite set of unobserved states that are characterized by different values 
of mean and variance by identifying different regimes in the data and estimating the transition 
probabilities between these regimes over time. This process is particularly valuable for modeling 
phenomena where the underlying dynamics are in transitions between different regimes [42], such as 
economic expansions and recessions, shifts in financial markets, or hydrological facts of rivers, i.e., 
high river flow values for a short time interval are followed by low river flow values for a long time 
interval. The transition probability state of the hidden Markov chain (Eq. (2)), writes: 

	 𝑃(𝒮! = 𝐼	|	𝒮!#& = 𝐽) = 𝑃(𝐼|	𝐽); 𝒮!	𝜖	{1, … ,𝛭}		 (2) 

where 𝑀 is the number of regimes, 𝒮! is the Hidden Markov chain state space, 𝐼 and 𝐽	𝜖	𝒮! and 
represent the Markovian regimes. 

The MSAR model [43] is a discrete-time process with two components {𝑋! , 𝒮!}, where 𝑋! (Eq. (1)) is 
the autoregressive process which indicates the evolving dynamics of the time series within each regime 
and 𝒮! (Eq. (2)) is the Hidden Markov chain state space that incorporates the transition between the 
regimes. In this particular application, {𝑋!} denotes the evolving dynamics of the maximum monthly 
river flow discharge and 𝒮!	𝜖	{Regime	1, Regime	2} represents the latent two regime states of low and 
high river flow values, respectively, as presented in Fig. 2. 

  

Fig. 2. Transition probability diagram. 

The MSAR model general formula (Eq. (3)) explicates the stochastic relationship of the regimes 
switching Markovian chain (Eq. (2)) with the autoregressive component (Eq. (1)). In this application, 
the MSAR model (Eq. (4)) presents the dynamics of a time series with an autoregressive model of 
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order two, in which the switching between the two regimes of low and high river flow is controlled by 
a hidden Markov chain, writes: 

	
𝑌!|	𝑌!#& =,𝑃(𝒮!)

)

*%&

H,𝜑"|*𝑌!#"

$

"%&

I	 (3) 

	 (𝑌!|	𝑌!#&|	𝒮!): K
𝑌! = 𝑐& + 𝜑&&𝑋!#& + 𝜑(&𝑋!#( + 𝜀! , 𝑤ℎ𝑒𝑛	𝒮! = 1
𝑌! = 𝑐( + 𝜑&(𝑋!#& + 𝜑((𝑋!#( + 𝜀! , 𝑤ℎ𝑒𝑛	𝒮! = 2

	 (4) 

where 𝑌! is the monthly time series state, 𝑘 is a Markovian regime state 𝜖	𝒮!, 𝜑") represents the 
autoregressive coefficient of order 𝑖 for regime 𝑀, and 𝑐) is the constant term of the process for regime 
𝑀. 

2.2.3. Conditional Hidden Seasonal Markov component 

The conditional Hidden Seasonal Markov component is a bivariate stochastic discrete-time process 
that improves the modeling framework by incorporating supplementary information enabling a more 
comprehensive simulation of complex dependencies and underlying dynamics inherent in the time 
series data [44]. In this paper, this component accommodates influences that may not be fully captured 
within the states of the Markov-switching process (Section 2.2.2) by introducing an additional 
transitional probability matrix to account for anomalies to simulate high river flow values. The 
structure of this component consists of state and condition phases. The state phase detects the months 
of interest and provides the months of interest effect. Then, the condition phase defines the years of 
seasonality and allocates the months of interest effect to the years of seasonality. This component is 
demonstrated as follows. 

The state phase considers the positive variance percentage ratio of the months (Eq. (5)) as the indicator 
of determining the months of interest. In this way, the actual results of the months of interest exceed 
the expected result based on the entire months, indicating a sign of growth. In addition, the state phase 
computes the effect value of the months of interest (Eq. (6)) based on the adjusted expected mean of 
the months of interest accordingly to the variance percentage increase value. This is carried out to 
compute and relate the mean value of the months of interest to the spread of the data between different 
monthly distributions. The state phase writes: 

	
𝑀𝑜𝑖! = S

𝜇(∑ 𝜎((!)).
!)%&

𝜇 V∑ (∑ 𝜎((!))&(
!%&

.
!)%& W

× 100Y − 100 > 0;		\𝑡	]	𝑡/	^	𝜖	{1, … ,12}	 (5) 

	 𝐸𝑣! = 𝜇 V∑ 𝑡)0".
!)%& W × a100 − 1𝑀𝑜𝑖!2𝑡)0"3

&44
b 	 ; 		𝑡/	𝜖	{1, … , 𝑛}		 (6) 

where 𝑀𝑜𝑖! is the months of interest increase rate, 𝑡 are the months of the year, 𝜎( is the variance, 𝑡/ 
is the yearly time series, 𝐸𝑣! is the months of interest effect value and 𝑡)0" are the months of interest 
based on the months of interest increase rate. 

The condition phase determines the years of seasonality and allocates the months of interest to the 
years of seasonality based on their variability. First, the condition phase determines the years of 
seasonality (Eq. (7)) based on the yearly variance by stating that, when the variance of the data in a 
single year exceeds the average, then that year is considered a year of seasonality. This is an indication 
that the year has experienced extreme values, and the monthly data distribution is more spread. 
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	 𝑆/ = 𝜎(\𝑡/^ > 𝜇 , 𝜎((!))

.

!)%&

	 (7) 

where 𝑆/ are the years of seasonality. 

The condition phase then distributes the months of interest across the years of seasonality based on the 
mean value of the yearly variability of the dataset as follows: The overall variability for each year of 
seasonality (Eq. (8)) is utilized to measure the degree to which each year of seasonality differs from 
the average of all years which is used to identify changes in seasonal patterns over time, then by 
relating the overall variability for a given year of seasonality to the average value for the months of 
interest over the years (Eq. (9)), it is possible to allocate the overall variability for a given year of 
seasonality to the months of interest, allowing for potential seasonal trends to be implemented. 

	 𝑆/5 = 𝜎(\𝑡/]	𝑆/	^ − 𝜇 , 𝜎((!))

.

!)%&

	 (8) 

	 𝑀𝐸𝑆/ = 𝑚𝑖𝑛 e𝑆/5 	f	𝜇 V∑ 𝜎((!*+,)
.
!)%& Wg	 (9) 

where 𝑆/5 is the overall variability for each year of seasonality, and 𝑀𝐸𝑆/ is the monthly effect based 
on the years of seasonality. 

The conditional Hidden Seasonal Markov component consists of state and condition phases, this 
component allocates the months of interest effect value from the state phase (Eq. (6)) to the time series 
based on the monthly effect of the years of seasonality from the condition phase (Eq. (9)). This 
component is a process that allows the SMSAR model to accurately capture the seasonal yearly 
fluctuations in the time series and allocate the effect value accordingly, it writes: 

	 𝐻𝑆𝑀 = \𝐸𝑣!]	𝑀𝐸𝑆/	^	 (10) 

where 𝐻𝑆𝑀 is the conditional Hidden Seasonal Markov component value. 

The SMSAR model (Eq. (11)) is an improvement of the MSAR model (Eq. (3)) by integrating a 
conditional Hidden Seasonal Markov component (Eq. (10)). Subsequently, the simulation is enhanced 
by considering an additional value based on the effect values of the months of interest (Eq. (6)) and 
allocates this value to the time series concerning the years of seasonality (Eq. (9)) by integrating a 
seasonal transition matrix (Eq. (12)), allowing for potential seasonal trends to be implemented. This 
method is proposed to simulate severe values, i.e., high river flow values exceeding the outliers (Eq. 
(14)), writes: 

	
𝑌!|	𝑌!#& =,𝑃(𝒮!)

)

*%&

H,𝜑"|*𝑌!#"

$

"%&

I + \𝐻𝑆𝑀	]	(𝒮6)^	 (11) 

	
𝒮6 = S

𝑡)0"〈8,:〉 ⋯ 𝑡)0"〈8,:〉
⋮ ⋱ ⋮

𝑡)0"〈8,:〉 ⋯ 𝑡)0"〈8,:〉
Y ;					\𝑡)0"〈8,:〉		]	𝑡	^	𝜖	{1, … ,12}	 (12) 

where 𝒮6 is the seasonal transition probability matrix that is estimated as the probabilistic transition 
between the months of interest effect value of the HSM states, 𝛹 represents the current state, and 𝛺 
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represents the transition state within the months of interest. In this particular application, the seasonal 
transition probability matrix (Eq.(13)), writes: 

	
𝒮6 = S

𝑡)0"〈&,&〉 𝑡)0"〈&,(〉 𝑡)0"〈&,&(〉

𝑡)0"〈(,&〉 𝑡)0"〈(,(〉 𝑡)0"〈(,&(〉

𝑡)0"〈&(,&〉 𝑡)0"〈&(,(〉 𝑡)0"〈&(,&(〉
Y	 (13) 

2.3. Severe values 

The severe values detection method is proposed to detect the outliers of the monthly distributed dataset 
over their historical period. The method is based on the interquartile range of the monthly dataset [45] 
and considers the months of interest to discriminate the limit of the severe values, it writes: 

	
𝐸 =

∑ n𝑄" + 1.5[𝑄" − 𝑍"]u
!*+,
"

𝑛!*+,
	

(14) 

where 𝐸 is the limit to detect severe values, 𝑄" is the upper quartile of the dataset, 𝑍" is the lower 
quartile of the dataset, and 𝑛!*+, is the number of months of interest counted from the 𝑡)0" in Eq. (6). 

3. Dataset Description 
Thames River is considered to illustrate the proposed model within the framework of extreme events 
simulation. The Thames is considered a vital testbed since it is the longest river in England and has 
one of the longest flow records associated with any United Kingdom flow gauging station from 1883. 
Several studies on flood risk management indicated that the Thames is a flood-prone river and is 
considered a vital testbed [46–49]. The historical dataset comprises river flow measurements from the 
Thames local station number 3400TH, referenced as 39001 in Kingston. This dataset is extracted from 
the United Kingdom national river flow archive and spans from 1883 to 2020 [50]. 

In Fig. 3, the historical monthly dataset and yearly variance of the Thames River demonstrate the 
dynamic nature and fluctuations of the river’s flow values. The fluctuations within the monthly river 
flow values and yearly variance values ensure that the Thames is a vital testbed for extreme events 
research and analysis. 

  
Fig. 3. Dataset description. (a) Monthly dataset, (b) Yearly variance. 

https://nrfa.ceh.ac.uk/data/station/info/39001
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4. RESULTS AND DISCUSSION 
This section estimates the accuracy of the proposed SMSAR model, its ability to simulate extreme 
events, and forecast river flow. All results will be compared with those provided by the MSAR model. 

4.1. Data Processing 

This section aims to assess the quality of the proposed SMSAR model and its ability to detect severe 
values, i.e., maximum river flow values. The analysis sections are as follows: Statistical analysis, 
Probability distribution, Accuracy analysis, and Extreme events analysis. 

4.1.1. Statistical analysis 

This section describes the relation between the simulations and the dataset. In addition, we analyze the 
relative frequency and the intensity of upcrossings of predefined intervals of the models, this analysis 
displays the number of times a simulation passes upwards or downwards through an interval. Since it 
is important to correctly interpret the statistical analysis, the results of the simulations are then 
compared with those of the dataset to discuss their variations and assess their quality. 

In Fig. 4, the outputs of the simulations (SMSAR and MSAR) and the dataset values are presented. In 
addition, deterministic values are presented to illustrate the proportion of variance, i.e., the coefficient 
of determination (R() and the strength of the linear association, i.e., Pearson correlation coefficient 
(R). It is observed that the SMSAR model provides a better fit to the dataset. This is evidenced by the 
improved results of the deterministic values of the coefficient of determination (R() and the Pearson 
correlation coefficient (R). In a sense, the SMSAR model less deviates from the dataset and presents 
a better linear relation with the dataset. 

In Fig. 5, the residuals are fitted to their simulations distribution, this aims to introduce the variations 
within the range limit values of the simulations and compare them to the range limit of the dataset, i.e., 
maximum value. The range limit value of the dataset is 391 m</sec, this value is surpassed in one 
state by the SMSAR model with a value of 426 m</sec. On the other hand, the MSAR model has a 
lower range limit in comparison to the dataset with a range limit value of 254 m</sec. 

The results demonstrate that, first, the river flow variations are better presented by the SMSAR model. 
Second, low and high river flow values are well presented by the embedded 2 regime-switching within 
the MSAR and SMSAR models which is explained by the positive Pearson correlation coefficient 
value. It is interesting to note that, the SMSAR model improves this value. 

  
Fig. 4. Comparison of the river flow dataset with the SMSAR and MSAR simulations. 
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Fig. 5. Analysis of the residuals for each model. 

 

In line with the statistical analysis, the relative frequency, and the intensity of upcrossings illustrate 
the occurrence of specific events, i.e., the percentage of occurrence, and the shifting between time 
series levels, respectively. It is important to note that the following findings are based on an interval 
sequential distribution of 10 m</sec. In a sense, the simulations are based on a sequential distribution 
of the river flow starting from 0 to the maximum river flow value with a range value of 10 m</sec for 
each increment. The interval sequential value is determined to compromise between having intervals 
with small but also large enough values that most of the observations neither fall in a single range 
interval nor end up with empty range intervals. 

In Fig. 6, the observed relative frequency distribution emphasizes that when exceeding 170 m</sec, 
better results are achieved by the SMSAR model. Moreover, the SMSAR model seems to improve the 
findings when exceeding 250 m</sec since the MSAR model did not present values above this limit 
as shown in Fig. 5. However, both models show larger differences when they are below 70 m</sec.  

The results demonstrate two statements. First, two regimes-switching within the MSAR model were 
not efficient to explain extremely low and high values. Second, this analysis found evidence that the 
SMSAR model suffers from the same limitations associated with the MSAR model for low values. 
However, the SMSAR model seems to improve findings for high values since the SMSAR model 
improves the pre-initiated MSAR simulation by embedding the conditional Hidden Seasonal Markov 
component (Eq. (10)) that allocates the months of interest effect value to the time series based on the 
monthly effect of the years of seasonality. 

 
Fig. 6. Statistical distribution study. 
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In Fig. 7, the statistical intensity study indicates that both models underestimate the shifting behavior 
when below 40 m</sec. However, better results are seen for the SMSAR model above 150 m</sec. 
The results of the study support the notion that the Hidden Seasonal Markov component within the 
SMSAR model reallocates the statistical properties of the pre-initiated MSAR simulation. 

  
Fig. 7. Statistical intensity study. (a) The number of upcrossings, (b) Difference in the number of upcrossings. 

4.1.2.  Probability distribution 

This section presents the probability distribution and parametric classifications of the distribution, i.e., 
spread and shape. The results of the simulations are compared with the values obtained from the dataset 
to discuss their variations and assess their quality in terms of a probability distribution. 

In Fig. 8, the non-parametric kernel probability distribution is used to represent the statistical 
classification, i.e., asymmetry and tail distribution of the river flow. The results indicate that the 
dataset, SMSAR, and MSAR models are classified by shape distribution as asymmetrical right-skewed 
distributions with values of 1.59, 1.68, and 1.06, respectively. In a sense, the dataset and the SMSAR 
model values of the distributions are concentrated around low values and the right tail presents a low 
percentage of occurrence for higher values. However, the MSAR model distribution is classified by 
shape as a slightly asymmetrical right-skewed distribution with no outliers or extreme values since the 
skew value is nearly equal to 1.  

 

 

 

 

 

Fig. 8. Probabilistic analysis. 
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A graphical analysis (Q-Q plot) is carried out between the probability distributions by plotting their 
quantiles against the theoretical quantile, i.e., normal distribution. The applicability of this analysis is 
to test whether the distributions are normally distributed.  

In Fig. 9, it is noted that the samples’ quantiles do not align with the theoretical quantiles. This indicates 
that the distributions are not normally distributed. In addition, the shape of distributions is 
asymmetrical right-skewed since the upper end of the Q-Q plot deviates from the linear trend. The 
lower end of the Q-Q plot is horizontal, which appears to be the case of repetitive values and presents 
a high concentration around lower values within the distributions. The results also indicate that the 
SMSAR model improves the representation of the distribution with respect to the dataset in 
comparison to the MSAR model. 

 

Fig. 9. Q-Q plot. 

4.1.3. Accuracy analysis 

This section evaluates the ability of the models to fit the dataset by comparing the results of their 
residuals and error indicators. In addition, this section demonstrates whether there is missing statistical 
information that should be accounted for in the models since the Markov-Switching regime's approach 
suffers from the limitation that volatile changes in the time series neglect the time series assumption 
of independent errors.  

In Fig. 10, the MSAR model residuals are widely distributed, reaching a value of -258 m</sec. On the 
other hand, the SMSAR model residuals are less scattered, with a variance that is 57.11 % of the 
MSAR model’s.  
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Fig. 10. Models’ residuals distribution. 

The distribution of the residuals is then analyzed by presenting their relative frequency to demonstrate 
to which degree the residuals are distributed. The relative frequency is based on an interval sequential 
distribution of 10 m</sec. In a sense, the simulations are based on a sequential distribution of the river 
flow starting from 0 to the maximum river flow value with a range value of 10 m</sec for each 
increment.   

In Fig. 11, the distributions of the residuals indicate that slightly higher frequencies are achieved with 
the SMSAR model in comparison to the MSAR model within the distribution range between 0 m</sec 
to 40 m</sec. Moreover, lower frequencies for the SMSAR model are observed within the distribution 
below -50 m</sec.  

This is evidence for the underestimation considered within the MSAR model due to the model’s two 
regimes dynamic. However, this is improved by considering the Hidden Seasonal Markov component 
within the SMSAR model. Together, the present results of the models’ residuals distribution and 
histogram confirm that the SMSAR model seems to provide a better fit to the dataset because of the 
fewer deviations.  

 
Fig. 11. Models’ residuals histogram. (a) Negative residuals histogram, (b) Positive residuals histogram. 

 

It is important to accurately interpret the residuals to assess the accuracy of the models compared to 
the dataset, therefore, in Table 1, the residuals are presented in terms of descriptive values to provide 
deterministic meaning. The error indicators for the SMSAR model present an increase in precision.  
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Table 1. Error indicators. 
Model  RMSE* MAE** MAPE*** SME**** 
SMSAR 33.28 26.65 89.99 0.75 
MSAR 41.30 30.73 91.84 1.00 

* Square root of the average square errors. (m-/sec) 
** Mean absolute error. (m-/sec) 
*** Mean absolute percentage error. (%) 
**** Standard mean error. (m-/sec) 

The autocorrelation of the residuals is computed to indicate whether there is still missing statistical 
information that should be accounted for within the SMSAR model. This aspect is important since the 
model includes a Markov-Switching process which may arise autocorrelation in the residuals, which 
in turn violates the assumption of independent errors. In a sense, exceeding the confidence interval 
indicates missing statistical information that should be considered in the model. 

In Fig. 12, it is noted that the autocorrelation of the SMSAR model residuals is lower than that obtained 
from the MSAR model. However, there is some missing statistical information not considered by the 
SMSAR model for non-seasonal lags. Indeed, non-seasonal lags are the lags that exclude the seasonal 
monthly lags, i.e., 12, and 24. 

The results demonstrate that the proposed conditional Hidden Seasonal Markov component within the 
SMSAR model significantly improves the results for seasonal lags, which implies that an improvement 
in the seasonal patterns is associated with the SMSAR model. Also, the SMSAR model still slightly 
suffers from the same limitations associated with the MSAR model analysis for the non-seasonal lags, 
i.e., errors are not completely random, but instead are following a pattern. Despite that, the SMSAR 
model also improves the results for the non-seasonal lags.  

  
Fig. 12. Autocorrelation function (ACF) of the residuals. 

4.2. Extreme events analysis 

One major limitation of recent studies in time series analysis is the ability to simulate extreme values. 
In this section, the ability of the SMSAR and MSAR models to simulate extreme events is tested.  

The proposed extreme events limit is considered based on the interquartile range of the pre-determined 
months of interest of the monthly distributed dataset; this method is mentioned in Eq. (14) (See section 
2.3). Subsequently, the river flow value of 260 m</sec is considered to be the limit of extreme events.  

In Fig. 13, the dataset and the SMSAR model present 19 and 15 extreme events, respectively. On the 
other hand, the MSAR model failed to simulate any extreme event. It is important to mention that 
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despite the impressive performance achieved by the SMASR model within the framework of extreme 
events detection, the SMSAR model underestimated five extreme events on 11/1894, 12/1910, 
12/1929, 03/1947, and 02/1990, and overestimated one extreme event on 02/1915. The results ensure 
that the SMSAR model is capable of simulating extreme events since the SMSAR model detected 15 
extreme events out of 19 extreme events in a monthly time series of length 1656 starting from 1883 to 
2022. 

 

Fig. 13. Extreme events detection. 

In Fig. 14, the difference in extreme events values between the SMSAR simulation and the dataset 
shows that the deviations of the SMSAR model are concentrated within the range of -10 m</sec to 20 
m</sec with a mean absolute error value of 30 m</sec. 

 

Fig. 14. Difference in severe values between the simulation and the dataset. 

Together, the present results of the extreme events analysis go beyond previous reports, showing that 
the Markov-Switching approach is capable of simulating extreme events. This is achieved by 
embedding a conditional Hidden Seasonal Markov component within the SMSAR model. However, it 
is important to highlight the fact that the conditional component has an additional effect on the 
simulation. Therefore, overestimated states from the MSAR model won’t be improved by the SMSAR 
model. For example, the overestimated extreme event on 02/1915. Overall, improved results are seen 
for the SMASR model within the framework of extreme events detection.  
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4.3. Models Forecasting 

To date, it remains unclear whether predicting directly the dataset or a simulation fitted to the dataset 
yields better results. In addition, the impact of the training period on pattern recognition has not been 
clearly investigated, which raises concerns about the precision of the forecasts. Therefore, to test 
whether the previous statement is verifiable, the deep machine learning, i.e.,  Recurrent NN method 
[51] is considered for forecasting the dataset, the MSAR, and the SMSAR models. This method 
comprises the effect of monthly seasonality and the historical period length effect of 20 and 40 years 
on the period from 01/1931 to 12/1933. This period is chosen to include the highest influence of the 
Conditional Hidden Seasonal Markov component within the proposed SMSAR model of the training 
periods (earlier than 01/1931). Subsequently, by comparing the forecasts from the Neural Networks 
method of the dataset (Dataset NN), the SMSAR model (SMSAR NN), and the MSAR model (MSAR 
NN) with the available dataset of the mentioned period (Dataset), it is likely to investigate whether 
predicting the dataset or the alternatively based simulations provide better results.  

In Fig. 15a, the observed Neural Networks forecasts are based on a 20-year Historical Period Length, 
the results are compared with the realistic dataset of this period. Overall, the result indicates that the 
Dataset NN, the MSAR NN, and the SMSAR NN forecasts can recognize the dataset patterns. 

In Fig. 15b, the observed Neural Networks forecasts are based on a 40-year Historical Period Length. 
Overall, the result indicates that the Dataset NN, the SMSAR NN, and the MSAR NN forecasts can 
recognize the dataset patterns. In addition, forecasts based on a 40-year Historical Period Length 
present a better fit than the forecasts based on a 20-year Historical Period Length.  

The results of the Neural Networks forecasts demonstrate that extending the training period within the 
Neural Networks forecasting method enhances its capacity for accurately recognizing historical 
patterns. 

  
Fig. 15. Neural Network simulation forecasts. (a) 20-year and, (b) 40-year Historical Period Length. 

The precision of the forecasts is presented in terms of descriptive values to determine the degree of 
accuracy and error. This provides an insight into which degree of inference whether predicting directly 
the dataset or alternatively a fitted simulation to the dataset is attributed to providing better results. 
Furthermore, it highlights the impact of the training period on pattern recognition.  

In Table 2, the error indicators provide the accuracy of the Neural Networks simulations with respect 
to the dataset on the forecasted period from 01/1931 to 12/1933. The results of the simulations of the 
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40-year Historical Period Length yield better results than those of the 20-year Historical Period Length 
in terms of the degree of accuracy and error. 

Table 2. Neural Network simulations error indicators. 
 20-year Historical Period Length 40-year Historical Period Length 
Models MAE* RMSE** R(*** MAE* RMSE** R(*** 
Dataset NN 35.6 45.4 0.42 30.0 36.8 0.52 
SMSAR NN 38.2 46.1 0.48 22.5 27.2 0.71 
MSAR NN 37.2 45.6 0.20 27.1 33.7 0.55 

* Mean absolute error. (m-/sec) 
** Square root of the average square errors. (m-/sec) 
*** Coefficient of determination. 
 
The results of the forecasting using the NN method indicate three key findings:  

• The disproportion between the results of the fitted simulations, i.e., SMSAR NN and MSAR 
NN supports the notion that simulating a time series model requires access to experts who 
understand the relevant cause and effect of the dataset distribution, in which experts must be 
able to provide a recognizable pattern relevant to their priorities within the dataset. In this case, 
the proposed SMSAR model recognizes well the pattern and presents a significantly better fit 
than the MSAR model. 

• Predicting a simulation fitted to the dataset is attributed to providing better results. In a sense, 
a simulation can integrate missing signals in the dataset and provide a recognizable pattern. 
This is indicated within the results of the SMSAR NN and MSAR NN compared to the Dataset 
NN. 

• The training period impacts the accuracy of the forecasts. In this case, forecasts of a 40-year 
Historical Period Length yield a better fit than those of a 20-year Historical Period Length, 
since the length of the training process affects the ability of the Neural Networks to detect the 
patterns. 

5. CONCLUSIONS AND PERSPECTIVES 
This paper proposes a stochastic Seasonal Markov-Switching Autoregressive (SMSAR) model to 
recognize the dynamic pattern of the river flow and to simulate the hydrological fact of rivers, i.e., 
high river flow values for a short time interval are followed by low river flow values for a long-time 
interval. In addition, it aims at improving the capacity of simulating river flow extreme events. This 
paper also investigates the precision of the forecasts when considering the training period, i.e., 
Historical Period Length effect on the pattern recognition, and whether the predictive analysis of the 
dataset or equivalent simulations yields better results. The proposed framework provides valuable 
insights into simulating extreme events and offers a promising approach for enhancing our 
understanding of hydrological processes. The main conclusions are summarized as follows. 

• Simulating extreme events of a hydrological time series poses a significant challenge for 
policymakers in achieving better management of water resources and assessing flood risks 
through a comprehensive understanding of the underlying dynamics of the hydrological 
dataset.  

o The Markov-Switching Autoregressive model offers a flexible framework for capturing 
regime shifts and changes in the time series dynamics, enabling the model to simulate 
the hydrological fact of rivers. However, simulating extreme values requires 
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considering the associated limitations of modeling extreme values by implementing 
additional methodological advancements to improve the efficacy. 

§ In this study, the proposed SMSAR model provides valuable insights into 
simulating the extreme values and offers a promising approach for enhancing 
our understanding of the hydrological processes by implementing an additional 
conditional Hidden Seasonal Markov component, allocating effect value of the 
months of interest to the time series based on the monthly effect of the years of 
seasonality.  

• The Markov-Switching process holds promise as a valuable framework for simulating extreme 
events, particularly by effectively addressing the challenges posed by switching regimes. 
Consequently, it's essential to investigate the performance of the proposed SMSAR model in 
comparison to the traditional MSAR model to provide insights into the SMSAR model's 
effectiveness and its potential advantages. 

o An investigation of the statistical analysis is essential to interpret the differences 
between the proposed SMSAR and MSAR models to identify the advantages and 
limitations of each model and to simulate extreme events. This investigation concluded 
the following: 

§ The SMSAR model deviates less from the dataset and presents a better linear 
relation with the dataset, providing a better fit to the dataset. This is evidenced 
by the improved results of the deterministic values of the coefficient of 
determination (R() and the Pearson correlation coefficient (R). 

§ The MSAR model encountered challenges in accurately simulating both 
extremely low and high values. Subsequently, this SMSAR model suffers from 
the same limitations associated with the MSAR model for low values below 70 
m</sec. However, the SMSAR model seems to enhance the simulation of high 
values exceeding 170 m</sec. 

§ The Hidden Seasonal Markov component within the SMSAR model reallocates 
the statistical properties of the pre-initiated MSAR simulation, providing a 
better-shifting behavior above 150 m</sec. 

o An investigation of the probability distribution is essential to interpret the parametric 
classifications of the distribution, i.e., spread and shape, identifying the advantages and 
limitations of each model. This investigation concluded the following: 

§ The SMSAR model and the dataset are classified by shape distribution as 
asymmetrical right-skewed distributions, characterized by concentration around 
low values, while the occurrence of higher values is minimal in the right tail. 
On the other hand, the MSAR model distribution is a slightly asymmetrical 
right-skewed distribution with no extreme values. 

o An investigation of the accuracy analysis is essential to evaluate the performance and 
to assess the uncertainties of the models. This investigation concluded the following: 

§ The residuals of the SMSAR model residuals are less scattered compared to 
those of the MSAR model with a variance representing 57.11 % of that observed 
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in the MSAR model. In this context, the SMSAR model indicates a higher 
precision in the error indicators compared to the MSAR model. 

§ The SMSAR model significantly improves the missing statistical information 
within the MSAR model for seasonal lags. In addition, the SMSAR model also 
improves the results for the non-seasonal lags. 

o An investigation of the extreme events analysis assesses the models’ ability to simulate 
extreme events, which further can be integrated into a framework to provide valuable 
insights for decision-making. The findings of this investigation are summarized as 
follows: 

§ The SMSAR model significantly improves the ability of the regime-switching 
technique to simulate extreme events. In this study, the SMSAR model 
succeeded in simulating 15 extreme events out of the 19 extreme events of the 
dataset. On the other hand, the regime-switching MSAR model failed to 
simulate any extreme event. 

§ It is important to highlight the fact that the SMSAR model suffers from the 
fitting limitation associated with the MSAR model, in which the overestimation 
of the MSAR simulation cannot be adjusted if found. 

• Forecasting river flow values is essential for informed decision-making in flood mitigation 
plans, as it addresses critical challenges to the resilience of the infrastructure systems against 
the adverse impacts of extreme hydrological events.  

o An investigation of River flow forecasting assesses whether predicting directly the 
dataset or a simulation fitted to the dataset yields better results. Additionally, it explores 
the impact of the training period on pattern recognition within the SMSAR model. 

§ Predicting the fitted SMSAR simulation yields better results than predicting the 
dataset directly. In a sense, a simulation can integrate missing signals in the 
dataset and provide a recognizable pattern.  

§ The training period significantly influences the accuracy of the forecasts as 
evidenced by the improvements adjusted by the Recurrent NN forecasts of the 
40-year Historical Period Length compared to the 20-year Historical Period 
Length, with superior results observed for the SMSAR forecasts. 

• Future research should be devoted to exploring several innovative advancements, as follows.  

o Developing the proposed SMSAR model since the model underestimates some extreme 
events and shows some missing statistical information within the simulation. In this 
context, the authors suggest the following: 

§ Considering the yearly seasonal effect as a Hidden Seasonal Markov component 
within the model to increase the quality of the model.  

§ Adjusting the effect value within the proposed model to influence all the 
months. This will improve the ability of simulating low river flow values. 

§ The proposed methodology could be also adapted to simulate other extreme 
events such as floods, fires, extreme winds, etc. Specific databases and analysis 
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should be carried out to test the ability of the proposed methodology to deal 
with these extreme events.  

o Integrating a framework to predict the impact of a changing climate on the river flow 
values. In this context, the authors suggest implementing a multivariate model to relate 
the climatic variables with the simulated river discharge from the reference period, 
followed by relating climatic variables under a changing climate to conduct future river 
discharge values. 
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Appendix. 1. Pseudo-algorithm of the simulation methodology 

BEGIN 
READ Dataset 
 
# Define the monthly time series 
INPUT (Dataset, Start = Date, End = Date, Frequency =12) 

OUTPUT Time series 
 
# Stationary check: 
COMPUTE KPSS test (Time series) 

OUTPUT P-value && Statistic value 
IF (P-value > p_Criteria && Statistic value < Intercept_Critical) THEN 

PRINT (Time series is stationary) 
ELSE 

PRINT (Time series is non-stationary) 
SET Differencing order to zero 

CALCULATE Integration (Time series) 
OUTPUT Differencing order && Integrated Stationary Time series 

END IF 
 
# Choosing a model to fit the time series dataset: 
COMPUTE Autocorrelation function (Time series) 

OUTPUT Decay 
IF (Decay = Slowly) THEN 

PRINT (Long-term models are required, i.e., MSAR or ARFIMA) 
COMPUTE Structural break test (Time series) 

OUTPUT P-value  
IF (P-value < 0.05) THEN 

PRINT (MSAR model is mandatory) 
ELSE 

PRINT (ARFIMA model is a preferable choice) 
END IF 

ELSE 
PRINT (Short-term models are required, i.e., ARIMA) 

END IF 
 
# Simulate the MSAR model: 
OBTAIN Array (Time series) 

OUTPUT Time series array 
INIT Akaike Info Criterion to zero 
INIT j to 2 
FOR i = 1 to 4 

COMPUTE MSAR (Time series array, 𝜑[i], 𝑀[j]) # Eq.(3) 
OUTPUT Fitted MSAR model 
COMPUTE Akaike info criterion 
STORE Fitted model && Akaike info criterion in Result [MSAR] 

END FOR 
READ the lowest value of Akaike info criterion in Result [MSAR][i] 

OUTPUT Fitted MSAR model 
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# Calculate the hidden seasonal Markov component stating phase: 
COMPUTE Months of interest increase rate (𝑀𝑜𝑖!): # Eq. (5) 
COMPUTE Months of interest effect value (𝐸𝑣!): # Eq. (6) 
 
# Calculate the hidden seasonal Markov component conditioning phase: 
COMPUTE Yearly seasonality (𝑆/): # Eq. (7) 
COMPUTE Monthly effect value with respect to yearly seasonality (𝑀𝐸𝑆/): # Eq. (9) 
 
# Calculate the Hidden Seasonal Markov component value: 
COMPUTE Conditional Hidden Seasonal Markov component value (𝐻𝑆𝑀): # Eq. (10) 
 
# Simulate the SMSAR model: 
COMPUTE SMSAR (Fitted MSAR model, HSM): # Eq. (11) 
OUTPUT SMSAR fitted model 
 
# Extreme events: 
CALCULATE 𝐸 # Eq. (14): Severe values limit 
SET n to length (Time series) 
SET p to 1 
WHILE p < n 

IF (Time series[p, 1], MSAR fitted model[p, 2] && SMSAR fitted model[p, 3]) >= 𝐸) 
THEN 

OUTPUT Extreme events values 
STORE Extreme events values in Result [Extreme events] [p, q] 

ELSE 
INCREMENT p 

END IF 
END WHILE 
 
# Neural Network forecasting 
READ Time series, MSAR fitted model && SMSAR fitted model 
STORE Time series, MSAR fitted model && SMSAR fitted model in Result [Simulations] [x, y] 
SET y to 1 
FOR x = 1 to n 

Neural network (Simulations [x, y], non-seasonal lags = 11, seasonal lags= (1,12)) 
OUTPUT NN fitted simulations 
STORE NN fitted simulations in Result [Neural Network] [x, y] 
INCREMENT y 

END FOR 
GENERATE Forecast ([Neural Network] [1: n, 1: 3], periods of forecasting = 36) 

OUTPUT Forecasted values 
STORE Forecasted values in Result [Forecasts] [1: 36, 1: 3] 

 
 

The simulation methodology in Appendix. 1 provides a detailed illustration of the methodology and 
consists of five main phases, i.e., Dataset preparation, model identification, model fitting, extreme 
events detection, and forecasting the dataset and the simulations (MSAR and SMSAR models) using 
Recurrent Neural Network system. The input of the time series analysis is the historical river flow 
values of the Thames River. These phases are demonstrated as follows:  
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In the first phase of this process, the time series dataset is presented with a monthly frequency and 
tested for non-stationary behavior. This is performed to determine whether the dataset’s mean and 
variance change over time. However, the stationary behavior of the time series will not be accurately 
computed when the time series has long-term behavior. Subsequently, the long-term behavior is 
examined in the model identification phase, and the type of the model is specified. In this case of long-
term behavior, a structural break test is performed to indicate whether a Markov-Switching 
Autoregressive model is suitable for simulating the dataset. 

In the third phase, two regimes within the Markov-Switching process are presented to describe the 
latent regimes equivalent to wet and dry periods. In addition, the autoregressive order is estimated 
using the Akaike Info Criterion (AIC) method. Additionally, the simulation is approached with a 
conditional Hidden Seasonal Markov component, this component consists of state and condition 
phases. The state phase defines the months of interest and provides their effect value. In parallel, the 
condition phase determines the years of seasonality and allocates the months of interest effect value to 
the years of seasonality. 

The fourth phase detects the extreme events based on the interquartile range of the monthly dataset 
and considers the months of interest to discriminate the limit of the severe values. Finally, the 
forecasting phase uses the NN system, i.e., Recurrent NN to provide forecasts. This forecasting method 
comprises the effect of monthly seasonality. 

 


