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Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum
information technologies, from fundamental tests of quantum mechanics to enhanced computation and
communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for
on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states
sequentially with discrete optical elements, continuously coupled nonlinear waveguide systems offer a
promising alternative where photons can be generated and interfere along the entire propagation length,
unveiling novel capabilities within a reduced footprint. Here we exploit this concept to implement a
compact and reconfigurable source of path-entangled photon pairs based on parametric down-conversion in
semiconductor nonlinear waveguide arrays. We use a double-pump configuration to engineer the output
quantum state and implement various types of spatial correlations, exploiting a quantum interference effect
between the biphoton state generated in each pumped waveguide. This demonstration, at room temperature
and telecom wavelength, illustrates the potential of continuously coupled systems as a promising
alternative to discrete multicomponent quantum circuits for leveraging the high-dimensional spatial
degree of freedom of photons.

DOI: 10.1103/PhysRevLett.133.233602

Nonclassical states of light constitute crucial resources
for quantum information technologies due to their ability to
transmit easily, resist decoherence, and offer various ways
to encode information [1]. Recently, considerable attention
has been devoted to entanglement in high-dimensional
degrees of freedom of photons [2] to push fundamental
tests of quantum mechanics [3,4], boost the efficiency and
security of quantum communication [5,6], and make
quantum computing more flexible [7,8].
Among the various candidates, the spatial degree of

freedom emerges as especially fitted for on-chip integration
[9,10]. Rapid progress has thus been made in recent years
to develop complex integrated circuits achieving on-chip
quantum interference [11], entanglement and various log-
ical operations on path-encoded states [12,13], in the spirit
of the gate-based model of quantum information processing
[14]. These powerful demonstrations typically implement a
discrete and sequential manipulation of path-entangled

states using beam splitters and phase shifters, with most
of the footprint devoted to routing waveguides.
Another route to spatial entanglement is however pos-

sible, based on continuously coupled waveguides [15,16],
where photons can interfere across the entire propagation
length rather than solely at individual beam splitters. This
approach implements continuous-time random quantum
walks [17] and can be described by a lattice Hamiltonian
[15], establishing a natural connection with a variety of
situations encountered in condensed matter physics. Arrays
of coupled waveguides have recently facilitated investiga-
tions into a large spectrum of phenomena spanning
quantum walks of correlated photons [18–20], Anderson
localization of photon pairs [21], quantum logic operations
[22,23], topological effects [24,25] or non-Hermitian phys-
ics [26]. These remarkable achievements have relied on
external sources to generate quantum states of light, which
were then fed into a passive circuitry.
Yet, an additional layer of complexity can introduce even

larger possibilities, by adding to the continuous nature of
the interference process the ability to continuously generate
photons all along the device. This can be realized in a
waveguide array made out of a nonlinear material, by
injecting a classical pump beam generating stochastically
photon pairs by spontaneous parametric down-conversion
(SPDC) or four-wave mixing [27–33]. This approach offers
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novel configurations that have no equivalent in bulk optics
nor discrete photonic circuits due to the intricate combi-
nation of the generation and manipulation steps of photonic
quantum states [34–38].
In this Letter, we exploit this concept in AlGaAs-based

nonlinear waveguide arrays to implement a compact and
versatile source of path-entangled states of light, operating
at room temperature and telecom wavelength. We use a
double-pump configuration to engineer the output quantum
state and implement different types of spatial correlations,
violating a nonclassicality criterion by several tens of
standard deviations. This control relies on a quantum
interference effect between the biphoton wave function
generated in each pumped waveguide, fully accounted for
by analytical calculations and numerical simulations, and
paving the way to quantum information tasks leveraging
the high-dimensional spatial degree of freedom in contin-
uously coupled photonic systems.
The working principle of our semiconductor AlGaAs

nonlinear waveguide array is sketched in Fig. 1(a). A
classical pump beam (wavelength ≃775 nm, sketched in
red) injected into one or several waveguides generates
photon pairs at telecom wavelength (≃1550 nm, shown in
blue) by SPDC, thanks to the strong χð2Þ nonlinearity of the
material. These photon pairs can continuously tunnel from
one waveguide to the other during their propagation,
implementing random quantum walks. Compared to quan-
tum walks in passive circuits [18–20], the walkers are here
generated directly inside the device and the generation can
take place at any position along the propagation axis [27].
Besides a gain of integration, this configuration allows for a
progressive buildup of spatial entanglement, due to the
interference between quantumwalks initiated at all possible
longitudinal positions, as we shall detail in the following.

The device is designed so that the transverse coupling of
the pump beam is negligible, so that the pump remains
confined in the initially pumped waveguide(s) during
propagation [39].
The precise articulation between quantum states pro-

duced by linear waveguide arrays (i.e., injected with
photons produced externally) and nonlinear arrays (where
photon pairs are generated continuously by internal SPDC)
can be determined exactly through analytical calculations.
Let jΨi ¼ P

ns;ni Ψðns; niÞjns; nii denote the biphoton
state generated by a nonlinear array, where Ψðns; niÞ
governs the probability amplitude to detect one photon
in waveguide number ns and the other photon in waveguide
ni. If the nonlinear array is pumped by a monochromatic
pump field tuned to the single-waveguide phase matching
condition, generating photon pairs by frequency-degener-
ate SPDC, one can show [39] that

Ψðns; niÞ ¼ γ
X
n

An

Z
L

0

ϕnðns; ni; zÞdz; ð1Þ

where γ accounts for the efficiency of the SPDC process, z
is the longitudinal position, L is the array length, and An is
the pump field amplitude in waveguide n. Interestingly,
ϕnðns; ni; zÞ corresponds to the quantum state that would
be produced by a linear array with two photons injected in
waveguide n, after a propagation distance z [39]. The latter
state reads

ϕnðns; ni; zÞ ¼ insþni−2nJns−nð2CzÞJni−nð2CzÞ; ð2Þ

where Jn is the first-order Bessel function of index n and C
is the coupling constant between waveguides [16].

(a) (b)
(d)

(f)

(e)

(c)

FIG. 1. (a) Principle of the spatial entanglement engineering in a quadratic nonlinear waveguide array. Here, two continuous-wave
pump laser beams (sketched in red) with a phase offset φ between them generate photon pairs that undergo quantum walks (blue),
resulting in path entanglement over the various waveguides of the array. (b) SEM image of a fabricated AlGaAs sample, showing a cut of
the waveguide array in the central part. (c) Wider-field SEM image of the sample. (d) Simulated correlation matrix for a linear waveguide
array injected with a path-entangled state ðj00i þ j11iÞ= ffiffiffi

2
p

, and (e) for a nonlinear array when pumping waveguides n ¼ 0 and 1
in-phase. (f) Corresponding calculated Schmidt number as a function of the (normalized) propagation length.
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Thus, the output state of a nonlinear waveguide array
can be seen as resulting from the interference (weighted by
the pump spatial distribution An) of the biphoton state
Ψnðns; niÞ ¼ γ

R
L
0 ϕnðns; ni; zÞdz generated in each pum-

ped waveguide. In turn, since the SPDC photons can be
generated at all possible longitudinal positions, the state
Ψnðns; niÞ results from the interference of states
ϕnðns; ni; zÞ corresponding to propagation in linear arrays
of continuously varying lengths between 0 and L. The
spatial correlations in real space are described by a
(symmetric) matrix Γns;ni ¼ jΨðns; niÞj2. Note that Γns;ni
is not normalized to unity, it takes into account the SPDC
efficiency and hence is directly proportional to coincidence
counts as will be measured experimentally in the following.
To illustrate this interplay between quantum walks and

nonlinearity, let us compare (i) the output state of a linear
waveguide array injected with a path-entangled state
ðj00i þ j11iÞ= ffiffiffi

2
p

(corresponding to two indistinguishable
photons coupled in either the central waveguide n ¼ 0 or
the neighboring waveguide n ¼ 1), and (ii) the state
generated by a nonlinear array when pumping these two
waveguides with equal amplitude (A0 ¼ A1). The corre-
sponding intensity correlation maps are plotted in Figs. 1(d)
and 1(e), respectively, for CL ¼ 5. In the linear case (i),
photons are distributed over a squarelike pattern, with
dominant antidiagonal lobes resulting in a spatially anti-
correlated state. These lobes, located near �2CL, corre-
spond to a ballistic-like propagation of both photons in
opposite directions [16]. As the propagation length
increases, this overall pattern expands linearly, with the
biphoton wave function spreading over more waveguides.
However the entanglement level of the state, quantified by
the Schmidt number K [Fig. 1(f), blue], remains fixed to
that of the injected state (K ¼ 2) since propagation in a
linear optical circuit cannot increase entanglement [40].
Now turning to the nonlinear case (ii), the output state

[Fig. 1(e)] results from the interference between linear-
array states (i) corresponding to continuously varying
propagation lengths [Eq. (1)]. This gives rise to a sharp
interference pattern, where essentially only antidiagonal
points survive. As the propagation length increases, the
Schmidt number builds up monotonically [Fig. 1(f), red].
Obtaining such high-dimensional entangled states from a
linear array would necessitate the delicate preparation of a
quantum state of sameK at the input. In nonlinear arrays by
contrast, the constructive interplay between quantum
walks and SPDC generation provides a compact source
of spatial entanglement, which can be entirely controlled
from simple classical resources, namely, from the spatial
distribution of the input pump laser. In this Letter, we
experimentally demonstrate this concept using a double-
pump configuration.
The investigated sample consists in an array of 31

coupled AlGaAs waveguides of length L ¼ 2 mm
[Fig. 1(b)]. The waveguides are 1.7 μm-wide and separated

by 450 nm gaps, resulting in a coupling constant CTE ¼
2.7 mm−1 in TE polarization and CTM ¼ 2.4 mm−1 in TM
polarization. The 7 central waveguides of the array are
connected to fan-in injection waveguides and fan-out
collection waveguides to facilitate their individual optical
addressing [Fig. 1(c)]. These injection and collection
waveguides have a larger width (6 μm) to shift their
nonlinear resonance wavelength so that the injected pump
laser generates photon pairs only in the central array region,
through a modal phase-matching scheme [39,41–44].
The experiments are carried out by injecting a TE-

polarized continuous-wave pump laser with a microscope
objective into one or several waveguides (depending on the
targeted quantum state), to generate orthogonally polarized
signal and idler photons by type-2 SPDC. These SPDC
photons undergo random quantum walks and are collected
at the output of the fan-out waveguides using a commercial
lensed fiber array connected to superconducting nanowire
single-photon detectors (SNSPD). Correlation events, mea-
sured by a time tagger, yield the spatial (path) correlation
matrix Γns;ni .
The pump laser is first injected into the central wave-

guide (n ¼ 0) of the array, and coincidences are monitored
as a function of the laser wavelength for a coupled pump
power of 1 mW. Here and in the subsequent measurements,
a bandpass filter is used before photon detection to reduce
the emission bandwidth to 16 nm and effectively suppress
any possible coupling between the spatial and spectral pro-
perties of the biphoton states [39]. As shown in Fig. 2(a),
the coincidences in the central waveguide (Γ0;0, black
points) show a resonance centered at λp;0 ¼ 783.45 nm,
which corresponds (up to 0.05 nm) to the resonance
wavelength measured for a single (uncoupled) waveguide.
The diagonal coincidences (Γ1;1 þ Γ−1;−1, red points) and
antidiagonal coincidences (Γ1;−1 þ Γ−1;1, blue points) dis-
play a similar resonant behavior.
We next set the pump wavelength to λp;0 and proceed to

the measurement of the full correlation matrix within the
Hilbert space spanned by the 5 central waveguides. The
result is shown in Fig. 2(b) and compared to numerical
simulations in Fig. 2(f). As anticipated by the results of
Fig. 2(a), we observe strong and selective correlations
along the diagonal and the antidiagonal axes. That is,
photons have an enhanced probability to exit the device
either through the same waveguide (ns ¼ ni, spatial bunch-
ing) or through opposite waveguides (ns ¼ −ni, spatial
antibunching). The nonclassicality of the measured corre-
lations can be quantified by using the criteria derived by
Bromberg et al. [16,18]. For classical light, off-diagonal
correlations (Γns;ni with ns ≠ ni) are related to diagonal
correlations by the inequality Γns;ni >

2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γns;nsΓni;ni

p
. For

the state of Fig. 2(b), this inequality is violated (up to 20
standard deviations) by several points of the measured
correlation matrix [39], indicating spatial correlations that
cannot be generated by classical means. The overlap
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between the experimental (Γexp
ns;ni) and theoretical (Γ th

ns;ni) cor-
relations matrices can be quantified using the similarity para-

meter [18,19] S ¼ ðP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γexp
ns;niΓ th

ns;ni

q
Þ2=ðPΓexp

ns;ni

P
Γ th
ns;niÞ,

where the summations run over all indices ns and ni. We
obtain S ¼ 98.4� 1.1% (without adjustable para-
meter), illustrating the high fidelity of the source. We note
that the simulation of Fig. 2(f) is exact, i.e., it takes into
account the finite number of waveguides, the finite band-
width of the photon pairs and the slight polarization and
frequency dependence of the coupling constant; it is,
however, very close to the result of Eq. (1) (mutual similarity
98.8%), validating the relevance of our analytical model.
The measured correlation map is robust to the pump power;
as the chip length increases, correlations spread across
farther waveguides but the overall pattern remains qualita-
tively unchanged (after a short stabilization regime) [39].
We will now show how this map of spatial correlations

can be flexibly engineered by tailoring the pumping
configuration. For this we coherently pump two neighbor-
ing waveguides (n ¼ 0 and 1) by splitting the cw input
laser into an inteferometer placed before the injection
objective, allowing to inject two laser beams of equal
intensity (0.5 mW) and controlled phase φ between them
[see Fig. 1(a)]. This double-pump configuration is first
investigated by monitoring the crossed coincidences Γ0;1

between the two pumped waveguides as a function of the
phase φ, as shown in Fig. 2(e) (green circles). An
oscillating behavior is observed, well reproduced by a

sinusoidal modulation (black line) with a net (raw) vis-
ibility of 90% (85%). This behavior is in good qualitative
agreement with our analytical calculations which predict
(in the limit of an infinite lattice and perfect spectral
degeneracy):

Γ0;1 ∝ ð1þ cosφÞ; ð3Þ

corresponding to an alternation of (full) destructive and
constructive interference of the biphoton wave function at
this point of the correlation matrix [39].
We now set φ ¼ 0 and measure the spatial correlation

matrix within the six-waveguide basis centered on the
pumped waveguides. The result is shown in Fig. 2(c) and
compared to numerical simulations in Fig. 2(g) (similarity
93.1� 1.8%). We observe this time strong correlations
along the antidiagonal, showing that spatial antibunching is
selectively enhanced by this pumping configuration. We
also notice, compared to the single-pump case [Fig. 2(b)], a
wider propagation of the biphoton correlations, which
decrease only slowly over the six measured waveguides.
We then set φ¼π, corresponding to the n¼0 and n¼1

waveguides pumped in phase opposition. The measured
correlation matrix is shown in Fig. 2(d) along with
simulation results in Fig. 2(h) (similarity 96.9� 1.0%).
In this case, we observe that spatial bunching is selectively
enhanced, while the spreading of correlations is compa-
rable to the single-pump configuration. However, the total

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. (a) Biphoton correlations measured in the central waveguide (Γ0;0, black), first diagonal (Γ1;1 þ Γ−1;−1, red) and first
antidiagonal (Γ1;−1 þ Γ−1;1, blue) points of the correlation matrix when pumping the n ¼ 0 waveguide (raw coincidence counts).
(b)-(c)-(d) Measured correlation matrices when pumping (b) the central waveguide n ¼ 0, (c) guides n ¼ 0 and n ¼ 1 in phase and
(d) guides n ¼ 0 and n ¼ 1 out of phase. (e) Cross-correlation term Γ0;1 measured for varying phase offset φ between the two pumped
waveguides (n ¼ 0 and 1); circles show raw coincidence counts with Poissonian error bars, crosses show noise counts, and the black line
is a sinusoidal fit. (f)-(g)-(h) Numerically simulated correlation matrices corresponding to the experimental cases (b)-(c)-(d).
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SPDC signal (integrated over all measured points of the
correlation matrix) is stronger (by a factor ≃2.8) for φ ¼ π
than for φ ¼ 0, despite the fact that the input pump power is
the same. As the transverse coupling of the pump beam is
negligible, the two pump beams do not interfere classically
and this interference effect is purely quantum in nature: the
biphoton states generated in the two pumped waveguides
interfere constructively when φ ¼ π and destructively
when φ ¼ 0, and it can be shown analytically within
realistic assumptions [39] that the total SPDC intensity
is modulated as

ISPDC ¼
X
ns;ni

Γns;ni ∝ ð2 − cosφÞ ð4Þ

when the phase φ between the two pumped waveguides is
varied.
This intriguing behavior, with a constructive interference

occurring for out-of-phase pumping, can be understood
intuitively in the following manner. In the single-pump con-
figuration, correlations are mainly located on the diagonal
and antidiagonal [Figs. 2(b) and 2(f)]. According to
coupled-mode theory, a single photon acquires a phase
of π=2 when it tunnels to a neighboring waveguide; hence,
starting from its generation in the central waveguide n ¼ 0,
the biphoton state acquires a phase π when it moves one
step along the diagonal or the antidiagonal, as this requires
two single-photon jumps (either on the same or on opposite
sides). The phase of the wave function thus changes by π
between each two successive points along the diagonal and
antidiagonal. Now, as shown by Eq. (1), when pumping
two neighboring waveguides n ¼ 0 and 1, an interference
occurs between the biphoton states jΨin¼0 and jΨin¼1

generated in these two waveguides. When the two pumps
are in phase (out of phase), this interference is destructive
(constructive) on the diagonal points (which are aligned for
the two states) because of the π phase alternation structure
described above, in good agreement with the experiments
and simulations. This interference is only partial since the
two biphoton states have different amplitudes on the
interfering points; however, it plays a determinant role in
the total SPDC efficiency since an important part of the
signal is concentrated in each pumped waveguide, provid-
ing an intuitive argument for the total SPDC intensity being
maximum when φ ¼ π, in agreement with Eq. (4). The
situation is reversed in the case of antidiagonal points.
However, on the antidiagonal passing through (0,1) the two
biphoton states interfere with the exact same amplitude,
leading to a perfect interference and thus a high spatial
spreading of the correlations when φ ¼ 0, in good agree-
ment with Figs. 2(c) and 2(g). This demonstrated quantum
interference effect provides the building block for engineer-
ing path-entangled states in continuously coupled nonlinear
waveguides.
In summary, we have demonstrated a compact and

versatile source of spatial entanglement based on quantum

walks in semiconductor AlGaAs nonlinear waveguide
arrays. Tailoring the spatial profile of the pump field allows
to reconfigure the output quantum state and implement
various types of spatial correlations, well accounted for by
analytical calculations and numerical simulations. Building
upon these results, a wider zoology of quantum states could
be produced by pumping more waveguides, with controlled
intensity and phase relation between them, via on-chip
phase shifters exploiting the strong electro-optic effect
of AlGaAs [45]. Pushing further the integration, the
possibility to integrate the pump laser directly within the
nonlinear medium [44] constitutes a distinctive asset of
the AlGaAs platform compared to dielectric and silicon-
based nonlinear photonic circuits where path-entangled
states have been studied previously [9].
In addition, the strong second-order nonlinearity of

AlGaAs could be leveraged to push nonlinear waveguide
arrays into the squeezing regime [46,47], enabling the
generation of highly multimode squeezed states in a flexi-
ble manner [34,35]. Finally, other lattice geometries can be
implemented by modifying the propagation and coupling
constants of the waveguides either at the fabrication step
(by tuning the widths and distances between waveguides)
or in situ by utilizing the electro-optic effect of AlGaAs.
This would enrich the possibilities of quantum state
engineering to implement, e.g., biphoton W states [48]
or discrete fractional Fourier transforms [49] of entangled
states. The realization of quasi-periodic geometries (e.g.,
Fibonacci and Aubry-André) would allow investigating
topological effects in the quantum regime [24] or the
Anderson localization of multiparticle states with peculiar
cascaded or reentrant behaviors [50,51], making the dem-
onstrated platform appealing to simulate in a controlled
environment physical problems otherwise difficult to
access in condensed-matter systems.
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