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Aix Marseille Université, CNRS, Centrale Marseille, I2M,

Marseille, France
stephane.louboutin@univ-amu.fr

May 28, 2024

To appear in Proc. Amer. Math. Soc.

Abstract

Let m ≥ 1 be a rational integer. We give an explicit formula for the mean value

2

φ(f)

∑
χ(−1)=(−1)m

|L(m,χ)|2,

where χ ranges over the φ(f)/2 Dirichlet characters modulo f > 2 with the same
parity as m. We then adapt our proof to obtain explicit means values for products
of the form L(m1, χ1) · · ·L(mn−1, χn−1)L(mn, χ1 · · ·χn−1).

1 Introduction

For m ≥ 1 and f > 2, let

M(m, f) =
2

φ(f)

∑
χ(−1)=(−1)m

|L(m,χ)|2

denote the mean value of |L(m,χ)|2, where χ ranges over the φ(f)/2 Dirichlet characters
modulo f such that χ(−1) = (−1)m, i.e. over the Dirichlet characters modulo f of the
same parity as m.

The first step towards the study of these M(m, f)’s was made in [Wal], where the
formula for M(1, f) was obtained, but only for prime moduli f . Secondly, in [QiMG]
and [Lou93] the formula for M(1, f) for non necessarily prime moduli f was obtained.
Thirdly, in [Lou01] a method was developed for obtaining recursively a formula for
M(m, f) for a given m. This method was applied to obtain the formulae below for
M(m, f) for m = 1, 2, 3 and 4. Fourthly, in [Lin] the author developed another way for
obtaining recursively a formula for M(m, f) for a given m. S. Louboutin and X. Lin’s
methods are easy to use with any software for mathematical computation for obtaining
a formula for M(m, f) for a given m. But they did not give an explicit formula for
these M(m, f)’s. Fifthly, in [LZ] the authors gave a rather complicated but explicit
formula for M(m, f) and the mean value of the product of the values of two Dirichlet
L-functions at positive integers of the same parity.
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Mean value of products of values of Dirichlet L-functions at positive integers 2

Here, inspired by [BY, Proof of Theorem 2.1], we obtain in Theorem 1 an explicit
formula for theseM(m, f)’s. Then, we extend our method developed to obtain Theorem
1 to get in Theorem 7 an explicit formula for the mean value of more general products
of the form L(m1, χ1) · · ·L(mn−1, χn−1)L(mn, χ1 · · ·χn−1). In particular, for n = 2 we
obtain in Theorem 9 a much simpler formula than the one given in [LZ, Theorem 1.1]
for the mean value of the product of the values of two Dirichlet L-functions at positive
integers of the same parity.

Theorem 1. For m = 1 we have

M(1, f) =
π2

6

(
φ2(f)− 3

φ1(f)

f

)
(1)

and for m ≥ 2 we have

M(m, f) = ζ(2m)×

(
φ2m(f)+(−1)m−1

(
2m

m

) bm/2c∑
k=1

m

m− k

(
m

2k

)
B2kB2(m−k)

B2m

φ2k(f)

f2m−2k

)
,

where φl(f) =
∏
p|f (1− 1/pl) and the Bernoulli rational numbers Bk are given by

t

et − 1
=
∑
k≥0

Bk
k!
tk.

In particular, M(m, f) is asymptotic to ζ(2m)φ2m(f) as f goes to infinity.

For example, in accordance with [Lou93, Theorem 2] and [Lin, Page 371] we have:

M(2, f) =
π4

90

(
φ4(f) + 10

φ2(f)

f2

)
,

M(3, f) =
π6

945

(
φ6(f)− 21

φ2(f)

f4

)
,

M(4, f) =
π8

9450

(
φ8(f) +

14

3

φ4(f)

f4
+

200

3

φ2(f)

f6

)
,

M(5, f) =
π10

93555

(
φ10(f)− 22

φ4(f)

f6
− 231

φ2(f)

f8

)
.

2 Proof of Theorem 1

Theorem 1 readily follows from the well known formula

ζ(2m) = (−1)m−1
(2π)2mB2m

2 · (2m)!
. (2)

and from following Lemmas 2, 3 and 4.

Lemma 2. (See [Lou01, Proposition 3 and Proof of Proposition 5]). Let m ≥ 1 and
f > 2 be rational integers. Let cot(k) denote the kth derivative of cot := cos / sin. We
have

M(m, f) =
π2m

2 · ((m− 1)!)2f2m

∑
d|f
d>1

µ(f/d)Sm(d),

where

Sm(d) :=

d−1∑
k=1

(
cot(m−1)(πk/d)

)2
(d > 1).
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Lemma 3. If R(X) =
∑k

l=0 rk,lX
l ∈ Q[X] is such that R(1) = 0, then for f > 2 we

have ∑
d|f
d>1

µ(f/d)R(d) =
∑
d|f

µ(f/d)R(d) =
k∑
l=1

rk,lφl(f)f l.

Proof. Notice that
∑

d|f µ(f/d)dl =
∑

d|f µ(d)(f/d)l = f lφl(f).

Lemma 4. Set R1(X) = (X2 − 3X + 2)/3 and for m ≥ 2 set

Rm(X) = 22m·

(−1)m−1
B2m

m2
(
2m
m

)X2m +

bm/2c∑
k=0

B2kB2(m−k)

m(m− k)

(
m

2k

)
X2k − 1 + (−1)m

2

B2
m

m2

 .

Then Rm(1) = 0 for m ≥ 1 and Sm(d) = Rm(d) for m ≥ 1 and d ≥ 2.

Proof. For d ≥ 1, set

gm(d, z) = d cot(dz)
(

cot(m−1)(z)
)2

=
1

z2m+1
(dz cot(dz))(zm cot(m−1)(z))2,

a π-periodic meromorphic function of the complex variable z, with a simple pole at
each kπ/d, k ∈ Z \ dZ, of residue

Resz=kπ/d(gm(d, z) =
(

cot(m−1)(kπ/d)
)2

(k ∈ Z \ dZ) (3)

and poles of order 2m + 1 at each kπ, k ∈ Z. For R > 0, let CR be the positively
oriented rectangle of width π, height 2R and center of gravity at π/2− π/(2d).
(i). We claim that

lim
R→+∞

1

2πi

∫
CR

gm(d, z)dz =

{
−d if m = 1 and d ≥ 1,

0 if m ≥ 2 and d ≥ 1.
(4)

Indeed, since g is π-periodic the integrals over the vertical sides of CR cancel. Moreover,
since | cot(t + ib) + isign(b)| ≤ 2/(e|b| − 1) we have limb→+∞ cot(a + ib) = −i and
limR→+∞ cot(a− ib) = i uniformly in a ∈ I, where I is a given closed interval. Hence
for m = 1 we have limR→+∞ g1(d, t + iR) = di and limR→+∞ g1(d, t − iR) = −di,
uniformly in t ∈ [−π/(2d), π−π/(2d)]. The first case of claim (4) follows. Now assume
that m ≥ 2. Then cot(m−1) = Qm(cot) where the polynomials Qk(X)’s are defined
inductively by Q1(X) = X and Qk+1(X) = −(X2 + 1)Q′k(X). Consequently, we have
limR→+∞ gm(d, t + iR) = Qm(−i) = 0 and limR→+∞ gm(d, t − iR) = Qm(i) = 0,
uniformly in t ∈ [−π/(2d), π − π/(2d)]. Hence the integrals over the horizontal sides
tend to 0 as R goes to infinity for m ≥ 2 and the second case of claim (4) follows.
(ii). Now, we claim that

Rm(d) = lim
R→+∞

1

2πi

∫
CR

gm(d, z)dz − Resz=0(gm(d, z)) (m ≥ 1 and d ≥ 1). (5)

Indeed, if m = 1 then g1(d, z) = d cot(dz) cot2 z,

Resz=0(g1(d, z) = −(d2 + 2)/3

and the claims follow by (4) and the definition of R1(X). Now assume that m ≥ 2.
Using the power series expansion

z cot(z) =
∑
k≥0

(−1)k
22kB2k

(2k)!
z2k (|z| < π), (6)
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we have

zm cot(m−1)(z) = (−1)m−1(m− 1)! +
∑

k≥m/2

(−1)k
22kB2k

2k · (2k −m)!
z2k (|z| < π). (7)

Using (6) and (7) to compute the coefficient of the term z2m in the power series expan-
sion of the function (dz cot(dz))(zm cot(m−1)(z))2, we readily obtain that

Resz=0(gm(d, z)) = −Rm(d) for m ≥ 2 and d ≥ 1.

Hence claim (5) follows from (4).
(iii). Finally, we use the residue theorem. For d = 1, noticing that z = 0 is the only pole
of gm(1, z) inside CR and using (5) we obtain Rm(1) = 0 for m ≥ 1. For d ≥ 2, noticing
that z = 0 and z = kπ/d, 1 ≤ k ≤ d − 1, are the only poles of gm(d, z) inside CR and
using (5) and (3) we obtain Rm(d) = Sm(d) for d ≥ 2 and m ≥ 1, as desired.

In [EL, Corollary 6.8] the authors gave a reformulation of [BY, Corolloray 2.2]. It
would be interesting to see if their method can also be applied to a reformulation of
our Lemma 4.

3 A general explicit formula

For f > 2, n ≥ 2 and m1, · · · ,mn ≥ 1 such that m1 + · · · + mn = 2s is even, we set
−→m = (m1, · · · ,mn) and

M(−→m, f) =

(
2

φ(f)

)n−1
×

∑
χ1(−1)=(−1)m1

· · ·
∑

χn−1(−1)=(−1)mn−1

L(m1, χ1) · · ·L(mn−1, χn−1)L(mn, χ1 · · ·χn−1).

Hence, (χ1 · · ·χn−1)(−1) = (−1)mn . Using the formula

L(m,χ) =
(−1)m−1πm

2 · fm · (m− 1)!

f−1∑
k=1

χ(k) cot(m−1)(πk/f) (whenever χ(−1) = (−1)m).

proved in [Lou01, (1)], we have

M(−→m, f) =
(−1)nπ2s

2nf2s
∏n
l=1(ml − 1)!

×
f−1∑
kn=1

f−1∑
k1=1

· · ·
f−1∑

kn−1=1

(
n∏
l=1

cot(ml−1)(πkl/f)

)n−1∏
l=1

2

φ(f)

∑
χl(−1)=(−1)ml

χl(kl)χl(kn)

 .

We have the following orthogonality relations for the φ(f)/2 characters χl’s modulo
f > 2 for which χl(−1) = (−1)ml :

2

φ(f)

∑
χl(−1)=(−1)ml

χl(kl)χl(kn) =


1 if kl ≡ kn (mod f) and gcd(kn, f) = 1,

(−1)ml if kl ≡ −kn (mod f) and gcd(kn, f) = 1,

0 otherwise.

Noticing that χl(−kn) cot(ml−1)(−πkn/f) = χl(kn) cot(ml−1)(πkn/f) whenever χl(−1) =
(−1)ml , we obtain

M(−→m, f) =
(−1)nπ2s

2f2s
∏n
l=1(ml − 1)!

f−1∑
kn=1

gcd(kn,f)=1

n∏
l=1

cot(ml−1)(πkn/f).

The following generalization of Lemma 2 follows:
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Lemma 5. For f > 2, n ≥ 2 and m1, · · · ,mn ≥ 1 such that m1 + · · · + mn = 2s is
even we have

M(−→m, f) =
(−1)nπ2s

2 · (m1 − 1)! · · · (mn − 1)! · f2s
∑
d|f
d>1

µ(f/d)S−→m(d),

where

S−→m(d) =

d−1∑
k=1

n∏
l=1

cot(ml−1)
(
kπ

d

)
(d > 1).

Now, for d ≥ 1 a rational integer, we set

g−→m(d, z) = d cot(dz)

n∏
l=1

cot(ml−1)(z) =
(dz cot(dz))

∏n
l=1 z

ml cot(ml−1)(z)

z2s+1
,

a π-periodic meromorphic function of the complex variable z, with a simple pole at
each kπ/d, k ∈ Z \ dZ, of residue

Resz=kπ/d(g−→m(d, z) =
n∏
l=1

cot(ml−1)(kπ/d) (k ∈ Z \ dZ) (8)

and poles of order 2s + 1 at each kπ, k ∈ Z. Let T−→m(X) denote the coefficient of
zm1+···+mn in the formal power series expansion∑
k≥0

(−1)k
22kB2k

(2k)!
X2kz2k

 n∏
l=1

(−1)ml−1(ml − 1)! +
∑

k≥ml/2

(−1)k
22kB2k

2k · (2k −ml)!
z2k

 .

Hence, T−→m(X) is a polynomial of degree 2s = m1 + · · ·+mn, with rational coefficients
and leading coefficient

(−1)s−n
22sB2s

(2s)!

n∏
l=1

(ml − 1)!

and
Resz=0(g−→m(d, z)) = T−→m(d) for d ≥ 1. (9)

With the same proof, we have the following generalization of (4):

lim
R→+∞

1

2πi

∫
CR

g−→m(d, z)dz =

{
(−1)n/2d (if m1 = · · · = mn = 1),

0 otherwise.
(10)

(n must be even if m1 = · · · = mn = 1).
We have the following generalization of Lemma 4:

Lemma 6. Set

R−→m(X) = −T−→m(X) +

{
(−1)n/2X (if m1 = · · · = mn = 1),

0 otherwise.

Then R−→m(1) = 0 and S−→m(d) = R−→m(d) for d ≥ 2.

Proof. By (9) and (10), for d ≥ 1 we have

R−→m(d) :=
1

2πi

∫
CR

g−→m(d, z)dz − Resz=0(g−→m(d, z)).

We use the residue theorem. For d = 1, noticing that z = 0 is the only pole of g−→m(1, z)
inside CR, here again we get

R−→m(1) = 0. (11)

For d ≥ 2, noticing that z = 0 and z = kπ/d, 1 ≤ k ≤ d − 1, are the only poles of
g−→m(d, z) inside CR and using (8), we obtain R−→md) = S−→md).
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By Lemma 6, Lemma 3 and (2), and noticing that T−→m(X) is even we end up with
the following generalization of Theorem 1:

Theorem 7. Write

T−→m(X) = (−1)s−n
22sB2s

(2s)!

(
n∏
l=1

(ml − 1)!

)(
X2s +

s−1∑
k=0

r−→m,2kX
2k

)
,

Then, for f > 2 we have

M(−→m, f) = ζ(2s)×

(
φ2s(f) +

s−1∑
k=1

r−→m,2k
φ2k(f)

f2s−2k

)

+

{
(−1)n/2 π

nφ1(f)
2fn−1 (if m1 = · · · = mn = 1),

0 otherwise.

In particular, as f goes to infinity M(−→m, f) is asymptotic to

ζ(2s)φ2s(f), where 2s = m1 + · · ·+mn.

4 Several explicit examples

4.1 First example.

By Lemma 6 we have S−−−−→
(1,1,2)

(d) = R−−−−→
(1,1,2)

(d) = −T−−−−→
(1,1,2)

(d). By (9), we obtain

S−−−−→
(1,1,2)

(d) = −T−−−−→
(1,1,2)

(d) = −Resz=0(d cot(dz) cot2(z) cot′(z)) = − 1

45
d4 +

1

9
d2 − 4

45
.

Therefore

M(
−−−−→
(1, 1, 2), f) = − π4

2f4

∑
d|f

µ(f/d)S−−−−→
(1,1,2)

(d) =
π4

90

(
φ4(f)− 5

φ2(f)

f2

)
,

by Lemma 5 and Lemma 3. We have recovered [Alk, Theorem 1].

4.2 Second example.

Theorem 8. Let n ≥ 2 be even. For f > 2 set

Mn(f) =

(
2

φ(f)

)n−1 ∑
χ1(−1)=−1

· · ·
∑

χn−1(−1)=−1

L(1, χ1) · · ·L(1, χn−1)L(1, χ1 · · ·χn−1).

Then

Mn(f) = ζ(n)×

φn(f) +
n!

Bn

n/2−1∑
k0=1

Cn,n/2−k0
B2k0

(2k0)!

φ2k0(f)

fn−2k0

+ (−1)n/2
πnφ1(f)

2fn−1
,

where

Cn,N =
∑

e1,··· ,eN≥0
e1+2e2···+NeN=N

n!

(n− (e1 + · · ·+ eN ))!

N∏
l=1

1

el!

(
B2l

(2l)!

)el
(n ≥ N ≥ 1).
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Proof. Here

T−→m(d) = (−1)n/2
2nBn
n!

∑
k0,k1,··· ,kn≥0

k0+k1+···+kn=n/2

n!

Bn

(
n∏
l=1

B2kl

(2kl)!

)
B2k0

(2k0)!
d2k0 .

Now, for n ≥ N ≥ 1 and F : Z≥0 → C∗ such that F (0) = 1, e.g. for F (k) = B2k/(2k)!,
we have

∑
k1,··· ,kn≥0
k1+···+kn=N

n∏
l=1

F (kl) =
∑

e1,··· ,eN≥0
e1+2e2···+NeN=N

n!

(n− (e1 + · · ·+ eN ))!

N∏
l=1

F (l)el

el!
,

by letting el denote the number of ki’s which are equal to l and by noticing that we
have

(
n
e0

)
possible choices of the ki’s which are equal to 0, then

(
n−e0
e1

)
possible choices

of the ki’s which are equal to 1,..., and finally by using e0 + e1 + · · · eN = n and(
n

e0

)(
n− e0
e1

)
· · ·
(
n− (e0 + e1 + · · ·+ eN−1)

eN

)
=

n!

e0!× e1!× · · · × eN !
.

For example,

M2(f) =
π2

6

(
φ2(f)− 3

φ1(f)

f

)
,

in accordance with (1),

M4(f) =
π4

90

(
φ4(f)− 20

φ2(f)

f2
+ 45

φ1(f)

f3

)
and

M6(f) =
π4

945

(
φ6(f)− 21

φ4(f)

f2
+

483

2

φ2(f)

f4
− 945

2

φ1(f)

f5

)
For f = 3, there is only one odd character χ modulo 3, and L(1, χ) = π

3
√
3
. Hence,

Mn(3) = πn

33n/2 . Our formulae do give M2(3) = π2

33
, M4(3) = π4

36
and M6(3) = π6

39
.

4.3 Third example.

We have the following generalization of Theorem 1:

Theorem 9. For m ≥ 1, n ≥ 1 of the same parity and (m,n) 6= (1, 1), we have

M(
−−−−→
(m,n), f) =

2

φ(f)

∑
χ(−1)=(−1)m=(−1)n

L(m,χ)L(n, χ)

=ζ(m+ n)×

(
φm+n(f)

+ (−1)m−1
(
m+ n

m

) bm/2c∑
k=1

n

m+ n− 2k

(
m

2k

)
B2kBm+n−2k

Bm+n

φ2k(f)

fm+n−2k

+ (−1)n−1
(
m+ n

n

) bn/2c∑
k=1

m

m+ n− 2k

(
n

2k

)
B2kBm+n−2k

Bm+n

φ2k(f)

fm+n−2k

)
.

In particular, M(
−−−−→
(m,n), f) is asymptotic to ζ(m+ n)φm+n(f) as f goes to infinity.
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Proof. Use Lemma 6, notice that

T−−−→
(m,n)

(X) = 2m+n×

(
(−1)

m+n
2

Bm+n

mn
(
m+n
n

)Xm+n

− (−1)
m−n

2

bm/2c∑
k=1

B2kBm+n−2k
m(m+ n− 2k)

(
m

2k

)
X2k

− (−1)
n−m

2

bn/2c∑
k=1

B2kBm+n−2k
n(m+ n− 2k)

(
n

2k

)
X2k

+ (−1)
m+n

2
1 + (−1)m

2

1 + (−1)m

2

BmBn
mn

)
.

and finally use Lemma 5.

Our explicit formula for M(
−−−−→
(m,n), f) is much simpler than the ones given in [LZ,

Theorem 1.1] and [OO, Theorem 1.2]. For example, the first term in the formula given
[LZ, Theorem 1.1] is

(−1)(m−n)/2
(2π)m+n

2 ·m! · n!
φm+n(f)

m∑
a=0

n∑
b=0

Bm−aBn−b

(
m
a

)(
n
b

)
a+ b+ 1

.

By (2), this first term being equal to the one ζ(m + n)φm+n(f) of Theorem 9 is tan-
tamount to saying that Bm+n = (−1)n

(
m+n
n

)∑m
a=0

∑n
b=0Bm−aBn−b. This is probably

correct and at least we checked it for several values of m and n.
Notice that for m ≥ 2 we have M(

−−−−→
(m,m), f) = M(m, f) and we recover the formula

given in Theorem 1.

4.4 Fourth example.

For m,n ≥ 1, Theorem 7 gives a formula for

M(
−−−−−−−−−→
(m,n,m+ n), f) =

4

φ(f)2

∑
χ1(−1)=(−1)m

∑
χ2(−1)=(−1)n

L(m,χ1)L(n, χ2)L(m+ n, χ1χ2)

much simpler than the one given in [OO, Theorem 1.1].
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