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Abstract—Social robotics continues to expand as a prominent
area of research due to the increasing use of robots in settings
involving social interactions. In this paper we study the social
dimension of human robot interaction during a posture imitation
game. We discuss how human personality traits influence a learn-
ing robot. A neural architecture is used to enable autonomous
and interactive learning. We address this issue by linking the
performance of the robot algorithms (learning trajectory, conver-
gence, recognition score...) to the personality traits of its partners
(extraversion and anxiety).

As results of this work we noticed the emergence of pattern
related to the extraversion trait of individuals interacting with
the robot but no evidence for anxiety. By analyzing the robot’s
learning with each partner, we observe that the acquisition time
of the partner’s visual representation was correlated with the
extraversion trait. The results show that even in a simple posture
imitation game, we observe a fluctuation in a robot’s learning
based on the personality traits exhibited by its human partner.

Index Terms—Social robotics, developmental learning, human-
robot interaction, personality traits, extraversion

I. INTRODUCTION

Due to the increasing use of robots in healthcare, education,
domestic assistance and assistive technologies, we see a higher
interest for social robotics. Research is progressively exploring
how robots can engage in social interactions with people.
Various approaches are employed to address this question.
Some studies assess the acceptance of robots as social partners
[1], while other aim to imbue robots with behaviors to simulate
specific personality traits [2]. In healthcare some studies assess
human-robot interaction in the context of pathology either
by developing improved models for effective interaction with
disabled individuals or using robots as tools to study these

pathologies [3]. However few studies tend to assess human-
robot interactions with an emphasis on human personality
traits. To our knowledge, the prevalent method in these studies
involves using scripted or teleoperated robots (”Wizard of Oz”
experiment) [4], [5]. Here, it’s presumed that the robot acts as
an extension of the human operating it. Consequently, any
changes in how the partner interacts with the robot can be
attributed solely to the operator involvement in the interaction
process.

Fig. 1: The five postures of the human-robot imitation game

Contrary to this studies we aim to follow a developmental
learning approach to build an effective social interaction
between the human and the robot and those by taking inspi-
ration from the learning mechanism and social construction
in human. The social cognitive theory by Bandura [6], [7]
assumes that part of a child’s social learning can be achieved
through direct instruction, where the social partner explicitly
tells children what is expected of them, modulating behavior
through reward and punishment mechanisms. Nevertheless,
personality models also are acquired by the child using im-
itation mechanisms (imitation of parents, relatives or other



interactional partners) [8]. Meltzoff and Moore demonstrated
that imitation was innate in humans, finding that this ability
was found in babies aged between 42 minutes and 72 hours
[9], [10]. Imitation in the newborn provides a tool for the
construction of social cognition and is fundamental in the
development of a theory of mind mechanism and empathy
for others [19]–[21]. Imitation is seen as a dynamic embodied
process of interpersonal coordination that allows both psycho-
logical connectivity and differentiation between self and other
[22].

This paper delves into the dynamics of imitation interactions
between humans and robots, with a specific focus on the
interplay between a human and an autonomous robot. In
these interactions, the robot learns to imitate postures through
an interactive loop with its human counterpart. The primary
objective of this research is to investigate the impact of human
personality traits on the robot’s learning process. From robot-
centric approach 1, our study tackles to unravel the central
question: How does the human behavior, shaped by individual
personalities, influence a robot’s learning?

II. STATE OF THE ART

Before delving into how personality might affect a robot’s
learning during human-robot interaction, it’s essential to first
examine studies exploring the impact of personality on human
behavior within human-human interactions. Understanding
how personality traits shape human interactions provides a
foundational understanding of how these traits might manifest
or influence interactions involving robots.

Hauschild et al. conducted a comprehensive experiment
involving the congruence effect [15]. Their investigation pri-
marily focused on examining the relationship between bor-
derline personality disorder, loneliness, and their impact on
mimicry. The results showed two findings: a) a heightened
prevalence of mimicry in individuals with borderline person-
ality disorder, and b) a distinctive pattern emerged in the
influence of loneliness on mimicry when comparing borderline
and typical participants. Specifically, the study revealed that
heightened loneliness in individuals with borderline personal-
ity disorder correlated with a reduced tendency to engage in
mimicry, while in typical participants, an inverse relationship
was observed — increased loneliness was associated with a
greater likelihood of mimicry. Dijk et al. demonstrated that the
mimicry of an individual’s smile becomes more pronounced
when experiencing social anxiety. The experiment featured an
interactive scenario between an actress and a participant [14].
The actress narrated a story and incorporated specific facial
expressions at strategic points. Notably, this study revealed
a crucial insight: the heightened mimicry effect manifested
during face-to-face interactions but did not occur when the
individual was exposed to a video. This distinction underscores
the nuanced nature of the impact of social anxiety on smile
mimicry, emphasizing the importance of real-time interper-
sonal dynamics in eliciting such responses.

1By robot-centric approach, we mean an analysis of the robot’s learning
carried out during the interaction with the human partner [11]–[13]

Studying the influence of personality on the handshake
Orefice et al. tried to generalize their observations from a
human-human interaction to a human-robot interaction [16]. In
their study of human-human interaction they placed pressure
and speed sensors on different parts of the hands of individuals
as they performed the task. These individuals also completed
personality questionnaires. The results of this study showed
that a set of characteristics linked to the way individuals
performed a handshake, including firmness, pressure and incli-
nation of the grip, were indicative of gender as well as anxiety.
However, the results concerning gender differentiation were
indeed generalizable to the level of Human-Robot interaction.
Nevertheless, no results were found regarding the influence of
personality on human-robot interaction.

In a study on social personal distance, Walters et al. showed
that the majority of participants maintained the same interac-
tion distance whether interacting with a human or a robot [4].
They also showed that this interaction distance depended on
social traits such as proactivity.

Anzalone et al. designed an experiment enabling sponta-
neous interaction between a human and a robot [5]. A human
is positioned in front of a robot controlled by an operator. The
robot hands an object to the human without any instructions.
Using non-verbal features describing the interaction such as
amount of movement, distance between human and robot,
synchrony of behavior, they were able to detect anxiety levels
of the individual interacting with the robot.

Even if these studies show that the human modulates
his behavior according to his social traits while interacting
with a robot. They have some limitations. The robot being
teleoperated by a human operator (wizard of Oz technique),
we can assume that the robot is an extension of the human
who controls it, and that if the partner exhibits a variation in
behavior towards the robot, it is only due to the presence of
a human in the interaction loop. The study by Boucenna et
al. addresses this limitation by using an autonomous learning
robot [11], [17]. In this study, a new ”robot-centric” approach
was introduced, making it possible to evaluate and quantify
behavioral differences in the robot’s partners. This approach
consists of an architecture that enables the robot to learn
interactively and autonomously with a human partner through
imitation. The architecture was tested in interaction with
three different groups: healthy adults, typically developing
children and children with autism spectrum disorders [12],
[13], [18]. By analyzing metrics assessing robot learning,
different patterns emerged according to each group, showing
that the nature of the group has an impact on robot learning.

This paper builds upon previous research, extending its
focus from pathology to personality traits. By utilizing an
autonomous learning robot, we aim to delve into the intricate
dynamics of human-robot interaction, specifically examining
how human personality traits impact the learning mechanisms
of a robot. This shift in focus from pathology to personality
traits allows for a more comprehensive understanding of how
individual characteristics affect the human-robot interactions.



III. METHODOLOGY

Using a mirroring paradigm, a robot learns by interacting
with a human partner. The robot learns to recognize simple
postures and reproduce them. Considering this imitation game,
we want to see if human personality traits influence robot’s
learning. The choice of imitation as a paradigm is motivated
by the aforementioned multidisiplinary studies that link child
developement and social traits.

A. Experimental protocol

The task performed in this protocol is a posture imitation
game between the robot and a human partner. The protocol
consists of two phases :

Learning phase: During the first phase, the robot performs
pre-coded postures randomly (figure 1). While the robot per-
forms these postures, the human partner imitates it. Using its
visual perception and proprioception, the robot associates what
it sees with what it does achieving a sensory-motor coupling
between the visually perceived human partner and its motor
proprioception (the posture it is performing). The robot can
learn, in real time, in less than two minutes to recognize pre-
coded postures (figure 1) and reproduce them to imitate the
human partner.During this phase, images of the partner and the
robot’s internal states are recorded for subsequent simulations.

Validation phase: In this second phase, the robot is able to
recognize its partner’s postures. So it’s the human partner’s
turn to perform one of the preceding postures, and the robot
recognizes and reproduces it. By performing a succession of
postures, a game of imitation led by the human partner is
established. This phase assesses the robot’s recognition of the
partner’s postures.

IV. PARTICIPANTS
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Fig. 2: distribution of 146 participants and 51 selected on
anxiety and extraversion scores

The study was carried out within the INSEAD-Sorbonne
Université Behavioural lab (INSEAD stands for ”Institut
Européen d’Administration des Affaires”). The INSEAD-
Sorbonne Université Behavioural lab is a structure that fa-
cilitates the performance of certain behavioral studies. This

structure takes care of recruiting individuals and provides an
experiment room. The final experiment took place in two
stages:

a) 146 people completed questionnaires at home on a
computer via an INSEAD platform (BFI-Fr and STAI-Y).

b) The number of people we could involve in the experiment
was set around 50, due to logistical and material constraints.
To evaluate the influence of a personality trait, it is preferable
to have a sample of participants representative of the entire
spectrum of that personality trait. With a population of 50,
we choose to focus on anxiety and extraversion during the
selection of participants (these two traits having given good re-
sults during pilot experiments). 55 of the 146 participants were
therefore selected on the basis of their anxiety and extraversion
scores 2. The distribution of these people’s scores for the
anxiety and extraversion traits covered the whole spectrum
of these two traits(figure 2). The 55 people were invited to
visit the INSEAD behavioural lab within two weeks of the
first phase. At the INSEAD behavioral lab, the participants
carried out interactions with the robot. The participants receive
a compensation of 10 euros for their participation at the end of
the interaction. Of the 51 participants, 22 were women and 29
men. The average age is 23.25 years and the standard deviation
is 3.31 years.

All 146 participants received information about the ex-
periment and gave written consent prior to participation.
The protocol was approved by the ethics committee of the
INSEAD-Sorbonne University Behavioural lab.

A. Personality assessment

To assess the participants’ personality traits, each of them
completed the following questionnaires.

• The big five inventory (BFI-Fr) : a personality ques-
tionnaire based on the ”big five” model, widely used
in the study of personality. The model is based on five
independent dimensions (Openness, Conscientiousness,
extraversion, Agreeableness, Neuroticism) [23]

• The State-Trait Anxiety Inventory (STAI) (Form Y) :
a questionnaire which allows the assessment of two
characteristics (state anxiety which is immediate anxiety
corresponding to the moment of the questionnaire and
trait anxiety which assesses anxiety as a stable character-
istic) [24]

V. NEURAL ARCHITECTURE

We used a sensory-motor architecture that enables
perception-action conditioning to be learned. It consists of a
visual perception module and a learning one. The learning
part is made up of a set of artificial neural network layers.
During learning, the robot performs a posture in a predefined
alphabet (figure 1). Simultaneously, the robot learns the visual
input and associates it with the performed posture.

2Due to a material problem during the experiment, four of the 55 recordings
have been discarded



A. Visual perception

The aim of this part of the architecture is to build a
representation of the robot’s partener using an attenttional
vision mechanism. This representation, referred to as visual
patterns in the following, will be learned and evaluated by
the different layers of neurons (see section V-B). We start by
searching for points of interest 3 on the visual field of the robot.
Firstly, the image perceived by the robot is transformed into
a grayscale image. This image is then subjected to gradient
extraction. The resulting gradient image is convolved by a
difference of Gaussians. Once the difference of Gaussians has
been calculated, we search for points of interest by calculating
local maxima through competition between adjacent points.
For each of the previously retrieved points of interest, a
visual pattern is extracted. The visual pattern is a small
image of the point of interest’s neighborhood which undergoes
a transformation from Cartesian space to polar logarithmic
space.

B. Visual patterns learning

The characteristic patterns of each image are learned and
recognized by the VF (Visual features) neural layer. VF is a
variant of the k-means algorithm, which allows the number
of clusters (in this case neurons) to be modified during the
learning process. This algorithm is called a SAW (selective
adaptive winner). The VF output is calculated as follows:

V Fj = netj ·Hγ(netj) with netj = 1
1

N

N∑
i=1

|Wij − Ii|

V Fj is the activation of neuron j of group V F . N is the size
of the vector representing each thumbnail(pattern) I . Hγ is
the thresholding function (Heaviside):

Hγ =

{
1 if γ < x
0 otherwise

γ is a vigilance parameter. It is chosen empirically. This
parameter is a threshold for pattern recognition by the VF
layer. If pattern recognition is below γ, a new neuron (corre-
sponding to a new cluster) is recruited (incremental learning)
to represent it. The learning rule enables both ”one-shot”
learning when a new pattern appears, and long-term averaging
when a similarity with an existing pattern is observed. The
change in Wij weights is calculated as follows:

∆Wij = aj(t)Ii + µ(1− δkj )(Ii −Wij)(1− V Fj) (3)

k = ArgMax(aj) et aj =

{
1 if new neuron
0 otherwise

3Salient points or points of interest are points considered interesting in
the image (whose neighborhood carries information). For this search, we use
filters inspired by the center-off cells of the visual system in certain animals
pecies

Fig. 3: Neural layers corresponding to the evaluated metrics:
a) number of VF layer neurons and time of convergence, b)
human partner posture recognition score

and δkj is Kronecker’s symbol :

δkj =

{
1 if j = k
0 otherwise

The µ parameter is the learning speed. It is chosen empirically.
This parameter plays an important role in the recognition task:
as with the threshold γ, if µ is too large, too much memory
will be used and the system’s generalization will decrease,
but if µ is too small, the averaging will be too great and the
recognition score will fall.

C. Posture learning and prediction

During the learning phase, the VF layer learns the visual
patterns that the robot receives. VF neurons are activated
according to the patterns detected in each image (the robot’s
visual stimuli). Posture learning corresponds to a classification
of active VF neurons according to the robot’s internal state.
The robot’s internal state is indicated by the RIS (Robot
Internal State) layer. Each neuron in the RIS layer corre-
sponds to a pre-coded robot posture. The layer that performs
the classification mentioned above is the ISP (Internal State
Prediction) layer. The ISP layer functions as a conditioning
mechanism. It builds a conditioning signal that will be used
during the validation phase, using a reflex signal corresponding
to the simultaneous activation of neurons in the VF and RIS
layers. To summarize, during the learning phase, the ISP
(Internal State Prediction) layer links simultaneously active
VF and RIS neurons using Widrow and Hoff’s least-squares
learning rule:

∆wij = µ · V Fi · (RISj − ISPj) (4)

During the validation phase, it is no longer the RIS layer
that controls the robot’s motricity, but the output of the ISP
layer after some filtering (figure 3). The output of the ISP
layer is calculated as follows:

ISPj =

N∑
i=1

V Fi · wij (5)



Final filtering: During the validation phase (see section
III-A), sudden changes in robot posture may occur due to the
human partner, or wrong recognition of a given image. This
creates both physical instability for the robot, and confusion
in the interaction between the robot and its human partner. To
overcome this problem, a low-pass filtering mechanism is used
in the STM (Short Term Memory) layer over a given time (N
iterations). The formula is as follows:

STMi(t+ 1) =
1

N
ISPi(t+ 1) +

N − 1

N
STMi(t) (6)

Finally the PR(Posture Recognition) neural layer uses a
”winner take all” mechanism on the STM layer to determine
the posture that best responds to the visual stimulus.

D. Assessed metrics

We carried out this investigation on each learning level of
the architecture (figure 3). Firstly, the VF neuron layer recruits
neurons to learn a representation of the robot’s visual stimuli.
Each neuron learns a pattern characterizing the postures of
the human partner. The number of neurons in VF can be seen
as a measure of learning complexity and partner imitation
variability. The second metric is the time it takes to achieve
this variability representation (The time for the VF layer to
reach a maximum number of neurons when all the multiple
patterns of a partner visual representation are learned). Third,
to assess learning of the imitation task as a whole, posture
recognition scores are used.

VI. RESULTS

A. Personality assessment
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Fig. 4: Histogram of participants’ scores

Given our sample we first check the BFI and anxiety traits
distribution. As we can see on the figure 4 all extraversion and

anxiety scores are represented in our sample. Even if we didn’t
reach the uniform distribution, the less represented scores (x ∈
[1, 2[) for the extraversion have more then 10% participants of
the sample. The difficulty of achieving a uniform distribution
on our sample can be explained by the real distribution of the
Big5 across general population which is a normal one [23].

B. Influence of social traits on robot learning

Extraversion Anxiety
Number of VF neurons (r = −0.21, p = 0.14) (r = 0.12, p = 0.39)
Posture recognition scores (r = 0.05, p = 0.72) (r = −0.19, p = 0.20)
Visual representation learning time (r = 0.23, p = 0.03) (r = −0.08, p = 0.56)

TABLE I: Pearson correlation results and p-values between
personality traits scores and the robot centric metrics

To assess the influence of the human’s partener social
traits on the robot’s learning we evaluated pearson’s corelation
for each learning metrics withe the extraversion and anxiety
trait scores. By analyzing the needed time for the robot to
build a complete representation of each participant, we were
able to observe, as shown in table I and figure 5.a, that the
acquisition time of the partner’s visual representation is cor-
related with the extraversion trait. The correlation is positive,
(r = 0.30, p = 0.04). In other words, the robot needed more
time to build a visual representation of extrovert partners.
However the difference in learning time inter individuals
is less than one second (corresponding to 20 images : the
frame-rate of the camera). Note that even after removing the
points that appear to be outliers, we still obtain a correlation
(r = 0.32, p = 0.03)(figure 5.b). Contrary to the previous
result the pearson correlation for the anxiety trait gave a non
significant negligible correlation of (r = −0.08, p = 0.56)
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Fig. 5: Correlation between extraversion score and time re-
quired to learn the VF layer. a) Correlation for all participants.
b) Correlation with outliers removed

Using the same approach of our previous papers [12],
[13], [18], we calculated the correlations between the number
of neurons recruited on VF layer with the extraversion and
anxiety traits scores. However the evolution of this metric
didn’t give significant results as we can see on the table I. The
results for extraversion trait and anxiety trait are respectively
(r = −0.21, p = 0.14) and (r = 0.12, p = 0.39). There was
no observed correlation between the posture recognition scores
and the personality traits. The results for extraversion and



anxiety were (r = 0.05, p = 0.72) and (r = −0.18, p = 0.19)
, respectively.

VII. DISCUSSION

In this paper we study how the diversity of human behavior
based on their personalities influences a robot’s learning during
human-robot interaction. We study an imitation interaction
between a human and a robot where the robot is a perfectly
autonomous entity. The robot automatically learns an imitation
task in an interactive loop with a human partner. We focused
our study on anxiety and extraversion traits and follow a
robot centric approach to assess the influence of the human’s
personality traits on the robot learning. In this paper we use
different metrics underlying the robot learning which are the
needed time for the robot to build a visual representation of
it’s parteners, the number of neurons needed to achieve this
representation (maximum number of neurons on VF layer) and
the posture recognition scores.

Assessing the needed time for the robot to build a complete
representation of each of its human partners during the inter-
action, we observe a fluctuation in the robot’s learning based
on the personality traits exhibited by its human partner. this
fluctuation is characterised by a correlation of 0.3 between the
partner extraversion trait and the needed time for the robot to
build a visual representation of it’s partner. This meaning that
the robot needed more time to build a complete representation
while interacting with more extrovert people. However the
evaluation of the anxiety trait using this metric didn’t show
any significant result.

In contrast to our previous studies were we assessed the
influence of pathology and age on the developmental learning
of a robot and showed that for each interaction of the robot,
the learning phase duration, the number of recruited neurons
and the posture recognition scores depends on the different
groups the partner of the robot belongs to (children with
ASD, typical child, adults) [12], [13], [18], we didn’t see any
significant influence of the extraversion or anxiety on those
metrics. One hypothesis is that contrary to ASD population
where state of the art addressed some motor impairment,
the motor behaviour variations according to personality traits
doesn’t variate enough to affect the scores of recognition.

This study being in an initial stages, the limited results
can be due to the imitation task being too simple (only five
postures). The task is maybe too contrenious and doesn’t
allow the partners a high degree of freedom to express their
personality over their behaviour. Studies show that imitation
is deeply linked to the notions of purpose and intention [20],
[25], one solution could be the integration of the imitation
game in a goal directed task, by offering the human a goal to
achieve during the interaction, the human’s influence on the
robot’s learning might be more pronounced.
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