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Abstract 22 

Current environmental changes can drastically affect aquatic freshwater ecosystems. 23 

Salinization is one such change that affects freshwater species due to osmotic costs, 24 

which induce a wide variety of behavioural responses, including altered response to 25 

predation. This is particularly important in larval anurans, known to modulate their 26 

morphology, physiology and behaviour in response to salinity. Although these 27 

responses are known for long-term exposure, the effects of shorter exposure to salinity, 28 

relevant for coastal biodiversity as a result of seawater intrusions and precipitation 29 

variations, have rarely been assessed despite their importance in understanding the 30 

speed at which impacts on biodiversity occur. In this study, we experimentally 31 

acclimated larvae of spined toad (Bufo spinosus) during two weeks to freshwater (zero 32 

g/litre) or to moderate levels of salinity (four g/litre). The response to predation, 33 

activity and spatial movements of each individual was then assessed both at the 34 

salinity of acclimation and after a change in salinity. We demonstrated that medium-35 

term exposure to salinity decreased activity, decreased growth and increase mortality.  36 

In contrast, sudden changes in salinity increased the escape distance of tadpoles in 37 

response to a predation stimulus but decreased activity. These results suggest that the 38 

exposure to both stressors (predation cues and varying salinities) lead to an increased 39 

activity presumably linked to a stress response. However, individuals exposed to a 40 

change in salinity (from zero to four g/litre salinity) or to moderate salinity for 41 

medium durations expressed similar behavioural responses, indicating that the 42 

detrimental effects of high salinity can occur rapidly (<one hour). Future studies 43 

should investigate the dynamics of osmolality in larval anurans exposed to brackish 44 

water in order to assess whether these behavioural shifts are linked with hydro-45 
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mineral dysregulation, and the duration after which this hydro-mineral dysregulation 46 

occurs.   47 

Key-words: Growth, Osmotic stress, Mortality, Movement complexity, Predation, 48 

Tadpoles  49 
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INTRODUCTION 50 

Current environmental changes can dramatically affect freshwater ecosystems 51 

(Angeler et al., 2014; Jackson et al., 2016; Woodward et al., 2010). Salinization, the 52 

increase of salinity in water bodies, is one such change that affects many wetlands 53 

worldwide (Cunillera-Montcusí et al., 2022; Herbert et al., 2015; Kaushal et al., 2018). 54 

Salinization can result from natural (primary salinization) or human-induced 55 

processes (secondary salinization; Herbert et al., 2015).  Secondary salinization is 56 

linked to the alteration of the hydrobiological cycle (Neubauer & Craft, 2009) in 57 

response to several different causes such as sea-level rise (Llovel et al., 2019; Nicholls 58 

& Cazenave, 2010; Werner & Simmons, 2009), increase in frequency and intensity of 59 

marine storms (IPCC, 2022), changes in precipitation and riverine flow (Herbert et al., 60 

2015; Martínez-Megías & Rico, 2021; Neubauer & Craft, 2009), application of road de-61 

icing salt (Denoël et al., 2010; Hall et al., 2017; Hintz & Relyea, 2019; Sanzo & Hecnar, 62 

2006), or water and land uses linked to anthropogenic activities (Alcérreca-Huerta et 63 

al., 2019; Ghalambor et al., 2021; Herbert et al., 2015; Leal Filho et al., 2022; Mulamba 64 

et al., 2019; Tweedley et al., 2019). All these processes have led to unprecedented rates 65 

of salinization worldwide (Cunillera-Montcusí et al., 2022; Hintz et al., 2022; Kaushal 66 

et al., 2018), which is currently threatening biodiversity (Herbert et al., 2015).  67 

 68 

Freshwater species are, with some exceptions (Cañedo-Argüelles et al., 2013; 69 

Hopkins & Brodie, 2015; Walker et al., 2023), generally intolerant to relatively high 70 

salinity levels (Kumar & Afaq, 2022). Indeed, maintaining osmolality in saline 71 

environments is metabolically costly (Evans & Kültz, 2020; Lillywhite & Evans, 2021; 72 
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Peña-Villalobos et al., 2013; Pistole et al., 2008; Rivera-Ingraham & Lignot, 2017; 73 

Schultz & McCormick, 2012), and alter energetic allocation to other organismal 74 

functions such as gas exchange (Kidder III et al., 2006), growth (Alkhamis et al., 2022; 75 

Cañedo-Argüelles et al., 2013), energy acquisition (Alkhamis et al., 2022; Cañedo-76 

Argüelles et al., 2013; Herbert et al., 2015; Pinder et al., 2005), and body reserves 77 

through changes in food conversion rate (Luz et al., 2008) and protein and lipid 78 

contents (Wang et al., 2022). 79 

 80 

Because of these changes in energetic allocation, exposure to salinity also affects 81 

the behaviour of individuals.  Indeed, in a large variety of taxa, chronic exposure to 82 

increased salinity has been shown to induce a wide variety of behavioural responses 83 

such as reduced or supressed appetite (Ashley et al., 2021; Davenport & Ward, 1993), 84 

reduced food intake (Hannam et al., 2003; Luz et al., 2008), and reduced activity levels 85 

(Lorrain-Soligon, Bichet, et al., 2022; Wood & Welch, 2015; Zhou et al., 2022) all of 86 

which could strongly affect food acquisition.  In addition, exposure to salinity has been 87 

shown to negatively affect self-maintenance behaviours (e.g., preening in birds, 88 

Hannam et al., 2003), to increase the frequency of specific behaviours (e.g., sneezing 89 

and head-shaking to expel the secretions of salt glands, Rocha et al., 2016), and to affect 90 

social interactions (Zhou et al., 2022). Ultimately, exposure to salinity can induce 91 

behavioural responses such as saltwater avoidance and increased freshwater-seeking 92 

behaviour (Ashley et al., 2021; Gutiérrez, 2014; Lorrain-Soligon, Robin, et al., 2022) 93 

which are expected to influence species distribution (Brischoux et al., 2012, 2021).  94 

 95 
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Importantly, exposure to salinity can also interact with - and thus influence the 96 

responses to - other environmental stressors (Velasco et al., 2019). This seems 97 

particularly relevant for environmental stressors which can ultimately affect 98 

organismal fitness such as predation.  Indeed, increased salinity has been shown to 99 

reduce the intensity of anti-predator responses (Hoover et al., 2013).  Such alteration 100 

of anti-predator responses can thus strongly affect survival (Liu & Steiner, 2017). While 101 

organisms tend to avoid both saltwater and predator cues (Tietze & Gerald, 2016), 102 

salinity avoidance appears more important than predator avoidance when options are 103 

restricted (i.e., selection of freshwater with predation cues rather than saltwater 104 

without predation cues, Tietze & Gerald, 2016). Nonetheless, the combined effects of 105 

salinity and predation remains poorly studied, despite some evidences that predator-106 

induced stress can induce stronger effects than other environmental stressors (Relyea 107 

& Mills, 2001).  108 

 109 

Amphibians are particularly sensitive to salinity due to their highly permeable 110 

skin serving as a surface for respiration, and for ion and water transport (Martin & 111 

Nagy, 1997; Shoemaker & Nagy, 1984), due to their limited ability to maintain 112 

normosmolality (Katz, 1989), and due to larval dependence to the aquatic environment 113 

(Wells, 2007). As such, larval anurans are particularly well suited to study the 114 

behavioural responses to salinity exposure.  Indeed, salinity may depresses thyroid 115 

hormones in tadpoles (Gomez‐Mestre et al., 2004), and lead to changes in 116 

osmoregulatory hormones such as corticosterone and aldosterone (Tornabene, 117 

Hossack, et al., 2021; Tornabene, Crespi, et al., 2022). Exposure to salinity has also been 118 
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shown to reduce development (Gomez‐Mestre et al., 2004; Haramura, 2016; Hopkins 119 

et al., 2013; Lukens & Wilcoxen, 2020), and growth (Haramura, 2016; Lukens & 120 

Wilcoxen, 2020; Tornabene, Breuner, et al., 2021; Wood & Welch, 2015; Wu & Kam, 121 

2009). In addition, larvae exposed to higher salinity express reduced activity and 122 

foraging behaviour (Chuang et al., 2022; Hall et al., 2017; Sanzo & Hecnar, 2006; Wood 123 

& Welch, 2015), lowered responses to stimuli (Karraker, 2007), lowered swimming 124 

performance  (Haramura, 2016), erratic movements (Tornabene, Breuner, et al., 2021), 125 

and reduced speed and distance (Denoël et al., 2010), all of which can affect their 126 

susceptibility to predation. Importantly, while these effects have been widely studied 127 

in individuals reared for their entire development in brackish water, few studies have 128 

examined the responses of individuals exposed for short events of increasing salinity 129 

(but see LoPiccolo, 2022). Yet, such studies are important in order to investigate the 130 

effects of salinity variations and particularly sudden changes in salinity, which is 131 

particularly relevant in coastal environments where salinity can rapidly increase due 132 

to marine submersions (Lorrain-Soligon et al., 2021), sea-water intrusion (Gopinath et 133 

al., 2015; Ranjbar & Ehteshami, 2019), as well as changes in precipitation and riverine 134 

flow (Herbert et al., 2015; Martínez-Megías & Rico, 2021; Neubauer & Craft, 2009), and 135 

in freshwater environments due to road-deicing salt (Brady, 2012; Brady et al., 2022; 136 

Denoël et al., 2010), but also potentially rapidly decrease due to changes in 137 

precipitation regimes (Lorrain-Soligon, Robin, et al., 2023). Importantly, some of these 138 

processes induce changes in salinity occurring within very short temporal scales 139 

(within an hour, e.g. marine submersions and road-deicing salt application), while 140 
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others might induce changes in salinity across longer time scales (few days, e.g. 141 

changes in precipitations and riverine flows).  142 

 143 

In this study, to better understand the effects of salinity variation on amphibian 144 

behavior, we experimentally acclimated larvae of spined toad (Bufo spinosus) to 145 

freshwater (0 g/litre) or to moderate levels of salinity (4 g/litre) for 2 weeks. We then 146 

evaluated the response to predation (escape distance in response to a stimuli) and 147 

different metrics of behaviour (mean speed, total distance, active time, position 148 

relative to the center of an arena, and behavioural complexity) both at the salinity 149 

experienced during acclimation and after a sudden change of salinity. At the beginning 150 

and at the end of acclimation, individuals were also measured to compare growth 151 

rates. We predicted that 2 weeks exposure to salinity should decrease growth rate and 152 

increase mortality due to the sensitivity of larval anurans to salinity (Albecker & 153 

McCoy, 2017; Gomez‐Mestre et al., 2004). Additionally, we hypothesized exposure to 154 

salinity for 2 weeks would decrease performance (Denoël et al., 2010; Hall et al., 2017; 155 

Haramura, 2016; Karraker, 2007; Sanzo & Hecnar, 2006; Wood & Welch, 2015), which 156 

might decrease their responsiveness to predation.  A sudden change of salinity during 157 

behavioural tests, as compared to a longer exposure to salinity,  should increase 158 

activity due to osmotic stress but with no costs of osmoregulation (LoPiccolo, 2022).   159 

 160 

  161 
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METHODS 162 

 163 

Study species and captures 164 

The spined toad (Bufo spinosus) is a widespread amphibian species found in western 165 

Europe (Meek, 2022; Speybroeck et al., 2018). Breeding occurs in late winter, during 166 

which adults converge to reproductive ponds where they pair (amplexus) and lay their 167 

eggs.  Egg laying, embryonic and larval developments all occur in ponds. 75 tadpoles 168 

naive from salt exposure were captured from 20 to 24 April 2023 in a small pond 169 

(0.4248°W, 46.1459°N), where salinity was measured to be 0.0 g/litre using a 170 

conductimeter (YSI Professional Plus) at 15 cm depth. Sampling was focused 171 

specifically on a pond situated relatively far from the coastline and roads in order to 172 

assess the effect of salinity and its variation on individuals naïve to salt exposure. At 173 

least 18 different amplectant pairs were observed in this pond prior to sampling, 174 

suggesting that tadpoles involved in this experiment did not originate from the same 175 

family. Sampling was carried out along the banks of the pond, using transparent 176 

plastic boxes (14*7*6 cm). Tadpoles ranged from Gosner stage 30 to Gosner stage 33  177 

(Gosner, 1960), during which no significant change in behaviour  and morphology 178 

occurs (Cheron et al., 2021). 179 

 180 

Treatments 181 
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Immediately after capture, individuals were brought to the laboratory (thermally 182 

controlled room with temperature set at 17 °C and controlled photoperiod 12 h dark–183 

12 h light).  184 

Individuals were acclimated for 4 days in an individual tank (13*18*18cm) with 185 

water from the pond of origin. After these 4 days, individuals were randomly 186 

attributed to two treatments to which they were acclimated during 2 weeks in 187 

individual 2 L tanks (13*18*18cm) in which they remained during the whole duration 188 

of the experiment: control (0 g/litre salinity: 0.3 ± 0.0 g/litre, N=31), and moderate 189 

salinity (brackish water, 4 g/litre salinity 4.0 ± 0.06 g/litre, N=44). Number of 190 

individuals was higher in the moderate salinity to take into account expected mortality 191 

in this experimental group (Albecker & McCoy, 2017; Bernabò et al., 2013; 192 

Chinathamby et al., 2006; Christy & Dickman, 2002; B. Jones et al., 2015; Karraker et 193 

al., 2008; Rios-López, 2008; Sanzo & Hecnar, 2006) and maintain a sufficient sample 194 

size for final analyses. While 4 g/litre salinity might be elevated for some amphibian 195 

species (Hopkins & Brodie, 2015), amplexus and larvae of Bufo spinosus have been 196 

found up to 6 g/litre in the field (LLS pers obs., Lorrain-Soligon, Périsse, et al., 2023). 197 

Salinity treatments were obtained by dissolution of sea-salt (NaCl). Our goal was to 198 

mimic the range of salinity found in coastal environments where the species is known 199 

to reproduce (Lorrain-Soligon, Périsse, et al., 2023). For the moderate salinity group, 200 

to reach final salinity, we progressively increased the salinity of the water at a rate of 201 

1 g/litre a day to prevent osmotic shock, and because natural salinity fluctuations do 202 

not exceed ± 2 g/litre a day (Hsu et al., 2018). In the same time, we progressively 203 

replaced pond water by dechlorinated (aged) tap water.  During the remaining 204 
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procedure, water was changed once a week and tadpoles were fed ad libitum with 205 

organic spinach. Individuals were checked twice a day for mortality.  206 

 207 

Tadpole size 208 

Upon capture, individuals were individually placed in a petri dish, positioned upon a 209 

scale (graph paper), containing 2 cm of water. A picture was taken from above in order 210 

to measure total length. Measurement were performed using the software ImageJ 211 

(Schneider et al., 2012). Total length did not vary between the two treatments at the 212 

beginning of exposure (0 g/litre: 17.19 mm ± 0.32 SE; 4 g/litre: 17.88 mm ± 0.31 SE; 213 

linear model: Estimate=0.689, SE=0.485, t1.65=1.419, P=0.161). After 2 weeks, 214 

individuals were measured once again following the same protocol in order to assess 215 

growth rates which were computed as the difference between size at the end of the 216 

experiment and size at the beginning of the experiment divided by size at the 217 

beginning of the experiment. 218 

 219 

Tadpole behaviour 220 

We performed a comprehensive set of measures of behaviour at the end of the two-221 

week exposure to 2 treatments: 0 g/litre and 4 g/litre (see Figure 1). The tests were 222 

performed across 6 days, and all individuals performed the tests in the morning 223 

(between 9 a.m and 12 p.m, 6 tadpoles at a time, 3 from each acclimation treatment), 224 

under controlled light intensity. 225 
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These measures were performed at the salinity at which individuals were acclimated 226 

during two weeks (see “Medium-term responses to salinity” below); but also 227 

following a sudden change of salinity (see “Responses to salinity variations” below). 228 

 229 

Medium-term responses to salinity  230 

 231 

First, to investigate the response to predation, we assessed swimming distance in 232 

response to a stimulus. Tadpoles were placed at the start of a 70 cm half pipe closed at 233 

the two extremities and filled with the salinity corresponding to the acclimation 234 

treatment (Figure 1). Tadpoles were gently touched and the escape distance was 235 

measured. We measured 6 successive escape distances. These tests lasted for < 1 min 236 

and individuals were then transferred for the second set of behavioural tests (see 237 

below).  For analyses (see below), we used the mean distance (calculated from the 6 238 

trials, or when individuals computed at least 3 successful trials). 239 

 240 

Second, on the same day and immediately after the first test, to assess activity 241 

and spatial movements, tadpoles were placed in an individual arena (Petri dish, 242 

diameter 13.5 cm, water level 1.5 cm) filled with the salinity corresponding to the 243 

acclimation treatment (Figure 1). Tadpoles were left acclimated for 20 min, and then 244 

filmed for 35 min, using a camera placed above the arena (GoPro HERO; GoPro, San 245 
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Mateo, CA, USA). These trials thus lasted for approximatively one hour.  Videos were 246 

later analyzed to extract behavioural data (see “Videos analyses” below). 247 

 248 

Responses to salinity variations 249 

 250 

The following day, we switched salinity exposure for tadpoles, using the same 251 

protocols as previously described (Figure 1).  Tadpoles acclimated at 0 g/litre 252 

performed this second set of tests at 4 g/litre, while individuals acclimated at 4g/litre 253 

performed this second set of tests at 0g/litre (Figure 1).  To ensure that the order of the 254 

successive tests did not influence behaviour, we performed a previous trial on a 255 

subsample of 10 individuals that performed a test at 0 g/litre first, and a second test at 256 

0 g/litre the day after. We then computed mean escape distance (see paragraph 257 

below). We found that escape distance did not differ between day 1 and day 2 when 258 

individuals were exposed to the same treatment (linear mixed model: Estimate=-0.163, 259 

SE=1.849, t1.109=-0.088, P=0.930). 260 

 261 

At the end of these experiments, individuals were released at their site of capture. 262 

Individuals in the moderate salinity treatment were progressively acclimated to 263 

freshwater before release, to avoid osmotic shock. 264 

 265 

Videos analyses 266 
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Videos were analyzed with the software ToxTrac (Rodriguez et al., 2018). We 267 

used a white background in order to create a contrast that allowed the software to 268 

detect and monitor tadpoles. The successive positions of a tadpole (defined from the 269 

x- and y- calibrated coordinates within the Petri dish) were then extracted per frame, 270 

and the distance moved between two consecutive frames was calculated. Using 271 

‘Tracking RealSpace’ data, we determined the total duration of activity; the total 272 

distance travelled (relative to total length), mean swimming speed (relative to total 273 

length), and frequency of a tadpole being within 50mm of the center of the arena (based 274 

on the central point of the tadpole). Indeed, tadpoles can be more visible to predators 275 

in open areas (see Denoël et al., 2012 and references therein). We thus expected that 276 

swimming at the center of the aquarium could thus be considered as a “risky” 277 

behaviour.  278 

 279 

Additionally, we evaluated DFA (Detrented fluctuation analysis) and DFAc 280 

(corrected detrented fluctuation analysis) using the fractal package (version 2.0-4, 281 

Constantine & Percival, 2017). DFA is a robust method used to estimate the degree to 282 

which time series are long-range dependent and self-affine (Cannon et al., 1997), which 283 

is now currently used in the study of animal behaviour (Alados & Huffman, 2000; 284 

MacIntosh et al., 2011) including larval amphibians (Cheron et al., 2021, 2023). 285 

Following MacIntosh et al. (2013), to compute DFA, we coded behavioural sequences 286 

as binary time series [z(i)]: an immobile individuals is coded as -1, while a mobile 287 

individual (an individual is considered moving if it moves more than 0.25 mm.s-1) is 288 

coded as 1, at 1 s intervals to length N (for 35 minutes). How DFA and DFAc were 289 



15 
 

computed is thoroughly described in MacIntosh et al. (2013) and Peng et al. (1995). 290 

DFA is inversely related to the fractal dimension, a classical index of structural 291 

complexity (Mandelbrot, 1982), and thus smaller values reflect greater complexity.  292 

 293 

Ethical Note 294 

The only ethical concern regarding the study system is the exposure to salinity. 295 

However, individuals were exposed to environmental salinity levels (4 g/litre, while 296 

tadpoles of this species can be found up to 6 g/litre, LLS pers obs., Lorrain-Soligon, 297 

Périsse, et al., 2023), and individuals were progressively acclimated to these salinity 298 

levels to avoid osmotic shock. Additionally, individuals were kept in optimal 299 

conditions, with large water volumes (2 L) and food provided ad libidum. We did not 300 

perform invasive sampling, and we handled individuals only for transfer in 301 

behavioural tests. They were kept under laboratory conditions for 2 weeks, and were 302 

released at their site of capture at the end of the experiments. This work was approved 303 

by the French authorities under permit APAFIS #33592-2021102610033982.  304 

 305 

Statistical analyses 306 

All measures of distances or speed were corrected by individual total length, and were 307 

thus expressed relative to size (i.e. number of time individuals moved their total 308 

length)  to provide a more meaningful measure of locomotor performance than 309 

absolute speed (Van Damme & Van Dooren, 1999).  For all models computed, model 310 

accuracy was tested using the check_model function from the performance package 311 

allowing to test for residuals distribution and normality (Lüdecke et al., 2020). For LMs 312 
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(Linear Models) and LMMs (Linear Mixed Models), when models did not fit the data, 313 

the response variable was log10+1 transformed. Binomial model accuracy was also 314 

tested by checking overdispersion. 315 

 316 

First, we assessed differences of growth  between treatments by setting a Linear 317 

Model (LM) and mortality (as a binary component: 0 [mortality] or 1 [survival]) by 318 

setting binomial Generalized Linear Models (GLMs) with acclimation treatment (0 or 319 

4 g/litre) as an explanatory variable. Second, we assessed differences in mean escape 320 

distance during the predation test using a Linear Mixed Model (LMM). Lastly, we 321 

assessed differences in total duration of activity (log10+1 transformed), total distance 322 

travelled (log10+1 transformed), mean swimming speed (log10+1 transformed), and 323 

frequency of positioning at less than 50mm to the center of the arena (log10+1 324 

transformed) using Linear Mixed Models (LMMs) and behavioural complexity (DFA) 325 

using GLMMs with Gamma distribution, due to a skewed distribution (Dobson & 326 

Barnett, 2018). For all, we used the interaction between salinity acclimation treatment 327 

(0 or 4 g/litre) and salinity behavioural test treatment (0 or 4 g/litre) as explanatory 328 

variables, and individual as a random effect. For these models, best variables were 329 

retained using a top-down selection, and only the retained variables are presented.  330 

 331 

 332 

All data analysis were performed using R 3.6.3 (R Core Team, 2020) and Rstudio 333 

v1.1.419.  334 
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RESULTS 335 

Mortality and tadpole size 336 

During acclimation (2 weeks), mortality was higher in individuals kept in brackish 337 

water compared to freshwater (4 individuals died in freshwater, mortality rate=16%, 338 

and 29 individuals died in brackish water, mortality rate=66%, Estimate=2.569, 339 

SE=0.623, z1.73=4.123, P<0.001). Growth rate (as a proportion of the initial size of 340 

individuals) was higher in freshwater compared to brackish water (freshwater: 0.212 341 

± 0.007 SE; saltwater: 0.061 ± 0.008 SE; Estimate [proportion of the initial total 342 

length]=0.152, SE=0.021, t1.46=7.393, P<0.001). 343 

 344 

Tadpole behaviour 345 

Responses to predation stimuli 346 

Mean escape distance (number of time an individual travelled its total length) 347 

was influenced by salinity during trial (Estimate=5.220, SE=1.577, t1.59=3.309, P=0.002, 348 

Figure 2) and the interaction between acclimation treatment and salinity during trial 349 

(Estimate=-7.597, SE=2.213, t1.59=-3.433, P=0.001, Figure 2, Table A1), but not by salinity 350 

during acclimation solely (Estimate=2.433, SE=2.230, t1.94=1.091, P=0.278). Mean 351 

escape distance was higher for individuals acclimated in freshwater and that 352 

performed the test in brackish water (Figure 2).  353 

 354 

 355 
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Medium-term responses to salinity and responses to salinity variations 356 

Total distance (log10+1 transformed) was influenced by salinity during 357 

acclimation (Estimate=-0.855, SE=0.137, t1.113=-6.230, P<0.001, Figure 3a) and the 358 

interaction between acclimation treatment and salinity during trial (Estimate=0.464, 359 

SE=0.177, t1.58=2.623, P=0.011, Figure 3a, Table A1), but not by salinity during trial 360 

solely (Estimate=-0.191, SE=0.125, t1.58=-1.529, P=0.132). Overall, total distance was 361 

higher for individuals that were acclimated in freshwater, and that performed the test 362 

in freshwater.  363 

 364 

Mean active speed (log10+1 transformed) was influenced by salinity during 365 

acclimation solely (Estimate=-0.149, SE=0.034, t1.58=-4.396, P<0.001, Figure 3b), and 366 

was lower for individuals raised in brackish water compared to individuals raised in 367 

freshwater. Total active time (log10+1 transformed) was influenced by salinity during 368 

acclimation (Estimate=-0.672, SE=0.118, t1.114=-5.690, P<0.001, Figure 3c), marginally 369 

influenced by salinity during trial (Estimate=-0.206, SE=0.109, t1.58=-1.888, P=0.064, 370 

Figure 3c), and influenced by the interaction between acclimation treatment and 371 

salinity during trial (Estimate=0.429, SE=0.154, t1.58=2.780, P=0.007, Figure 3c, Table 372 

A1). Overall, total active time was higher for individuals that were acclimated in 373 

freshwater, and that performed the test in freshwater. Frequency of positioning at less 374 

than 50 mm from the center of the arena (log10+1 transformed) was influenced by 375 

salinity during acclimation solely (Estimate=0.478, SE=0.118, t1.58=4.046, P<0.001, 376 

Figure 3d), and was higher for individuals raised in brackish water compared to 377 

individuals raised in freshwater. 378 
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 379 

DFAc was influenced by salinity during acclimation (Estimate=-0.035, 380 

SE=0.009, t=-4.021, P<0.001, Figure 3c), salinity during trial (Estimate=-0.019, SE=0.005, 381 

t=-3.712, P<0.001, Figure 3c), and influenced by the interaction between acclimation 382 

treatment and salinity during trial (Estimate=-0.029, SE=0.007, t=4.090, P<0.001, Figure 383 

3c, Table A1). Overall, DFAc were the lowest (higher behavioural complexity) for 384 

individuals that were acclimated in freshwater, and that performed the test in 385 

freshwater, and the highest (lower behavioural complexity) for individuals that were 386 

acclimated in brackish water, and that performed the test in freshwater.  387 

   388 
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DISCUSSION 389 

 390 

In this study, we demonstrated that larval spined toads naive from salt exposure 391 

altered their behaviour in response to salinity. We showed that a 2 week-long exposure 392 

to moderate levels of salinity (4 g/litre) decreased growth rate, increased mortality 393 

and decreased escape distance (and thus reaction to predation), mean speed and 394 

behavioural complexity.  However, when individuals were acclimated in freshwater 395 

and transferred to brackish water, escape distance increased, but mean speed and 396 

behavioural complexity decreased.  397 

 398 

First, exposure to salinity during 2 weeks induced lower growth rates and 399 

higher mortality as expected from previous investigations (Albecker & McCoy, 2017; 400 

Gomez‐Mestre et al., 2004; Tornabene, Breuner, et al., 2022). Additionally, we 401 

highlighted that such exposure to salinity negatively influenced behavioural 402 

performance (Denoël et al., 2010; Hall et al., 2017; Haramura, 2016; Karraker, 2007; 403 

Sanzo & Hecnar, 2006; Wood & Welch, 2015). Specifically, individuals exposed to 404 

salinity exhibited lower escape distance, shorter total distance travelled, slower 405 

swimming speed, lower activity time, decreased behavioural complexity, and were 406 

more often positioned closer to the center of the arena. In natural environments, such 407 

alterations of key behavioural traits may led to reduced foraging (Bartumeus, 2007; 408 

Viswanathan et al., 2008), because such performance should be adaptive in 409 

unpredictable environments where they can enhance the probability of resource 410 
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encounters (Bartumeus, 2007; Viswanathan et al., 2008) and prevent predators from 411 

anticipating the prey future position (Gazzola et al., 2021; Jones et al., 2011; Richardson 412 

et al., 2018). In addition, these alterations can also induce a higher risk of predation 413 

(Chovanec, 1992; Denoël et al., 2012; Eterovick et al., 2010; Laurila, 2000), as remaining 414 

closer to the edges is considered as less risky and spatial avoidance is expected in 415 

tadpoles exposed to a predation threat (Relyea, 2001). The effects we found on growth, 416 

mortality and behaviour are probably linked to higher costs of osmoregulation 417 

(Gomez‐Mestre et al., 2004), mediated by modulations of specific hormonal mediators 418 

such as corticosterone and aldosterone (Tornabene, Crespi, et al., 2022; Tornabene, 419 

Hossack, et al., 2021). Importantly, we show that these responses can be expressed over 420 

a relatively short temporal scale (2 weeks) which is shorter than those used in previous 421 

investigations (Denoël et al., 2010; Gomez‐ Mestre et al., 2004; Tornabene, Hossack, et 422 

al., 2021).  This suggests that the energetic cost of osmoregulation can appear relatively 423 

rapidly at a larval stages (Gosner stages 30-33, see also Lorrain-Soligon et al., 2024) 424 

considered to be comparatively less sensitive than embryo or earlier larval 425 

developmental stages (Albecker & McCoy, 2017; Chinathamby et al., 2006; Uchiyama 426 

& Yoshizawa, 1992). Future studies are required to investigate whether  increasing 427 

salinity increases metabolic rates in larval anurans, as suggested in other species (Peña-428 

Villalobos et al., 2013; Pistole et al., 2008). 429 

 430 

Beside those effects during the acclimation phase of tadpoles to salinity, our 431 

experimental design allowed us to highlight different behavioural responses following 432 

a sudden change in salinity. First, we found that immediately after an increase of 433 
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salinity, individuals reared in freshwater increased their escape distance in response 434 

to a predation stimuli. Conversely, individuals reared in brackish water did not 435 

modulate their behaviour during short-term exposure to either freshwater or 436 

moderate level of salinity (4 g/litre), suggesting that a sudden decrease in water 437 

salinity did not trigger osmotic stress responses in these individuals, and that the costs 438 

of osmoregulation for individuals reared in brackish water (Gomez‐Mestre et al., 2004) 439 

exceed the osmotic shock (or physiological relief) from being transferred to freshwater.  440 

These results suggest that, when exposed to a rapid increase in salinity, larval anurans 441 

can be more prompt to react to a predation threat, highlighting a higher response to 442 

predation cues in high salinity treatment for individuals reared in freshwater (Hoover 443 

et al., 2013; Troyer & Turner, 2015), presumably due to the presence of both stressors. 444 

Whether such response persists over longer time scales needs to be investigated. 445 

 446 

Second, sudden exposure to salinity for individuals reared in freshwater 447 

induced shorter distance travelled, slower mean speed, and decreased behavioural 448 

complexity. These individuals thus expressed similar responses than those exposed 449 

during longer durations (Denoël et al., 2010; Hall et al., 2017; Haramura, 2016; 450 

Karraker, 2007; Sanzo & Hecnar, 2006; Wood & Welch, 2015), indicating that elevated 451 

salinity can have detrimental effects on larval amphibians after a very short exposure. 452 

Interestingly, and similar to our results on response to predation, individuals reared 453 

in brackish water did not express different behaviour in response to exposure to fresh 454 

or brackish water. Our results thus point out that a relatively short exposure to salinity 455 

(2 weeks) can lead to irreversible effects on key behavioural traits, even when tadpoles 456 
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were transferred to freshwater, which was expected to induce a physiological relief (or 457 

an additional stressor leading to an osmotic shock). As a result, even if salinity happen 458 

to decrease in saline ponds as a result of increased precipitation (Lorrain-Soligon, 459 

Robin, et al., 2023), this could not be sufficient to dampen the effect of an elevated 460 

salinity during earlier larval development. Future studies should investigate the 461 

dynamics of osmolality in larval anurans exposed to brackish water in order to assess 462 

whether these behavioural shifts are linked with hydro-mineral dysregulation as 463 

shown in other studies (Brady et al., 2022; Denoël et al., 2010; Lorrain-Soligon, Bichet, 464 

et al., 2022; Lorrain-Soligon, Robin, et al., 2022), and the duration after which this 465 

hydro-mineral dysregulation occurs.   466 

 467 

CONCLUSION 468 

 While chronic exposure to salinity has long been shown to alter the behaviour of larval 469 

anurans, we demonstrated that this effect can occur after very short exposure to 470 

salinity (1 hour), and is maintained for longer exposure (2 weeks). This strongly 471 

suggests that osmolality and associated hydro mineral dysregulation following 472 

exposure to salinity can be very rapid, which might threaten coastal biodiversity as a 473 

result of rapid salinity fluctuations.   474 
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Caption to figures 909 

Figure 1 – Experimental design used in this study. 1) Tadpoles were acclimated for 2 910 

weeks in individual 2 L tanks to control (0 g/litre salinity) or moderate salinity 911 

(brackish water, 4 g/litre salinity). 2) Their response to predation was assessed 912 

measuring individuals swimming distance in a pipe when stimulated. 3) Behavioural 913 

responses of individuals to salinity were measured in an arena filled with water of the 914 

test salinity. Tadpoles were left acclimated for 20 min, and then filmed for 35 min. For 915 

the 2 and 3 steps, tadpoles acclimated at 0 g/litre performed the test at 0 g/litre first, 916 

and the test at 4 g/litre the day after, and conversely for tadpoles acclimated at 4 917 

g/litre, in order to investigate the effects of sudden change in salinity. Results were 918 

always analyzed as an interaction between salinity of the acclimation (1) and salinity 919 

of the trial (2 or 3). 920 

 921 

Figure 2 – Mean escape distance (relative to total size) in response to a predation 922 

stimulus, according to salinity during acclimation (2 weeks in freshwater [0 g/litre] or 923 

brackish water [4 g/litre]) and salinity during the trial (freshwater [0 g/litre] or 924 

brackish water [4 g/litre]). 925 

 926 

Figure 3 – (a) Total distance (relative to total size), (b) mean active speed (relative to 927 

total size), (c) total active time, and (d) frequency of positioning at less than 50 mm 928 

from the center of the arena, according to salinity during acclimation (2 weeks in 929 
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freshwater [0 g/litre] or brackish water [4 g/litre]) and salinity during the trial 930 

(freshwater [0 g/litre] or brackish water [4 g/litre]). 931 

 932 

Figure 4 – DFAc (corrected detrented fluctuation analysis, index of behavioural 933 

complexity), according to salinity during acclimation (2 weeks in freshwater [0 g/litre] 934 

or brackish water [4 g/litre]) and to salinity during the trial (freshwater [0 g/litre] or 935 

brackish water [4 g/litre]). DFA is inversely related to the fractal dimension, a classical 936 

index of structural complexity (Mandelbrot, 1982), and thus smaller values reflect 937 

greater complexity. 938 
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Figure 3 946 
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Figure 4 949 
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46 
 

Table A1 - Post-hoc analyses. Differences considered are the differences in mean 953 

escape distance, total distance, total active time, and DFAc, according to salinity 954 

during acclimation (2 weeks in freshwater [0 g/litre] or brackish water [4 g/litre]) and 955 

to salinity during the trial (freshwater [0 g/litre] or brackish water [4 g/litre]). 956 

Variable Comparisons Estimate SE df t/z P 

Mean 
escape 

distance 

Test 0 Acclimation 0 - Acclimation 4 -2.43 2.23 93.8 -1.091 0.278 

Test 4 Acclimation 0 - Acclimation 4 5.16 2.23 93.8 2.316 0.023 
Acclimation 

0 Test 0 - Test 4 -5.22 1.58 59 -3.309 0.002 
Acclimation 

4 Test 0 - Test 4 2.38 1.55 59 1.532 0.131 

Total 
distance 

Test 0 Acclimation 0 - Acclimation 4 0.855 0.137 113 6.23 <0.001 

Test 4 Acclimation 0 - Acclimation 4 0.391 0.137 113 2.848 0.005 
Acclimation 

0 Test 0 - Test 4 0.191 0.125 58 1.529 0.132 
Acclimation 

4 Test 0 - Test 4 -0.273 0.125 58 -2.181 0.033 

Total active 
time 

Test 0 Acclimation 0 - Acclimation 4 0.672 0.118 114 5.69 <0.001 

Test 4 Acclimation 0 - Acclimation 4 0.243 0.118 114 2.056 0.042 
Acclimation 

0 Test 0 - Test 4 0.206 0.109 58 1.888 0.064 
Acclimation 

4 Test 0 - Test 4 -0.223 0.109 58 -2.043 0.046 

DFAc 

Test 0 Acclimation 0 - Acclimation 4 0.035 0.009 Inf 4.021 <0.001 

Test 4 Acclimation 0 - Acclimation 4 0.006 0.009 Inf 0.664 0.507 

Acclimation 
0 Test 0 - Test 4 0.019 0.005 Inf 3.712 <0.001 

Acclimation 
4 Test 0 - Test 4 -0.010 0.005 Inf -2.056 0.040 
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