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1Laboratoire de Tribologie et Dynamique des Systèmes, Ecole Centrale de Lyon Ecully 69130, France
2PASTA LAB–Laboratory for Promoting Experiences in Aeronautical Structures and Acoustics, University “Federico II” of Naples,

Naples 80125, Italy

ABSTRACT:

In transport engineering applications, flow-induced vibrations is an interesting topic to address since it may nega-
tively affect the operation and the response of the system. Wind tunnel facilities are mandatory to test the structure
design efficiency or to analyse new material performances under aerodynamic load. However, these experimental

tests can be expensive and take a long time to set up and operate; hence, alternative methods for the reproduction of
the structural response to a turbulent boundary layer excitation are required to accelerate and improve the experimen-

tal setups and provide more data for uncertainty analysis. In this paper, an alternative approach, the eXperimental

Pseudo-Equivalent Deterministic Excitation method (X-PEDEM), is here extended for applications in the low fre-
quency domain. An investigation about the applicability of the method in the low frequency domain is conducted,
together with an analysis of its main properties. The reliability of the method is then tested numerically by consider-
ing different conditions: two different panels, two different boundary conditions, and different asymptotic flow
velocities are considered.

I. INTRODUCTION

In transport-related industrial fields, such as aviation,

marine, railways, and automotive, some of the fundamental

problems under study concern air-borne and structure-borne

sound emission due to fluid–structure interaction.

Indeed, the flow-induced vibrations might cause several

issues, such as structural fatigue, emitted noise at the exterior

and interior of a vehicle, and consequently, discomfort of

passengers and noise pollution. For these reasons, the predic-

tion of the structural response to wall-pressure fluctuations

(WPFs) generated by a turbulent boundary layer (TBL), is

one of the main targets of research. The topic presents its dif-

ficulties, since the TBL excitation is a random broadband

pressure field, represented as a stochastic distribution with a

spatial correlation that depends on the convective flow (Bull,

1996). Until today, no pure analytical formulations can

describe the TBL excitation, but researchers rely on semi-

empirical models—represented as the 2-points cross-spectral

density (CSD) function (Chase, 1980; Corcos, 1963; Mellen,

1990) or 1-point power spectral density (PSD) function

(Goody, 2004)—that depend on empirical data collected for

the description of the convective velocity and the decay coef-

ficients. Each model has a different accuracy in the descrip-

tion of the TBL excitation, depending on which frequency

range or which asymptotic flow velocity is considered.

Hence, when experimental results obtained in a wind tunnel

need to be validated, it is often necessary to find first which

model is more suitable to use and then measure the experi-

mental data related to the decay coefficients and convective

velocity in order to complete the analytical description of the

TBL excitation (Hambric and Lysak, 2019).

From a numerical point of view, the application of these

semi-empirical models can be computationally time con-

suming when exploited in a finite element analysis (FEA)

and subjected to limitations of representations in a broad-

band frequency domain (De Rosa and Franco, 2008).

From an experimental point of view, tests in wind tun-

nel facilities are still a mandatory step in order to either vali-

date final structural designs or to investigate new material

solutions and detect their performances when subjected to

an aerodynamic load. They require long and difficult setups

for the experiments and a careful choice of the reference

model that would better validate the experimental results.

The interest in alternative methods capable to predict

the structural response to a TBL excitation rose up with the

intention of improving the experimental setups and facilities

and doing uncertainty analyses on the data, obtaining a more

efficient analysis and more a more performing design pro-

cess of structures.

One of the first attempts was made by Fahy (1966), who

proposed the use of loudspeakers for the WPFs simulation,

even though a large number of speakers is required (Maury

et al., 2004). Consequently, Aucejo et al. (2012) introduced a

system to synthetically re-create an array of loudspeakers,

considering that a TBL excitation might be approximated to

a summation of an infinite number of uncorrelated wall plane

waves (UWPWs). This concept was further explored ina)Email: giulia.mazzeo@ec-lyon.fr
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studies by Marchetto et al. (2017, 2018), Karimi et al.

(2020), and Karimi et al. (2021). It is essential to understand

that the UWPWs method can predict the structural response

to TBL excitation, but within a frequency range that begins

above the convective coincidence frequency. In this fre-

quency region, TBL can be approximated as a diffuse field,

and the spatial correlation is entirely uncorrelated.

Below the convective coincidence frequency, the TBL

excitation results in a more spatially correlated pressure field

and re-creating this condition presents its difficulties. The

wave field synthesis (Berry et al., 2012) and the planar-near

field acoustic holography (Robin et al., 2013) are both meth-

ods that want to reproduce the TBL excitation through

acoustic sources, respecting the TBL correlation scales. The

first one can easily reproduce an acoustic plane wave and a

diffuse acoustic field, but the same cannot be said for the

TBL itself (Robin et al., 2014). The second one is focused

on the realisation of subsonic and supersonic TBL excita-

tion, where the main difference consists of how many acous-

tic sources are to be considered for the array; while the

supersonic case is easy to reproduce, the subsonic one is

bound to the number of used monopoles in order to repro-

duce a faithful convective wavelength (Robin et al., 2015).

In this work, the experimental application development of

the pseudo-equivalent deterministic excitation method

(PEDEM) (De Rosa et al., 2015) is carried on. Indeed, PEDEM

takes the main concept of modal decomposition applied from

the pseudo excitation method (PEM) (Wilson et al., 1981),

individuating eigenvectors and eigenvalues of the load CSD

matrix, and bypassing the actual modal computation by con-

sidering two asymptotic representations of the TBL CSD

matrix eigensolutions—in low frequency (LF) and high fre-

quency (HF) domains. The experimental application of

PEDEM (X-PEDEM) in a HF domain has already been pre-

sented and validated numerically (Mazzeo et al., 2022); with

this new production, the extension of the method in the LF

domain is presented, reaching a frequency-broadband predic-

tion of the structural response to a TBL excitation.

In Sec. II, a brief theoretical background of PEDEM is

provided, in order to ensure a better comprehension of X-

PEDEM and its new formulation for LF domain application

(Sec. III), followed by its main characteristics. Then, a numeri-

cal validation of the method is presented, giving a direct com-

parison between the numerical full stochastic response (FSR)

obtained with different TBL models and X-PEDEM, for differ-

ent sample panels, different boundary conditions, and different

flow velocities, in order to guarantee the versatility of the

method (Sec. IV). In the last Sec. V, main remarks and open

issues of the methodology are discussed.

II. PEDEM THEORETICAL BACKGROUND

As previously stated, PEDEM wants to provide a sim-

pler formulation for the numerical structural response to a

TBL excitation. Starting from the numerical FSR presented

as a CSD displacement matrix ½SWWðxÞ� in Eq. (1),

SWWðxÞ½ � ¼ U½ � HðxÞ½ � U½ �T SFFðxÞ½ � U½ � H�ðxÞ½ � U½ �T ;

(1)

where ½U� is the structural modal matrix, consisting of NG

(number of grid points) structural degrees of freedom and

NM (number of modes) [NG � NM]; ½HðxÞ� is the structural
transfer function diagonal matrix [NM � NM], for which

each element of the diagonal is expressed as

HmðxÞ ¼ ½x2
mð1þ igmÞ � x2��1

; ½SFFðxÞ� is the equivalent

force matrix [NG � NG]. The FSR solution is rewritten by

considering the PEM and its modal decomposition (Wilson

et al., 1981) of the equivalent force CSD matrix

SFFðxÞ½ � ¼
X

NG

i¼1

diðxÞfH
ðiÞgfHðiÞgT ; (2)

and considering the following expressions for the displace-

ment vector and CSD displacement matrix

fwðx; iÞg ¼ U½ � HðxÞ½ � UT½ �fHðiÞg
ffiffiffiffiffiffiffiffiffiffiffi

diðxÞ
p

; (3)

SWWðxÞ½ � ¼
X

NG

i¼1

fw�ðx; iÞgfwTðx; iÞg: (4)

PEDEM presents two different formulation of load

eigenvectors fHðiÞg and eigenvalues diðxÞ, depending on

the dimensionless frequency j ¼ xD=Uc (with x as fre-

quency, D as mesh size, and Uc as convective flow

velocity):

• For j ! 0, the spatial correlation is totally correlated

(Franco et al., 2013); hence, the eigenvector matrix ½H�
can be expressed with an all-1 matrix

H½ � ¼

1 1 � � � 1

1 1 � � � 1

..

. ..
. . .

. ..
.

1 1 � � � 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; (5)

where the ith column of ½H� is representative of the ith

eigenvector of the load matrix. Only the first eigenvalue

d1;LF will be non-null.
• For j ! 1, the spatial correlation is totally uncorrelated,

which is relative to a Rain-On-the-Roof excitation

(Ichchou et al., 2015); a totally uncorrelation is expressed

with an eigenvector matrix form as

H½ � ¼

1 0 0 � � � 0

0 1 0 � � � 0

0 0 . .
.

� � � ..
.

..

. ..
. ..

. . .
.

0

0 0 � � � 0 1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: (6)

All eigenvalues are equal to the same value dHF.
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It is important to provide some remarks about the afore-

mentioned methods. Since the PEM is based on the modal

decomposition of the load matrix, its application for the

reproduction of the structural response will give a solution

that inevitably converges to the FSR response. As a conse-

quence, using PEDEM for the same task also would ensure

the convergence, due to the chosen asymptotic formulations.

The X-PEDEM wants to use the same PEDEM formulation

and apply it for experimental purposes based on the experi-

mental acquisition of the frequency response functions

(FRFs) of the structure under analysis. In Mazzeo et al.

(2022), it has been demonstrated numerically that this

experimental approach can be executed by using the

PEDEM formulation in the HF domain and it can reproduce,

with a degree of approximation, the vibrational response of

a structure subjected to a TBL excitation.

In the next section, the same attempt is explained, this

time by using the PEDEM formulation in the LF domain. By

doing that, X-PEDEM would be based on both asymptotic

formulations; hence, it can be used to reproduce the struc-

tural response to a TBL excitation in a broadband frequency

domain.

III. PEDEM AND X-PEDEM FORMULATION FOR LOW

FREQUENCY DOMAIN

A. Eigenvalue formulation for PEDEM in the LF

domain

In De Rosa et al. (2015), PEDEM was first introduced

by analysing the structural response to a TBL excitation

reproduced for a one-dimensional (1D) system consisting of

NG¼ 10 oscillators in row. The TBL excitation model

invoked for that analysis was the Corcos model (Corcos,

1963). The first and only non-null eigenvalue valid for the

PEDEM asymptotic behaviour in the LF domain was equal

to NG.

In the case of a two-dimensional (2D) system, one can

consider as example a plate with dimensions Lx � Ly,

for which its single finite element has dimensions Dx � Dy

(Fig. 1). The number of grid points that make up the mesh

of the panel is NG ¼ Nx � Ny.

As for the 1D-case, the Corcos model formulation [Eq.

(7)] is chosen as representation of the TBL-induced pressure

field, since it can well describe the spatial correlation in

terms of distance between points over the structural surface

(Fig. 2). In Eq. (7), it is possible to recognise the decay coef-

ficients along the streamwise (ax) and spanwise (ay) direc-

tion and the convective flow velocity Uc related to the

asymptotic flow velocity U1 through the convective coeffi-

cient bc ¼ Uc=U1:

C
Corcos
pp0 ðfx; fy;xÞ ¼ ðDxDyÞ2 exp �ax

x

Uc

jfxj

� �

� exp �ay
x

Uc

jfyj

� �

exp i
x

Uc

fx

� �

:

(7)

For finite elements with dimensions Dx ¼ Dy ¼ D, the

distances between the coordinates points along the x-direc-

tion and y-direction can be expressed, respectively

fx ¼ ðnx � 1ÞD with nx ¼ 1; 2;…;Nx; (8a)

fy ¼ ðny � 1ÞD with ny ¼ 1; 2;…;Ny: (8b)

With these premises, it is easy to evaluate the TBL

excitation behaviour when the dimensionless frequency j

¼ xD=Uc tends to zero:

FIG. 1. (Color online) Example of

mesh grid for a 2D-system as a plate.

FIG. 2. Representation of a plate subjected to an air flow of asymptotic

velocity U1; two points are represented to stress the dependence that 2-

points spectra excitation models have on the distance between them.
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lim
j!0

C
Corcos
pp0 ðfx; fy;xÞ ¼ D

2: (9)

By observing other WPFs expressions, as the Mellen

model (Mellen, 1990) and the incident diffuse field (IDF)

(De Rosa and Franco, 2008),

C
Mellen
pp0 ðfx; fy;xÞ

¼ ðDxDyÞ2 exp ax
x

Uc

fx

� �2

þ ay
x

Uc

fy

� �2
" #1=2

2

4

3

5

� exp i
x

Uc

fx

� �

; (10)

C
IDF
pp0 ðfx; fy;xÞ ¼ ðDxDyÞ2

sin ðxfx=UcÞ

xfx=Uc

sin ðxfy=UcÞ

xfy=Uc

;

(11)

it is possible to recognise that, when their behaviour is stud-

ied for j ! 0, their limit is equal to the squared value of the

finite element area D2.

This is true when the limit is applied to each element of

the CSD load matrix built with one of the three aforemen-

tioned WPFs formulation. Hence, it is assumed that the first

and only non-null eigenvalue for PEDEM in the LF domain

is equal to d1;LF ¼ D
2.

B. X-PEDEM formulation for LF domain

The experimental application of PEDEM in the low fre-

quency domain is based on the acquisition of the FRFs char-

acteristic of a structure, as it is X-PEDEm for high

frequency domain applications (Mazzeo et al., 2022). The

main differences between the processes for the prediction in

low and high frequency domain lie on: (1) the excitation

points position, which is not randomly chosen anymore, and

(2) the post-processing data phase.

From a mathematical point of view, X-PEDEM starts

with Eq. (3), representing the ith displacement vector, where

i counts the number of eigensolutions resulted from the load

matrix modal decomposition. It is important to remark on

two main aspects of this formula when it is applied for HF

domain applications:

• All eigenvectors fHðiÞg are part of an identity matrix; this

represents the totally spatial uncorrelation among excita-

tion points. Consequently, the evaluation of one CSD dis-

placement matrix is evaluated for a single excitation

point.
• All eigenvalues diðxÞ are different from zero and equal to

each other; this represents the superposition of effects for

which the CSD displacement matrix is evaluated for each

different excitation point and the actual solution is the

result of a sum of all CSD matrices evaluated for each

chosen excitation point [Eq. (4)].

When Eq. (3) is applied for LF domain applications,

eigenvectors and eigenvalue are different (as previously

defined in Sec. II); hence, they involve a different evaluation

of the CSD displacement matrix and the displacement vector

fwðxÞg. First, it is noticed that the displacement vector

fwðxÞg is calculated only one time, since there is only one

non-null eigenvalue; consequently, the CSD displacement

matrix is evaluated only one time, too. Second, one can

reconsider the matrix product expressed in Eq. (3) by indi-

viduating the matrix ½S/� [Eq. (12a)] and its generic element

S/ðj;iÞ [Eq. (12b)]:

S/½ � ¼ U½ � HðxÞ½ � UT½ �; (12a)

S/ðj;iÞ ¼
X

m

Uj;mHm;mUm;i: (12b)

Multiplying any matrix by an all-1 vector results in a

column vector in which each element is the sum of each

matrix row. Therefore, one can interpret the single dis-

placement element wjðxÞ measured in the jth acquisition

point as

wjðxÞ ¼
X

Nex

i¼1

X

m

/mðPjÞ/mðPiÞF
ðiÞ
m

hmðxÞ
; (13)

where FðiÞ
m ¼

ffiffiffiffiffiffiffiffiffiffi

d1;LF
p

. It is important to remark that

d1;LF ¼ D
2 ¼ LxLy=NG, as it is equal to the square value of

the finite element area. This is valid when the model applied

is PEDEMLF
, which considers, as excitation points, all the

points of the mesh grid, Nex ¼ NG. With X-PEDEMLF
, on the

other hand, the equivalent finite element area Aex is consid-

ered, which is related to the number of excitation points

considered,

d1;LF ¼ A2
ex ¼

LxLy

Nex

� �2

: (14)

From a physical point of view, the displacement in each

acquisition point is evaluated as if all the Nex excitation

points are excited simultaneously. The modal force factor

FðiÞ
m does not depend on either the modes or the excitation

points position; hence, it is enough to evaluate the FRFs

between each acquisition and all excitation points, sum

them, and post-process the value with the corrective factor
ffiffiffiffiffiffiffiffiffiffi

d1;LF
p

,

wjðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi

d1;LF
p

X

Nex

i¼1

X

m

/mðPjÞ/mðPiÞ

hmðxÞ
: (15)

From an experimental point of view, the application of

X-PEDEMLF
is divided in two main phases: the collecting

experimental data and the post-processing data phase, as it

is for the application of X-PEDEM applied in the HF domain

(X-PEDEMHF
). The experiment phase can be performed with

a hammer test and it goes as follows:

(1) Subdivide the structure in discrete elements, defining a

mesh grid.
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(2) Arrange the accelerometers in the chosen acquisition

points positions.

(3) Select the excitation points.

(4) Excite the structure in one excitation point at the time,

registering the structural response in terms of FRFs in

all the acquisition points.

The post-processing data phase is developed by follow-

ing the next steps:

(1) Organise the experimental data set by grouping all the

FRFs relating to each acquisition point, obtaining Nacq

groups of FRFs.

(2) For each acquisition point, sum all the FRFs and then

multiply by the force corrective factor
ffiffiffiffiffiffiffiffiffiffi

d1;LF
p

, obtaining

the displacement defined in Eq. (15).

(3) Save all the displacements in the displacement vector

fwðxÞg, of dimensions ½Nacq � 1�.
(4) Calculate the CSD displacement matrix as

SWWðxÞ½ � ¼ fw�ðxÞgfwTðxÞg: (16)

(5) Evaluate the mean PSD displacement as

�SwwðxÞ ¼
1

Nacq

X

Nacq

j¼1

SWWðxÞ½ �ðj;jÞ: (17)

The selection of excitation and acquisition points can-

not be done randomly as it is for X-PEDEMHF
, but once the

selection is done for the application of X-PEDEMLF
, the

same experimental data can be used for both the post-

processing phases of X-PEDEMLF
and X-PEDEMHF

. In the

following subsection, the selection of excitation and acquisi-

tion points is discussed.

C. X-PEDEM points selection process

1. Position of excitation points

In the HF domain, the PEDEM formulation is based on

the assumption of a totally uncorrelated spatial distribution

of the WPFs; hence, X-PEDEMHF
does not depend on the

choice of excitation and acquisition points positions, but just

on their number. It has been seen that at least 5 acquisition

points and 10 excitation points, with random position, are

needed to ensure a good reproduction of the solution. On the

other hand, in the LF domain, PEDEM is based on the

assumption of a totally correlated spatial distribution; hence,

the choice of excitation and acquisition points position can

indeed affect the prediction of the response. In order to

determine for which group of points it is important to know

their position, a trial and error process has been conducted.

For this trial and error process, a sample aluminium

panel with simply-supported boundary conditions is here

considered (geometry and material properties in Table I). As

TBL excitation, the Corcos model is invoked, by fixing the

asymptotic flow velocity at U1 ¼ 200 m/s and the

following empirical coefficients as ax ¼ 0:116; ay ¼ 0:700,
and bc ¼ 0:80.

As the first phase, the excitation points position are

determined by keeping fixed, as acquisition points, all the

grid points. In Fig. 3, the analytical solution is compared

with the X-PEDEMLF
for three different distributions of exci-

tation points.

It is easy to notice that an equally distributed mesh of

excitation points is not a good choice for the X-PEDEMLF
.

Whether it is fine [Fig. 3(a)] or coarse [Fig. 3(c)], the

X-PEDEMLF
is not able to represent all the structural modes

in the response [respectively, Figs. 3(b) and 3(d)]. The same

deduction can be done by keeping the number of excitation

points comparable to the case presented in Fig. 3(c), but

with a diagonally equal distribution of the excitation points

[Figs. 3(e) and 3(f)].

Another set of excitation points distribution is then con-

sidered in Fig. 4. Single directions have been chosen in order

to understand whether different excitation point line distribu-

tions can ensure different modal information in the structural

response. Indeed, both vertical configuration of excitation

points [Fig. 4(a)] and horizontal configuration of excitation

points [Fig. 4(c)] can represent just some modes, but not all

of them, and not the same [Figs. 4(b) and (d)]; the diagonal

line distribution [Fig. 4(e)], on the other hand, can represent

all the modes, but with some discrepancies [Fig. 4(f)].

Finally, the best configuration has been individuated by

considering a combination of the three main directions pre-

viously presented. In Fig. 5, one can see that the comparison

between X-PEDEMLF
and an analytical solution is consistent,

even when the number of excitation points is reduced. As it

has been stated for X-PEDEMHF
, a minimum number of 10

excitation points is suggested in order to ensure an optimal

agreement between the solution and its reference.

A few guidelines are here summarised in order to find

the optimal configuration of excitation points:

(i) Individuate three main directions over the sample

panel: two along its sides and the third going along

the diagonal of the panel.

(ii) A constant distance between each excitation point

along each direction is suggested, but not mandatory.

In any case, the length of the sides and diagonal

length need to be covered.

(iii) A minimum number of 10 excitation points is

required for an optimal description of the structural

response.

TABLE I. Sample panel information for the trial and error process for the

determination of number and position of excitation and acquisition points.

First sample panel information

Geometry Material Mesh

Lx ¼ 0:201 m E¼ 6.89e10 Pa Nx¼ 28

Ly ¼ 0:120 m q¼ 2700 kg/m3 Ny¼ 17

h¼ 0.0015 m � ¼ 0:30 NG¼ 476

Boundary conditions: simply supported
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2. Position of acquisition points

Once the optimal choice for number and position of

excitation points has been found, a trial and error process

has been performed for the acquisition points, even though,

by definition of the problem in terms of totally correlated

spatial distribution of the excitation, it was expected that the

number and position of acquisition points would not affect

the solution as number and position of excitation points

would do. Indeed, in Fig. 6, it is possible to appreciate the

independence of the solution on the acquisition points

FIG. 3. (Color online) Comparison between analytical Sww solution (solid black line) and X-PEDEmLF Sww solution (dashed blue line) for U1 ¼ 200 m/s by

keeping fixed the acquisition points. (a) and (b) Equal distribution of Nex¼ 72 points, (c) and (d) equal distribution of Nex¼ 40 points, (e) and (f) diagonal

distribution of Nex¼ 48 points.

6



Acc
ep

te
d 

M
an

us
cr

ip
t

configuration, which can be chosen randomly and just assur-

ing a minimum number of 5 acquisition points for a better

reproduction of the solution.

Figure 6(f) can be a first validation of the method, since

it shows the analytical structural response of a panel, with

simply supported boundary conditions, excited by a TBL

excitation expressed through the Corcos model, in compari-

son with the X-PEDEMLF
solution, estimated with Nex¼ 28

excitation points and Nacq¼ 7 acquisition points—the last

ones randomly chosen. The comparison is optimal until a

certain frequency in proximity of the convective coinci-

dence frequency fc; which, for this particular case of an

FIG. 4. (Color online) Comparison between analytical Sww solution (solid black line) and X-PEDEmLF Sww solution (dashed blue line) for U1 ¼ 200 m/s by

keeping fixed the acquisition points. (a) and (b) single vertical line with Nex¼ 17; (c) and (d) single horizontal line with Nex¼ 28; (e) and (f) single diagonal

line with Nex¼ 13.
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asymptotic flow velocity of U1 ¼ 200 m/s, is equal to

fc¼ 1777Hz.

To assess the robustness of the method in function of

the unavoidable errors due to points selections for acquisi-

tion and excitation, a mean percentage error has been

evaluated. By keeping a fixed number and position of acqui-

sition points (Nacq¼8), 20 sample X-PEDEMLF
solutions are

calculated, for which the number of excitation points is fixed

Nex¼ 27, but the positions along the three main directions

are chosen randomly. This strategy wants to simulate the

FIG. 5. (Color online) Comparison between analytical Sww solution (solid black line) and X-PEDEmLF Sww solution (dashed blue line) for U1 ¼ 200 m/s by

keeping fixed the acquisition points. (a) and (b) Best excitation points configuration with Nex¼ 28, (c) and (d) best excitation points configuration with

Nex¼ 14, (e) and (f) best excitation points configuration with Nex¼ 8.
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error in positioning an actuator over the structure. In Fig. 7,

all 20 sample solutions of the PSD acceleration of a sample

panel (Table I) are shown in gray, together with the target

X-PEDEMLF
solution in red.

The percentage error of each sample solution is evalu-

ated in function of the target X-PEDEMLF
solution and then a

mean percentage error is estimated. It is possible to notice

that the percentage error is very low in the low frequency

FIG. 6. (Color online) Comparison between analytical Sww solution (solid black line) and X-PEDEmLF Sww solution (dashed blue line) for U1 ¼ 200 m/s by

keeping fixed the excitation points number and position. (a) and (b) All acquisition points Nacq¼ 476, (c) and (d) 1
3
of acquisition points (Nacq¼ 159), equally

distributed, (e) and (f) random choice of Nacq¼ 7 acquisition points.
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domain and tends to increase when the solutions reach the

coincidence convective frequency (fc¼ 1777Hz), as

expected by the methodology. Nevertheless, the mean per-

centage error does not overpass the 8%, demonstrating a

robustness to location errors.

X-PEDEMLF
proves to be an interesting tool that is not a

substitute for the accuracy of a wind tunnel facility, but it can

give a prediction on how to obtain an optimal setup in a wind

tunnel. Moreover, it can be used to estimate a priori the per-

centage error that the actual experimental result might present.

More cases and insights are investigated in the follow-

ing section.

IV. NUMERICALVALIDATION OF X-PEDEM APPLIED
IN THE LF DOMAIN

In Fig. 8, the same panel presented in Table I is tested

for the evaluation of its structural response under different

WPFs models.

FIG. 7. (Color online) Top: 20 sample X-PEDEMLF
solutions (gray lines)

estimated for different excitation points positions in comparison with the

target X-PEDEMLF
solution (red line) for which all excitation points are

well located. Bottom: percentage error of each sample solution (gray lines)

and the mean percentage error (red line).

FIG. 8. (Color online) Comparison between X-PEDEmLF solution (dotted blue line) and numerical FSR SaaðxÞ calculated with different WPFs models at

different flow velocities: Corcos model (solid black line), Mellen model (solid red line), IDF (dashed green line). (a) Mesh grid with Nacq¼ 7 acquisition

points randomly chosen (red circles) and Nex¼ 28 excitation points (blue crosses), (b) comparison for U1 ¼ 120 m/s, with fc¼ 640Hz, (c) comparison for

U1 ¼ 160 m/s, with fc¼ 1137Hz, (d) comparison for U1 ¼ 200 m/s, with fc¼ 1777Hz.
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This time, the reference solution is calculated as numer-

ical FSR [Eq. (1)], since no analytical formulations involve

the use of the Mellen model and the IDF model.

The X-PEDEMLF
solution is calculated for a different

choice of acquisition points [Fig. 8(a)] and it is compared

with these three WPFs models for three different asymptotic

flow velocities: U1 ¼ 120 m/s, presenting a fc¼ 640Hz

[Fig. 8(b)], U1 ¼ 160 with fc¼ 1137Hz [Fig. 8(c)], and

U1 ¼ 200 m/s with fc¼ 1777Hz [Fig. 8(d)]. It can be

noticed that X-PEDEMLF
can reproduce the response for dif-

ferent acquisition points—validating the possibility of ran-

domly choosing their position—and for different asymptotic

flow velocities, up to a frequency in proximity of the con-

vective coincidence frequency fc.

As for X-PEDEMHF
, the convective coincidence fre-

quency is here indicated as approximated frequency limit in

order to define the point at which frequency the method is

valid. Considering the general X-PEDEM methodology, one

can apply the X-PEDEMLF
in a frequency region below fc

and then the X-PEDEMHF
in a frequency region above fc.

Although it can be said that fc is valid for TBL excitation

models, such as Corcos and Mellen, the same cannot be said

for the IDF model, since the FSR seems to be well repro-

duced, even above the fc limit.

Through the expression of the displacement in Eq. (15),

it is evident that the application of X-PEDEM in the LF

domain is independent on the flow velocity U1, differently

from the case in the HF domain, where different eigenvalue

formulations di;HFðxÞ can be used in order to better repro-

duce the structural response to a TBL excitation, depending

on the type of excitation model adopted (Mazzeo et al.,

2022).

The independence of X-PEDEMLF
is well represented in

Fig. 9, where the method is applied for two different flow

velocities—U1 ¼ 120 m/s and U1 ¼ 200 m/s, and the sol-

utions are perfectly identical, both for the Corcos model

[Fig. 9(a)] and the Mellen model [Fig. 9(b)]. As a matter of

fact, one can turn the comparison upside down by keeping

the X-PEDEMLF
as reference and notice how the FSRs

diverge from it, depending on which U1 is considered, since

the divergence happens around the convective coincidence

frequency.

FIG. 9. (Color online) Comparison between X-PEDEmLF solution and numerical FSR SaaðxÞ calculated at two different asymptotic flow velocities: FSR

at U1 ¼ 200 m/s (dot-dashed black line), FSR at U1 ¼ 120 m/s (dotted black line), X-PEDEmLF at U1 ¼ 200 m/s (dotted red line), X-PEDEmLF at

U1¼ 120 m/s (solid blue line). (a) FSR calculated with Corcos model, (b) FSR calculated with Mellen model.

TABLE II. Sample panel information for the X-PEDEM validation.

Second sample panel information

Geometry Material Mesh

Lx ¼ 0:480 m E¼ 7.10e10 Pa Nx¼ 48

Ly ¼ 0:660 m q¼ 2700 kg/m3 Ny¼ 66

h¼ 0.0030 m � ¼ 0:33 NG¼ 3168

Boundary conditions: all free edges FIG. 10. (Color online) Mesh grid of the second sample panel. Selected

excitation points (blue crosses), selected acquisition points (red circles).
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For a last validation of the presented method, an alu-

minium panel with totally free boundary conditions has

been tested; material and geometry properties are reported

in Table II. The mesh grid, with the selection of excitation

and acquisition points, is shown in Fig. 10.

The numerical FSR is evaluated for both the Corcos

and Mellen model at three different asymptotic flow veloci-

ties: U1 ¼ ½25 75 125� m/s and a comparison with X-

PEDEM, both for low and high frequency domain applica-

tion (shown in Fig. 11).

FIG. 11. (Color online) Comparison between the numerical FSR (solid black line) and X-PEDEM applied in the LF domain (dashed blue line) and HF

domain (dashed red line) for different asymptotic flow velocities. (a) Corcos model at U1 ¼ 25 m/s, (b) Mellen model at U1 ¼ 25 m/s, (c) Corcos model at

U1 ¼ 75 m/s, (d) Mellen model at U1 ¼ 75 m/s, (e) Corcos model at U1 ¼ 125 m/s, (f) Mellen model at U1 ¼ 125 m/s.
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Both of the methodologies can reproduce the structural

response to an aerodynamic load expressed as TBL excita-

tion, covering all the frequency region of interest, consisting

of the sub-convective and super-convective regions. It is

once again emphasised that the convective coincidence fre-

quency is here used as an approximated indicator of the fre-

quency limit for the X-PEDEM application. Indeed, around

this frequency, it is visible that both methods lose accuracy

in the prediction of the response. The method, in its entirety,

presents a computational cost on the order of seconds, while

the numerical FSR takes hours to compute.

Even from an experimental point of view, the experi-

mental setup of a hammer test requires much less time and

complexity if compared to the one performed in a wind tun-

nel facility.

V. CONCLUSIONS

The intention of this work is to present an alternative

methodology that can provide the structural response to a

TBL excitation in an approximated way, but with a very low

computational cost, in order to have fast predictive data use-

ful for pre-design purposes and to accelerate an analysis

process.

The X-PEDEM has been here extended to the low fre-

quency domain; the full process of collecting data and

post-processing data has been given in detail. Then, main

characteristics of the method have been assessed in order

to allow a better comprehension of the presented

formulations.

Finally, the method has been validated using various

samples under different boundary conditions (all free edges

and simply-supported edges) and at varying asymptotic flow

velocities. It has, hence, been demonstrated the high versa-

tility of the method, which is able now to cover a broadband

frequency region and can operate under different TBL

models.

Nevertheless, the development of X-PEDEM is still

ongoing, since there are several open issues to address:

• It is important to define the actual frequency limits of val-

idation, since the convective coincidence frequency is just

an approximated indicator. Finding the frequency limits

for both X-PEDEM formulations will also allow the deter-

mination of a middle frequency range where the extension

of the method is required.
• An experimental application of the method is necessary in

order to validate its experimental purpose.
• A final comparison between the experiments run in a

wind tunnel facility and the X-PEDEM experimental

application is required.
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NOMENCLATURE

CSD Cross-spectral density

FEA Finite element analysis

FRFs Frequency response functions

FSR Full stochastic response

HF High frequency

IDF Incident diffuse field

LF Low frequency

PEDEM Pseudo-equivalent deterministic excitation

method

PEDEMHF
PEDEM applied in the HF domain

PEDEMLF
PEDEM applied in the LF domain

PEM Pseudo excitation method

PSD Power spectral density

TBL Turbulent boundary layer

UWPWs Uncorrelated wall plane waves

WPFs Wall-pressure fluctuations

X-PEDEM Experimental application of PEDEM

X-PEDEMHF
Experimental application of PEDEM in the

HF domain

X-PEDEMLF
Experimental application of PEDEM in the

LF domain
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