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Self-Contained Pedestrian Navigation Fusing
ML-selected GNSS Carrier Phase and Inertial

Signals in Challenging Environments
Ziyou Li , Ni Zhu Member, IEEE and Valérie Renaudin , Member, IEEE

Abstract— The performance of the Global Navigation
Satellite System (GNSS)-based navigation is usually de-
graded in challenging environments such as deep urban and
light indoors. In such environments, the satellite visibility is
reduced, and the complex propagation conditions perturb
the GNSS signals with attenuation, refraction, and frequent
reflection. This paper presents a novel Artificial Intelli-
gence (AI)-based approach, to tackle the complex GNSS
positioning problems in deep urban, even light indoors.
The new approach, called LIGHT, i.e., Light Indoor GNSS
macHine-learning-based Time difference carrier phase, can
select healthy GNSS carrier phase data for positioning
thanks to Machine Learning (ML). The selected carrier phase
data are fed into a Time Difference Carrier Phase (TDCP)-
based Extended Kalman Filter (EKF) to estimate the user’s
velocity. Four trajectories including shopping mall, railway
station, shipyard, as well as urban canyon scenarios over
a 3.2 km total walking distance with a handheld device
are tested. It is shown that at least half of the epochs are
selected as usable for light indoor GNSS TDCP standalone
positioning, and the accuracy of the velocity estimates
can improve up to 88% in terms of the 75th percentile of
the absolute horizontal velocity error compared with the
state-of-the-art non-ML approach. Furthermore, a newly
designed hybridization filter LIGHT-PDR that fuses the LIGHT
algorithm and Pedestrian Dead Reckoning (PDR) solution is
applied to perform seamless indoor/outdoor positioning in
a more robust manner.

Index Terms— GNSS carrier phase, Urban/indoor pedes-
trian navigation, Complex environment, PDR

I . I N T R O D U C T I O N

W ITH the explosive trend of wearable smart devices, the
demands for ubiquitous infrastructure-free pedestrian

navigation are constantly growing. The hybridization between
PDR and GNSS is a classic way for seamless indoor/outdoor
positioning. On the one hand, GNSS can provide satisfactory
navigation solutions outdoors, especially in open sky areas. On
the other hand, PDR is a classic way to estimate pedestrian tra-
jectories using inertial and magnetic measurements. Therefore,
these two approaches are often hybridized together to mitigate
PDR error propagation using GNSS signals.

However, urban and indoor environments where most of
the human activities take place present huge challenges for
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GNSS and PDR positioning. On the one hand, in such
environments, the satellite visibility is degraded, and the
remaining tracked GNSS signals suffer severely from reflection
and refraction. Also, the indoor GNSS signal is attenuated
through its propagation channel, and the attenuation results in
the need for a longer coherent integration time that increases
the magnitude of the noise [1]. Therefore, common sense is
that GNSS signals are not usable for indoor positioning. On the
other hand, the processing of the magnetometer measurements
is complicated if metallic materials are in the vicinity of the
pedestrian, perturbing its use for PDR heading estimation. In the
GNSS/PDR hybridization approach, GNSS is usually used for
correcting the PDR solution, thus the GNSS positioning quality
is essential to guarantee a satisfactory hybridized solution.

This work aims to exploit the degraded GNSS signal
in challenging environments as much as possible, and also
hybridize it with the inertial signal, to meet the expectation
of ubiquitous infrastructure-free pedestrian navigation. In this
paper, we extend the operational limits of GNSS to light indoor
environments by using GNSS carrier phase measurement. Light
indoor environment here refers to the indoor area where GNSS
signals can be tracked by the receiver, although the number
of tracked satellites and the signal power could be lower than
outdoors. A new approach called LIGHT (Light Indoor GNSS
MacHine-learning-based Time Difference Carrier Phase) is
proposed to exploit GNSS carrier phase signals in challenging
environments. Prior research has shown that GNSS carrier
phase measurement outperforms other GNSS measurements:
it is less affected by multipath effects compared to code
measurement [2], and provides better navigation performance
compared to Doppler [3]. However, most GNSS signals in deep
urban and light indoors are severely disturbed by Non-Line-Of-
Sight (NLOS) or multipath effects. The ability to select healthy
signals is important to achieve a better navigation solution.
In the proposed LIGHT algorithm, the GNSS carrier phase
signal is selected by machine learning (ML). The selected
signals are fed into the Time Difference Carrier Phase (TDCP)
algorithm, which removes several error terms by differencing
the carrier phase within two consecutive epochs [4]. TDCP is
a time gradient-based approach that provides a more accurate
estimate of pedestrian velocity.

In real-world applications, both “light indoor”’ and “deep
indoor”’ environments can occur together. The GNSS-only
solution may not be continuous because of the lack of
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measurements in deep indoor environments and some transition
areas between outdoor and indoor environments. Therefore,
the PDR solution needs to be fused to obtain a continuous
solution. In this paper, an Extended Kalman Filter (EKF)-based
navigation filter called LIGHT-PDR is designed to combine the
LIGHT and PDR algorithms to further improve the estimated
pedestrian trajectory.

This paper is an extended version of the paper [5]. It
describes further the LIGHT approach in terms of the ML
model training process. Also, 2 more test scenarios are added.

The remaining part of this paper is organized as follows:
Section II presents the state-of-the-art of indoor GNSS use and
the ML-based GNSS. Then, in section III, we analyze how
the signal attenuation impacts the receiver tracking process,
and further define the “light indoors” according to our needs
for indoor positioning. The detailed LIGHT algorithm and the
structure of the LIGHT-PDR hybridization filter are presented
in Section IV. In Section V, the proposed LIGHT / LIGHT-PDR
approaches are evaluated in several light indoor environments,
such as shopping mall and railway station, and in deep urban
environments for the handheld device use case. The conclusion
and perspective are given in Section VI.

I I . S TAT E - O F - T H E - A R T

The analysis of the current state-of-the-art focuses on two
aspects: 1) indoor GNSS use and 2) artificial intelligence (AI)-
based GNSS signal quality discrimination.

Indoor GNSS positioning is still an open research topic. In
the state-of-the-art, there are mainly two general approaches:
using high-sensitivity receivers (HS) and implementing GNSS
repeaters or simulators. In [6], an HS-GNSS software receiver
for indoor navigation is proposed. Code measurements are fed
into a Kalman filter to compute the navigation solution. On
average, the HS receiver can track 8 GPS L1 C/A satellites
and achieve a 2D positioning accuracy (Root Mean Square,
RMS) of 2.2 m for the dynamic test in the residential building.
[7] proposes a hybridization approach between a direct vector-
based HS-GNSS software receiver using GPS L1 Doppler
measurements and PDR. The proposed HSGPS/PDR approach
outperforms the conventional HSGPS/PDR approach with a
24% and 60% improvement in north and east RMS positioning
errors, respectively.

Regarding the GNSS repeater, [8] and [9] use the repeated
carrier phase measurement to achieve a <0.5 m horizontal
positioning error for parking lot and laboratory environments
respectively. [10] downconverts the 1575.42 MHz GPS L1
signal to 433 MHz for transmission, then at the receiver level,
the signal is upconverted back to the L1 frequency. In this
way, the system is immune to NLOS conditions. Horizontal
positioning accuracy below one meter has been achieved.

The current state-of-the-art in indoor GNSS relies heavily on
additional hardware, while AI provides the ability to select the
healthy GNSS signal by enhancing the software. In challenging
GNSS signal propagation environments, such as cities, AI is
usually used for signal classification. To accomplish this task,
features can be extracted at two different levels: (1) at the raw
measurement level and (2) at the receiver correlator output

level, since the correlation shape of NLOS/multipath signals is
distorted compared to healthy signals. For example, [11] uses
a neural network (NN) to detect the NLOS signal based on
three features of the correlation outputs, i.e., signal strength as
a function of elevation, number of local correlation maxima,
and delay of maximum correlation. The result shows that
the NN method can achieve an average NLOS classification
accuracy of 97.7% in urban street canyons. [12] extracts the
features from the measurements, namely signal-to-noise ratio,
normalized pseudorange residuals, elevation, and pesudorange
rate consistency. The tested SVM model achieves a 91.5%
LOS/NLOS classification rate in urban street canyons. In
addition, the detection of indoor/outdoor transition stage is
critical for seamless navigation. In [13], a fast transition
detection method for smartphone GNSS receivers is proposed
by merging different ML models. 4 models are used in the base
layer: XGBoost, LightGBM, AdaBoost and Random Forest;
and logistic regression is used in the second layer to make
the final decision. 36 features, including C/N0, number of
satellites, Dilution of Precision (DOP), azimuth and their
statistical values are used for training. For indoor/outdoor
classification, an accuracy of 97% for 17,199 testing epochs
that contains both indoor or outdoor walking scenarios is
achieved. And among 11,218 epochs walking in the transition
area, the accuracy of indoor/outdoor transition detection is
92.8%. What is more, to better interpret the measurement
quality and improve the navigation solution, [14] proposes an
approach to weight GNSS measurements using the Long-Short
Term Memory Neural Network (LSTM NN). The predicted
weights are used in the Weighted Least Square (WLS) algorithm
to estimate the user’s position. The features are composed
of satellite elevation, carrier phase lock time, carrier-to-noise
density ratio C/N0, C/N0 variance, C/N0 mean value, the
window size of calculating the mean and the variance, and
pseudorange residual. Compared to the state-of-the-art Fault
Detection Exclusion (FDE) approach, the proposed method
provides a 1.2 m improvement in 68% horizontal position error
cumulative density function (CDF) and a 0.66 m improvement
in 68% vertical position error CDF in urban environments.

Globally, the majority of existing indoor GNSS research
is infrastructure-dependent, and AI-based GNSS research still
mainly focuses on outdoor environments. The main contribution
of this research work is to extend the possibility of using GNSS
carrier phase measurements in light indoors with the help of
AI techniques, following an infrastructure-free strategy.

I I I . D E F I N I T I O N O F L I G H T I N D O O R S

There is no clear definition of the light indoor environment
in the literature, therefore it is necessary to analyze its nature,
especially how the signal is attenuated in different indoor
environments. In the introduction, we have briefly defined
the “light indoor” environment from the GNSS receiver signal
tracking point of view, i.e., the light indoor environment refers
to the indoor spaces where the receiver can successfully track
a few satellites, contrary to “deep indoors” where no satellite
can be successfully tracked at all.

Since the GNSS carrier phase measurements are used in this
paper, the carrier phase tracking performance from the receiver
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TABLE I
AT T E N U AT I O N T H R O U G H D I F F E R E N T B U I L D I N G M AT E R I A L S

F O R G P S L 1 S I G N A L [ 1 7 ]

Materials Attenuation [dB]
Drywall 2.40
Plywood 0.93

Glass 2.43
Tinted glass 24.44

Lumber 2.40
Brick 5.19

Concrete 9.57
Reinforced concrete 16.70

Phase Tracking Loop (PLL) is being analyzed. According to
[15], the thermal noise is usually considered the only error
source for carrier phase tracking, and the standard derivation of
the PLL thermal noise jitter σPLLt (with the unit of degrees)
can be written as:

σPLLt =
λ

2π

√
Bn

C/N0

(
1 +

1

2T ∗ C/N0

)
(1)

where λ is the carrier wavelength, Bn is the PLL loop
bandwidth, T is the receiver integration time, and C/N0 is
the carrier to noise density ratio. Suppose Bn and T keep
constant for the same receiver, and the received signals have
the same frequency, the wavelength is also constant. Therefore,
the PLL thermal noise jitter only depends on C/N0, which
is the strength of the received signal. If the signal is strongly
attenuated, its C/N0 is low, then it results in a high PLL thermal
noise jitter, thus the phase tracking may fail. In practice, it has
been shown that the carrier phase tracking would fail if the
C/N0 is below 25 dB-Hz for a second-order PLL, where the
noise jitter is more than 15 degrees [16].

Table I compares the attenuation through different building
materials for GPS L1 signal [17]. It has shown that some of
the building materials such as drywall, plywood, glass, and
lumber can make small attenuation on the received signal,
while some others such as tinted glass and reinforced concrete
have a strong impact on attenuating the signal.

Therefore, according to our needs of indoor GNSS posi-
tioning, we can define the term “light indoor environment” as
follows:

The light indoor environment is an enclosed indoor space
surrounded by the building materials that cause small levels of
GNSS signal attenuation, such that the GNSS signals can be
successfully tracked with an acceptable level of tracking jitter.

In modern architectures, materials with low GNSS signal
attenuation such as glass and other composite materials are
widely used instead of simply using the concrete. Also, wooden
architecture is still very common in residential constructions.
This allows the use of GNSS signals in such environments to
become possible. However, the signal strength does not totally
reflect the signal quality. Even though in light indoors the
signal can be successfully tracked, it suffers strongly from the
multipath. Being able to select the tracked signal with good
quality is essential to make the GNSS positioning system fully
functional.

I V. M E T H O D O L O G Y

Fig. 1 shows the flow chart of the proposed approach. Each
part will be detailed in the following subsections. For GNSS
processing, the LIGHT algorithm is proposed: a machine
learning model is trained to select qualified carrier phase
measurements for TDCP. Then, the LIGHT-PDR hybridization
filter is proposed to combine the LIGHT and PDR solutions
as well as barometer measurements to provide the pedestrian
trajectory.

Fig. 1. General flow chart of the proposed approach

A. LIGHT: Light Indoor GNSS MacHine-learning-based
Time Difference Carrier Phase Positioning Approach

In challenging environments like urban and light indoors, the
obstacles are common in the GNSS signal propagation channel,
thus NLOS measurements can lead to inaccurate navigation
solutions. For pedestrian navigation, the walking speed of the
subject is relatively slow compared to other transport modes,
so the GNSS measurement errors do not change significantly
within the sampling intervals. Therefore, it is possible to remove
the measurement errors by using the time-difference approach.
Our previous research work [4] has already shown satisfactory
navigation performances in urban environments by using GNSS
carrier phase measurements with TDCP algorithm together
with the FDE. However, the indoor environment is much more
complex than outdoors. On the one hand, the satellite visibility
is degraded, and the magnitude of the tracked signal power
is attenuated [1]. On the other hand, indoors, where lots of
reflections and refractions take place, LOS signals can hardly
be received, and fast-changing NLOS signals may dominate
the tracked signals. Despite the fact that the excess delay of
GNSS signal reflection indoors (around 1 µs) is much shorter
than outdoors (up to 100 µs) [18], indoor signal receptions
involve more frequent reflections, even multiple reflections for
a single reception. This increases significantly the complexity
for indoor GNSS signal classification. What is more, every
indoor space is different from each other, so it is not possible
to mathematically model the indoor GNSS signal propagation
channel accurately. All those limitations complicate the indoor
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TABLE II
C O L L E C T E D DATA S E T C H A R A C T E R I S T I C S F O R T H E M L M O D E L

Environment
Light indoor/urban

canyon epochs /
duration [s]

Total epochs /
total duration [s]

Shopping Mall 6851 / 1370.2s 8171 / 1634.2s
Railway Station 7609 / 1521.8s 10430 / 2086s

Office 1441 / 288.2s 2293 / 458.6s
Urban 2527 / 505.4s 3723 / 744.6s
Total 18428 / 3685.6s 24617 / 4923.4s

(a) Shopping Mall (b) Railway Station

(c) Office (d) Urban Canyon

Fig. 2. Different environments for data collection

navigation with standalone GNSS positioning, thus quite few
research works are addressing this problem. Therefore, machine
learning (ML) is expected to tackle the complex GNSS indoor
positioning problem.

The proposed LIGHT algorithm builds an ML model
capable of identifying usable GNSS carrier phase measurements
for TDCP in challenging surroundings. The procedure of
constructing the LIGHT model involves four key steps: (1)
Dataset preparation, to collect the data; (2) Data labeling,
to label the collected GNSS carrier phase measurements as
“usable” and “not usable”; (3) Feature selection, to select
the most appropriate features for training; and (4) Model
selection, to test different models and select one with the
best performance. The details of each step are presented in the
following subsections.

1) Dataset Preparation: To build a diverse dataset for
machine learning, GNSS carrier phase data were collected
at 5 Hz in different challenging environments: shopping mall
with glass roof (Fig. 2 (a)), railway station (Fig. 2 (b)), office
building (Fig. 2 (c)), and urban canyons (Fig. 2 (d)) where the
signals’ reflection and refraction are more frequent compared
with other outdoor spaces. Table II details a summary of the
dataset recorded to build the ML model.

Fig. 3. Flowchart of labeling method at each epoch

(a) Pattern A (b) Pattern B

Fig. 4. Two typical patterns on sorted velocity errors of all subsets
(x axis: subset index after sorting the velocity error; y axis: sorted velocity
error)

2) Data Labeling: In the state-of-the-art ML-based GNSS
vehicle positioning in urban environments, such as [19] [20], the
ray-tracing methods are used for labeling LOS/NLOS signals.
However, in light indoors, it is hard to track LOS signals. Even
though sometimes there is a direct link between the receiver
and the glass roof or the glass wall, the signal is also NLOS
since the refraction takes place while it penetrates through the
glass. Moreover, since TDCP is a time-differenced algorithm, if
the NLOS signal does not change very fast within 2 consecutive
epochs, the multipath errors will be eliminated, thus the NLOS
could become useful. Therefore, the ray-tracing methods that
identify LOS/NLOS signals are not suitable in our case.

The objective of developing the LIGHT algorithm is to select
GNSS carrier phase measurements that provide satisfactory
velocity estimates for TDCP in challenging environments such
as deep urban and light indoors. Therefore, assessing the
velocity errors estimated by different satellite combinations
could be a clue for our data labeling. Since it is a classification
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problem, two categories of satellites must be identified: 1)
satellites with usable measurements that contribute to low
velocity errors, and 2) satellites with unusable measurements
that result in high velocity errors. Also, there must be a clear
boundary seen on the velocity errors between the two categories,
to make sure that the data labeling procedure does not make
any ambiguity.

In this paper, we propose an exhaustive satellite subset veloc-
ity error searching approach to label the data as shown in Fig. 3.
Since the number of tracked satellites is reduced in light indoor
environments, it is feasible to find all possible combinations
of tracked satellites at each epoch. Each combination is called
a “subset”. Suppose that at epoch k, N satellites are tracked
by the receiver, therefore if we remove the zero set, the total
number of subsets is 2N−1. Some subsets could have only one
satellite, but with the Kalman filter, it is possible to estimate
the TDCP velocity with only one measurement.

Then an EKF-based TDCP without any fault exclusion or
outlier removal technique is applied to each subset to estimate
the velocity. Knowing the reference velocity, the velocity error
εvi (i = 1...n, n ∈ [1, 2N − 1])) of each subset can be
calculated. If we sort the velocity errors εvi

in ascending order,
2 types of patterns on the sorted velocity error curves can be
observed. Fig. 4 illustrates an example of these 2 patterns. In
pattern A (Fig. 4 (a)), the sorted velocity error curve increases
smoothly and there is no clear boundary between low and high
velocity errors; while in Pattern B, this boundary exists, which
is the gap in the sorted velocity error curve. On the left side
of the Pattern B curve (highlighted by the blue circle in Fig. 4
(b)), all the subsets contribute to small velocity errors, which
means that the subsets in the blue zone only contain the usable
satellites. On the right side of the curve (highlighted by the red
circle in Fig. 4 (b)), the velocity errors are much larger, which
means that all subsets in the red zone must contain at least
one “unusable” satellite whose carrier phase measurement is
inaccurate.

Our training set was built based on the epochs whose sorted
velocity error curves correspond to Pattern B in which the
minimum velocity error is usually lower than 0.2 m/s. Within
the blue zone, the subset with the maximum number of satellites
is identified as “usable” set. The complementary set of the
“usable” set contains the “unusable” satellites.

In fact, the case of Pattern B is not common in light indoor
environments. Table III details the number of epochs that
Pattern B can be observed for each environment. The complete
“usable” epochs dataset corresponds to 9392 observations (1
observation = 1 feature set of one satellite). 70% of the
observations (6574) are used for training the model, and 30%
of the observations (2818) are used for testing the model
classification.

3) Feature Selection: After summarizing the state-of-the-
art on ML-based GNSS signal classification and analyzing
the needs of this research, 15 candidate features are firstly
proposed. These candidate features can be divided into 4
categories: 4 signal-nature-based features, 3 raw-measurement-
based features, 7 time-relevant features, and 1 TDCP Kalman
filter-based feature. The explanation of each feature and the
feature selection analysis are as follows.

TABLE III
S U M M A RY O F T H E U S A B L E D ATA S E T F O R M L M O D E L

Environment Usable
epochs

Light
indoor/urban

canyon epochs
Total epochs

Shopping Mall 399 6851 8171
Railway Station 265 7609 10430

Office 42 1441 2293
Urban 183 2527 3723
Total 889 18428 24617

(A) Signal-nature-based features:
(F1) Carrier-to-noise density ratio (C/N0),
(F2) Satellite elevation (elev),
(F3) Satellite azimuth (azimuth),
(F4) Number of tracked satellites (n sat).
For C/N0, as shown in Fig. 6 (a), the distributions of the

“usable” and “unusable” classes are more separable than others.
In Fig. 5 (a), C/N0 has a 55% linear correlation with the label.
However, the distributions of the other signal-nature-based
features are overlapped (Fig. 6(b)(c)(d)). In the case of light
indoor GNSS positioning, the signal quality depends on the
geometry of the building. For example, in the shopping mall
with the glass roof, the good measurements come from higher
elevations, while in the railway station with the large glass
walls, the good measurements come from lower elevations.
Similar to the azimuth. Therefore, C/N0 is the only selected
feature in this category.
(B) Raw-measurement-based features:

In challenging environments especially light indoors, the
fast-changing multipath is the main GNSS measurement error
source. Although the TDCP algorithm is effective against
multipath by taking the time difference, the multipath change
time could be even shorter (minimum 1 ms [18]) than the
TDCP time interval (200 ms for 5 Hz sampling frequency).
Therefore, some multipath errors could remain after doing the
time difference. Therefore, several candidate features that are
based on the raw measurements must be found such that the
ML model can identify those problematic measurements.

(F5) Phase-range rate consistency (tdcp dopp):
It is the difference between the phase-range rate dρi,kϕ and
the Doppler-range rate dρi,kD . If there is no measurement
error, the Doppler shift of the signal is the time derivative
of the carrier phase [21], therefore the measurement error
can be accessed through the phase-range rate consistency.
Phase-range rate is the change rate of carrier phase
(converted into range) within 2 consecutive epochs, it is
also the TDCP measurement used in EKF. The phase-range
rate (or TDCP measurement) is expressed as follows:

dρi,kϕ = λϕi,k − λϕi,k−1 (2)

where ϕi,k is the carrier phase measurement of satellite i
at epoch k, and λ is the wavelength of the carrier phase
signal. Doppler-range rate is derived from Doppler:

dρi,kD = −λf i,k
D ∆t (3)

where f i,k
D is Doppler frequency of satellite i at epoch k.
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(a) Linear correlation matrix (b) Nonlinear correlation matrix

Fig. 5. Correlation matrices of candidate features

(a) C/N0 (b) Elevation

(c) Azimuth (d) Number of satellite

Fig. 6. Distributions of category A features (blue: usable, red: unusable)

(F6) Double time differenced carrier phase (DTDCP):

The phase measurements are twice differenced. It measures
the difference of TDCP measurements between 2 epochs,
as expressed in (8):

DTDCP = dρi,kϕ − dρi,k−1
ϕ

= (λϕi,k − λϕi,k−1)− (λϕi,k−1 − λϕi,k−2)
(4)

Fig. 7 shows an example of both TDCP and DTDCP
measurements from the same satellite for an urban/light
indoor mixed environment dataset. The x-axis of Fig. 7 is
the epoch index. 5 consecutive epochs imply one second.
We can see that if the signal is not perturbed, small

fluctuations that depict the receiver motion can be observed
in both TDCP and DTDCP measurements, as highlighted
by the zoomed signals in Fig. 7. When the signal is
perturbed, i.e., the carrier phase signal suffers from
multipath or cycle slip, spikes can be observed from the
TDCP measurement. However, the TDCP measurement
is not stationary as its mean value keeps increasing over
time. By doing the DTDCP, the measurement becomes
stationary, which allows us to better assess the magnitude
of TDCP perturbations.

Fig. 7. TDCP and DTDCP measurements of satellite G31 for an
urban/light indoor mixed dataset

(F7) Code Minus Carrier (CMC):
The CMC is the difference between the code measurement
Ri,k and carrier phase measurement λϕi,k. They can be
respectively modeled as:

Ri,k = di,k + c(δtis − δtku) + di,ktropo + di,kiono + ϵiRk (5)
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(a) tdcp dopp (b) DTDCP (c) CMC

Fig. 8. Distributions of category B features (blue: usable, red: unusable)

λϕi,k = di,k+c(δtis−δtku)+λN+di,ktropo−di,kiono+ϵiϕk
(6)

where Ri,k is the code measurement in meters, ϕi,k is
the carrier phase in cycles, λ is the signal wavelength,
di,k is the true geometrical distance between satellite
and receiver, c is the speed of light, δtis is the satellite
clock offset, δtku is the receiver clock offset, di,ktropo is the
tropospheric error, di,kiono is the ionospheric error, ϵiRk ϵiϕk
represent other code and phase errors respectively, such
as multipath and noise.
By taking the difference between the code measurement
(5) and the phase measurement (6), we get the CMC
measurement as follows:

CMCi,k = Ri,k−λϕi,k = 2di,kiono+λN+ϵiRk+ϵiϕk
(7)

It has been widely used on multipath detection [22] as
well as cycle slip detection [23].

These 3 candidate features based on raw measurements are
all related to the carrier phase. However, because the code
measurement is more vulnerable to noise and multipath effects
compared to the carrier phase [2], the CMC cannot correctly
reflect the quality of the carrier phase measurement. This can
also be observed in Fig. 8 (c), where the CMC distributions of
the two classes are highly overlapped. For the others, in Fig. 8
(a)(b), the usable distributions are centered in the middle, while
the unusable distributions have much larger values. Therefore
Phase-range rate consistency (tdcp dopp) and Double time
differenced carrier phase (DTDCP) features are finally chosen.
(C) Time-relevant features:

(F8) Variance of carrier-to-noise density ratio (var CN0)
(F9) Variance of phase-range rate consistency

(var tdcp dopp)
(F10) Entropy of phase-range rate consistency (en-

tro tdcp dopp)
(F11) Variance of double time differenced carrier phase

(var DTDCP)
(F12) Entropy of double time differenced carrier phase

(entro DTDCP)
(F13) Variance of TDCP measurement (var TDCP)
(F14) Entropy of TDCP measurement (entro TDCP).
Time-relevant features are able to measure the magnitude

of fluctuation of the signal within a time window. Here, all
time-relevant features are calculated within a sliding window
with a length of 10 samples (for 5 Hz data). However, the
distributions of the var CN0 feature for the two target classes

(a) var DTDCP (b) entro tdcp dopp (c) var inno

Fig. 9. Distributions of selected categories C and D features (blue:
usable, red: unusable)

mostly overlap, therefore it is excluded. For the other features,
most of them are highly correlated with each other, as we
can see in Fig. 5, either linear or non-linear. Finally we select
one variance (var DTDCP) and one entropy (entro tdcp dopp),
with the most separable distributions, as shown in Fig. 9 (a)(b).
(D) TDCP Kalman filter-based feature:

(F15) EKF innovation variance (var inno)
In the TDCP filter [4], the innovation is the difference

between the measured and the predicted phase-range rate
derived from the user-satellite geometry. The outlier in the
innovation may also indicate bad measurements. At each epoch
k, the innovation variance can be directly extracted from the
Kalman filter:

Ck = diag(HkPkHT
k + Rk) (8)

where, Hk is the EKF observation matrix, Pk is the state
covariance matrix, and Rk is the measurement covariance
matrix.

This feature has a relatively separable distribution (see Fig.
9 (c)), and a strong correlation with the label (see Fig. 5). It
is therefore selected as one of the final features.

At the end, 6 features are selected to train the model, namely
5 non-filter-based features: Carrier-to-noise density ratio (C/N0),
Phase-range rate consistency (tdcp dopp) together with its
entropy (entro tdcp dopp), Double time differenced carrier
phase (DTDCP) together with its variance, and one filter-based
feature: EKF innovation variance (var inno).

4) Model Selection: Five candidate models are tested, namely
Logistic Regression (LR), Decision Tree (DT), Random Forest
(RF), Support Vector Machine (SVM), and Gradient Boosting
(GB). The metrics such as Accuracy, Precision, F1 score, and
Recall score on the test set as well as Accuracy on the training
set are evaluated to make the final decision. The confusion
matrices on the test set of each candidate model are shown in
Fig. 10. The synthesis of the candidate models’ performances
is given in Table IV. The highest score for each metric is
highlighted in the table. The GB model gives the highest
scores in terms of accuracy and F1 score on the test set and
the highest accuracy on the training set.

Although the RF model has a suboptimal performance with
similar metric values compared to the GB model, its training
took 3.82 s while the GB took 2.76 s. What is more, GB’s
prediction time is much shorter than that of RF (e.g., for the
shopping mall data described in the following section, GB
takes 18.50 s, while RF takes 67.89 s). For this reason, the
GB model is finally selected.
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(a) LR (b) DT

(c) RF (d) SVM

(e) GB

Fig. 10. Confusion matrices of each candidate model

TABLE IV
P E R F O R M A N C E S O F T H E C A N D I D AT E M O D E L S

Model Testing Set Training
Set

Accuracy Precision F1 score Recall Accuracy
LR 0.8151 0.8195 0.8175 0.8155 0.9234
DT 0.8733 0.9112 0.8696 0.8316 0.9627
RF 0.8896 0.9423 0.8847 0.8337 0.9745

SVM 0.8701 0.8867 0.8697 0.8532 0.9587
GB 0.8957 0.9417 0.8918 0.8470 1

5) Time Difference Carrier Phase (TDCP) Positioning Al-
gorithm: Once the ML model has been built, the qualified
carrier phase measurements will be used for TDCP positioning
algorithm. The advantage of TDCP is that, by taking the time
difference, the satellite clock offset δtis, ambiguity factor N ,
atmospheric errors di,ktropo and di,kiono, noise and multipath error
ϵiϕk

in (6) are supposed to be eliminated, since they do not
change fast within the sampling interval [4].

Therefore, by taking the time difference of (6), we can get:

λ∆ϕi
k,k−1 = ∆dik,k−1 + c(∆δtku) (9)

By making the geometry analysis, for each satellite, the
range difference ∆dik,k−1 in (9) can be calculated as:

∆dik,k−1 = (esi,uk )T · (xsik − xuk)− (esi,uk−1)
T · (xsik−1 − xuk−1)

= ∆S −∆G− (esi,uk )T ·∆dk,k−1

(10)

where esi,uk and esi,uk−1 are the unit vectors point from the user’s
receiver towards satellite i, xsik and xsi

k−1 are the positions of
satellite i in the ECEF (Earth Centered Earth Fixed) frame,
xuk and xuk−1 are the positions of user’s receiver in the ECEF
frame, at epochs k and k − 1 respectively. ∆dk,k−1 is user’s
displacement vector between epoch k − 1 and epoch k. We
denote ∆S = (esi,uk )T ·xsik −(esi,uk−1)

T ·xsi
k−1as Satellite Doppler

correction term, ∆G = (esi,uk )T · xuk − (esi,uk−1)
T · xuk−1as

Geometry correction term [24].
By taking the combination of (9) and (10), and divided by

the time interval between two consecutive phase measurements,
for each observed satellite, we can get a function of velocity
in ECEF frame:
λ∆ϕi

k,k−1

∆t
=

∆S −∆G+ c(∆δtku)

∆t
− (esi,uk )T ·∆vECEF

k,k−1

(11)
In (11), the velocity ∆vECEF

k,k−1 is the average velocity of GNSS
receiver within two consecutive epochs. The terms of user
clock offset and velocity are unknown, they can be solved by
using the Extended Kalman Filter (EKF). The details of the
used TDCP navigation filter can be found in [4]. The state
vector consists of the 3-dimensional position in the North-East-
Down (NED) frame, 3-dimensional velocity in the NED frame,
and the receiver clock bias for GPS and Galileo respectively.
The constant velocity state transition model is applied in the
prediction stage.

Fig. 11 shows the overall flow chart of the proposed LIGHT-
based approach. At each epoch, once all tracked satellites have
been identified, 5 non-filter-based features will be calculated
also the EKF will make its prediction. After the prediction
stage, the filter-based feature i.e., the EKF innovation variance
will be calculated and extracted. All these features will be fed
to the pre-trained ML model. The ML model will make the
decision on which satellites can be used for EKF update to
further calculate the navigation solution.

Fig. 11. Flow chart of the LIGHT-based approach at each epoch

B. LIGHT-PDR: Hybridization Navigation Filter
The proposed LIGHT algorithm extends the use of GNSS

signals to light indoor environments for positioning. However,
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at certain epochs all measurements may be rejected by the
ML model, or at some epochs there may even be no GNSS
measurement available at all. Therefore, other sensors must be
used to provide a continuous solution. For this purpose, the PDR
heading and step length computed from inertial and magnetic
measurements as well as the height change rate calculated from
barometer measurements, are fused together with the LIGHT
solution. The PDR heading is computed using the “MAGYQ”
algorithm, which stands for “Magnetic, Acceleration fields
and GYroscope Quaternion” [25]. In the MAGYQ filter, the
gyroscope error is modeled in the quaternion space to reduce
linearization and ambiguity problems. In addition, the quasi-
static magnetic and acceleration field error models are used to
correct the attitude errors. Together with the “SmartStep” step
instance detection algorithm [26] and the handheld device step
length model [27], we can iteratively compute the trajectory
of the pedestrian. The next sections detail the structure of the
proposed LIGHT-PDR hybrid filter.

1) State Vector: The state vector comprises the 3D position
in the North-East-Down (NED) frame Pned, horizontal velocity
v2d, vertical (Down) velocity vd, and heading error δθ, since
the MAGYQ filter estimates the pointing direction of the device
and not the walking direction of the pedestrian.

xT = [P T
ned v2d vd δθ] (12)

2) Prediction: The dead reckoning approach is adopted in
the prediction stage of the hybrid filter. The running rate of
the hybrid filter is 5 Hz, which is identical to the GNSS data
rate and higher than the general step frequency (around 2
Hz). Therefore, we must calculate the equivalent “step length”
during the filer prediction time interval (∆t = 0.2s) using
the horizontal velocity v2d multiplied by the time interval ∆t.
Also, the MAGYQ heading θMAGYQ is corrected by heading
error δθ.

P̂nk
= Pnk−1

+v2dk−1
∗∆t∗sin(θMAGYQk−1

+δθk−1) (13)

P̂ek = Pek−1
+ v2dk−1

∗∆t∗ cos(θMAGYQk−1
+ δθk−1) (14)

P̂dk
= Pdk−1

+ vdk−1
∗∆t (15)

Constant velocity model is applied for velocity components:

v̂2dk
= v2dk−1

(16)

v̂dk
= vdk−1

(17)

The heading error is assumed as constant during the interval
of the prediction stage:

δ̂θk = δθk−1 (18)

3) Updates: In the proposed LIGHT-PDR hybrid filter, 3
types of updates are involved: the TDCP update corrects
horizontal velocity, vertical velocity, and heading; the Step
update corrects horizontal velocity; and the Barometer update
corrects vertical velocity.

(1) TDCP update With the help of the proposed LIGHT
algorithm, TDCP can provide the 3-dimensional velocity light
indoors in the North-East-Down (NED) frame. At each epoch,

if a TDCP solution is available, the correction (innovation) can
be calculated as follows:

innoTDCP =

v2dTDCPk
− v̂2dk

vdTDCP k
− v̂dk

δ̃θk − δ̂θk

 (19)

where,
v2dTDCPk

=
√
v2nTDCPk

+ v2eTDCPk
(20)

δ̃θk = arctan

(
veTDCPk

vnTDCPk

)
− θMAGYQk

(21)

(2) Step update The step frequency is around 2 Hz, which
is lower than the 5 Hz filter prediction frequency. Since we
assume that the horizontal velocity remains constant during
the step interval, the horizontal velocity derived from the step
length at the current step instant can be used for the incoming
epochs until the next step instant. The innovation on horizontal
velocity provided by the Step update can be written as:

innostep =
Sk

∆tstep
− v̂2dk

(22)

where Sk is the PDR step length at epoch k calculated
according to the model in [25], and ∆tstep is the time interval
between two steps.

(3) Barometer update The ambient air pressure and temper-
ature measurements can be used to correct the vertical velocity:

innobaro =
∆hbaro

∆t
− v̂dk

(23)

where ∆hbaro is the height difference between 2 consecutive
epochs. It is a function of pressure and temperature [28]:

∆hbaro =
Tk−1

Tgrad

(
1−

(
Pk

Pk−1

)Tgrad·Gc
g

)
(24)

Where Tk−1 is the measured temperature at the previous epoch.
Tgrad is the temperature change rate over altitude, which is
a constant with the value of 0.0065K/m. Pk and Pk−1 are
the measured air pressures at current and previous epochs
respectively. Gc is the gas constant (287.052J/K.kg). g is
the gravitational acceleration. Here we compute the relative
altitude with the pressure measurements at current and previous
epochs, to reduce the effects of measurement noise and bias
in the barometer measurements.

V. R E S U LT S A N D D I S C U S S I O N S

A. Experimentation setup
1) Equipment: A wearable device “ULISS” (Ubiquitous

Localization with Inertial Sensors and Satellites) was used
for data collection (Fig. 12 (a)). It contains a GNSS receiver
(UBlox F9P, GPS+Galileo, dual-frequency, sampling rate 5 Hz),
inertial sensors and magnetometer (Xsens Mti-7, sampling rate
200 Hz), and a barometer (Bosch BMP280, sampling rate 200
Hz). The ULISS device was held in a “texting” position, which
means the device was held in hand as if texting a message on
the phone. The facing direction of the GNSS antenna inside of
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the ULISS device is perpendicular to the device’s main surface,
i.e., in the case of texting, the GNSS antenna is always facing
toward the zenith.

The reference solution is provided by the Xsens MTw
Awinda system, which is a set of seventeen high-precision
full-body motion-capture IMU sensors (orange boxes in Fig.
12), with a 60 Hz sampling frequency. The advantage of using
such a system is that the reference information of every single
body part can be retrieved. The hand velocity and trajectory
are extracted from the “Xsens MVN Analyze” software, and
then intensively post-processed with map-matching to obtain
highly accurate references.

(a) ULISS: grey box (b) Awinda: orange boxes

Fig. 12. Experimental devices

2) Tested trajectories: 4 trajectories are tested in this paper by
covering diverse challenging environments: two in a shopping
mall (light indoor), one in a railway station including halls,
mezzanine and underground corridor (light and deep indoor),
as well as one in deep urban environments through a former
shipyard with a triangle-shaped roof (urban and light indoor).

More details of the tested environments can be found in
Fig. 2 and Fig. 13. For the shopping mall, see Fig. 2 (a),
the subject was walking on the path below the edge of the
glass roof, surrounded by trees, pillars, and also some other
obstacles like walking customers, escalators, statues, etc. In
the mezzanine of the railway station, obstacles like artificial
trees, glass-structured shops, panels, and also walking travelers
can be seen in Fig. 2 (b). Fig. 2 (d) shows a classic deep urban
environment with narrow streets surrounded by tall buildings
and trees. Inside the former shipyard building, there were not
many obstacles as shown in Fig. 13 (a) but the roof is split
into small pieces by the metal structures. The underground
passage of the railway station is shown in Fig. 13 (b).

Fig. 14 depicts the ground truth of the 4 tests, as well as the
number of tracked satellites along the trajectory. Thanks to the
background satellite image, we can easily identify the glass
roof of the shopping mall (in dark blue of Fig. 14 (a)(b)), the
mezzanine of the railway station (enclosed waiting room that
crosses the rail tracks, big white rectangle on the left of Fig.
14 (c)), and the roof of the shipyard (big lilac rectangle on
the right of Fig. 14 (d)) respectively. We can also identify that
the number of tracked satellites in all light indoor scenarios is
far less than outdoors (light yellow trajectory instead of dark
orange). The number of tracked satellites in the shopping mall
is even lower than that in the other two light indoor scenarios.

Moreover, the min, max, and mean C/N0 evolution of all

(a) Former shipyard (b) Underground passage

Fig. 13. Details of the former shipyard and underground environments

(a) Shopping mall 1 (b) Shopping mall 2

(c) Railway station (d) Shipyard/urban

Fig. 14. Visualization of the ground truths and the number of tracked
satellites along the tested trajectories (Background satellite image source:
Géoportail France)

tracked satellites over time for the 4 datasets are studied in
Fig. 15. The indoor periods (both light indoor and deep indoor)
are highlighted by pink backgrounds, contrary to the outdoor
periods highlighted by green backgrounds. Several pieces of
information can be read from Fig. 15: 1) the discontinuities
in the curves imply that no satellite was tracked, i.e. the deep
indoor scenario. For the shopping mall datasets, we also observe
the C/N0 discontinuities just after entering the building and just
before exiting the building, i.e., the indoor/outdoor transition
area. 2) For most of the time, the minimum C/N0 of tracked
satellites is larger than or equal to 25 dB-Hz, even though a
few spikes that C/N0 is less than 25 dB-Hz can be observed.
This phenomenon is consistent with the common second-order
PLL tracking performance [16]. (3) The C/N0 curves are
more fluctuated indoors than outdoors. (4) The attenuation in
indoor spaces compared with outdoors is visible through the
magnitude of C/N0 curves.

The synthesis of 4 tested trajectories regarding the environ-
ment natures, total walking distance, total duration and light
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TABLE V
S Y N T H E S I S O F T E S T E D T R A J E C T O R I E S

Dataset Environments Vertical
levels

Total
walking
distance

Total
duration

Light
indoor

duration

Mean C/N0 of
tracked satellites

outdoors

Mean C/N0 of
tracked satellites

light indoors

Average number of
tracked satellites

light indoors
Shopping
mall 1

Semi-open-sky,
light indoor Single floor 419 m 5’44” 4’6” 39.7 dB-Hz 35.4 dB-Hz 4.82

Shopping
mall 2

Semi-open-sky,
light indoor Single floor 415 m 5’39” 4’45” 37.2 dB-Hz 35.9 dB-Hz 6.47

Railway
station

Semi-open-sky,
light indoor,
deep indoor

Multi-floor,
with stairs
and ramps

1545 m 26’ 18’13” 39.3 dB-Hz 35.6 dB-Hz 9.69

Urban/
ship-
yard

Semi-open-sky,
deep urban,
light indoor

Single floor 810 m 9’53” 2’37” 37.3 dB-Hz 37.6 dB-Hz 9.91

(a) Shopping mall 1 (b) Shopping mall 2

(c) Railway station (d) Shipyard/urban

Fig. 15. Min, max and mean C/N0 evolution of the tracked satellites for
four tested datasets (Blue: min C/N0, yellow: max C/N0, red: mean C/N0.
Green background: outdoor period, pink background: indoor period)

indoor duration, mean outdoors C/N0, mean light indoors
C/N0, and the average number of tracked satellites light
indoors is given in Table V. According to the last three columns
of Table V, we can conclude that the “shopping mall 1” dataset
is the most challenging one, since it has the fewest average
tracked satellites light indoors, and also the most attenuation
from outdoors to light indoors. For the “urban/shipyard” dataset,
the mean outdoor and light indoor C/N0 do not change much,
since there are not many obstacles in the shipyard building in
addition to its roof.

The first author is the human subject who carried out the
experiments in this paper. The railway station handheld dataset
used in this paper was collected simultaneously with one of
the foot-mounted datasets for Indoor Positioning and Indoor
Navigation (IPIN) 2022 competition track 4 [29].

B. Performance evaluation of the LIGHT algorithm
First of all, as we can see in Table VI, even in the dataset

for the shopping mall 1, where less than 5 satellites can be

TABLE VI
U S A B L E L I G H T I N D O O R E P O C H S F O R T H E L I G H T A L G O R I T H M

Dataset Usable
epochs

Total light
indoor epochs Usable rate

Shopping Mall 1 690 1230 56.10%
Shopping Mall 2 996 1428 69.75%
Railway Station 4061 5467 74.28%

Shipyard 792 796 99.50%

tracked on average, at least half of the epochs can be used
for GNSS TDCP positioning. Associating with Table V, it can
be seen that the GNSS usable rate depends on the average
number of tracked satellites: the more satellites tracked, the
more epochs can be used. It also depends on the mean C/N0

value of all tracked satellites. For example, the railway station
and the shipyard datasets have a similar average number of
satellites, but more usable epochs in the shipyard where the
mean C/N0 is higher.

Since the LIGHT approach aims at selecting healthy carrier
phase measurements, benchmark comparisons are made with
two non-ML-based satellite selection approaches. The first
baseline method is to select satellites through a hard C/N0

threshold. The threshold here is fixed at 33dB-Hz, which is
determined through the C/N0 distribution in Fig. 6. Another
one uses the state-of-the-art hypothesis test-based Fault De-
tection Exclusion (FDE) [30] to remove the satellites with
faulty measurements. It uses the EKF innovation normalized
by its variance as the test statistic, to iteratively remove the
faulty measurements [30]. For simplicity, the three methods
for comparison will be designated as “LIGHT”, “C/N0”, and
“FDE” respectively in the following.

Fig. 16 shows the Cumulative Density Function (CDF) of the
velocity errors, where our proposed LIGHT algorithm outper-
forms both C/N0 and FDE approaches. It achieves significant
improvements in terms of velocity accuracy especially in light
indoor environments. Table VII reports the 75% velocity error
for each method. By applying the LIGHT approach, the velocity
accuracy can improve by up to 88% compared with the state-
of-the-art FDE, and up to 251% compared with the C/N0

thresholding baseline method.
It proves that the C/N0 thresholding approach provides the
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(a) Shopping mall 1 (b) Shopping mall 2

(c) Railway station (d) Urban/shipyard

Fig. 16. TDCP light indoor horizontal velocity error CDF for LIGHT, C/N0
threshold, and FDE approaches (blue: LIGHT, magenta: FDE, red: C/N0)

TABLE VII
7 5 % T D C P L I G H T I N D O O R H O R I Z O N TA L V E L O C I T Y E R R O R

C D F F O R L I G H T A N D B E N C H M A R K A P P R O A C H E S

Dataset Benchmark errors LIGHT error Accuracy improvement

Shopping mall 1
C/N0 0.78 m/s

0.35 m/s
122.86%

FDE 0.66 m/s 88.57%

Shopping mall 2
C/N0 1.09 m/s

0.31 m/s
251.61%

FDE 0.46 m/s 48.39%

Railway station
C/N0 0.55 m/s

0.28 m/s
96.43%

FDE 0.37 m/s 32.14%

Urban/shipyard
C/N0 0.33 m/s

0.20 m/s
65.0%

FDE 0.20 m/s 0%

worst results. Even by selecting the satellites with relatively
higher C/N0 values, it is still very risky to come across bad
measurements, therefore the signal strength cannot reflect the
quality of the measurements in challenging environments. This
also justifies the necessity of finding multiple features, as done
in the LIGHT approach.

The FDE approach, which is measurement redundancy-based,
can partly identify the bad measurements in light indoors.
Its performance highly depends on the number of tracked
satellites because the more satellites are tracked, the higher
the redundancy. The Urban/shipyard dataset which has the
highest average number of tracked satellites and the lowest
indoor/outdoor attenuation makes the FDE approach achieve
similar velocity accuracy as the LIGHT approach, as in Fig.
16 (d). However, the Shopping mall 1 dataset in which only in
average 5 satellites are tracked light indoors, the performance
of FDE is far behind that of LIGHT, see Fig. 16 (a).

The estimated trajectories using GNSS standalone for all
tested satellite selection approaches are shown in Fig. 17. Since
the C/N0 approach provides the worst velocity estimates, the
trajectories which were the integration of velocity also have
rapid drifts, as the trajectories for shopping mall datasets (red
trajectories in Fig. 17 (a)(b)) and for railway station dataset

(a) Shopping mall 1 (b) Shopping mall 2

(c) Railway station (d) Urban/shipyard

Fig. 17. TDCP-only trajectories for LIGHT, C/N0 threshold, and FDE
approaches for tested datasets (blue: LIGHT, magenta: FDE, red: C/N0,
yellow: reference) (Background satellite image source: Google Earth)

(red trajectory in Fig. 17 (c)) do not make too much sense. In
the most favorable urban/shipyard dataset, the red trajectory in
Fig. 17 (d) is also strongly perturbed. In general, the proposed
LIGHT algorithm can effectively correct the heading estimation
when the carrier phase measurements are available. This can
be clearly seen in the shopping mall datasets (Fig. 17 (a)(b)).
Also, the LIGHT trajectories are less biased compared with
the FDE trajectories in the more favorable railway station and
urban/shipyard datasets, as shown in Fig. 17 (c)(d).

However, during the deep indoor period and the transition
phase between indoor and outdoor, either no TDCP measure-
ment is selected or no satellite is tracked, the LIGHT solution
is not continuous. It can be identified in the blue trajectories of
Fig. 17: the trajectories of deep indoor and transition parts are
missing: the bottom part of the shopping mall trajectories are
shorter (see Fig. 17 (a)(b)), and the trajectory on the railway
station platforms overlap together (see Fig. 17 (c)). This justifies
the need for the hybridization with other sensors.

In the end, the computational performance of the LIGHT
algorithm on four tested trajectories is summarized in Table
VIII. The evaluation is performed on a Dell Latitude 5520
computer equipped with an Intel i7-1165G7 (2.80 GHz)
processor and a RAM of 32 GB. Matlab R2021b is used
for running the code, with the interaction of the pre-trained
ML model from Python at each epoch. The mean processing
time per epoch of all tested datasets is lower than the sampling
interval (0.2 s for 5 Hz data frequency), which is feasible for
real-time implementation.
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(a) Trajectories: Shopping mall 1 (b) Trajectories: Shopping mall 2 (c) Trajectories: Railway station

(d) Position error CDF: Shopping mall 1 (e) Position error CDF: Shopping mall 2 (f) Position error CDF: Railway station

Fig. 18. Trajectories and position error CDF for shopping mall 1&2 and railway station datasets. (green: LIGHT-PDR hybrid, blue: LIGHT-only, orange:
PDR-only, yellow: reference) (Background satellite image source: Google Earth)

TABLE VIII
C O M P U TAT I O N A L P E R F O R M A N C E O F L I G H T A L G O R I T H M O N

T H E T E S T E D T R A J E C T O R I E S

Dataset Total
epochs

Total
run
time

Mean
run

time per
epoch

Max
CPU con-
sumption

Max RAM
consump-

tion

Shopping
Mall 1 1720 9.04 s 0.0053 s 43.5% 0.5%

(∼160 MB)
Shopping
Mall 2 1698 8.69 s 0.0051 s 44.1% 0.4%

(∼128 MB)
Railway
Station 7803 41.37 s 0.0053 s 39.6% 0.9%

(∼288 MB)
Urban/

Shipyard 2967 19.25 s 0.0065 s 38.7% 1.0%
(∼320 MB)

C. Performance evaluation of the LIGHT-PDR filter
As in Fig. 18 (a)(b)(c), the LIGHT solution (in blue)

drifts when no usable GNSS carrier phase measurement is
selected, and the inertial-only heading drift on the PDR-only
trajectory (in orange) is visible. However, with the LIGHT-PDR
hybridization filter, seamless indoor-outdoor positioning can
be performed more robustly: the hybrid trajectory (in green)
is continuous, and the heading is also successfully corrected
by LIGHT when the TDCP update is available.

Therefore, the final position accuracy is significantly im-
proved, as shown in the position errors CDF in Fig. 18 (d)(e)(f),
and Table IX. For example, the LIGHT-PDR hybridization can
achieve a <9 m position accuracy for the two shopping mall

Fig. 19. Setup of the ULISS device and Xiaomi Mi 8 smartphone

Fig. 20. Position error CDF for Urban/shipyard dataset (green: LIGHT-
PDR hybrid, blue: LIGHT-only, orange: PDR-only, yellow: reference, red:
Google FLP) (Background satellite image source: Google Earth)
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Fig. 21. Trajectories for Urban/shipyard dataset (green: LIGHT-PDR
hybrid, blue: LIGHT-only, orange: PDR-only, yellow: reference, red:
Google FLP) (Background satellite image source: Google Earth)

datasets, while the accuracy of the LIGHT-only and PDR-
only solutions is at least 30 m. The proposed LIGHT-PDR
hybrid filter takes advantage of both individual filters in a
complementary way to provide a seamless positioning solution
in all challenging environments.

As for the urban/shipyard dataset, the hybridization perfor-
mance is similar to that of the LIGHT-only solution. However,
we can still see some minor differences in the CDF as shown
in Fig. 20: the hybridization solution outperforms the LIGHT-
only thanks to its capability of eliminating huge error in high
percentile CDF.

In addition, another comparison with the trajectory provided
by Google Fused Location Provider (FLP) of a Xiaomi Mi 8
smartphone was performed for this dataset. The Google FLP
fuses four-constellation GNSS, IMU, magnetometer measure-
ments in the smartphone and potentially Wifi information to
provide the navigation solution. We are going to compare the
FLP solution with our two-constellation GNSS-only LIGHT
solution, as well as the LIGHT-PDR hybrid solution. Both
ULISS and the smartphone are in the “texting” position, as
shown in Fig. 19. When computing the position error, the
distance between ULISS and the smartphone was removed.
Our solution (either LIGHT-only and LIGHT-PDR hybrid)
outperforms the FLP solution, as shown in the trajectory
(Fig. 21) and the CDF plot (Fig. 20). 2.67 m and 2.77 m
75% positioning accuracy for LIGHT-only and LIGHT-PDR
solutions respectively are achieved, while the FLP solution
has a positioning accuracy of 10.23 m. We can also observe
that in Fig. 21, the FLP trajectory drifts strongly compared to
LIGHT-only or LIGHT-PDR hybrid solution, especially during
the light indoor period inside the shipyard.

Regarding the heading correction performance brought
from the LIGHT solution, let us take an example of the
urban/shipyard dataset. Fig. 22 (a) compares the heading (in
degrees) obtained by each method (LIGHT, PDR, LIGHT-PDR
hybrid) with the reference for each step instant over time. The

PDR heading starts drifting from the beginning, while the
TDCP (LIGHT) heading can effectively correct it ensuring the
overall hybridization heading remains correct. Highlighted by
the red circle in Fig. 22 (a), the LIGHT-PDR hybridization
filter can also denoise the LIGHT heading in some extreme
cases where the LIGHT heading has too many oscillations.
The heading error CDF is plotted in Fig. 22 (b). For LIGHT
and LIGHT-PDR hybrid methods, the 75% heading error CDF
is 6.04° and 6.85° respectively, while PDR has a 75% heading
error of 34.70°.

(a) Heading comparison

(b) Heading error CDF

Fig. 22. Heading comparison and heading error CDF for urban/shipyard
dataset (green: LIGHT-PDR hybrid, blue: LIGHT-only, orange: PDR-only,
yellow: reference)

There are still some limitations of the hybridization solution
when there is no available carrier phase selected by LIGHT. In
Fig. 18 (a)(b), the bottom part of the hybrid trajectory is slightly
longer than the reference, because no available TDCP updates
could be applied at indoor/outdoor transition. The hybrid filter
only relied on the PDR solution. The errors from the PDR step
length estimation introduced a scale factor in the estimation of
the trajectory. Also, in Fig. 18 (c), the hybrid heading cannot
be sufficiently corrected during the deep indoors (underground)
stage where there is no GNSS at all.

V I . C O N C L U S I O N A N D P E R S P E C T I V E S

GNSS carrier phase measurement is a powerful tool for
positioning. With the help of artificial intelligence, it becomes
possible to use GNSS carrier phase even in challenging
environments. In this paper, a ML model, i.e., LIGHT, is
trained to select healthy GNSS carrier phase measurements
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TABLE IX
7 5 % H O R I Z O N TA L P O S I T I O N E R R O R C D F O F L I G H T- P D R

H Y B R I D F I LT E R , L I G H T- O N LY, P D R - O N LY A N D G O O G L E F L P

Dataset PDR LIGHT LIGHT-
PDR hybrid

Google
FLP

Shopping
Mall 1 36.03 m 29.87 m 7.43 m -

Shopping
Mall 2 35.70 m 32.96 m 8.94 m -

Railway
Station 111.60 m 225.27 m 33.64 m -

Urban/
shipyard 117.43 m 2.67 m 2.77 m 10.23 m

among a majority of unhealthy measurements to improve the
navigation solution. The texting carrying mode is investigated
in different challenging environments, i.e., light indoor and
deep urban. Even with quite few tracked satellites, LIGHT can
provide significant improvements in terms of TDCP velocity
estimation accuracy compared to the traditional non-ML-based
algorithms. For example, in the most challenging shopping
environment, the 75% velocity error CDF drops from 0.66 m/s
and 0.78 m/s for the state-of-the-art FDE approach and the
baseline C/N0 thresholding approach respectively, to 0.35 m/s
with the LIGHT algorithm, i.e., up to 88% of improvement
compared with FDE method was achieved, and up to 255% of
improvement compared with C/N0 method was achieved.

What is more, the LIGHT-PDR hybridization filter is pro-
posed to further improve the pedestrian trajectory by integrating
Magneto-Inertial Measurement Unit (MIMU) and barometer.
For the shopping mall datasets, a <9m position accuracy
can be achieved through LIGHT-PDR hybridization, while
the accuracy before hybridization is at least 30m. For the
urban/shipyard dataset, both LIGHT and LIGHT-PDR solutions
can provide a <3m position accuracy, while the accuracy of
the state-of-the-art Google FLP solution is larger than 10m.

The main limitation of the current LIGHT algorithm is in the
transition phase between indoor and outdoor, when either no
useful carrier phase measurements are selected, or no satellites
are tracked. This leads to the non-continuity of the LIGHT
solution. By using the PDR information, the LIGHT-PDR
hybridization filter fills in the missing portion of the LIGHT-
only trajectory, and the PDR heading drift is corrected by the
velocity estimated using LIGHT. Future work will improve the
LIGHT algorithm during the transition phase between indoor
and outdoor to achieve a more continuous solution.

R E F E R E N C E

[1] G. Lachapelle, “GNSS Indoor Location Technologies,” Journal of Global
Positioning Systems, vol. 3, no. 1-2, pp. 2–11, 2004.

[2] G. Lachapelle and P. Gratton, “GNSS Precise Point Positioning with
Android Smartphones and Comparison with High Performance Receivers,”
2019 IEEE International Conference on Signal, Information and Data
Processing (ICSIDP), pp. 1–9, 2019.

[3] A. Angrisano, M. Vultaggio, S. Gaglione, and N. Crocetto, “Pedes-
trian localization with PDR supplemented by GNSS,” 2019 European
Navigation Conference (ENC), pp. 1–6, 2019.

[4] Z. Li, N. Zhu and V. Renaudin, “Velocity Protection Level for Wearable
Devices on TDCP-based Pedestrian Navigation,” 2022 International
Conference on Localization and GNSS (ICL-GNSS), 2022.

[5] Z. Li, N. Zhu and V. Renaudin, “LIGHT-PDR: Light Indoor GNSS
Carrier Phase Positioning with Machine Learning and Inertial Signal
Fusion for Pedestrian Navigation,” 2023 International Conference on
Indoor Positioning and Indoor Navigation (IPIN), 2023.

[6] T. Lin, M. Ma, A. Broumandan and G. Lachapelle, “Demonstration
of a high sensitivity GNSS software receiver for indoor positioning,”
Advances in Space Research, vol. 51, no. 6, pp. 1035–1045, 2013.

[7] Z. He, V. Renaudin, M. G. Petovello and G. Lachapelle, “Use of High
Sensitivity GNSS Receiver Doppler Measurements for Indoor Pedestrian
Dead Reckoning,” Sensors, vol. 13, no. 4, pp. 4303–4326, 2013.

[8] X. Li, “GNSS Repeater Based Differential Indoor Positioning With Multi-
Epoch Measurements,” IEEE Transactions on Intelligent Vehicles, vol. 8,
no. 1, pp. 803–813, 2023.

[9] I. Selmi, N. Samama and A. Vervisch-Picois, “A new approach for
decimeter accurate GNSS indoor positioning using Carrier Phase
Measurements,” 2013 International Conference on Indoor Positioning
and Indoor Navigation (IPIN), pp. 1–6, 2013.

[10] A. Uzun, F. A. Ghani, A. M. Ahmadi Najafabadi, H. Yenigun and I.
Tekin, “Indoor Positioning System Based on Global Positioning System
Signals with Down- and Up-Converters in 433 MHz ISM Band,” Sensors,
vol. 21, no. 13, 2021.

[11] T. Suzuki and Y. Amano, “NLOS Multipath Classification of GNSS
Signal Correlation Output Using Machine Learning,” Sensors, vol. 21,
no. 7, 2021.

[12] H. Xu, A. Angrisano, S. Gaglione and L.-T. Hsu, “Machine learning
based LOS/NLOS classifier and robust estimator for GNSS shadow
matching,” Satellite Navigation, vol. 1, no. 15, 2020.

[13] Y. Zhu, H. Luo, F. Zhao, et al, “A Fast Indoor/Outdoor Transition
Detection Algorithm Based on Machine Learning,” Sensors, vol. 19,
no. 786, 2019.

[14] I. Sbeity, C. Villien, B. Denis, E. V. Belmega, “RNN-Based GNSS
Positioning using Satellite Measurement Features and Pseudorange
Residuals,” 2023 International Conference on Localization and GNSS
(ICL-GNSS), 2023.

[15] E. D. Kaplan and C. J. Hegarty, Understanding GPS: Principles and
Applications, Second Edition. ARTECH HOUSE, INC., 2006.

[16] M. Irsigler and B. Eissfeller, “PLL tracking performance in the presence
of oscillator phase noise,” GPS solutions, vol. 5, no. 4, pp. 45–57, 2002.

[17] G. Hein, M. Paonni, V. Kropp and A. Teuber, “GNSS Indoors: Fighting
the Fading (Part 2),” Inside GNSS, vol. May/June, pp. 47–53, 2008.

[18] G. Hein, M. Paonni, V. Kropp and A. Teuber, “GNSS Indoors: Fighting
the Fading (Part 1),” Inside GNSS, vol. March/April, pp. 43–52, 2008.

[19] L.-T. Hsu, “GNSS multipath detection using a machine learning approach,”
2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), pp. 1–6, 2017.

[20] Y. Sun and L. Fu, “Stacking Ensemble Learning for Non-Line-of-Sight
Detection of Global Navigation Satellite System,” IEEE Transactions on
Instrumentation and Measurement, vol. 71, pp. 1–10, April 2023.

[21] European Space Agency, “GNSS Basic Observables (online).”
https://gssc.esa.int/navipedia/index.php/GNSS_
Basic_Observables, 2011.

[22] M. Irsigler, “Characterization of multipath phase rates in different
multipath environments,” GPS Solutions, vol. 14, no. 4, pp. 305–317,
2010.

[23] European Space Agency, “Examples of single frequency
Cycle-Slip Detectors (online).” https://gssc.esa.
int/navipedia/index.php/Examples_of_single_
frequency_Cycle-Slip_Detectors, 2011.

[24] Z. Zhu and E. Vinande and M. U. De Haag, “Multi-constellation time-
differenced carrier phase solution with protection from multiple failures,”
2018 IEEE/ION Position, Location and Navigation Symposium (PLANS),
pp. 336–348, 2018.

[25] V. Renaudin and C. Combettes, “ Magnetic, Acceleration Fields and
Gyroscope Quaternion (MAGYQ) Based Attitude Estimation with
Smartphone Sensors for Indoor Pedestrian Navigation,” Sensors, vol. 14,
no. 12, pp. 22864–22890, 2014.

[26] N. A. Abiad, Y. Kone, V. Renaudin and T. Robert, “Smartstep: A Robust
STEP Detection Method Based on SMARTphone Inertial Signals Driven
by Gait Learning,” IEEE Sensors Journal, vol. 22, no. 12, pp. 12288–
12297, 2022.

[27] V. Renaudin, M. Susi and G. Lachapelle, “Step Length Estimation Using
Handheld Inertial Sensors,” Sensors, vol. 12, no. 7, pp. 8507–8525, 2012.

[28] K.-W. Chiang, H.-W. Chang, Y.-H. Li, et al, “Assessment for
INS/GNSS/Odometer/Barometer Integration in Loosely-Coupled and
Tightly-Coupled Scheme in a GNSS-Degraded Environment,” IEEE
Sensors Journal, vol. 20, no. 6, pp. 3057–3069, 2020.

[29] F. Potortı̀ et al, “Offsite evaluation of localization systems: criteria,

https://gssc.esa.int/navipedia/index.php/GNSS_Basic_Observables
https://gssc.esa.int/navipedia/index.php/GNSS_Basic_Observables
https://gssc.esa.int/navipedia/index.php/Examples_of_single_frequency_Cycle-Slip_Detectors
https://gssc.esa.int/navipedia/index.php/Examples_of_single_frequency_Cycle-Slip_Detectors
https://gssc.esa.int/navipedia/index.php/Examples_of_single_frequency_Cycle-Slip_Detectors


16 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION

systems and results from IPIN 2021–22 competitions,” IEEE Journal of
Indoor and Seamless Positioning and Navigation, vol. 2, pp. 92–129,
2024.

[30] N. Zhu, J. Marais, D. Bétaille, and M. Berbineau, “Evaluation and
Comparison of GNSS Navigation Algorithms Including FDE for Urban
Transport Applications,” in Proceedings of the 2017 International
Technical Meeting of The Institute of Navigation, pp. 51–69, 2017.

Ziyou Li received the M.Sc. degree in aeronau-
tic navigation and telecommunication from the
French Civil Aviation University (Ecole Nationale
d’Aviation Civile, ENAC), Toulouse, France, in
2021. He is currently working toward the Ph.D.
degree in GNSS pedestrian navigation and in-
tegrity monitoring in challenging environments
with GEOLOC Laboratory, University Gustave
Eiffel, Bouguenais, France.

Ni Zhu (Member, IEEE) received the Engineer-
ing degree in aeronautic telecommunications
from the French Civil Aviation University (Ecole
Nationale d’Aviation Civile, ENAC), Toulouse,
France, in 2015, and the Ph.D. degree in sci-
ence of information and communication from the
University of Lille, Lille, France, in 2018. She is
currently a Research Fellow with the Laboratory
GEOLOC, University Gustave Eiffel, Bouguenais,
France. Her research interests include special-
ization in GNSS channel propagation modeling

in urban environments, positioning integrity monitoring for terrestrial
safety-critical applications, and multisensory fusion techniques for in-
door/outdoor pedestrian positioning assisted by artificial intelligence.
Since 2020, she has been the Co-Chair of the foot-mounted IMU-based
positioning track of indoor positioning and indoor navigation competition.

Valérie Renaudin (Member, IEEE) received the
M.Sc. degree in geomatics engineering from
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