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Abstract. The topography of a rough surface determines many of its physical
properties, for instance, tribology, contact mechanics, optical properties etc.
Nowadays, a deep understanding of such physical phenomena requires the
knowledge of the topography at appropriate length scales. Apart from performing
multi-scale measurements of the surface topography, it also requires the use of
proper statistical estimators for the analysis of such topography maps. Moreover,
when dealing with light scattering in the visible spectral range, the scale at
which the estimators of local topography properties are defined is extremely
important. Here we present a multi-scale and statistical study of the surface
topography of blasted aluminum samples which all have rather different visual
appearance. Various statistical estimators of surface topography are examined,
including estimators related to the height distribution, the lateral correlation
and local topology. The combination of these various estimators unveils a scale
separation between a micro-scale roughness inherited from the initial cold-rolled
aluminum surface and a large scale roughness fully controlled by the blasting
process. A special emphasis is given to the crucial importance of length scales
in the estimation of local slopes. The present analysis establishes a quantitative
link between the statistical properties of the surface topography and the blasting
process used to fabricate the samples.

Keywords multi-scale roughness, blasted aluminum, topography, surface slopes,
mounded surface
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1. Introduction

Surface morphology influences many physical processes taking place at, or close to,
the surface of objects. Therefore, interesting functional properties can be added to
the surface through thoroughly controlled topography, for example, hydrophobicity [1],
friction [2] and adhesion [3], hazy or glossy appearance governed by light scattering [4].
Furthermore, nowadays the aesthetics of an object is an important criteria for the
development of industrial products, even if their primary function has nothing to
do with optics. Surface topography can also deteriorate mechanical and electrical
properties, as for instance the variation of contact stiffness with the true area of
contact at interface [30, 31].

The impact of the morphology of randomly rough surfaces on their optical
properties has been in the focus of physical optics since the 1900s [5, 6]. In the
small roughness limit, also referred to as smooth surface limit, a unique analytic
solution exists, known as the Rayleigh-Rice vector perturbation theory model [4,5], and
allows one to directly link optical properties of the surface to the statistical properties
of its surface morphology [4]. Thorough morphological and optical studies [7–9] of
random surfaces exhibiting small roughness proved the applicability of the Rayleigh-
Rice theory to real life surfaces of various origin [4]. On the other hand, if the
surface roughness is moderately large compared to the wavelength of illumination,
light scattering at small angles by samples while illuminated at small incidence angles,
can be described with the Kirchhoff model [4]. In other cases, no general analytical
model is available and the use of direct numerical solution of Maxwell equations for
given surface morphology remains the only general approach.

To some extent, the moderately large and large roughness cases can be
approximately treated with geometrical optics laws. Such a phenomenological
approach, the microfacet theory, was introduced in 1963 [10] and adopted in early
1970s by the computer graphics community [13,14] for the physico-realistic rendering.
In this approach the surfaces are seen as ensembles of micrometer-scale facets and light
scattering is described through the statistics of facet orientations with respect to the
macroscopic surfaces. The 3D distribution of scattered light is then used to create a
virtual image of the object. Since the microfacet theory was introduced [10], numerous
models have been developed which are able to fit various 3D distributions of scattered
light of real surfaces [13–18]. Today an untrained eye can seldom recognize the virtual
reality image. Yet, existing rendering tools should still be developed further in order
to account for light polarization [19] and diffraction-related effects [20, 21] that are
observed in real life.

Interestingly, in contrast to the small roughness case, very few thorough studies of
surface morphology have been reported for the moderately large and large roughness
cases, probably due to the necessity of a multi-scale surface analysis. Therefore,
strong assumptions on surface statistics were made in both physical optics and
computer graphics models. For instance, both approaches rely on the assumption
that rough surfaces follow Gaussian statistics. Although this hypothesis is widely
used, it remains unclear to which extent real-world surfaces with spatial frequencies
at sub-milimeter scale exhibit Gaussian statistics. More importantly, in contrast to
the case of physical optics [7,8,10,22], the achievement of a quantitative link between
surface roughness characterization and scattering properties in the framework of micro-
facets models remains elusive. It should be mentioned that measured angular light
intensity distributions scattered from randomly rough surfaces were recently used to
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successfully predict the statistical properties of a broad class of rough surfaces using
several physical optics approaches [23, 24].

It was found in the 2000s that even for surfaces with prominent micro-
scale roughness the nano-scale component can significantly impact the physical
properties [2], for example, the super-hydrophobicity for which the lotus leaf is a classic
natural example [1] requires a combined micro- and nano-scale roughness. Prominent
nano-scale roughness can also alter the optical properties of surfaces with micro-scale
roughness. In order to address this problem from the experimental side, not only
angle-resolved scattering experiments are necessary but also detailed knowledge of the
surface topography is required.

The scope of this paper is to address these questions through a thorough analy-
sis of the topography of micro-scale rough surfaces with notable difference in visual
appearance. Blasting technique was chosen for sample fabrication due to its inherent
versatility in terms of treatable materials and ability to alter the surface topogra-
phy [26–29,58], and as a result the electrical [30,31], mechanical [30,31,59] and optical
properties of the sample. For instance, blasting can provide very different finish [32]
and thereby aesthetics to the same bare surface. The micro-topography induced by
blasting process depends on the plastic properties of the material composing the sur-
face as well as on the material and shape of the blasting medium [74,75]. In the case
of aluminum, plastic deformation often takes place [27]. The surface erosion depends
on material ductility [77], the angle of incidence [61] and other parameters such as size
and shape of blasting media [75]. Surface blasting is often considered a random pro-
cess since it is produced by a large number of random independent impact events [33].

Numerous papers reported surface topography studies of blasted surfaces [25–29,
61,75,81]. Yet, very few publications contained topography data measured at different
scales [29], and moreover statistical topography parameters analyzed in previous
studies often focused on arithmetical mean (Ra) or root-mean square (rms also known
as Rq) deviations [26–28] and seldom other parameters such as curvature [81] or
apparent slopes [25] and even less auto-correlation function or power spectral density.
In this study we focus on several surface estimators which are essential for the
analysis of optical properties and linking them to the fabrication process. A more
exhaustive list of surface estimators reported to be used on multi-scale analysis of
surface topography can be found in Refs. [33, 39, 56, 64, 65] , in particular on less
widespread techniques to estimate lateral correlations (wavelet and modal analysis)
as well as closing and opening morphological filters Refs. [56, 57].

This paper presents a thorough multi-scale study of the morphology of blasted
aluminum plates. Section 2 provides the details on fabrication and visual assessment
of samples examined in this work. The second part of Section 2 describes how the
statistically representative topography data of those samples were gathered from three
different experimental setups. Section 3 introduces the statistical aspects of the
analysis of morphology of randomly rough surfaces. Sections 4–7 focus on morphology
parameters related to height distribution, spatial correlations, surface slopes and local
topology respectively. The analysis of statistical parameters of surface morphology
given in Sections 4–7 allow to understand how the morphology of the surfaces is being
modified through blasting. And last but not the least, provided analysis allows to
establish a link between the micro-scale features of examined surfaces and parameters
of fabrication process.
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2. Materials and Methods

2.1. Fabrication and description of samples

The samples that we will be concerned with in this work are four 5 × 5 cm2

aluminum (6061) plates treated by different industrial processes. Figure 1 provides
photographs of all four samples taken in a light booth (Spectralight QC X-Rite) under
controlled illumination (D65 illumination). The photos taken at grazing observation
angle are shown in Fig. 1(a), while macro photos taken close to the surface normal
are presented in Fig. 1(b).

The first sample is a cold rolled aluminum plate which we hereafter will refer to
as the untreated sample. From Fig. 1 it clearly appears that this untreated sample
is strikingly anisotropic. The direction of the grooves of the surface coincides with
the rolling direction used during the manufacturing. The surface roughness of cold-
rolled aluminum is known to exhibit self-affine surface statistics [35,36]. Many natural
and machined fault surfaces exhibit self-affinity within at least several decades of
spatial frequencies. Some recent works suggest that the self-affinity can be produced
during adhesive wear due to the interplay between brittle and ductile mechanisms [73].
The remaining three samples were fabricated from such cold rolled aluminum plates
(untreated samples) by blasting them by ceramic beads of different sizes; in the
following, these bead sizes will be referred to as small, medium or large beads.
More specifically, spherical ceramic beads commercialized by ZirPro were used in
the blasting process. Their average diameters of the beads were 70± 20 µm (small),
200± 50 µm (medium), and 500± 150 µm (large). The uncertainties reported on these
numbers are the full-width at half maximum (FWHM) of the respective diameter
distributions. The blasting process was performed in an air suction blasting machine
at normal incidence to the mean surface of the sample. The pressure of the venturi
type blasting source was 2 bar, and each of the samples were blasted for 50 s, twice
the time necessary to completely cover the surface with blasting impacts.

The four samples have rather different visual appearances. The untreated sample
looks very glossy at grazing angle (Fig. 1(a)). In contrast, the three blasted samples
have completely different visual aspects. For instance, they appear significantly less
glossy at grazing angles (Fig. 1(a)). Meanwhile, their gloss seems to be different, which
is in agreement with the apparent differences in the morphology of the blasted samples
seen on the photographs in Fig. 1(b). From these figures several observations should
be made. First, the change in apparent grain size from small to large (Fig. 1(b)) is
consistent with the size of the beads used in the blasting process (smallest grains in
the case of treatment by small beads and largest grains for the large beads). Second,
the blasting process reduces the degree of anisotropy of the resulting surfaces relative
to the surface of the untreated sample. To the naked eye, the blasted surfaces appear
to be almost isotropic; these observations we will later confirm when performing the
detailed analysis of the measured surface morphologies.

2.2. Description of topography measurements

In order to provide a multi-scale analysis of the surface morphology, the interfaces
of all four samples were measured by three different experimental setups exploiting
different measurement principles and covering different ranges of spatial frequencies:
an optical profilometer (a chromatic confocal sensor, CCS Prima, STIL), and two
scanning probe profilometers, where the first is a stylus profilometer (Dektak XT,
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Figure 1. Photographs of the studied aluminum samples observed under D65
illumination: a) at grazing observation angle; b) at observation direction close to
surface normal.

Bruker) and the second an atomic force microscope (AFM, Icon, Bruker). The optical
profilometer provides a non-contact scan, and the surface height is determined from
optical coherence of the wide-spectrum probe light reflected by the surface. In the
case of scanning probe profilometers the surface scan is performed by a solid tip
and the surface height is defined from tip deflection (in AFM a nano-tip is used).
Surface topography analysis performed with setups covering different but overlapping
ranges of spatial frequencies also allows avoiding the measurement-related variation
of estimators [63].

The surface profile function z = h(r) was obtained from such measurements.
Here we have defined a coordinate system where the mean surface, assumed to be
planar, coincides with the plane z = 0 and the positive z-axis is pointing upward.
The vector r = (x, y) denotes an arbitrary in-plane position vector. Furthermore,
the in-plane orientation of the coordinate system is chosen so that the unit vector
ex = (1, 0) coincides with the rolling direction used when producing the untreated
sample. In other words, the x-axis of the coordinate system is parallel to the grooves
of the untreated samples like the one presented in e.g. Fig. 1(b).

With the use of optical profilometer and an AFM the two-dimensional (2D)
surface morphology of the samples were measured at the set of N × N points
{h(xnx

, yny
)} withe a measurement step ∆, corresponding to a rectangular grid in

a square region of area L × L of the mean plane (z = 0) covered by the rough
surface. The values of L, ∆ and N used in performing these measurements are
summarized in table 1. This table also provides information on minimum resolvable
height variation δh and the diameter D of the measurement element. The latter
stands for the tip diameter in case of AFM and stylus profilometer and the diameter
of light spot produced by the optical pencil in the optical profilometer. These values
are large compared to the uncertainty of the displacement of the precision motors
used in these setups and provide more realistic estimates of the high-frequency cut-
offs for the horizontal displacements. Moreover, the finite diameter of the stylus
tip does imply a high-frequency cut-off. The latter depends on both tip diameter
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and surface roughness [70, 71] and is especially relevant for the analysis of fractal
surfaces [70, 71]. To ensure sufficient statistics, the measurements were repeated
several times at different locations on the sample for each setup that was used. One-
dimensional (1D) line-scan measurements were performed using a stylus profilometer.
The spatial length of the each of the line-scan was L and the number of points used was
N . The measurements were done either along the x or the y direction the coordinate
system, and in this way we obtained {h(xnx

, 0)} or {h(0, yny
)}, respectively. In

measurements performed with optical and stylus profilometers the scan ranges used
for each sample were chosen in such a way as to have sufficient statistics and to be
sufficiently long compared to the measured correlation length of the sample [60].

Map Sample L[mm] N ∆[µm] D[µm] δh[nm] # maps
Optical 2D Untreated 5 2501 2 2 300 8
profilometer Small beads 1 501 9

Medium beads 2 1001 8
Large beads 3 1501 6

Stylus 1D Untreated 6 60001 0.1 10 10 25*
profilometer Small beads 6 60001 0.1 20*

Medium beads 15 75001 0.2 20*
Large beads 15 45001 0.33 25*

AFM 2D Untreated 0.02 512 0.02 0.04 2 4
Blasted 0.03 512 0.06 3

Table 1. Summary of the parameters assumed in performing the topography
measurements.* 1D scans were performed in two orthogonal directions for each of
the 25 examined locations.

3. Characterization of randomly rough surfaces

Randomly rough surfaces can be considered as realizations of an underlying random
process [12, 33, 34]. Then it is customary to describe the surface roughness through
various statistical estimators and probability distribution functions. The statistical
analysis implies several strong assumptions on the surface profile function h(r). The
most central of these assumptions for h(r) is that it is (i) a single-valued function
of r that is differential with respect to x and y and constitutes an (ii) ergodic, (iii)
stationary and (iv) zero-mean random process [34].

(i) Numerous real-life surfaces, including rolled and blasted surfaces, exhibit single-
valued height distribution.

(ii) Statistics of random process uses the averaging over the ensemble of realizations.
The ergodicity of the random process allows to equivalently interpret 〈A〉, the
average of a given quantity A over the ensemble of realizations, as a spatial average
within a single realization of the process provided the spatial average A is taken
over a sufficiently large region of the mean surface. The latter interpretation of
the average is the most convenient when dealing with measured data.

(iii) The stationarity condition implies here that no trend can be identified along the
spatial coordinates i.e. the statistical properties of the surface roughness remain
independent of the spatial region that is probed.
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(iv) Finally, the experimental data are usually acquired in the coordinate system
related to the measurement setup. Thereby, prior to any statistical data analysis
a detrending step has to be performed to bring the height profile to a coordinate
system relative to the mean sample surface. This may imply the correction of
a possible systematic trend (e.g. tilt or macroscopic curvature) correction in
addition of the simple deduction of the average height.

Some of these assumptions may not be respected by the real-life surfaces due to
the variation in machining factors such as imperfections in treatment parameters
or local fluctuations of chemical composition in materials [62, 76]. Yet statistical
tools for description of a more general case remain to be developed. Therefore, the
analysis provided in this paper mostly relies on these assumptions. Moreover, since the
sandblasted surfaces are produced by a large number of independent impacts [74,75],
they are generally considered randomly rough [33].

We show in Fig. 2 height maps measured with the optical profilometer over an
area of 1 × 1mm2 in each examined sample. This series of height maps is to be
compared with the series of photographs shown in Fig. 1. The figure illustrates
that the micro-scale morphology of the aluminum plate is drastically modified by
the blasting process. The anisotropy of the untreated sample is apparent even without
any statistical data analysis, yet the blasted samples show no obvious anisotropy.
The apparent graininess of the blasted samples at the macro-scale (Fig. 1) can be
associated to the characteristic micro-scale crater-like patterns visible in the height
maps (Fig. 2). The lateral dimension of the craters as well as their depth increase with
the size of beads used in the blasting. In the following of the paper we discuss how to
use different statistical estimators to give a quantitative support to these qualitative
observations.

Some man-made surfaces are obtained as a sequence of surface modification steps,
where the first step provides for the coarse finish and the subsequent steps result into
the refinement of the surface finish. Such surfaces are often referred to as interrupted
finishes or stratified surfaces or multi-process surfaces [33]. Although our examined
samples were obtained within two fabrication steps, each of which impacted surface
topography at different scales, they do not perfectly match the definition of multi-
process surfaces as given in Ref. [33] since, as will be shown in this paper, the coarse
finish was obtained by the surface blasting – the last surface treatment step.

For the sake of clarity, the analysis of the statistical descriptors given in this
paper is separated in four separate sections, each focusing on a different type
of statistical descriptors, similarly to amplitude, spatial, hybrid and functional
parameters suggested by [65]. First, in section 4 the height distribution and related
estimators are discussed. The analysis of spatial correlations are presented in section 5.
Then the local slopes calculated at different scales are discussed in section 6. Finally,
estimators of the local curvature are analyzed and presented in section 7. Each section
briefly introduces the definitions of the statistical estimators of interest and then
illustrates their use on the morphology measurements for the examined aluminum
samples.
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Figure 2. Contour plots of the 2D topography maps of the examined samples
obtained from an optical profilometer: untreated sample (a), and samples blasted
with small (b), medium (c) and large (d) beads. The dimensions of each map
were 1 × 1mm2 and the lateral resolution was 2 µm. The color-scale gives the
height in microns with respect to the mean surface (z = 0) and the range of the
color-scale is ±2.5σ for each sample.

4. Height distribution

4.1. Theoretical context

A randomly rough surface and its corresponding surface profile function h(r), can be
assumed to constitute a stochastic random process [12]. A first characterization of such
a process is given by the probability distribution function (pdf) of the height values,
p(h). This distribution gives us information about the (vertical) height fluctuations
of the surface but naturally ignores the possible spatial correlations.

Because of its ubiquity and its analytical simplicity, the Gaussian (or normal)
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form for the height distribution function is widely used in analytical and computational
studies of light scattering from rough surfaces [11]:

p(h) =
1√
2πσ

exp

[
− (h− 〈h〉)2

2σ2

]
, (1)

with 〈h〉 = 0. Many real-life surfaces can indeed be reasonably well approximated by
Gaussian statistics, as for instance fault surfaces, surfaces obtained through blasting
or ion sputtering [37]. In theory, processes like grinding are supposed to provide
for Gaussian statistics as well, but due to process imperfections it is not always
the case [62, 76]. However, the assumption of Gaussian statistics is definitely not
applicable in the case of surfaces obtained by fracture followed by slight polishing [37]
or growing interfaces with less than one monolayer of atoms [39]. In the case of
Gaussian statistics the height fluctuations of the surface are fully characterized by a
single scalar parameter, the height standard deviation σ i.e. root-mean-square (RMS)
height (also referred to as Rq):

σ = 〈h2(r)〉1/2; (2)

Historically, due to simplicity of calculation, another surface parameter, namely the
average roughness Ra (the deviation of the surface from the mean height), was often
used in experimental surface characterization. Although this parameter does not in-
tervene in physical models, we provide it for the sake of comparison. However not
all rough surfaces can accurately be described by a Gaussian height distribution, for
example surfaces prepared by fracture followed by slight polishing [37]. In the non-
Gaussian case, all the moments mn = 〈hn(r)〉 are theoretically required to get a full
knowledge of the height distribution p(h). Here m1 = 〈h(r)〉 is the mean h̄ that we set
to zero by convention and m2 = 〈h2(r)〉 = σ2 is the variance of the height distribution
(i.e. rms roughness squared). The numerical estimate of the moments of higher order
is however highly dependent of the tails of the distribution. Such a characterization
requires a large statistics to reduce the uncertainty on the estimated moments [38,72].
Moreover, the associated dependence on extreme values often induces a high sensitivity
to measurement artifacts [72]. For surfaces with multi-scale roughness, statistically-
representative measurements should be performed at each scale of relevance for the
physical properties of interest.

It is thus customary to limit the additional characterization of the height
distribution to only two parameters, associated with the moments of third and forth
order, respectively the skewness and the kurtosis:

• The skewness of the surface (γ3) expresses the asymmetry of the height
distribution with respect to the mean level (here conventionally taken as zero
〈h〉 = 0). It is expressed as:

γ3 =
1

σ3
〈h3(r)〉 ; (3)

• The kurtosis of a surface (γ4), describes the tails of the distribution, and is
expressed as:

γ4 =
1

σ4
〈h4(r)〉 . (4)

In summary, when dealing with the real-life rough surfaces, the very common
assumption of Gaussian statistics should be handled with caution [33]. In addition of
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the computation of the RMS roughness, the estimates of the skewness and the kurtosis
(whose expected values are respectively γ3 = 0 and γ4 = 3 for a Gaussian distribution)
allow to test quantitatively the distance of the height distribution to Gaussianity. But
such evaluation requires a significant amount of measured points [72].

4.2. Experimental results

Table 2 summarizes the values of the RMS, skewness and kurtosis calculated on the
basis of the expressions presented in the previous section and applied to data sets
obtained with optical and stylus profilometers. The values reported in table 2 are
averaged over the number of available maps (see Table 1 for number of scans), while
the uncertainty indicates the mean deviation from the average value. The evolution of
these statistical estimators with bead size is also reported in Fig. 3. The AFM data are
purposely not reported here — the RMS roughness measured at sub micrometer scale
is by definition smaller than that measured at micro-meter scale (as will be detailed
in next section [?]).

Figure 3(a) shows a striking dependence of the roughness fluctuations, here
estimated by the RMS value σ on the size d of the beads used for the blasting process.
As shown by the dashed line, the RMS data are consistent with an affine evolution of
the RMS with the bead size, from 0.5 µm for the untreated samples to more than 5 µm
for the sample blasted with the larger beads. This apparent additive evolution suggests
that the surface roughness of the final blasted samples results from the superposition
of the height fluctuations induced by the blasting process and of part of the height
fluctuations of the initial un-treated surface. We thus get a clear impact of the size of
beads used during the blasting process, the increase of the beads size results in more
profound impacts which sets the scale of the height fluctuations.

We note that only the value of the RMS of the initial sampled measured by optical
profilometry does not follow this trend. This value actually grossly overestimates
the results obtained by stylus profilometry. The roughness level of the cold rolled
surface about 500 nm is actually very close to the detection limit δh = 300 nm
of the optical profilometer. Moreover, the discrepancy in roughness measured with
stylus profilometers and optical profilometers for sub-micrometer roughness have been
already reported [?,66]. The height measurement obtained with the optical technique
on the initial surface have thus to be taken with caution. They are labeled with a star
in Table 2.

As shown in Figs. 3(b) and 3(b), skewness and kurtosis values of the blasted
samples slightly differ from the values expected for a normal distribution, γ3 = 0 and
γ4 = 3, respectively. Unlike the evolution observed for the RMS roughness, neither
the skewness nor the kurtosis show clear dependence on the bead size. We only
observe a trend for negative skewness and high kurtosis for the blasted samples in
contrast to positive skewness /low kurtosis seen for the un-treated sample. Kurtosis
3 have already been reported for hard-turned surfaces [69], while slightly negative
skewness and kurtosis 3 are common for sand-blasted samples [29, 33]. The slight
negative skewness observed for the blasted samples is a mark of the asymmetry of the
surface and may reflect the presence of a superposition of craters, the positive kurtosis
attests of a relative domination of the peak of the tails on the medium values of the
distribution. These deviations to Gaussianity are however not spectacular and also
appear to depend on the experimental technique of measurements.

It is thus of interest to give a closer look at the distributions of height fluctuations.
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In Figs. 4(a) and 4(c), we show the distributions obtained with the optical profilometer
ans the stylus profilometer, respectively. Consistently with the RMS measurements
reported in table 2 we observe that the blasting of the aluminum surface induces a
clear bead size dependent broadening of the height distribution functions. Together
with the measured height distributions, we also show Gaussian fits together with the
measured distributions. An excellent agreement is observed.

In Fig. 4(b) and 4(d), the same data and Gaussian fits are plotted in semi-
logarithmic scale. Small deviation from Gaussianity can now be identified in the tails
for the blasted samples. Interestingly we note that deviations appear to be more
significant for the optical measurements than for the stylus measurements.

Before discussing more quantitative aspects, note that it is not that surprising
that skewness and kurtosis are slightly dependent on the measurement techniques.
Stylus profilometry relies on the contact between a smooth convex tip and the surface.
The resulting height field can thus be seen as a kind of complex convolution of the
surface with the tip shape with the very hard condition of non-penetrability. The
latter constraint induces contrasting effects on peak and valleys and even surprising
long-range correlations [43].

Yet, extremities of pdf tails are likely to be altered by measurement artifacts.
No profilometer device allows for accurate measurement of steep walls or spikes, and
the adjacent points can get artificially large or small values, which produces clearly
non-Gaussian extremities of pdf in Figs. 4(a-b). In particular, the confocal optical
profilometer has a limited accessibility range for the slopes, since the latter may not
be independent of the heights, the exclusion of even a very small fraction of non-
measurable points is susceptible to affect the estimates of high moments such as the
skewness and the kurtosis.

To illustrate this point let us consider a distribution that perfectly follow the
Gaussian expression (1) in the range [−3σ, 3σ] and thus represent 99.73% of the
sampled values and let’s complete it by one peak at 3σ that gathers the complementary
0.27% of the sampled values. the symmetric part gives a zero contribution to the
skewness s. The latter is thus entirely controlled by the peak at 3σ : s = 0.027× 33 =
0.0729. The same exercise can be performed for the kurtosis when we now consider that
99.73% of the sampled values are distributed according to a Gaussian distribution and
that the remaining part is concentrated on two symmetric peaks at ±3σ. We get for
the kurtosis κ = 0.9973× 3 + 0.0027× 34 ≈ 3.21. Such values are not far from those
estimated for our experimental data which are reasonably described by a Gaussian
distribution in the range [−3σ, 3σ].

4.3. Discussion on height distributions

In conclusion, for the examined blasted samples their height distribution and
statistical parameters provide some differentiation between samples and some basic
understanding of the impact of blasting on surface topography. But the way in which
this asymmetry is induced by fabrication process remains to be captured.

Despite extensive measurements, the estimate of even the first higher moments
remains fragile. In particular the dependence of kurtosis and skewness on
the distribution tails makes them both statistically demanding and sensitive to
instrumental artifacts. In the present case the crater-like morpology of the blasted
surfaces suggests a negative skewness. Our measurements (see Table 2) are indeed
consistent with this expectation but the dependence of the results on the instrumental
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Estimator Profilometer Untreated sample Small beads Medium beads Large beads

RMS (µm) Optical 0.98 ± 0.02∗ 1.18 ± 0.04 2.52 ± 0.02 5.11 ± 0.06
Stylus 0.51 ± 0.02 1.21 ± 0.04 2.64 ± 0.04 5.20 ± 0.14
AFM 0.052± 0.011∗ 0.32± 0.03 0.10± 0.04 0.065± 0.016

Ra (µm) Optical 0.79± 0.01∗ 0.93± 0.02 1.99± 0.01 4.05± 0.04
Stylus 0.42± 0.01∗ 1.01± 0.03 2.1± 0.03 4.67± 0.28
AFM 0.042± 0.009∗ 0.24± 0.02 0.071± 0.025 0.047± 0.012

Skewness Optical -0.11 ± 0.01∗ -0.12 ± 0.02 -0.13 ± 0.02 -0.17 ± 0.02
Stylus 0.04 ± 0.15 -0.05 ± 0.05 0.01 ± 0.05 -0.10 ± 0.09
AFM 0.25± 0.25∗ 0.39± 0.17 1.56± 1.28 4.56± 3.6

Kurtosis Optical 2.72 ± 0.04∗ 3.53 ± 0.12 3.54 ± 0.07 3.55 ± 0.14
Stylus 2.48 ± 0.10 2.89 ± 0.09 3.24 ± 0.19 3.22 ± 0.22
AFM 3.02± 0.33∗ 5.0± 0.7 22.9± 12.6 453± 388

Table 2. Statistical estimators of height distribution (RMS, skewness and
kurtosis) parameters extracted from experimental characterization of blasted
samples aluminum plate and reference untreated plate.

Figure 3. (a) RMS, (b) Skewness and (c) Kurtosis of the initial cold rolled
aluminum surfaces and after blasting with particles of sizes.

technique and the significant uncertainty forbid us to take this observation as a strong
and robust result. Hence, it is of interest to perform complementary characterizations.

5. Spatial correlation

5.1. Theoretical context

The height distribution function of the surface provides information on the vertical
fluctuation of the surface but it does not bring a full knowledge of the surface slopes.
In the context of light scattering, the amplitude of the height fluctuations, typically
specified by the ratio of the RMS roughness to the wavelength (σ/λ), controls the
fraction of light scattered out of the specular direction but conveys no information
about the angular range of the scattering [12]. The latter requires some knowledge of
the spatial organization of the surface roughness.

In physics the classical tools used to access this information are in real space the
surface height auto-covariance I(∆r) and its normalized version, the auto-correlation

function A(∆r). In the Fourier space, the power spectrum density function Ĩ(q) is
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Figure 4. Height distribution of the four samples, obtained from measurements
with (a,b) optical profilometer and (c,d) stylus profilometer plotted in linear (a,c)
and logarithmic scale (b,d). Rectangles with dash red border indicate the data
points impacted by measurement artifacts.

the counterpart of the auto-covariance. Here the vector q = (qx, qy) represents the
in-plane wave vector (which is parallel to the mean surface). Note that in surface
metrology the spatial correlations are evaluated through slightly different parameters
— the fastest decay auto-correlation length (Sal) and texture aspect ratio of the surface
(Str), density of summits Sds etc. These parameters are used for the assessment of
surface topography as for example described in [65]. But in this work we focus on
surface estimators which can be used in physical models.

5.1.1. Auto-correlation function The surface height auto-correlation function
measures the resemblance of the height field to itself over a in-plane distance ∆r =
|∆r|:

A(∆r) =
I(∆r)

I(0) =
1

σ2
〈h(r+∆r)h(r)〉 . (5)

The prefactor 1/σ2 ensures normalization: A(0) = 1 which also gives the maximum
value of correlation. For randomly rough surface A(∆r) < 1 as soon as |∆r| > 0
and A(∆r) → 0 when |∆r| → ∞. In the case of an isotropic surface, the function
A(∆r) depends on ∆r only through it length ∆r = |∆r| and not on its direction. In
such cases it is customary to define a correlation length ℓc that estimates the (lateral)
length scale above which correlation is significant. Developed for the exponential and
Gaussian forms of the auto-correlation function, a typical definition consists of taking
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the length for which the auto-correlation function has dropped to 1/e (from its value
of one at ∆r = 0):

A(ℓc) =
1

e
. (6)

This conventional definition of the correlation length ℓc implicitly assumes a Gaussian
or exponential form of the auto-correlation function. Although these forms of the
auto-correlation function are the most commonly used in theoretical description of
randomly rough surfaces, they do not exhaust the variety of the functional forms
(Lorentzian, Bessel, etc.) which can be encountered on real rough surfaces [39]. Note
that in metrological definition of the auto-correlation length Sal may differ from the
physical definition of correlation length. In metrology, Sal is defined from 3D surface
scan as the fastest decay reaching a given value — often 0.2 [79] or 1/e [78].

In particular, a rough surface can be characterized by several length scales. A
microscopic length scale associated with the structure of the material can coexist
with a larger length scale associated with a forming process, etc. An example is
given by the correlation of mounded surfaces which combine a fast decay with an
oscillatory behavior. The auto-correlation function of such surfaces is typically written
as follows [39,51]:

A(∆r) = exp

[
−
(
∆r

ℓ0

)2α
]
cos

(
2π∆r

Λ

)
, (7)

where α denotes the roughness exponent which usually takes a value between 0 and
1 (0 ≤ α ≤ 1). While the decay can be described by a stretched or a compressed
exponential, we see that two characteristic length scales emerge from this definition.
The first one, ℓ0 is associated with the fast decay and gives an estimate of the size of the
mounds. The second length scale, Λ gives the period of the attenuated oscillations and
is related to the average distance between mounds. In the case of mounded surfaces,
the correlation length scale ℓc as conventionally defined in Eq. (6) depends jointly on
ℓ0 and Λ.

More generally, the above definition of ℓc does not ensure the absence of
correlations for lags beyond ℓc. In the example of mounded surfaces, due to the
exponential form of the decay, the correlations are short-ranged. In theory, height
correlations may be characterized by a multiplicity of length scales. An interesting
limit is obtained in the case of power-law correlations which can also be considered as a
continuum of characteristic length scales. This case of long-ranged height correlations
corresponds to self-affine surfaces [39–42]. Such surfaces have the particular property
to remain statistically invariant by the family of anisotropic transformations: r→ λr,
z → λHz where λ is a positive real scaling factor and H an exponent usually in the
range [0, 1]. In the case of long-range correlations, it is usually more convenient to work
with the statistics of height increments rather than with the classical auto-correlation
function. In particular, the self-affine invariance induces a power law scaling of the
second moment of the height increments [42]:

〈|h(r+∆r)− h(r)|2〉 = ℓ
2(1−H)
0 ∆r2H . (8)

Here the length scale ℓ0 sets the amplitude of the height fluctuations. This length
scale, also known as the topothesy, is defined so that the average slope measured over
a distance ℓ0 is of the order unity. Note that the scaling behavior usually only holds
within a finite range of length scales ℓmin < ∆r < ℓmax. When the macroscopic
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length of measurements L lies within this range, this means, in particular, that the
experimental RMS roughness becomes length scale dependent [42]:

σ(L) ∝ ℓ1−H
0 LH . (9)

The surfaces obtained through mechanical interaction between solids are expected
to have fractal properties with H = 0.85 ± 0.15 [?]. In the above definitions, the
rough surface was considered to be isotropic. In the case of anisotropic surfaces, it is
generally possible to distinguish two principal directions which can be characterized
by different correlation lengths (for short-ranged correlations) or self-affine parameters
(for long-ranged correlations).

5.1.2. Power spectral density The surface height auto-correlation function provides a
rather intuitive insight into over which regions the surface heights are correlated. Many
physical models rather rely on its counterpart in the Fourier space, namely the power

spectrum of the surface roughness, Ĩ(q), also known as the power spectral density
(PSD). For example, in mechanics the PSD is used to characterize adhesion, true
contact area, or contact stiffness [37], while in optics of very weakly rough surface the
diffusely scattered light is proportional to the PSD [10–12]. The PSD is related to the
surface height auto-covariance function by a Fourier transform (a direct consequence
of the Wiener-Khinchin theorem [44]):

Ĩ(q) =
∫

d2rI(r) exp (−iq · r) , (10)

and from the inverse Fourier transform it follows that the auto-correlation A(r) =
I(r)/σ2 can be expressed as:

A(r) = 1

σ2

∫
d2q

(2π)2
Ĩ(q) exp (iq · r) . (11)

In terms of the Fourier transform of the surface roughness

h̃(q) =

∫
d2rh(r) exp (−iq · r) , (12)

the power spectrum of the surface roughness, can equivalently be defined as [8]:

Ĩ(q) =

〈
|h̃(q)|2

〉

S
, (13)

where S is the area of the mean surface covered by the random surface. The latter
form of Ĩ(q) (Eq. (13)) does not require one to first calculate the correlation function.
Due to this practical convenience, Eq. (13) is preferred over the form in Eq. (10) while
dealing with experimental data. Moreover, it is of a common practice to first calculate
the power spectrum via Eq. (13) and then to use this result in Eq. (11) to obtain A(r).

Yet, contrary to the ACF, some care has to be taken while comparing PSD of
surface morphology measured over an area (two-dimensional scan) or a line (one-
dimensional scan) of the mean plane [4,45]. From Parseval’s theorem [10] the integral
of the PSD equals the variance of the height distribution (σ2) leading to different
normalization for the PSD obtained from one-dimensional and two-dimensional scans,
referred here-after as 1D-PSD and 2D-PSD respectively:

∫
dqx
2π
Ĩ1D(qx) = σ2;

∫
d2q

(2π)2
Ĩ2D(q) = σ2, (14)
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where for the sake of simplicity, the line is assumed to be oriented along the x-axis, and
the corresponding line-scans, or one-dimensional surface profiles, are denoted h(x, 0).
Note that 1D and 2D-PSD have different units, namely m3 and m4, respectively.

In the special case of an isotropic surface it can be demonstrated that the one-
dimensional power spectrum of the surface profile, Ĩ1D(qx), is related to the power

spectrum of the two-dimensional surface profile Ĩ2D(|q|) by the relation [4, 46]:

Ĩ1D(qx) =
1

π

∫ ∞

0

dqyĨ2D(|q|), (15)

where |q| =
√

q2x + q2y and qx, qy ≥ 0.

In the case of self-affine surfaces the 1D-PSD follows the scaling relation [39]:

Ĩ1D(qx,y) ∝ ℓ
2(1−Hx,y)
0 q−1−2Hx,y

x,y ,
2π

ℓmax
< qx,y <

2π

ℓmin
(16)

where we considered an anisotropic surface with two different roughness exponents
Hx and Hy along the x-axis and the y-axis respectively.

In the case of mounded surfaces with roughness exponent α = 1 [39]:

Ĩ1D(qx) =
σ2ℓc

2
√
2

[
e−(qx−

2π
λ )

2 ℓ2c
4 + e−(qx+

2π
λ )

2 ℓ2c
4

]
, (17)

In practice, power spectrum densities often exhibit distributions close to that of a
low-pass filter [4]. Interestingly, the spatial frequency of the breakpoint qB between
the constant low-frequency part and decaying high-frequency part is related to the
correlation length. For instance, in surfaces with exponential ACF, qB = 1/(2πℓc).

In summary, while dealing with experimental surface profile data, the power
spectrum density is evaluated on the basis of Eq. (13), but direct comparison of
the PSD obtained from one-dimensional and two-dimensional data is delicate due
to the difference in normalization of the PSD. Therefore, in order to make the PSD
master-curve combining data from different setups for height measurements, the PSD
curves must be brought to one-dimensional or two-dimensional case. In this work,
one-dimensional PSDs were chosen as the master curves.

5.2. Experimental results

5.2.1. Power Spectral Density The 1D-PSD master curves [7,45] for the three blasted
samples are shown in Fig. 5. Fig. 5a shows a superposition of the PSDs obtained with
stylus profilometry for the three blasted samples. The construction of 1D-PSD master
curve from data measured with different techniques is illustrated in Figs. 5(b)–(d) for
blasted samples. The 1D-PSD were directly obtained from one dimensional profiles,
measured with stylus profilometer. Meanwhile, 2D-PSD were calculated based on
2D topography data from optical profilometer and AFM. Since the blasted samples
had isotropic 2D-PSDs, the latter were converted to 1D-PSDs according to Eq. (15).
The results shown in Figs. 5(b)–(d) illustrate the interest and the difficulty of the
present multiscale characterization. With the three experimental techniques used in
thus study (optical profilometry, stylus profilometry, AFM), the measurements span
5 orders of magnitude for the spatial frequencies. This allows us to access contrasting
correlation regimes and to give a full characterization of the surface roughness. While
the consistency of the different measurement techniques is overall very good, some
discrepancies can be observed, especially at the bounds of the range of accessible
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spatial frequencies of each technique. High frequencies are sensitive to the nature of
the local probe (mechanical tip vs optical probe) while low frequencies typically suffer
from a relative lack of statistics. Beyond these classical issues we remark that the
collapse between the different measurements for the surface blasted with small beads
is of lesser quality than for those blasted with medium and large beads. This raises the
question of statistical representativity of small scale measurements (her AFM) when
compared to large scale measurements and more generally the effective stationarity of
the height fluctuations over the surface.

In light scattering experiments within the visible spectral range the spatial
frequencies of the surface roughness higher than (1 + sin θinc)/λ (where θinc is the
angle of incidence of the incoming light of wavelength λ) do not participate in the
optical response [22]. This upper spatial frequency limit is presented in Fig. 5 for
the visible spectral range (λ ∈ [480, 780] nm) in the case of normal incidence by a
gray rectangle on the right side of each figure. Meanwhile, the size Dspot of the
illumination spot used in the optical experiment defines the lowest limit 1/Dspot of
spatial frequencies that contribute to the optical response [22]. This lower spatial
frequency limit is indicated in Fig. 5 by a gray rectangle on the left side of each
figure for Dspot ∈ [0.3, 1.0] cm, order of magnitude of spot size generally used in angle
resolved light scattering experiments.

Blasted samples exhibit a constant PSD of value Ĩ0 at low spatial frequencies
and a decay of PSD for higher spatial frequencies. The breakpoint between these
two regimes provides for each sample a characteristic spatial frequency, referred
hereafter as breakpoint spatial frequency qb, at which the PSD values is decreased
by a factor of 2 as compared to the constant low-frequency value Ĩ1D(qb) = Ĩ0/2 [4].

In examined samples (Ĩ0, qb/(2π))=(25 µm3, 0.026 µm−1) for samples blasted with
small beads, (251µm3, 0.011 µm−1) and (1995µm3, 0.0053 µm−1) for samples blasted
with medium and large beads respectively. Interestingly, the inverse of the breakpoint
spatial frequencies match rather well with the average radius of the beads used
during the blasting: (2π/qb,d)=(38 µm,35 µm) for samples blasted with small beads,
(89 µm,100 µm) and (186 µm,250 µm) for samples blasted with medium and large beads
respectively.

In conclusion, in the case of blasted metallic surfaces, characteristic features of the
PSD happen to appear exactly within the spatial frequency range, which features their
optical response. Moreover, there seems to be a direct link between the features in the
PSD and the parameters of fabrication process. While the low spatial frequency part
of the PSDs strongly depends on the bead size, we note that the 3 PSDs collapse on
the same power-law like behavior in the high spatial frequency regions. This suggests
that the high-frequency roughness either stems from the untreated surface or from the
micro-roughness of the beads.

5.2.2. Auto-correlation function Figures 6(a) and 6(b) show the 2D anisotropic auto-
correlation functions of the untreated sample calculated from the height maps obtained
with the optical profilometer (Fig. 6(a)) and the AFM (Fig. 6(b)). Both figures show
a striking anisotropy. Here the ACF along the x axis (along the grooves) is slowly
decaying in both graphs, while the ACF along the y axis (orthogonal to the grooves)
exhibits a steeper decay and a bump in both graphs.

The ACF along the y axis in Fig. 6(a) is characterized by ℓc=3.00± 0.05 µm and
has a peak at ℓp=10.0± 0.5 µm, which corresponds to the average distance between



Multi-scale surface topography of blasted aluminum 18

Figure 5. 1D-PSD curves of examined blasted samples: (a) superposition
of 1D-PSD obtained with stylus profilometer for three blasted samples; and
master curves for sample blasted with small (b), medium (c) and large beads
(d). Each master curve contains 1D-PSDs calculated from data obtained with
stylus profilometer (orange circles), optical profilometer (blue triangles) and AFM
(green squares). Each plotted 1D-PSD curve is an average over the number of
measurements (see table 1). PSDs of topography data from stylus profilometer
are 1D-PSD by construction. PSDs based on data from optical profilometer and
AFM are originally 2D-PSD and are converted to 1D-PSD (Eq. (15)), except
for untreated sample which is represented by a cut of the 2D PSD in direction
orthogonal to the grooves. The red vertical line on (b-d) indicates the breakpoint
frequency of each sample. For the sake of readability, gray rectangles indicate
typical lower and upper limits of spatial frequencies that participate into the
optical response of the surface in scattering experiment in the visible spectral
range under normal incidence. The lower limit is related to the size of beam used
in light scattering experiment, 1/Dspot with Dspot ∈ [0.3; 1.0] cm. The upper
limit (1 + sin θinc)/λ is plotted for normal incidence and visible spectral range
λ ∈ [480; 780] nm.

the groves. Meanwhile, the fine-resolution measurements with AFM allow to observe
ℓc=1.8± 0.6 µm and the anti-correlation features at 5.1± 2.4 µm, which corresponds to
half a distance between the grooves. The incertitude indicates the standard deviation
over the measurements. The measurement step of the optical profilometer and stylus
profilometer are too large to resolve this anti-correlation.
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We will now analyze the ACF of the blasted samples, starting with the large-scale
measurements, namely data obtained with the optical profilometer, and then focusing
on the data obtained at small-scale (AFM). For all the blasted samples the 2D ACF
obtained from the optical profilometer exhibit radial symmetry for spatial frequencies
within the correlation length, as illustrated by Fig. 6(c) for sample blasted with large
beads. The radial average of these 2D ACFs are presented in Fig. 7. None of them
follow exponential or Gaussian forms. The correlation lengths ℓc were estimated from
the conventional definition given by Eq. 6 and the results are summarized in table 4.
In fact, for all three samples the ACF exhibits anti-correlation features, which are
seen as local negative-valued minimum of the ACFs, referred hereafter as ℓac. For
measurements with the optical profilometer, it appears at approximately 42.9 µm,
78.2 µm and 146.2 µm for small, medium and large beads, respectively. Interestingly,
for data obtained with the optical profilometer all three blasted samples ℓac/ℓc ∼= 3.
Contact profilometer provides similar values, but the authors find averaging over 2D
profiles more accurate and thereby rely hereafter on the data obtained with the optical
profilometer for the analysis of the ACF.

Meanwhile, data obtained with the AFM (Figs. 6(b) and 6(d) for the untreated
sample and the sample blasted with large beads, respectively) suggest that the surface
profiles of all four samples exhibit anisotropic anti-correlation behavior at length scale
of the order of 10 µm: about 7µm for the untreated sample and the samples blasted
with small and medium beads, a slightly larger value for sample blasted with large
beads. Thereby the blasting process induces a 50–100µm scale micropattern on the
surface of the aluminum plates, but it fails to completely erase the anisotropic 10µm
scale pattern induced by the rolling process during the fabrication of bare aluminum
plates.

The empirical ACFs were fitted with the functional form given by Eq. (7). In
this way one obtained the values (ℓ0, Λ, α)=(11 µm, 166 µm, 0.50) for samples blasted
with small beads; (35 µm, 222 µm, 0.55) for samples blasted with medium beads; and
finally (80 µm, 397 µm, 0.60) for samples blasted with large beads (table 4).

The correlation length ℓc and anti-correlation length ℓac vary linearly with the
average bead size, same does the RMS value. The ratio RMS to ℓc is however constant
with bead size and one would expect similar slope distributions. Yet, due to the
difference in the shape of impacts and as will be shown in section 6, the distributions
of slope angles of these samples are not the same. Conventional definition of ℓc (see
Eq. (6)) may seem less convincing in the case of surfaces with non-exponential and
non-Gaussian ACFs. Yet, for all examined blasted samples 2π/qb ∼= 3.7ℓc, while in
surfaces with exponential auto-corellation function 2π/qb ∼= 2πℓc. In order to avoid
errors in the interpretation, both ℓc and qb should be analyzed.
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Estimator Setup Untreated sample Small beads Medium beads Large beads

ℓc (µm) Optical profilometer 1.8 ± 0.6 9.0±0.3 25.6±0.3 50.0±0.7
Stylus profilometer 13.4 ± 0.7 10.9±0.5 24.7±0.5 47.3±3.1
AFM 1.6± 0.1 2.2±1.1 1.1±0.5 2.2±1.1

ℓac (µm) Optical profilometer - 42.9±3.8 78.2±2.4 146.2±4.5
Stylus profilometer - 35.6±10.9 76.0±12.0 145±18.4
AFM 5.1±2.4 7.0±3.5 5.8±2.9 7.8±3.9

Table 3. Correlation length ℓc and anti-correlation length ℓac parameters
extracted from experimental characterization of blasted aluminum plates and
reference untreated plate. In case of measurements of untreated sample and AFM
measurements of all samples the provided values of ℓc and ℓac correspond to the
measurement direction perpendicular to the grooves. In case of measurements
with optical profilometer ℓc and ℓac were calculated from radial average of 2D
ACF maps, while in case of measurements with stylus profilometer as average
over 1D ACFs obtained from measurements along x and y directions.

Figure 6. 2D-ACF of the untreated sample (a,b) and sample blasted with large
beads (c,d) calculated from 2D height maps obtained with optical profilometer
(a,c) and AFM (b,d).
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Figure 7. Radial ACFs of blasted aluminum samples, averaged over number of
topography maps, obtained with optical profilometer.

5.3. Discussion on height correlations

In contrast to the height distribution, which often is found to be Gaussian, the surface
height correlation function shows a wide variety in the functional form that it exhibits.
Moreover, rough surfaces can exhibit multiscale correlations. For example, the blasted
samples examined in this work the multiscale correlation is evident from the two
following features: (i) the emergence of a characteristic length associated to the impact
of the blasting beads (as shown by Fig. 7 and the optical and stylus profilometer data
in Table 3) and (ii) the persisting long-range correlation in the high-frequency tail
(Fig.5 and AFM data in Table 3), possibly originating from the self-affine character
of the initial surfaces before blasting.

In particular, as shown in Fig. 8a, we observe that large scale measurements
show the existence of two characteristic length scales (correlation and anti-correlation)
that grow linearly with the bead size. Still, as suggested by the collapse of the high
frequency parts of the PSDs (Fig. 5) and the persistence of anisotropic patterns in
the ACFs obtained by AFM on blasted samples (Fig. 7) the microscale roughness as
measured by AFM shows a contrasting trend. As shown in Fig. 8b, in this range of
small lateral scales, the correlation length ℓAFM

c and the anti-correlation length ℓAFM
ac

appear to stay unaffected by the blasting process.

6. Surface slopes

In some cases it is more convenient to characterize the surface roughness through the
slopes rather than the heights, as for example in geometrical optics and mechanics [47].
Indeed, the microfacet theory [14–16] on which the computer graphics is based,
represents a rough surface as a collection of planar facets. The size of an individual
facet is assumed to be larger than the wavelength of the incident light so that the
geometrical optics description can be applied. The macrosurface is assumed to be
flat on average, and the orientation of the mean surface in space is defined by the
unit normal vector n = (0, 0, 1), which points from the surface towards the ambient
medium. The orientation of a single microfacet is described through a unit normal
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Figure 8. Correlation length ℓc and anti-correlation length ℓac vs bead size
obtained (a) at large scale by stylus and optical profilometry and (b) at small
scale by AFM. The black dashed and continuous line show (a) an indicative linear
trend and (b) an average behavior.

vector m, while its angle θm with respect to n can be rather large. In optical
models based on the microfacet theory, light scattering from rough surfaces is strongly
dependent on the statistics assumed for the orientation of individual facets, referred
to as microfacet distribution p(θm).

6.1. Theoretical context

The knowledge of surface slopes is thus of primary interest for the determination of
the optical properties of the surface. However, their determination, a priori immediate
from the knowledge of height profiles is more subtle than is commonly believed.
The definition of local slopes in a physical context usually suffers from ambiguity.
Mathematically the slopes of the surface are easily defined through the height gradients
provided that the height profile respects the required conditions of regularity. Many
different algorithms have been developed for estimating the slope of a surface from
experimental topography data sets [80]. Those algorithms involve slope definition on
different amount of points. However, in a physical context, local slopes should be
defined over a typical length scale. To give a simple example, the angular width of the
light reflected by a moderately rough surface is controlled by the average slope s(ℓ)
estimated over a lateral length scale of ℓ ∼ λ [12, 36, 42]. Such local slopes depend
on the length scale over which they are defined. For instance, consider rough surfaces
characterized by a correlation length ℓc. One naturally expects the slopes s(ℓ) to reach
a maximum for ℓ < ℓc and to vanish for ℓ≫ ℓc. Moreover as will be discussed below,
this size-dependence of the local slopes is also impacted by the nature of the form of
the height auto-correlation function. For a given form of the correlation function, one
can calculate the form of s(ℓ) as will be shown in the following.

6.1.1. From height correlation to slope distribution The sum or difference of two
Gaussianly distributed random variables is itself a random Guassian variable. In
the case of a Gaussian height distribution, we can thus define the height difference
∆h(∆r) = h(r + ∆r) − h(r) over ∆r as a random Gaussian variable. The
variance 〈|∆rh|2〉 naturally depends on the distance ∆r = |∆r| through the height
autocorrelation function A(∆r). In the case of isotropic short-range correlations, we
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thus get:

〈|∆h|2〉(∆r) = 2σ2[1−A(∆r)] . (18)

In one dimension, the local slopes sℓ over the length scale ℓ are thus immediately
defined as:

sℓ =

〈
h(r+∆r)− h(r)

∆r

〉

r;|∆r|=ℓ

,

where we average over r and the orientation of ∆r. If the height distribution is
Gaussian, we get immediately for the slope distribution:

p(sℓ) =
1

σs,ℓ
√
π
exp

(
− s2ℓ
2σ2

s,ℓ

)
, (19)

where the standard deviation of local slopes is given by:

σs,ℓ =
√
2
σ

ℓ

√
1−A(ℓ). (20)

The knowledge of the height auto-correlation A thus gives us access to the
statistics of the local slopes and the behaviour of σs,ℓ when ℓ → 0. We illustrate
below the effect of the nature of the correlation on the standard deviation σs,ℓ of the
local slopes and present them in Fig. 9:

• Gaussian correlation — If the length scale ℓ is small with respect to the correlation
length ℓc (ℓ≪ ℓc), a simple Taylor expansion of the exponential function can be
used to get:

σG
s,ℓ =

√
2
σ

ℓ

√
1− exp(−ℓ2/ℓ2c) ≈

√
2
σ

ℓc
. (21)

We note that this value is independent of ℓ: sufficiently well below the correlation
length ℓc the statistics of local slopes do not depend on the length scale ℓ over
which the slope is estimated. As depicted on Fig. 9(a), the statistics of the local
slopes can be defined at a length scales ℓ < ℓc/5. In particular the variance σ′s of
the height gradients (corresponding to the limit of vanishing ℓ) should give the
very same result σ′Gs =

√
2σ/ℓc.

• Exponential correlation — In this case, the Taylor expansion valid for ℓ ≪ ℓc
gives:

σE
s,ℓ =

√
2
σ

ℓ

√
1− exp(−ℓ/ℓc) ≈ σG

s,ℓ

√
ℓc/ℓ (22)

Here the standard deviation of local slopes σs,ℓ shows a strong dependence on the
length scale ℓ and is even expected to diverge in the limit of vanishing ℓ; This is
seen in Fig. 9(a). Strictly speaking the standard deviation σ′s of height gradients
is thus no longer defined in the case of exponential correlation. In practice we
expect the latter to be controlled by a cut-off scale ℓmin, either defined as the scale
below which the height correlation recovers a more regular Gaussian-like behavior
or as a lower cut-off imposed by the instrument (tip diameter, optical wavelength)
or by the sampling. The divergent behavior of the typical slope highlights the
need to precise the length scale over which slopes are computed.

• The ACF of mounded surfaces — This particular class of surfaces has two
characteristic length scales. They are the parameter ℓ0, which defines how the
correlation function decays (see eq.7), and the average distance between mounds
Λ, where ℓ0 < Λ. Here we will focus on the ACF exhibited by the blasted samples
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studied in subsequent sections and which form is given by Eq. (7), with in our
case ℓc < ℓ0 ∼= 0.42ℓac < Λ. The standard deviation of the local slopes in this
case is:

σM
s,ℓ =

√
2
σ

ℓ

√√√√1− exp

[
−
(

ℓ

ℓ0

)2α
]
cos

(
2πℓ

Λ

)
. (23)

As depicted in Fig. 9(a) the case α = 1 is similar to the Gaussian ACF. For
ℓ < ℓc/10 the standard deviation of the local slopes does not depend on the
length scale over which slopes are computed, but the value is larger compared to
the case of the Gaussian ACF. If α ≤ 0.5, the slope distribution is very similar
to the one of exponential ACF and standard deviation of local slopes strongly
depends on the length scale.

• Self-affine correlation — This dependence on length scales is even more
pronounced in the case of self-affine surfaces. Here we have 〈|∆h|2〉(ℓ) = ℓ2−2H

0 ℓ2H

where the length scale ℓ0 is an amplitude parameter and H the roughness or
Hurst exponent usually lying in the range [0, 1] [55]. Such a power-law behavior
is usually only observed in a finite range of length scales [ℓmin − ℓmax]. In the
case of self-affine height correlation, we thus get for the standard deviation of the
local slopes [42]:

σSA
s,ℓ =

(
ℓ

ℓ0

)H−1

. (24)

Here again, the typical slope σs,ℓ strongly depends on the length scale ℓ over
which it is estimated and the height gradient is ill-defined, as shown on Fig. 9(b).
We note that the maximum slope is controlled by the lower cut-off ℓmin of the
self-affine regime smax ≈ (ℓmin/ℓ0)

H−1 while the RMS roughness Σ = ℓ1−H
0 ℓHmax

is controlled by the upper cut-off ℓmax [42].

Figure 9. Standard deviation of local slopes as a function of length scale
ℓ over which it is defined for surfaces with following ACFs: (a) comparison
of exponential and Gaussian ACFs as well as ACF of mounded surface
(ℓ0=35µm,ℓc=25.6µm,Λ=220µ m,α=0.1;0.55;0.9); (b) ACF of self-affine surfaces
with different values of Hurst exponent.



Multi-scale surface topography of blasted aluminum 25

6.1.2. Facets and two-dimensional slope distribution The probability density
distribution of slopes in case of a 2D surface profile is as follows:

p2D(sℓx , sℓy ) =
1

2πσs,ℓxσs,ℓy

exp

{
−1

2

[(
sℓx
σs,ℓx

)2

+

(
sℓy
σs,ℓy

)2
]}

, (25)

For an isotropic surface, the variance of the slope distribution is independent on
the axis along which it is estimated, or σs,ℓ = σs,ℓx = σs,ℓy as soon as the slopes are
estimated over the same length scale ℓ = ℓx = ℓy.

If we consider a facet defined by its extent ℓ (the projected distance over the mean
plane) and its normal n = (sin θm cosϕ, sin θm sinϕ, cos θm), the slopes which can be
estimated over the facet obviously depend on the direction. In particular, since slopes
are defined here with respect to the horizontal plane, the angle φ gives the direction
of the maximum slope sm,ℓ while the slope vanishes along the orthogonal direction
(ϕ+ π/2). In particular we have:

sm,ℓ = tan θm =
√

s2ℓ,x + s2ℓ,y . (26)

The maximum slope sm,ℓ acts here as a norm of the local slope vector (sℓx , sℓy ) and
is a positive quantity. Since the two variables sℓx and sℓy are Gaussian, the statistics
of sm,ℓ follows the χ-distribution:

p(sm,ℓ) =
sm,ℓ

σ2
s,ℓ

exp

(
−

s2m,ℓ

2σ2
s,ℓ

)
(27)

whose mode is located at sm,ℓ = σs,ℓ. The maximum of the χ-distribution thus directly
gives access to the standard deviation of the local slopes.

6.1.3. Angular distributions Finally, the angular-dependent slope distribution of a
2D surface profile can be obtained on the basis of Eq. (27) by changing variable to θm
in accordance with Eq. (26):

p2D(θm) =
tan θm
σ2
s,ℓ

(
1 + tan2 θm

)
exp

(
− tan2 θm

2σ2
s,ℓ

)
, (28)

where θm ∈ [0◦, 90◦] — the angle between the normal to the facet surface and the
normal to the mean surface.

In the case of 2D surface profile, the distribution of the slope angles p2D(θ) reaches
its maximum at a non-zero angle for any value of σs,l:

tan θ0,2D =

√√√√√3σ2
s,ℓ − 1 +

√
4σ2

s,l +
(
1− 3σ2

s,ℓ

)2

2
. (29)

θ0 ≤ 45◦.
Conversely the variance of slope distribution can be evaluated from the surface

slope angular distribution using the inverse of Eq. (29):

σ2
s,ℓ =

tan2 θ0,2D
(
1 + tan2 θ0,2D

)

1 + 3 tan2 θ0,2D
. (30)
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6.2. Numerical computation of local slopes

In practice, the calculation of the local gradients along the x and y directions is the
simplest way to evaluate the surface slopes from topography maps. Yet, this method
is rather sensitive to the noise from experimental data and moreover it estimates the
slopes at the lateral scale of the measurement step. Alternatively, it is possible to
estimate the surface slopes at the scale of a surface element of size ℓ × ℓ by means
of fitting a linear plane or a quadratic form. In this work, we compare these three
methods (local gradient, linear or parabolic fits over a finite region of extent ℓ) while
varying ℓ in the range 10–98µm. Each surface element of the chosen characteristic
size is fitted by the linear plane:

z = c0 + cxx+ cyy, (31)

and by the quadratic expression:

z = a0 + axx+ ayy + axyxy + axxx
2 + ayyy

2. (32)

In the latter case the plane tangent to the paraboloid at point (x0, y0) has the following
cx, cy coefficients:

cx = 2axxx0 + axyy0 + ax, cy = axyx0 + 2ayyy0 + ay. (33)

The unit normal vector to the plane describing this surface element ns can be defined
as:

ns =
1√

c2x + c2y + 1
(cx, cy, 1). (34)

Finally, the polar angle θ and azimuthal angle φ describing the orientation of such
surface element can be defined as dot products of ns with unit vectors along z and x:

cos θ = ns · n =
1√

c2x + c2y + 1
, (35)

tanφ =
cy
cx

. (36)

Applied to the whole topography map, such an analysis provides the full two-
dimensional polar plot of the slope probability density function p(sm,ℓ). The one-
dimensional representation is more convenient for the comparison of slope distributions
of several samples. In case of isotropic surfaces this can be the radial average of the
2D polar plot of the slope probability density function. However, in a more general
case of anisotropic surface a single 1D representation is not sufficient and at least two
cuts through the 2D slope probability density function are necessary.

6.3. Experimental results

This section is devoted to the analysis of the slope distribution p(sm,ℓ) and of the
distribution of the slope angles p2D(θm) of the examined samples. Two approaches
are compared: the analysis based on surface statistics (possible since the height
distribution functions of the examined samples follow Gaussian statistics) and direct
calculations from topography maps with a particular attention given to the impact of
the length scale ℓ at which the surface elements are analyzed.

Based on the statistical parameters summarized in table 4, the standard deviation
of the slope distribution σs was estimated using Eq. (23) for all three blasted samples
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and the following values were obtained for ℓ = 2µm (ℓ < ℓ0, table 4): 0.34, 0.40
and 0.40 for samples blasted with small, medium and large beads, correspondingly.
According to Eq. (29), slope angle θ0 at which the slope angle distribution reaches
its maximum is θ0 = 21◦ for sample blasted with small beads, θ0 = 25◦ for sample
blasted with medium and large beads.

In what follows we will focus on the slope distributions p(sm,ℓ) and distributions
of slope angles p2D(θm) deduced from topography maps measured with optical
profilometer and the results obtained in this way are presented in Fig. 2. Figure 10
shows such 2D slope distributions obtained for the untreated sample (Fig. 10(a)) and
for sample blasted with medium beads (Figs. 10(b)). Slope distributions were obtained
by fitting the surface element, the projection of which to the mean surface plane is of
size ℓ×ℓ = 10×10 µm, with paraboloid Eq. (32) and defining the plane tangent to this
paraboloid at the center of the surface element Eq. (33) (Figs. 10(c) and 10(d)). In
fact, very similar results were obtained for fitting with plane and paraboloid. The slope
distributions obtained from local gradients are, as expected, difficult to exploit due
to the noise and aliasing, in contrast to the slope distributions obtained by fitting.
The slope distribution of the untreated sample obtained by fitting 10(a) exhibit a
clear anisotropy. Meanwhile, 2D slope distributions of all blasted samples have radial
symmetry, as illustrated on Fig. 10(b) for sample blasted with medium beads.

Figure 10(c) compares 1D cuts along cx = 0 and cy = 0 of the 2D slope
distribution shown in Fig. 10(b) and is obtained from quadratic fits of height
measurements on samples blasted with medium beads. The standard deviation of
this slope distribution σs was estimated with Eq. (27) to be σs = 0.188, meanwhile
analytic expression Eq. (23) for ℓ = 10µm provides σs = 0.191.

Figure 11 illustrates the variation of the standard deviation of the slope
distribution σs,ℓwith the size ℓ of the fitted surface element. For the sake of comparison
σs,ℓ values obtained for each sample are normalized by σ

√
2/ℓc similar to prefactor in

Eq. (23). Results obtained from plane and quadratic fits are shown as filled and empty
symbols, respectively. As expected, the increase of ℓ results in a more narrow slope
distribution. Interestingly, for surface elements of size ℓ ≥ ℓc

2 the decay of σ2
s,ℓ with ℓ/ℓc

perfectly follows the law given by combination of Eqs. (30) and (23). In conclusion,
slope distributions of all blasted samples can be reasonably well approximated by the
Gaussian form, which allows to use Eq. (23) for the analysis and to link the slope
distribution with statistical properties like RMS and ℓc.

Figure 12 shows 2D distributions of slope angles θ and φ obtained with
Eq. (35),(36) from 2D slope distribution depicted by Fig. 10. Even though the
slope distribution is Gaussian, due to normalization the distribution of slope angles
is no more Gaussian and exhibits a maximum at θm ≈ 7◦. A radial average of this
distribution, shown on Fig. 12(b) follows well the expression given by Eq. (28).

In optical models based on the microfacet theory, there is one more morphology-
related parameter, namely the shadowing/masking term [48,49]. Yet, in contrast to the
microfacet distribution, masking/shadowing can not be related to surface morphology
in a simple and intuitive way. Analytic expressions for shadowing/masking exist for
isotropic surfaces with Gaussian statistics [48, 49], but to the best of our knowledge,
there is no convention on estimation of this parameter based directly on topography
data.
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Figure 10. 2D slope distribution obtained from 2D surface maps of untreated
sample (a,c) and sample blasted with medium beads(b,d). The slope distributions
were obtained from analysis of local gradients (a,b) or from fits of the surface
element of ℓ × ℓ dimension with a quadratic form over a region of size ℓ =
10 µm (c,d). (e) 1D slope distributions along cx and cy obtained from 2D slope
distribution in (d). A Gaussian fit of these distributions is shown for the reader
comfort and results in σs = 0.188, while analytic expression Eq. (23) for ℓ = 10 µm
provides σs = 0.191.

6.4. Discussion on local surface slopes

As emphasized several times in this section, local slopes are to be defined with
respect to a characteristic length scale [54](e.g. the wave length in the case of light
scattering [52]). Here we could give a quantitative account of the size dependence
of local slopes. In particular we could check that in the present case of Gaussian
distribution of height fluctuations, the distribution of local slopes is also Gaussian
and that its variance is fully determined by the knowledge of its auto-correlation
function. As shown in Fig. 11 we observe that after rescaling by the correlation length
ℓc, all blasted samples show the same size dependence of the local slopes standard
deviation. Since ℓc shows itself a quasi-linear dependence on the bead size, this means
here that we get a full knowledge of the slope statistics from the process parameters

7. Local curvatures

7.1. Theoretical context

Two rather complementary approaches can be applied for characterization of local
features of surface morphology: (i) distribution of all local curvatures and (ii) analysis
of the shape and of the dimensions of statistically representative surface elements, as
for instance hills and craters.

In order to emphasize the local curvature of the surface, topography maps can
be presented through the shape index. This topography parameter was introduced
by Koenderink & van Doorn [50] as the single valued measure of both principal local
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Figure 11. Standard deviation of slope distribution as a function of ℓ, the
size of fitted surface element. Variance is normalized by σ

√
2/ℓc, while the size

of surface element is normalized by ℓc. Results obtained from paraboloid and
plane fit are shown with filled and empty symbols respectively. Dash lines show
theoretical curve on standard deviations of slope distribution from Eq. (23) for
samples blasted with small (blue line), medium (green line) and large (red line)
beads.

Figure 12. Slope angle distribution p2D (θm, φm) of sample blasted with medium
beads (a) and its radial average (b). Solid line on (b) shows the fit of data points
with Eq. (28).
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curvatures. Shape index is derived from the eigenvalues of the Hessian and can be
described as follows:

s =
2

π
arctan

κ1 + κ2

κ2 − κ1
(37)

where κ1 = max
(

∂2

∂x2h(x, y);
∂2

∂y2h(x, y)
)
and κ2 = min

(
∂2

∂x2h(x, y);
∂2

∂y2h(x, y)
)
. The

scale of shape index values is set from -1 to 1 and progressively describes the local
curvature from a spherical cup s ∈ [−1;− 7

8 ], to a trough s ∈ [− 7
8 ;− 5

8 ], a rut
s ∈ [− 5

8 ;− 3
8 ], a saddle rut s ∈ [− 3

8 ;− 1
8 ], a saddle s ∈ [− 1

8 ;
1
8 ], a saddle ridge s ∈ [ 18 ;

3
8 ],

a ridge s ∈ [ 38 ;
5
8 ], a dome s ∈ [ 58 ;

7
8 ] and a spherical cap s ∈ [ 78 ; 1.0]. While the shape

index is independent of the size of the surface element it describes, this information
can be retrieved from curvedness parameter c [50]:

c =

√
κ2
1 + κ2

2

2
(38)

Curvedness is always positive and is inversely proportional to the size of surface
element. Finally, the probability density function of shape index gives the qualitative
insight on its statistics in a similar way as the height distribution function describes
the height profile.

The analysis of the average dimensions of local features, such as craters and hills
in this work, can also be useful. The suggested procedure is as follows. By combining
the shape index map and the curvedness map, the curvedness pdf is calculated for
each shape of interest, i.e. spherical cup and trough or ridge.

7.2. Experimental results

Obviously, in full analogy with the local slopes, the analysis of local curvatures can
not be performed disregarding the characteristic length-scales of the surface. Due to
the important scale-dependence of the local properties of mounded surfaces examined
in this work, the shape index and curvedness calculations provided were obtained from
height maps depicted in Fig. 2.

Figure 13 provides a shape index representation of topography maps from Fig. 2
and thus allows us to analyze the local curvature shapes of the surface. Shape index
values were calculated with shape index function from scikit-image python library
for image processing. According to Fig. 13, spherical cup shapes corresponding to
the craters induced by the blasting process are dominant on the surface of examined
samples. Those craters are surrounded by crests described by small positive local
curvatures. Finally, the intersection between several crests results in local maxima
(dome-like shape).

Figure 15(a) shows the probability density function of shape index, s. It reveals
that the surface of non-treated sample is predominantly composed of two types of
surface curvature elements: ruts (s = −0.5) and ridges (s = 0.5). Then blasting with
small beads results in roughly equal amount of surface points belonging to shapes from
rut to ridge. Blasting with medium and large beads renders the probability density
of shape index asymmetric: troughs (s = −0.75, intermediate case between cup-like
shape and rut) become dominant and occupy more important surface than ridges.

Figure 14 shows the maps of curvedness, c. Then Fig. 15(b) plots the probability
density curvedness times beads radius of all blasted samples. Among examined
samples rolled aluminum has largest predominant curvedness of 1.3.10−2

µm−1, while
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in blasted samples this value decreases with the beads size and is 1.18.10−3
µm−1,

2.5.10−3
µm−1 and 1.16.10−3

µm−1 for aluminum samples blasted with small, medium
and large beads respectively. The corresponding radii of curvature of blasted samples
are 85 µm, 400 µm and 862µm for small, medium and large beads respectively.

Figure 13. Shape index of the raw substrate (a) and surfaces blasted with small
(b) medium (c) and large beads (d). The shape index progressively describes the
local curvature from a spherical cup to a dome (respectively from -1 to 1).

The summary of the different statistical estimators examined in this work is given
in table 4.

7.3. Discussion on local curvatures

In addition to its quantitative interest, the analysis of local curvatures brings an
additional topological information to the present topographic characterization of
blasted aluminum surfaces. The maps and the statistics of the shape index show
a spectacular change between the initial groove geometry of the initial cold-rolled
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Figure 14. Curvedness of the raw substrate (a) and surfaces blasted with small
(b) medium (c) and large beads (d). The curvedness describes the inverse local
radius of curvature.

surfaces and the crater geometry of the blasted surfaces. In particular a clear
asymmetry appears in the distribution of shape indices between the bottoms and
the ridges of the craters. Such an asymmetry could not be captured by the correlation
or the slope analysis. Moreover the local curvature analysis appears to be far more
robust than the fragile estimation of the skewness.
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Figure 15. Probability density function of shape index (a) and curvedness (b).

8. Conclusion and outlook

A detailed statistical study of the surface topography of blasted aluminum samples
was performed. Combining three different experimental facilities for measurement of
surface topography allowed for characterization of surface topography of the samples
within 5 decades of spatial frequency. Several statistical morphological parameters
were extracted from the experimental data during their analysis. Within the examined
range of beads sizes used during the blasting process of the sample, the value of the
RMS height of the rough surface is found to increase linearly with the size of the beads.
The obtained values of the skewness and the kurtosis both reflected slight deviations
of the height distribution from a Gaussian form, consistent with the presence of
“blasting” craters on the surface. The PSD allows us to identify the size of the
beads used during the fabrication process. The spatial length scales over which the
empirical ACFs display anti-correlations are related to the sizes of the beads impacting
the surface. Interestingly, while the large scale roughness appears to be controlled by
the blasting process, we could show that the microscale roughness inherits from that
of the initial samples. We could show that the slope statistics is fully characterized
by the knowledge of the quasi-Gaussian distribution of height fluctuations and of the
auto-correlation functions. On the one hand, local slopes are shown to be strongly
dependent on the length scale. On the other hand, after a proper rescaling by the
bead size, the slope distributions of the studied surfaces are all very similar for all
three blasted samples.

This study creates a solid foundation for future work on understanding the
light scattering from these blasted surfaces and how it is related to their surface
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Small beads Medium beads Large beads
dbeads (µm) 70± 20 200± 50 500± 150
σ (µm) 1.18 ± 0.04 2.52 ± 0.02 5.05 ± 0.06
ℓc (µm) 9.0±0.3 25.6±0.3 50.0±0.7
A(∆r) exp

[
−

(
∆
r ℓ0

)2α]
cos

(
2πr
Λ

)

α (no units) 0.5 0.55 0.6
ℓ0 (µm) 11 30 80
Λ (µm) 166 222 397
ℓac (µm) 42.9±3.8 78.2±2.4 146.2±4.5
Ĩ0 (µm3) 25 251 1995
2π/qb (µm) 38 89 186
1/c (µm) 85±10 400±10 872±60

based on statistical estimators
σs 0.34 0.40 0.40
θ0 (◦) 21 25 25

local slope analysis
σs 0.31 0.27 0.25
θ0 (◦) 18.5 16 15

Table 4. Statistical estimators of the morphology of examined blasted aluminum
samples: rms roughness σ, correlation length ℓc, functions A(r) used for fitting
the ACFs of the treated samples and their fit parameter ℓ0, anti-correlation length
ℓac, characteristic length 2π/qb corresponding to the breakpoint of PSD curves,
curvature radii of trough-shaped craters rc and dome-shaped hills rh, variance
of slope distribution σs (obtained from Eq. (23) using σ, ℓ0 and α values from
this table) and the slope angle θ0 at which the slope angle distribution reaches its
maximum (obtained from Eq. (29) using σs values from this table).

topographies. For instance, the experimental topography data analyzed in this work
will be used as an input into different light scattering models that will produce
scattering data that can be confronted to optical experimental data, in order to
evaluate their practical application.
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[35] Plouraboué F and Boehm M 1999 Multi-scale roughness transfer in cold metal rolling Tribol.

Int. 32 45–47.
[36] Vandembroucq D, Tarrats A, Greffet JJ, Roux S and Plouraboué 2001 Light scattering from
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