HAL
open science

RNA Triplet Repeats: Improved Algorithms for Structure Prediction and Interactions

Kimon Boehmer, Sarah J Berkemer, Sebastian Will, Yann Ponty

To cite this version:

Kimon Boehmer, Sarah J Berkemer, Sebastian Will, Yann Ponty. RNA Triplet Repeats: Improved
Algorithms for Structure Prediction and Interactions. 2024. hal-04589903v1

HAL Id: hal-04589903
 https://hal.science/hal-04589903v1

Preprint submitted on 27 May 2024 (v1), last revised 5 Jun 2024 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RNA Triplet Repeats: Improved Algorithms for Structure Prediction and Interactions

Kimon Boehmer
Laboratoire d'Informatique de l'Ecole Polytechnique (LIX UMR 7161), Institut Polytechnique de Paris, France
Sarah J. Berkemer ヘ (
Laboratoire d'Informatique de l'Ecole Polytechnique (LIX UMR 7161), Institut Polytechnique de Paris, France
Sebastian Will 수 (
Laboratoire d'Informatique de l'Ecole Polytechnique (LIX UMR 7161), Institut Polytechnique de Paris, France
Yann Ponty ${ }^{1} \square$ (D)
Laboratoire d'Informatique de l'Ecole Polytechnique (LIX UMR 7161), Institut Polytechnique de Paris, France

RNAs composed of Triplet Repeats (TR) have recently attracted much attention in the field of synthetic biology. We study the mimimum free energy (MFE) secondary structures of such RNAs and give improved algorithms to compute the MFE and the partition function. Furthermore, we study the interaction of multiple RNAs and design a new algorithm that avoids the previously-known factorial-time iteration over all permutations. In the case of TR, we show computational hardness but still obtain a parameterized algorithm. Finally, we propose a polynomial-time algorithm for computing interactions from a base set of RNA strands and conduct experiments on the interaction of TRs based on this algorithm. For instance, we study the probability that a base pair is formed between two strands with the same triplet pattern, allowing an assessment of a notion of orthogonality between TRs.

2012 ACM Subject Classification Replace ccsdesc macro with valid one
Keywords and phrases RNA folding, RNA interactions, triplet repeats, dynamic programming, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.WABI.2024.XXX
Funding Kimon Boehmer: Supported by ANR-funded SYNORG project (PI S.J. Berkemer)

[^0]
1 Introduction

RNAs composed of Triplet Repeats (TR) have attracted much attention, and harbour promises in the field of synthetic biology, due to their demonstrated capacity to self-assemble into droplets $[12,9]$. Those can in turn be used to compartmentalize cellular processes, thereby creating a "clean room", free of the natural cellular clutter, where synthetic circuits can be executed without interference. The exact process underlying this phenomena is still the object of ongoing investigations, but it is hypothesized that repetitive RNAs may induce Liquid-Liquid Phase separation mediated by unstable/transient structures. Repetitive RNAs are also found at the origin of severe Neurological Triplet Expansion Diseases (TED), including Friedreich attaxia [20] and Triplet Repeat Diseases (TRD) such as Huntington disease [13]. For multiple TEDs and TRDs, overly expanded RNAs have been observed to aggregate into RNA foci, leading to a sequestration of RNA binding proteins. Local secondary structures and interactions are impacted by the repeat, and generally believed to contribute to the pathogenicity and treatment efficiency. To study those phenomena in silico, and in particular the impact of the repeated motif and number of repeats on aggregates, one needs to predict the MFE structure of potentially large RNAs, and many-body interactions. Recently, coarse-grained simulations showed a disparity between odd or even numbers of triplet repeats [16] as well as extensions to quadruplet and non-redundant tandem repeats [1].

RNA folding by energy minimization is a classic algorithmic problem in Bioinformatics, historically solved in time $\Omega\left(n^{3}\right)$ using dynamic programming [18, 22]. Despite recent misleading suggestions of linear-time alternatives [11], the best algorithm to date to solve energy minimization has runtime $\mathcal{O}\left(n^{2.8603}\right)$ [4], and both its implementation and extension beyond a base-pair maximization setting represent considerable challenges. Prior works have also investigated conditional lower bounds, and found that the existence of a $\mathcal{O}\left(n^{2-\varepsilon}\right)$ algorithm would refute the Strong Exponential Time Hypothesis (SETH) [4]. Meanwhile, an $\mathcal{O}\left(n^{\omega-\varepsilon}\right)$ algorithm would disprove the k-clique conjecture, with $\omega<2.373$ being the matrix multiplication exponent [4, 5].

RNA-RNA interaction prediction represents an equally relevant, yet computationally substantially more involved algorithmic problem. For a fixed number of interacting strands, polynomial-time algorithms have been proposed. For example, by excluding so-called zig-zag joint conformations, [2] proposed a polynomial-time algorithm for the interaction of two strands, while also showing NP-hardness for the case where we include these conformations. In the unbounded case, [8] gave a factorial-time algorithm for computing the partition function over multiple strands. Additionally, it was shown that energy minimization in this setting is APX-hard (and by that NP-hard) [6], even for a very simple energy model.

Contributions In this work, we show that the repeated nature of RNA can be exploited to obtain substantially improved algorithms for several problems. First, we show that the Minimum Free-Energy of a triplet-repeat RNA can be predicted in linear time (in the size of the binary encoded triplet sequence), both with respect to base pair maximization and Turner energy model, and are realized by either the open chain or a single helix.
We then consider the interaction of multiple triplet repeats and propose improved algorithms for the general (non-triplet) case as well as algorithms specifically for the interaction of TR. For the latter case, we show NP-hardness in a reasonable energy model.

2 Definitions and Problems Statement

2.1 Definitions

RNA sequence and structure(s). An RNA sequence (or just sequence) is a word $s \in\{A, C, G, U\}^{+}$. The length of s is denoted by $|s|$ and the i-th position of s by s_{i}. A position on a sequence is also called a base. We associate to each position s_{i} its letter by $l\left(s_{i}\right)$. We define $P:=\{\{C, G\},\{A, U\},\{G, U\}\}$. A pseudoknot-free secondary structure S is a set of pairs of bases, hereunder called base pairs, such that:

- for all $\left\{s_{i}, s_{j}\right\} \in S,\left\{l\left(s_{i}\right), l\left(s_{j}\right)\right\} \in P$;
- each base is involved in at most one base pair, i.e. for all bases $i,|\{p \in S \mid i \in p\}| \leq 1$;
- S does not contain two base pairs $\{i, j\},\{k, \ell\}$ with $i<k<j<\ell$;
- each base pair encloses at least θ bases, that is, if $\{i, j\} \in S$, then $j-i>\theta$. We usually call θ the minimal base pair span, and use $\theta=3$ unless explicit specified.
We denote by $\Omega(s)$, or just Ω whenever clear from the context, the set of all pseudoknot-free secondary structures over sequence s.

We associate each secondary structure $S \in \Omega$ to a free energy, according to an energy model $E:\{A, C, G, U\}^{+} \times \Omega \rightarrow \mathbb{R}$. In the base pair model E_{bp}, we simply count the number of base pairs in S, and set $E_{\mathrm{bp}}(w, S)=-|S|$. More advanced energy models reason about the free energy introduced by motifs occurring in the secondary structure, such as the loops considered by the Turner nearest-neighbor model [21]. .
Interactions. A strand is an RNA sequence which is identified as a unique object in a set. In other words, in a set of strands R, we can have two strands $s \neq r$ that consist of the same sequences, that is $s_{i}=r_{i}$ for all $i \in\{1, \ldots,|s|=|r|\}$, but still are different objects. To describe the interaction of multiple strands, we are given a set R of strands, where $m:=|R|$.

A circular permutation π of a strand set R is a permutation of $m-1$ elements of R. We write Π_{R} (or just Π if clear from the context) for the set of all circular permutations over R. To express that strands s^{1}, \ldots, s^{m} appear in that order in a circular permutation π, we write $\left(s^{1}, \ldots, s^{m}\right) \in O_{\pi}$. Similarly, we write $\left(s_{i_{1}}^{1}, \ldots, s_{i_{m}}^{m}\right) \in O_{\pi}$ to denote that the bases appear in this order in π. A secondary structure S of a strand set R is a set of base pairs $\left\{s_{i}, r_{j}\right\}$ from strands in $s, r \in R$ such that $\left\{l\left(s_{i}\right), l\left(r_{j}\right)\right\} \in P$, each base appears in at most one base pair and each intra-strand base pair encloses at least θ bases, i.e. $\left\{s_{i}, s_{j}\right\} \in S \rightarrow j-i>\theta$.

The polymer graph of a secondary structure S and a circular permutation π on R is a graph $G=(V, E)$ with $V:=\left\{s_{i}|s \in R, 1 \leq i \leq|s|\}\right.$ and $E:=S \cup\left\{\left\{s_{i}, s_{i+1}\right\} \mid s \in\right.$ $R, 1 \leq i<|s|\} \cup C:=\left\{\left\{s_{|s|}, r_{1}\right\} \mid r\right.$ follows s in $\left.\pi\right\}$. The edges $E-S$ are drawn in a cycle (naturally induced by the circular permutation), while the edges in S are drawn as straight lines between the bases. Two strands s, r are connected if there is a path from s_{1} to r_{1} that does not use edges from C. A secondary structure is connected if all of its strands are connected. Examples for the polymer graphs of a single secondary structure under two different circular permutations can be found in Figure 1.

A secondary structure S is called pseudoknot-free if there is a circular permutation π such that there are no crossing lines in the polymer graph, or formally, there are no two base pairs $\left\{s_{i}, t_{k}\right\},\left\{u_{\ell}, r_{j}\right\}$ with $\left(s_{i}, u_{\ell}, t_{k}, r_{j}\right) \in O_{\pi}$.

As for the folding, we associate to each $S \in \Omega(R)$ a free energy value. In the base pair model, additionally to counting the number p of base pairs, we also add a strand association penalty $K_{\text {assoc }}$ for each of the $(m-\ell)$ strand associations, where ℓ is the number of connected components (complexes) in the polymer graph. Thus, the free energy of a secondary structure $S \in \Omega$ in this simple energy model is defined as $E(R, S)=-p+(m-\ell) K_{\text {assoc }}$. We may also require that all strands are connected; in that case, the strand association penalty is obsolete.

Figure 1 The same secondary structure on a strand set with three strands drawn in two different circular permutations. The strands are depicted by the blue, red and yellow lines while green lines indicate base pairs. Gray lines connect subsequent strands and depend on the strand permutation.

2.2 Computational problems

For a single strand, the two classical historical problems are:
Minimum Free Energy (MFE) under Energy model E
Input: A sequence s
Output: Minimum free-energy $\min _{S \in \Omega(s)} E(s, S)$

```
Partition Function under Energy model E
Input: A sequence s}\mathrm{ and a positive temperature T
Output: Partition function }\mp@subsup{\mathcal{Z}}{s}{}:=\mp@subsup{\sum}{S\in\Omega(s)}{}\operatorname{exp}{\frac{-E(s,S)}{kT}
```

where $k=1.987 \cdot 10^{-3} \mathrm{kcal} . \mathrm{mol}^{-1} . \mathrm{K}^{-1}$ is the Boltzmann constant.
In the multi-strand setting, we focus on energy minimization. In [8], the authors adopt a thermodynamic perspective on the free energy of a secondary structure over multiple strands, such that potential rotational symmetries require an adjustment of the computed value. We focus on a more algorithmic perspective, where all rotationally symmetric structures are elements of a search space, and a simple base pair energy model. In our main algorithmic problem of interest, we are given a set of strands and are looking for the minimum free energy of the secondary structure over these strands:

MFE Strand Interaction
Input: Set of strands $R_{0}=\left\{r_{1}, \ldots, r_{m}\right\}$
Output: $\min _{S \in \Omega\left(R_{0}\right)} E\left(R_{0}, S\right)$

We also consider a slightly different setting, where the number of occurrences of each triplet/strand is unconstrained beyond the total number m of interacting strands. This allows to studies situations where the strands concentrations are in excess, so that sequences can be locally seen as infinitely available often within a set (or "soup") R of strands. We are then given the number of interacting strands m and look for the best secondary structure over m strands that all appear in R. More formally:

MFE Strand Soup Interaction

Input: Set of sequences $R=\left\{r_{1}, \ldots, r_{p}\right\}, m \in \mathbb{N}$ encoded in unary
Output: $\min _{t_{1}, \ldots, t_{m}: t_{i} \in R} \min _{S \in \Omega\left(\left\{t_{1}, \ldots, t_{m}\right\}\right)} E\left(\left\{t_{1}, \ldots, t_{m}\right\}, S\right)$

2.3 Triplet repeats RNAs and their properties

Triplet repeat RNAs (TR). Of special interest to us are RNA sequences that are composed of triplet repeats (TR), that is, they have the form $(X \cdot Y \cdot Z)^{k}$ for $X, Y, Z \in\{A, C, G, U\}$ and $k \in \mathbb{N}^{+}$. We will describe how we can improve the general algorithms for the above computational problems in the case of TR.

An algorithmically convenient property about a region $\left[s_{i}, s_{j}\right]$ of a triplet repeat sequence is the following:

- Observation 1. For a triplet repeat sequence s and $1 \leq i \leq j \leq|s|$,

$$
\left[s_{i}, s_{j}\right]=\left[s_{i \bmod 3}, s_{j-(i-i \bmod 3)}\right] .
$$

In other words, we can shift any region three positions to the left or right, and in particular we can shift it to the beginning of the sequence, as visualized in Figure 2. That way, the index that usually denotes the beginning of the considered sequence in a DP algorithm can be restricted to values 1, 2 and 3 . Hence, the length of the value range is constant and not linear anymore, which gives an easy linear improvement of running time and storage for MFE as well as partition function computation.

We also note that TR sequences can be encoded exponentially more compact than general sequences. Each TR sequence is uniquely identified by its pattern $X Y Z \in\{A, C, G, U\}^{3}$ and its number of repeats k. In other words, $6+\left\lceil\log _{2} k\right\rceil$ bits are enough to encode a TR sequence with k repeats. We will refer to this encoding as the compact encoding, while the explicit encoding consists of the complete sequence $s \in\{A, C, G, U\}^{3 k}$ (the latter can also be seen, asymptotically equivalent, as a compact encoding where k is encoded in unary).

Looking into more structural properties of triplet repeats, we can observe that, since each base repeats after two other bases, we cannot have exactly two enclosed base pairs at any point, otherwise we would have a base pair between two bases with the same label. Thus, requiring two $(\theta=2)$ or three $(\theta=3)$ enclosed bases between any base pair is equivalent:

- Observation 2. A secondary structure S for $(X Y Z)^{k}$ fulfills minimum base pair span θ with $\theta \equiv_{3} 2$ if and only if it fulfills minimum base pair span $\theta+1$.

3 Single-Stranded Triplet Repeats

Our goal is to specify the exact MFE, and the corresponding secondary structure, when given a triplet pattern $X Y Z$ and length k of our TR sequence s, as well as the minimum base pair span θ. This will give us a very efficient way of computing the MFE in this simple setting.

3.1 Linear time solution for base pair maximization

We first consider the properties of the MFE structure for TR RNAs in a base pair maximization model, where the free energy E_{bp} of a secondary structure $S \in \Omega$ is such that $E_{\mathrm{bp}}(s, S)=-|S|$.

We can first prove an upper bound on the number of base pairs in a TR secondary structure:

Figure 3 Two different optimal secondary structures for GCU_{5}.

- Lemma 3. Consider a $T R$ sequence $s:=(X Y Z)^{k}$ and a minimum number of enclosed bases $\theta \geq 0$, such that $\frac{\theta+1}{3} \leq k$. We have $E_{b p}(s, S) \leq k-\left\lfloor\frac{\theta+1}{3}\right\rfloor$ for any $S \in \Omega(s)$.

Proof. For any $X, Y, Z \in\{A, C, G, U\}$, there are $V, W \in\{X, Y, Z\}$ with $\{V, W\} \notin P$ (since the graph which represents the possible letter pairings does not contain triangles). Without loss of generality, let us assume these are X and Y. Each X and each Y must thus be paired to a Z or be unpaired. Due to the fact that any non-empty secondary structure has an innermost base pair which must respect the minimum base pair span θ, at least $\left\lfloor\frac{\theta+1}{3}\right\rfloor Z$ bases will remain unpaired (the +1 comes from Observation 2). It follows that there are exactly $k-\left\lfloor\frac{\theta+1}{3}\right\rfloor$ pairable Z-bases. Since every base pair must involve a Z base, the upper bound follows.

We now show that this upper bound is almost always tight. To this end, first notice that for all triplet patterns $X Y Z$ such that $\{\{X, Y\},\{X, Z\},\{Y, Z\}\} \cap P=\emptyset$, no base pair can be built and thus the maximum value is trivially 0 . We call TR sequences of such patterns non-folding, and all other TR sequences folding.

Lemma 4. For $\theta \in\{0,1\}$ and $k>1$, we always have $E(s, S)=k$ for any secondary structure S over a folding sequence $s=(X Y Z)^{k}$.

Proof. If $\{X, Z\} \in P$, connect X and Z in each triplet. Else, connect the outermost pair (say without loss of generality $\{X, Y\}$). We obtain the inner sequence $(Y Z X)^{k-1}$ (with $k-1>0)$ and we can proceed as above since $\{Y, X\} \in P$.

For the more natural case $\theta>1$, the upper bound from Lemma 3 is not always tight. The next lemma exactly specifies the MFE and its structure:

- Lemma 5. Let $\theta>1$. The minimum MFE structure of a folding sequence $(X Y Z)^{k}$ has value
- $k-1-\frac{\theta-1}{3}$, if $\left(\{X, Z\} \notin P \wedge(\theta+3 k) \equiv_{6} 4\right) \vee\left(\{X, Y\},\{Y, Z\} \notin P \wedge(\theta+3 k) \equiv_{6} 1\right)$
- $k-\left\lfloor\frac{\theta+1}{3}\right\rfloor$, otherwise

Furthermore, a minimum MFE structure is obtained by choosing a letter pair and greedily stacking base pairs of this letter pair from the outermost to the innermost base. If both $\{X, Z\} \in P$ and one of $\{X, Y\}$ and $\{Y, Z\} \in P$, we choose $\{X, Z\}$ if $(\theta+3 k) \equiv_{6} 4$ and the letters of other base pair if $(\theta+3 k) \equiv_{6} 1$; otherwise, we choose the letters of an arbitrary base pair.

The proof of this lemma involves many case distinctions and can be found in the appendix. Setting $\theta=3$, we get the following corollary:

- Corollary 6. In the base pair maximization model, if $\theta=3$, the MFE structure of any $T R$ sequence $(X Y Z)^{k}$ has $k-1$ base pairs.

Determining the MFE is thus a simple calculation taking logarithmic time in the (explicit) size of the triplet repeat sequence. From this we can derive:

- Theorem 7. MFE prediction for compactly encoded $T R$ in the base pair maximization model can be solved in linear time.

Remark 8. The optimal secondary structure does not need to be unique. In particular, for a simple energy model, the number of optimal secondary structures for triplet repeats can even be exponential. For example, consider the sequence (GCU) ${ }^{k}$ as illustrated in Figure 3. When constructing the base pairs from outside to inside, in every step, we can choose whether we add the base pairs G-U, U-G or the base pairs G-C, C-G. This decision can be repeated $\left\lfloor\frac{k}{2}\right\rfloor-1$ times (assuming $\theta=3$), giving $\Omega\left(2^{k / 2}\right)$ different optimal secondary structures.

3.2 Minimum Free-energy in the Turner model

Let us now consider the Turner model. We will show that the optimal structures obtained for BP maximization remains optimal for the Turner nearest neighbor model under reasonable assumptions, satisfied by current versions of the model [21].

We first focus on showing the absence of multiloops, i.e. structural motifs consisting of $B \geq 2$ branches, in the Turner MFE. Their free energy contribution is composed of an initiation penalty α, a value β for each branch, and an asymmetry penalty γ. The overall contribution of a multiloop S is given by

$$
E(s, S)=\alpha+\beta B+\gamma C+E_{\mathrm{in}}
$$

where $E_{\text {in }}$ is the MFE of the interior secondary structure of the branches. Let $N:=$ $\min _{V, W \in\{X, Y, Z\}:\{V, W\} \in P} E_{V, W}$ be the best contribution of a single base pair appearing in our triplet pattern.

- Lemma 9. Any Turner-MFE secondary structure S^{*} over $(X Y Z)^{k}$ does not contain any mutliloops, assuming $\beta \geq N, \alpha>-\beta, \gamma \geq 0$.

Proof. By Corollary 6, each branch of k^{\prime} repeats will not contribute more than $k^{\prime}-1$ base pairs. Thus, the number of base pairs in the interior of the multiloop is at most $k-B$. Let S be a multiloop secondary structure on region s and let S^{*} be a stacking on the same region. Their free energy values are related as follows:

$$
\begin{align*}
E(s, S) & \geq \alpha+\beta B+\gamma C+(k-B) N \tag{1}\\
& >-\beta+\beta B+(k-B) N \tag{2}\\
& =k N+\beta(B-1)-N B \tag{3}\\
& =(k-1) N+\beta(B-1)-N(B-1) \tag{4}\\
& =(k-1) N+(\beta-N)(B-1) \tag{5}\\
& \geq(k-1) N \tag{6}\\
& \geq E\left(s, S^{*}\right) \tag{7}
\end{align*}
$$

where (1) comes from our above observation, (2) from $\alpha>-\beta$ and $\gamma \geq 0$, (6) from $\beta \geq N$ and $B \geq 2$ (by definition of a multiloop). For inequality (7), first notice that S^{*} contains $k-1$ base pairs. Corollary 6. As noticed in Remark 8, we can choose which base pair is used in S^{*} without affecting the optimality. In particular, we can always choose the base pair consisting of the letters V, W that optimize their contribution, such that $E_{V, W}=N$. We get $E\left(s, S^{*}\right) \leq(k-1) N$.

- Remark 10. The above assumptions are satisfied by the Turner 2004 energy model ($\alpha=9.25$, $\beta=-0.63, \gamma=0.91$ and $N \leq-0.93$) [21].
$S_{C}(z)=\beta z^{3} S_{G}^{C}(z)+\beta z^{2} S_{G}^{C}(z) S_{C}^{C}(z)+z^{2} S_{G}^{C}(z)$
where $\beta:=e^{1 / k T}$ is the Boltzmann weight associated to base pairs and, in particular:

$$
S_{C}^{G}(z)=\sum_{s \in \mathcal{L}\left(S_{C}^{G}\right)} \beta^{\# \mathrm{BP}(s)} z^{|s|}=\sum_{k \geq 0} \sum_{\substack{s \in \mathcal{L}\left(S_{C}^{G}\right) \\ \text { such that }|s|=3}} e^{\frac{\# \mathrm{BP}(s)}{k T}} z^{3 k}=\sum_{k \geq 0} \mathcal{Z}_{(C A G)^{k}} z^{3 k}
$$

The partition function of $\mathcal{Z}_{(C A G)^{k}}$ can then be obtained as $\left[z^{3 k}\right] S_{C}^{G}(z)$, the coefficient of degree $3 k$ in $S_{C}^{G}(z)$. Since the system of functional equations is algebraic, the coefficients of each generating function obey a linear recurrence with polynomial coefficients [14], which can be efficiently [3] and effectively computed [19]. We obtain an equation of the form:

$$
\mathcal{Z}_{(C A G)^{k}}=P_{1}(k) \mathcal{Z}_{(C A G)^{k-1}}+P_{2}(k) \mathcal{Z}_{(C A G)^{k-2}}+\cdots+P_{d}(k) \mathcal{Z}_{(C A G)^{k-d}}
$$

where each P_{i} is a polynomial in k, and d is a constant. $\mathcal{Z}_{(C A G)^{k}}$ can then be computed using a linear number of arithmetic operations. The same result holds for other triplets and we obtain:

Figure 4 Visualization of the structures used to compute the MFE in the (a) general setting, (b) TR setting and (c) strand soup setting.

- Theorem 12. The partition function of a $T R$ can be computed in $\Theta(k)$ arithmetic operations.

4 Interaction of Triplet Repeats

We now consider a set R_{0} of triplet repeat strands. Our goal is to find the minimum free energy secondary structure for R_{0}. We defined the computational problem MFE Strand Interaction in Section 2.2. In the base pair maximization model, this gives exactly the same definition as in [6], where the authors showed that the problem is APX-hard (and by that NP-hard) for the general (non-triplet) case. On the other hand, [8] gave a factorial-time algorithm for computing the partition function over multiple strands. In this section, we improve both results in the sense that on the one hand, we show that the problem is NP-hard in a reasonable energy model even if restricted to triplet repeats of one pattern, and on the other hand we give an exponential-time instead of factorial-time algorithm for the problem. However, notice that our exponential-time algorithm is designed for solving the MFE from an algorithmic perspective, as discussed in Section 2.2, and even though it can be translated to an algorithm for computing the partition function, adjustments for rotational symmetries must be made to obtain the same setting as Dirks et al [8].

4.1 General RNA-RNA interactions

The difficulty of the problem lies in the fact that we need to consider all possible circular permutations of strands. Instead of trying all of these circular permutations one by one and applying a classical single-stranded folding algorithm, we build up the values for all possible circular permutations while exploring all possible joint secondary structures. More specifically, we will consider structures consisting of a leftmost strand and its position, a rightmost strand and its position, as well as a set of strands which have to appear in between the leftmost and rightmost strand (without specifying the ordering of these strands).

We can formulate DP recurrences as follows: Let $E_{s_{i}, r_{j}}$ be the minimum free energy induced by the base pair between the i-th base of strand s and the j-th base of strand r. In our DP equations, $R \subseteq R_{0}$ denotes the subset of still available strands, $s \in R$ the leftmost strand, $r \in R$ the rightmost strand, $1 \leq i \leq|s|$ the current position in $s, 1 \leq j \leq|r|$ the current position in r, and $c \in\{0,1,2\}$ indicates whether s and r will be connected by a base pair (0 : no base pair allowed, 1: at least one base pair required, 2 : a base pair is not required; if the left and right strand are equal, then $c=2$). The structures with which our algorithm
works are visualized in Figure 4 (a). The main recurrences are as follows:

$$
M_{R, s_{i}, r_{j}, c}=\min \begin{cases} \begin{cases}M_{R, s_{i+1}, r_{j}, c} & \text { if } i+1 \leq|s| \\ \min _{t \in R, c^{\prime} \in\{0,1\}} M_{R-\{s\}, t_{1}, r_{j}, c^{\prime}}-\mathbb{1}_{c^{\prime}=0} K_{\text {assoc }} & \text { if } i+1>|s| \text { and } c \neq 1 \\ +\infty & \text { else }\end{cases} \\ \begin{cases}E_{s_{i}, r_{j}}+\bar{M}_{R, s_{i}, r_{j}, 2} & \text { if } c \neq 0 \\ +\infty & \text { if } c=0\end{cases} \\ \min _{R^{\prime}, t, k} E_{s_{i}, t_{k}}+\bar{M}_{R^{\prime}, s_{i}, t_{k}, 2}+\bar{M}_{\left(R-R^{\prime} \cup\{s\}\right), t_{k}, r_{j+1}, c}\end{cases}
$$

where

$$
\bar{M}_{R, s_{i}, r_{j}, c}= \begin{cases}M_{R, s_{i+1}, r_{j-1}, c} & \text { if } i+1 \leq|s| \text { and } j-1 \geq 1 \\ \min _{t \in R-\{s, r\}, c^{\prime} \in\{0,1\}} M_{R-\{s, r\}, t_{1}, r_{j-1}, c^{\prime}}-\mathbb{1}_{c^{\prime}=0} K_{\text {assoc }} & \text { if } i+1>|s| \text { and } j-1 \geq 1 \\ \min _{u \in R-\{s, r\}, c^{\prime} \in\{0,1\}} M_{R-\{s, r\}, s_{i+1}, u_{|u|}, c^{\prime}}-\mathbb{1}_{c^{\prime}=0} K_{\text {assoc }} & \text { if } i+1 \leq|s| \text { and } j-1<1 \\ \min _{t, u \in R-\{s, r\}, c^{\prime} \in\{0,1\}} M_{R-\{s, r\}, t_{1}, u_{|u|}, c^{\prime}}-\mathbb{1}_{c^{\prime}=0} K_{\text {assoc }} & \text { else }\end{cases}
$$

and $-K_{\text {assoc }}$ is a reward for an additional complex. We give this reward each time we "choose" a new strand from R and decide that it should not be connected to the other extremity of the interval $\left(c^{\prime}=0\right)$. The $\bar{M}_{R, s_{i}, r_{j}, c}$ equation gives the MFE for the region] s_{i}, r_{j} [(i.e. [$\left.s_{i+1}, r_{j-1}\right]$ if $i+1 \leq|s|$ and $j-1 \geq 1$, and introducing new strands in the other cases). The minimization requires some more detailed conditions which can be found in the appendix.

Choosing an arbitrary strand s, the minimum free energy can be finally computed by

$$
E^{*}(R)=(m-1) \cdot K_{\text {assoc }}+\min _{r \in R-\{s\}, c \in\{0,1\}} M_{R, s_{1}, r_{|r|}, c}
$$

and the optimal secondary structure can be obtained through backtracking.
For the initialization, we can set $M_{\{s\}, s_{i}, s_{j}}=0$ for valid indices $j-i \leq \theta$ for any $s \in R$, and $M_{\emptyset, s_{i}, r_{j}}=0$ for all s_{i} and r_{j}. The correctness of the algorithm and its running time are proven in the appendix. With n denoting the length of the longest strand sequence in R, we obtain:

- Theorem 13. mFE Strand Interaction can be solved in time $\mathcal{O}\left(3^{m} \cdot n^{3}\right)$.

4.2 Strand interactions for triplet repeats

We now consider the special case where all strands in our pool are triplet repeats. We call this restricted problem MFE Triplet Repeat Strand Interaction. Assume first that all strands have the same pattern and that we have a bounded number of different strand-lengths $p:=|\{i|\exists r \in R:|r|=i\} \mid$. Regardless of the ordering of the strands, the resulting sequence of the concatenated strands is identical. We can therefore focus on the length of the strands and disregard their actual sequence.

We do not need to iterate over all subsets of R, since we only need to distinguish the number of strands of a certain length in the subset, in a count-sort-like manner. Thus we can represent a subset $R^{\prime} \subseteq R$ by $\left(a_{1}, \ldots, a_{p}\right)$ where $a_{i}:=\left|\left\{r \in R^{\prime}| | r \mid=n_{i}\right\}\right|$ is the number of strands of size n_{i} in R. Then, each length has a number of occurrences s_{i}. An example is given in Figure 4 (b). Thus, the exponent will only depend on p, and using $n:=\max _{r \in R}|r|$, we obtain the following result:

- Theorem 14. There is an XP algorithm for MFE Triplet Repeat Strand Interaction parametrized by the number of different lengths p, running in $\mathcal{O}\left(\left(\frac{m}{p}\right)^{2 p} \cdot n^{3} \cdot p\right)$ time.
Notice that this algorithm can be extended to the case where we have different triplet patterns; the parameter then becomes the number of non-identical strands.

Figure 5 Strands/optimal secondary structure corresponding to a valid summing triplet (1,2,3).

4.3 Computational hardness

In this subsection, we show that the parametrized approach seen before is the best we can hope for, and that, even for triplet repeats, the problem of deciding whether there is a secondary structure for R_{0} with a free energy below a certain threshold t is NP-complete, for a reasonable energy model. Note that for the general (non-triplet) case, this has already been shown in [6]. Our result is surprising in the sense that the concatenation of TR strands always yields the same permutation, and the only additional difficulty compared to the single-stranded case arises from the fact that we do not know the indices of the strand borders.

Our reduction requires more than the naive base pair maximization model, but to keep the reduction simple, we will not use the full Turner energy model. Instead, each base pair gives a free energy reward of $E^{\mathrm{bp}}=-\frac{m}{3}$, where $m>0$ is the number of interacting strands, while subdividing an interval into two intervals that are not strand-disjoint gives a multiloop penalty of $K_{\text {multi }}=+1$. Furthermore, each connected component reduces the strand association penalty by $-K_{\text {assoc }}:=-1$. Finally, every hairpin loop must enclose at least three unpaired bases $(\theta=3)$. This model is extendable to the Turner model by setting equal energy values for interior and hairpin loops and account for the multiloop penalty in the corresponding energy values.

Let us define the main decision problem:
Triplet Repeat Multi-Strand MFE
Input: A set R of explicitly encoded triplet repeat strands of the same pattern and a target free energy value t.
Output: Is there a secondary structure $S \in \Omega(R)$ with $E(R, S) \leq t$?

Even if the following reduction does not work in the base pair maximization model, a DP algorithm for base pair maximization in this setting seems unlikely, as, under the assumption $\mathbf{P} \neq \mathbf{N P}$, one would not be able to generalize the algorithm to more complex energy models. We will show NP-hardness by reduction from the following problem:

Summing Triplets

Input: list of distinct positive integers $s_{1}, \ldots, s_{3 n}$, encoded in unary
Output: Is there a partition of the input into triples $\left(a_{i}, b_{i}, c_{i}\right)$ such that $a_{i}+b_{i}=c_{i}$?

This has been shown to be strongly NP-hard in [17]. We define $v:=\sum_{i=1}^{3 n} s_{i}$.
The reduction is as follows: We create a strand $r_{i}:=(C A G)^{s_{i}}$ for each integer s_{i}. Hence, we have $n=\frac{m}{3}=-E^{\mathrm{bp}}$. We denote by R the set of strands. We set the target minimum free energy to $t:=-(3 v+1) n$.
Assume that there is a partition into summing triples. Our secondary structure is built such
that for each triple $a+b=c$, we add the base pairs

$$
\begin{gathered}
\left(a_{1}, c_{|c|}\right),\left(a_{3}, c_{|c|-2}\right),\left(a_{4}, c_{|c|-3}\right),\left(a_{6}, c_{|c|-5}\right), \ldots,\left(a_{|a|-2}, c_{|c|-|a|+3}\right),\left(a_{|a|}, c_{|c|-|a|+1}\right), \\
\left(b_{1}, c_{|c|-|a|}\right),\left(b_{3}, c_{|c|-|a|-2}\right), \ldots,\left(b_{|b|-2}, c_{3}\right),\left(b_{|b|}, c_{1}\right)
\end{gathered}
$$

Note that all base pairs are labeled with $C-G$ or $G-C$. Figure 5 visualizes the secondary structure for the exemplary triple $1+2=3$. We claim that S is unpseudoknotted for the circular permutation $a_{1} \cdot b_{1} \cdot c_{1} \ldots a_{n} \cdot b_{n} \cdot c_{n}$ and that $E(R, S)=t$.
Since any two triples of strands are not connected, we have exactly n connected components. Each connected component consists of one large stacked loop with innermost base pair $\left(b_{|b|}, c_{1}\right)$ (i.e. we do not violate the constraint that every innermost base pair must include three unpaired bases, because the base pair is inter-strand). Since $a+b=c$, the outermost base pair is $\left(a_{1}, c_{|c|}\right)$. There is no multiloop involved in S, so each triple $\left(a_{i}, b_{i}, c_{i}\right)$ contributes a free energy of $2|c| \cdot E^{\mathrm{bp}}-K_{\text {assoc }}=-6 n|c|-1$. Since all triplets are correctly summing, we have $\sum_{i=1}^{n} c_{i}=\frac{1}{2} v$. Thus indeed the minimum free energy is at most

$$
\sum_{i=1}^{n}-6 n\left|c_{i}\right|-1=-6 n \sum_{i=1}^{n}\left|c_{i}\right|-n=-6 n \cdot \frac{1}{2} v-n=-3 n v-n=t
$$

Before showing the opposite direction, we introduce the following simple lemmata:

- Lemma 15. If some C or G base remains unpaired in a secondary structure $S, E(R, S)>t$.

Proof. First notice that in every valid secondary structure, all A bases remain unpaired (since there are no U bases). There are $2 v$ bases of C / G in total. Since we assumed that one of them is unpaired, there can be at most $v-1$ base pairs. We can have at most $3 n$ complexes, so the strand association penalty is reduced by at most $3 n$. Thus we have $E(R, S) \geq-3 n(v-1)-3 n=-3 v n>-(3 v+1) n=t$.

- Lemma 16. If S contains a hairpin loop, $E(R, S)>t$.

Proof. A hairpin loop must enclose at least three unpaired bases. Since in the $C A G$ triplet pattern any two consecutive bases involve at least one C or one G, we can apply Lemma 15 and conclude.

Now assume for an arbitrary $S \in \Omega$ that $E(R, S) \leq t$. We first show that there must be exactly n connected components, each with three strands. Assume that there is a connected component with less than three strands. If it has only one strand, it must contain a hairpin loop, and by Lemma $16, E(R, S)>t$. If the complex contains two strands, first of all the two strands have a different number of triplet repeats, since all s_{i} are distinct. This implies that if the innermost loop is inter-strand (if it is intra-strand we again apply Lemma 16) and has no multiloop, some G or C base must be unpaired (since base pairs can then only be between the two strands, but one of the strands contains at least one G and one C base more than the other). Then, by Lemma $15, E(R, S)>t$. If it has a multiloop, there have to be two innermost base pairs, one of which must be intra-strand, and we can apply Lemma 16. Since we ruled out complexes of one or two strands and the total number of strand is divisible by 3 , we know that if there is a complex with four strands, our secondary structure will have $<n$ connected components. Thus the best achievable score will be $-n+1-3 n v>t$. Hence, any $S \in \Omega$ with $E(R, S) \leq t$ consists of n complexes, each consisting of three strands a_{i}, b_{i}, c_{i} with $\left|a_{i}\right|<\left|b_{i}\right|<\left|c_{i}\right|$. We claim that for all $i \in[n],\left|a_{i}\right|+\left|b_{i}\right|=\left|c_{i}\right|$.
By contradiction, assume $\left|a_{i}\right|+\left|b_{i}\right| \neq\left|c_{i}\right|$ and first consider the case that there are no
multiloops. This implies that there is only one innermost base pair. If it is intra-strand, we obtain a contradiction to $E(R, S) \leq t$ by Lemma 16. If it is inter-strand, all remaining base pairs must be between one of two strands d, e on the one side and the third strand f on the other side. Since $|d|+|e| \neq|f|$ for any such partition, one of the two sides will be left with at least one unpaired G and one unpaired C, and we apply Lemma 15.
Now we consider the case of multiloops. Any multiloop where the cutpoint between the two recursive structures is on a strand border (and thus is not penalized) implies an innermost base pair in both recursive structures, and since by pigeonhole principle one of the two recursive structures is single-stranded, we have a hairpin loop and $E(R, S)>t$ by Lemma 16. In the other case, we have a multiloop penalty of +1 . Thus we can lower bound $E(R, S) \geq-n-3 n v+1>t$.
This finishes the proof that $\left|a_{i}\right|+\left|b_{i}\right|=\left|c_{i}\right|$, and we get $\frac{\left|a_{i}\right|}{3}+\frac{\left|b_{i}\right|}{3}=\frac{\left|c_{i}\right|}{3}$. By the construction, each strand r corresponds to one integer $\frac{|r|}{3}$ in the set of integers of our original instance. Thus, $\left(\frac{\left|a_{i}\right|}{3}, \frac{\left|b_{i}\right|}{3}, \frac{\left|c_{i}\right|}{3}\right)$ for all complexes $\left\{a_{i}, b_{i}, c_{i}\right\}$ for $1 \leq i \leq n$ is a valid set of summing triples.
The reduction is polynomial-time, since in the Summing Triples problem, the integers are encoded in unary. Membership in NP follows by the fact that we can evaluate the energy given a secondary structure and its unpseudoknotted circular permutation.

- Theorem 17. Unary Triplet Repeat Multi-Strand MFE is NP-complete.

4.4 Strand soup interaction

We now consider the computational problem MFE Strand Soup Interaction as defined in Section 2.2. We can adapt the algorithm from above and fortunately we do not need to keep track of the (exponentially many) subsets anymore, yielding a polynomial-time algorithm. We do not charge any strand association penalty, since we require one single complex anyways. However, we still must enforce connectivity. To this end, we encode by $c=1$ that s and r still need to be connected, and by $c=2$ that they already are connected. Furthermore, instead of keeping track of a subset of remaining strands, we just need the number of remaining strands m, as seen in Figure 4 (c). We obtain the following DP equations:

$$
4_{m, s_{i}, r_{j}, c}=\min \begin{cases} \begin{cases}M_{m, s_{i+1}, r_{j}, c} & \text { if } i+1 \leq|s| \\ \min _{t \in R} M_{m-1, t_{1}, r_{j}, 1} & \text { if } i+1>|s| \text { and } c \neq 1 \\ +\infty & \text { else }\end{cases} \\ E_{s_{i}, r_{j}}+\bar{M}_{m, s_{i}, r_{j}, 2} & \\ \min _{m^{\prime}, t, k \text { s.t. (*) }} E_{s_{i}, t_{k}}+\bar{M}_{m^{\prime}, s_{i}, t_{k}, 2}+\bar{M}_{m-m^{\prime}+1, t_{k}, r_{j+1}, c}\end{cases}
$$

where

$$
\bar{M}_{m, s_{i}, r_{j}, c}= \begin{cases}M_{m, s_{i+1}, r_{j-1}, c} & \text { if } i+1 \leq|s| \text { and } j-1 \geq 1 \\ \min _{t \in R} M_{m-1, t_{1}, r_{j-1}, 1} & \text { if } i+1>|s| \text { and } j-1 \geq 1 \\ \min _{u \in R} M_{m-1, s_{i+1}, u_{|u|}, 1} & \text { if } i+1 \leq|r| \text { and } j-1<1 \\ +\infty & \text { else }\end{cases}
$$

The minimum free energy can be finally computed by

$$
E^{*}(R, m)=\min _{s, r \in R} M_{m, s_{1}, r_{|r|}, 1}
$$

and the optimal secondary structure can be obtained through backtracking. We initialize $M_{1, s_{i}, s_{j}, 2}=0$ for all $j-i \leq \theta$.
The correctness mostly follows from Section 4.1, but we still have to argue that we correctly minimize over connected secondary structures only, which is done in the appendix.
Regarding the running time, the table size is bounded by $m \cdot p^{2} \cdot n^{2} \cdot 3$, where $n:=\max _{s \in R}|s|$. The running time to compute one table entry is dominated by the last case, where we minimize over $\mathcal{O}(m \cdot p \cdot n)$ triples and need $\mathcal{O}(p)$ time for each triple. In total, we obtain an algorithm with running time $\mathcal{O}\left(n^{3} \cdot m^{2} \cdot p^{4}\right)$. We can then conclude:

- Theorem 18. mFE Unlimited Strand Interaction can be solved in time $\mathcal{O}\left(n^{3} \cdot m^{2} \cdot p^{4}\right)$.
- Remark 19. Additionally to restricting the number of interacting strands, one can extend the above algorithm to restrict the size of the concatenated sequence. This is possible by keeping track of the current size of the sub-interval in the DP tables, and updating these values whenever a new strand is introduced.
This might be useful if the sequences in the base set have different length, as the basic algorithm would favor larger sequences because they usually allow for more base pairs.
- Remark 20. The case of triplet repeats gives a slight improvement to the running time. Since all strands look the same except for their length, we can use a table with entries of the form $M_{m, i, j, c}$, where i and j denote the remaining number of nucleotides in the leftmost and rightmost strand. This reduces the space complexity to $\mathcal{O}\left(m \cdot n^{2}\right)$, but the computation of one table entry still takes the same amount of time, giving an overall time complexity of $\mathcal{O}\left(n^{3} \cdot m^{2} \cdot p^{2}\right)$.

5 Empirical proof of concept

The goal of this section is to show how the algorithms described in the previous section can be used to answer biologically relevant questions regarding triplet repeats. We implemented the algorithm described in Section 4.4, which hereunder we call SoupFold, as well as its partition function equivalent, together with a (stochastic) backtracking procedure. Since we only limit the number of interacting strands but not their size, without further restrictions, the program would prefer large strands since they usually give more base pairs. To counteract this effect, we introduce a penalty on the length of a strand. Note that one could also set a maximum length of the concatenated sequence, as described in Remark 19. The source code is available at https://github.com/kimonboehmer/soupfold/ and all experiments can be reproduced from its content.

Regarding the stochastic backtracking, we must account for the overcounting of rotationally asymmetric secondary structures (since the algorithm uses normal permutations instead of circular permutations) as well as for the overcounting because of the positioning of different connected components. We address these two issues by rejection sampling. In theory, it is also necessary to adjust the overcounting correction for rotationally symmetric structures (because they are overcounted less often) but our experiments showed that the observed probability of encountering such rotational symmetries is 0 for triplets with 15 repeats or more. Thus, for efficiency reasons, we do not include this case in our rejection sampling, arguing that the changes to the probability would be too small to observe.

5.1 Homogeneous triplet soup

We exhibit some MFE secondary structures of interest for the interaction of multiple triplet repeat RNA strands. We first consider the case where all strands are of the same pattern.

Figure 6 Connected and unconnected MFE structures for a four-strand CAG interaction, using RiboSketch [15]

Figure 7 Probability p that a certain type of base pair is observed with increasing strand number m, for soup $\left\{\mathrm{CAU}_{20}, \mathrm{GGG}_{20}\right\}$. We also show the external base pair probability for a soup of just one pattern in dashed gray.

Figure 8 Exemplary structure computed by SoupFold for strand pool $\left\{(\mathrm{GUU})^{9},(\mathrm{CAG})^{8},(\mathrm{ACG})^{12}\right\}$ and $m=3$, using RiboSketch [15]

The typical MFE structure will place the innermost base pair of a helix between two strands in order to avoid hairpin loops and the associated number of unpaired bases. Two examples of such secondary structures, one where we require connectedness and one where we do not, can be seen in Figure 6. The MFE of a soup of homogenous triplets behaves canonically, in the sense that all folding patterns behave almost identically (as can be expected, considering our results on single-strand triplets in Section 3). Furthermore, we observed that the number of base pairs increases canonically with the sequence length and with the number of interacting strands (except for the case of only one strand, where we loose one base pair due to a hairpin loop).

5.2 Heterogeneous triplet soups

Regarding the interactions of triplet repeat strands of different patterns, we can observe interactions of different triplet pattern strands in the MFE structure, which can even increase the number of base pairs compared to a homogeneous strand pool (see Figure 8).

In order to assess the capability of different strand soups to form droplets, we want to determine the probability of a base pair in the Boltzmann ensemble being between two strands (exterior) and not folding (interior). If the strand soup consists only of triplets of one pattern, all exterior base pairs will be homogeneous, as opposed to heterogeneous for an interaction of two strands of different patterns. In the homogeneous case, we can observe an increase of exterior base pairs for increasing number of interacting strands m, as presented by the gray line in Figure 7. The probabilities in a setting with strands of different pattern are much richer and less canonical, as can be seen at the example of the interaction of CAU
and GGG, presented by the other lines in Figure 7. These probabilities highly depend on the number of strands, and only start to "converge" with quite high values of m.

To obtain a broader picture, we performed stochastic backtracking of our SoupFold algorithm on all possible 4^{6} pairs of triplet repeat patterns $\{T V W, X Y Z\}$ as strand sets, setting the number of interacting strands to $m \in\{2,3,4,5\}$, and derived an estimated probability of a base pair being interior, exterior-homogeneous or exterior-heterogeneous. The probability of exterior homo- and heterogeneous base pairs for $m=3$ and for all pairs of TR patterns are exemplary visualized in Figure 9.

From a synthetic biology perspective, some triplet repeats aggregate and form a LiquidLiquid Phase Separation, which can be used to isolate subprocesses, thereby implementing a notion of orthogonality. In order to maximize the number of independent tasks being performed by a modified bacteria, it would then be desirable to find a large number of triplet repeat patterns such that the probability of heterogeneous base pairs is low.

For that, we can model the patterns as vertices of a graph and connect two patterns with an edge if their heterogeneous base pair probability is high (we set the threshold to 0.13). We are then looking for a maximum independent set in this graph, i.e. the largest number of triplets that do not have a high probability of interacting pairwise with each other. We used an exact solver [10] to obtain an independent set of size 4 , namely AGU, CAG, GGC, UGG. We then executed our algorithm on these triplet patterns as strand soup, and could indeed observe that the probability of exterior heterogeneous base pairs remained quite low. In particular, for $m=3$, the total probability of heterogeneous external base pairs is around 0.17 , while the probability of homogeneous external base pairs is considerably higher (0.28).

6 Conclusion and Discussion

In this work, we investigated the algorithmic aspects of folding and interactions of triplet repeat RNA sequences, while also revisiting the general (non-triplet) setting in the interaction setting. For the folding of individual triplets, we found that the repetitive structure of the TR sequences allows us to immediately characterize the MFE and partition function value in linear time, without the need of a more time-consuming dynamic programming approach. For interactions of RNA sequences, we exhibited a new algorithm with improved running time that avoids the factorial-time iteration over all permutations and acts as a foundation for the design of specialized algorithms, as the XP algorithm for triplet repeats. Furthermore, for the "strand soup" setting, we derived a polynomial-time algorithm and demonstrated possible uses for experiments regarding triplet repeats.

For future work, it is desirable to extend the MFE Strand Interaction algorithm to the full thermodynamic setting considered by [8]. While the extension to the Turner model does not pose any algorithmic challenges, it would be interesting to see how one can correct symmetries and overcounting for the partition function during the dynamic programming without iterating over each circular permutation separately, as well as implement a variant of the inside/outside algorithm to compute exactly base-pairing probabilities and other expected values of additive properties. Finally, the joint conformation space explored in this work is heavily restricted by the existence of a non-crossing strand ordering. More complex conformational spaces could be capture by using dynamic programming approaches akin to the ones being used to include pseudoknots in RNA structure prediction.

-_ References

1 Dilimulati Aierken and Jerelle A Joseph. Accelerated simulations of rna phase separation: a systematic study of non-redundant tandem repeats. bioRxiv, pages 2023-12, 2023.
2 Can Alkan, Emre Karakoc, Joseph H Nadeau, S Cenk Sahinalp, and Kaizhong Zhang. Rna-rna interaction prediction and antisense rna target search. Journal of Computational Biology, 13(2):267-282, 2006.
3 Alin Bostan, Frédéric Chyzak, Gr égoire Lecerf, Bruno Salvy, and Éric Schost. Differential equations for algebraic functions. In C. W. Brown, editor, ISSAC'07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation, pages 25-32. ACM Press, 2007. doi:10.1145/1277548.1277553.

4 Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams. Truly subcubic algorithms for language edit distance and rna folding via fast bounded-difference min-plus product. SIAM Journal on Computing, 48(2):481-512, 2019. arXiv:https://doi. org/10.1137/17M112720X, doi:10.1137/17M112720X.
5 Yi-Jun Chang. Hardness of rna folding problem with four symbols. Theoretical Computer Science, 757:11-26, 2019. URL: https://www.sciencedirect.com/science/article/pii/ S0304397518304912, doi:10.1016/j.tcs.2018.07.010.
6 Anne Condon, Monir Hajiaghayi, and Chris Thachuk. Predicting minimum free energy structures of multi-stranded nucleic acid complexes is apx-hard. In 27th International Conference on DNA Computing and Molecular Programming (DNA 27)(2021). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2021.
7 A. Denise, Y. Ponty, and M. Termier. Controlled non-uniform random generation of decomposable structures. Theoretical Computer Science, 411(40):3527-3552, 2010. URL: https://www. sciencedirect.com/science/article/pii/S0304397510002914, doi:10.1016/j.tcs.2010. 05.010.

8 Robert M Dirks, Justin S Bois, Joseph M Schaeffer, Erik Winfree, and Niles A Pierce. Thermodynamic analysis of interacting nucleic acid strands. SIAM review, 49(1):65-88, 2007.
9 Haotian Guo, Joseph C Ryan, Xiaohu Song, Adeline Mallet, Mengmeng Zhang, Victor Pabst, Antoine L Decrulle, Paulina Ejsmont, Edwin H Wintermute, and Ariel B Lindner. Spatial engineering of E. coli with addressable phase-separated RNAs. Cell, 185(20):3823-3837, 2022.
10 Fanny Hauser, Ferdinand Ermel, and Kimon Boehmer. Clique cover based vertex cover solver. https://github.com/f-erm/CliqueCoverBasedVertexCoverSolver, 2024.
11 Liang Huang, He Zhang, Dezhong Deng, Kai Zhao, Kaibo Liu, David A Hendrix, and David H Mathews. LinearFold: linear-time approximate RNA folding by 5'-to-3' dynamic programming and beam search. Bioinformatics, 35(14):i295-i304, 07 2019. arXiv:https://academic.oup.com/bioinformatics/article-pdf/35/14/i295/ 50721438/bioinformatics \backslash _35_14_i295.pdf, doi:10.1093/bioinformatics/btz375.
12 Atagun U Isiktas, Aziz Eshov, Suzhou Yang, and Junjie U Guo. Systematic generation and imaging of tandem repeats reveal base-pairing properties that promote RNA aggregation. Cell Reports Methods, 2(11), 2022.
13 Ryo Kurokawa, Mariko Kurokawa, Akihiko Mitsutake, Moto Nakaya, Akira Baba, Yasuhiro Nakata, Toshio Moritani, and Osamu Abe. Clinical and neuroimaging review of triplet repeat diseases. Japanese Journal of Radiology, 41(2):115-130, 2023.
14 L. Lipshitz. D-finite power series. Journal of Algebra, 122(2):353-373, 1989.
15 Jacob S Lu, Eckart Bindewald, Wojciech K Kasprzak, and Bruce A Shapiro. RiboSketch: versatile visualization of multi-stranded RNA and DNA secondary structure. Bioinformatics, 34(24):4297-4299, 06 2018. arXiv:https://academic.oup.com/bioinformatics/ article-pdf/34/24/4297/48919841/bioinformatics \backslash _34_24_4297.pdf, doi: 10.1093/bioinformatics/bty468.

16 Hiranmay Maity, Hung T Nguyen, Naoto Hori, and D Thirumalai. Odd-even disparity in the population of slipped hairpins in rna repeat sequences with implications for phase separation. Proceedings of the National Academy of Sciences, 120(24):e2301409120, 2023.

17 Colin McDiarmid. Pattern minimisation in cutting stock problems. Discrete applied mathematics, 98(1-2):121-130, 1999.
18 R Nussinov and A B Jacobson. Fast algorithm for predicting the secondary structure of single-stranded rna. Proceedings of the National Academy of Sciences, 77(11):6309-6313, 1980. URL: https://www.pnas.org/doi/abs/10.1073/pnas.77.11.6309, arXiv:https:// www.pnas.org/doi/pdf/10.1073/pnas.77.11.6309, doi:10.1073/pnas.77.11.6309.
19 B. Salvy and P. Zimmerman. GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Transactions on Mathematical Software, 20(2):163-177, 1994.
20 Sharan R. Srinivasan, Claudio Melo de Gusmao, Joanna A. Korecka, and Vikram Khurana. Chapter 18 - repeat expansion disorders. In Michael J. Zigmond, Clayton A. Wiley, and Marie-Francoise Chesselet, editors, Neurobiology of Brain Disorders (Second Edition), pages 293-312. Academic Press, second edition edition, 2023. URL: https://www.sciencedirect.com/science/article/pii/B9780323856546000484, doi:10. 1016/B978-0-323-85654-6.00048-4.
21 Douglas H. Turner and David H. Mathews. NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Research, 38(suppl_1):D280-D282, 10 2009. arXiv:https://academic.oup.com/nar/article-pdf/38/ suppl_1/D280/11217894/gkp892.pdf, doi:10.1093/nar/gkp892.
22 Michael Zuker and Patrick Stiegler. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research, 9(1):133-148, 011981. arXiv:https://academic.oup.com/nar/article-pdf/9/1/133/6201945/9-1-133.pdf, doi: 10.1093/nar/9.1.133.

A Appendix for Section 3

A. 1 Proof for Lemma 5

Proof. We start by showing that the corresponding secondary structures achieve the claimed score. By Observation 2 , we only need to consider $\theta \equiv_{3} 0$ and $\theta \equiv_{3} 1$.
First assume $\{X, Z\} \in P$ and $\{X, Y\},\{Y, Z\} \notin P$. We will derive the other cases from this one. Consider a large stacking of $X-Z$ bases. If $\theta=3$, we only cannot match the $X-Z$ pair of the innermost repeat in the case $k \equiv_{2} 1$ and we only cannot match the $Z-X$ pair between the two innermost repeats in the case $k \equiv_{2} 0$. For all other pairs of repeats we obtain exactly two base pairs and hence we get $k-1=k-\left\lfloor\frac{\theta+1}{3}\right\rfloor$ base pairs. Inductively, let us show that we can obtain $k-\left\lfloor\frac{\theta^{\prime}+1}{3}\right\rfloor$ base pairs for $\theta^{\prime}:=\theta+3$. In other words, we only need to show that by increasing θ by 3 , we get one base pair less. If the innermost base pair is $X-Z$, its enclosed region starts and ends with a Y and there are currently at least $\theta+1$ free enclosed bases (because the region is of the form $Y(Z X Y)^{\theta / 3}$), and by deleting the $X-Z$ base pair, we obtain $X Y(Z X Y)^{\theta / 3} Z$, that is $\theta+3$ enclosed bases. Else, for a $Z-X$ base pair, the region has the form $(X Y Z)^{\theta / 3}$. After deleting the innermost base pair $Z-X$, the new enclosed region starts and ends with a Y (the region is of the form $\left.Y Z(X Y Z)^{\theta / 3} X Y\right)$, so there are at least $\theta+4$ enclosed bases. Thus we can achieve $k-\left\lfloor\frac{\theta+1}{3}\right\rfloor$ base pairs.
If $\theta \equiv{ }_{3} 1$, we distinguish two equivalence classes: In the first, k is even and $\theta \equiv_{6} 1$ or k is uneven and $\theta \equiv{ }_{6} 4$, and in the second equivalence class, we have the other two cases.
For $\theta=4$, for $k \equiv_{2} 1$, our lemma only claims $k-2$ base pairs. We can indeed leave the innermost repeat as well as the next $Z-X$ pair unpaired, and greedily create stackings outside of this region, obtaining $k-2$ base pairs. For $k \equiv_{2} 0$, We can proceed as for the even case in $\theta=3$.
Consider $\theta+3$ now. We add an unpaired triplet in the middle of the sequence. Now, the number of base pairs is equal to the case $k-1$ (of opposite parity) with θ enclosed bases.
We thus established the lower bound for the $\{X, Z\} \in P$ case. For the "otherwise"-case, Lemma 3 already gives us the required upper bound. Therefore, we only need to argue about the upper bound $k-1-\frac{\theta-1}{3}$ in the case that $\{X, Y\},\{Y, Z\} \notin P$ and $(\theta+3 k) \equiv_{6} 1$. Assume a secondary structure that achieves more base pairs. Firstly, we cannot have any multiloops or exterior loops since that would imply two regions of unpaired enclosed bases, which then only allows $k-2\left\lfloor\frac{\theta+1}{3}\right\rfloor \leq k-1-\frac{\theta-1}{3}$ base pairs. Additionally, for each secondary structure S with $i<j^{\prime}$ and $k>0$ such that $\left\{i, j^{\prime}\right\} \in S$ and the interval $\left[j^{\prime}+1, j^{\prime}+3 k\right]$ only consists of unpaired bases, we can delete the base pair $\left\{i, j^{\prime}\right\}$ and instead add base pair $\left\{i, j^{\prime}+3 k\right\}$ without reducing the number of base pairs. In other words, for any interval, it is always better to pair the leftmost base to the rightmost possible base than to any other interior base. We thus only need to consider the canonical structures of $X-Z / Z-X$-stackings.
Consider an odd k with all base pairs in the canonical way (for $\theta=4$). The innermost triplet repeat bases X and Z have to stay unpaired, as well as the Z and X which are adjacent to that repeat. The innermost base pair $X-Z$ now has $7=\theta+3$ enclosed bases. We thus have $k-2$ base pairs. Inductively, for $\theta^{\prime}:=\theta+6$, the next two innermost base pairs will have $\theta+3<\theta^{\prime}$ and $\theta+3+2<\theta^{\prime}$ enclosed bases, thus are both not available.
Consider an even k with all base pairs in the canonical way (for $\theta=7$). The two innermost triplet repeats have to stay unpaired, as well as the Z and X which are adjacent to that repeat. The innermost base pair $X-Z$ now has $10=\theta+3$ enclosed bases. The rest of the argument is exactly as above.
If $\{X, Z\} \notin P$, we can assume without loss of generality that $\{X, Y\} \in P$ (the arguments
are symmetrical for $\{Y, Z\} \in P$, and we assumed to have a folding strand). We can reduce any such instance $(X Y Z)^{k}$ to $(Y Z X)^{k-1}$ (by letting out the leftmost X and the rightmost Y and Z, and implicitly pairing these outermost X and Y, which is always optimal). Thus, all results can be directly obtained from the case $\{X, Z\} \in P$, by changing odd and even. The upper bound can also be derived by that.

B Appendix for Section 4

B. 1 Proof of correctness for the exponential-time algorithm

We now prove that $M_{R, s_{i}, r_{j}}$ is computed correctly. By slight abuse of notation, we write $s_{i} \in S$ for $s_{i} \in \bigcup_{P \in S} P$.

- Definition 21. An interval for this DP is denoted by $\left[R, s_{i}, r_{j}, c\right]$ where $s, r \in R, 1 \leq i \leq|s|$, $1 \leq j \leq|r|$ and $c \in\{0,1,2\}$. An interval $\left[R^{\prime}, t_{k}, u_{\ell}, c^{\prime}\right]$ is included in interval $\left[R, s_{i}, r_{j}, c\right]$, written $\left[R^{\prime}, t_{k}, u_{\ell}, c^{\prime}\right] \preccurlyeq\left[R, s_{i}, r_{j}, c\right]$, if one of the following holds:
- $R^{\prime} \subset R$ and $\left|R^{\prime}\right|<|R|-1$
- $R^{\prime} \subset R,\left|R^{\prime}\right|=|R|-1$ and $s=t \vee r=u$
- $R^{\prime}=R, s=t, r=u, i \leq k$ and $\ell \leq j$.

If we replace both inequalities by strict inequalities in the last point, the interval is strictly included and we write $\left[R^{\prime}, t_{k}, u_{\ell}, c\right] \prec\left[R, s_{i}, r_{j}, c\right]$.

Each such interval is associated to a minimum free energy as follows:

- Definition 22. Let $I:=\left[R, s_{i}, r_{j}, c\right] . \Omega(I)$ is the set of all secondary structures that are valid for this interval, or more formally, a secondary structure S must fulfill:
- $S \in \Omega(R)$
- $s_{k}, r_{\ell} \notin S$ for any $k<i$ and $\ell>j$
- $c=1$ implies the existance of a base pair between s and r (that is, $\left\{s_{k}, r_{\ell}\right\} \in S$ for some $i \leq k \leq|s|, 1 \leq \ell \leq j$) and $c=0$ implies that there is no such base pair.
The minimum free energy of I is defined as $\operatorname{MFE}(I):=\min _{S \in \Omega(I)} E(R, S)$.
The minimum free energy of an open interval $\operatorname{MFE}(] R, s_{i}, r_{j}, c[)$ is the minimum free energy over all secondary structures and all intervals $I^{\prime} \prec I$ where c specifies the connectedness of s and r.

We also observe that an optimal structure is optimal for any substructure that includes all its base pairs:

- Observation 23. If $E(R, S)=\operatorname{MFE}\left(\left[R, s_{i}, r_{j}, c\right]\right)$ and S only contains base pairs in some interval $\left[R^{\prime}, t_{k}, u_{\ell}, c\right] \preccurlyeq\left[R, s_{i}, r_{j}, c\right]$, then $S=\operatorname{MFE}\left(\left[R^{\prime}, t_{k}, u_{\ell}, c\right]\right)$.

We first show that our helper equation \bar{M} is computed correctly:

- Lemma 24. Assuming that $M_{R^{\prime}, t_{k}, u_{\ell}, c^{\prime}}=\operatorname{MFE}\left(I^{\prime}:=\left[R^{\prime}, t_{k}, u \ell, c^{\prime}\right]\right)$ for all $I^{\prime} \preccurlyeq I:=$ $\left[R, s_{i}, r_{j}, c\right]$, we have $\bar{M}_{R, s_{i}, r_{j}, c}=\operatorname{MFE}(] R, s_{i}, r_{j}, c[)$.

Proof. We distinguish four cases:

- Case 1: $i+1 \leq|s|$ and $j-1 \geq 1$. In that case, for any $I^{\prime} \prec I$, we have $I^{\prime} \preccurlyeq$ $\left[R, s_{i+1}, r_{j-1}, c\right]$ and thus $\operatorname{MFE}\left(I^{\prime}\right) \geq \operatorname{MFE}\left(\left[R, s_{i+1}, r_{j-1}, c\right]\right)=\bar{M}_{R, s_{i}, r_{j}, c}$ by assumption. Thus $\operatorname{MFE}(] R, s_{i}, r_{j}, c[)=\bar{M}_{R, s_{i}, r_{j}, c}$.
- Case 2: $i+1>|s|$ and $j-1 \geq 1$. For any $I^{\prime} \prec I$, there is a $t \in R-\{s\}$ and a $c^{\prime} \in\{0,1\}$ with $I^{\prime} \preccurlyeq\left[R-\{s\}, t_{1}, r_{j-1}, c^{\prime}\right]$. It thus suffices to minimize over the strands $R-\{s, r\}$ while taking into account a possible strand disconnection reward. We have $\min _{t \in R-\{s, r\}, c^{\prime} \in\{0,1\}} M_{R-\{s\}, t_{1}, r_{j-1}, c^{\prime}}-\mathbb{1}_{c^{\prime}=0} K_{\text {assoc }}=\operatorname{MFE}(] R, s_{i}, r_{j}, c[)$.
- Case 3: $i+1 \leq|s|$ and $j-1<1$. This case is completely symmetrical to Case 2.
- Case 4: $i+1>|s|$ and $j-1<1$. For any $I^{\prime} \prec I$, there are $t, u \in R-\{s, r\}$ with $I^{\prime} \preccurlyeq\left[R-\{s, r\}, t_{1}, u_{|u|}, 2\right]$. It thus suffices to minimize twice over the strands $R-\{s, r\}$ while taking into account a possible strand disconnection reward. We have $\min _{t, u \in R-\{s, r\}, c^{\prime} \in\{0,1\}} M_{R-\{s, r\}, t_{1}, u_{|u|}, c^{\prime}}-\mathbb{1}_{c^{\prime}=0} K_{\text {assoc }}=\operatorname{MFE}(] R, s_{i}, r_{j}, c[)$.
- Lemma 25. The algorithm computes the table entries correctly, i.e. $M_{R, s_{i}, r_{j}, c}=\operatorname{MFE}\left(\left[R, s_{i}, r_{j}, c\right]\right)$ for all $R \subseteq R_{0}, s_{i}, r_{j} \in R$ and $c \in\{0,1,2\}$.

Proof. We proceed by induction over the well-founded relation \preccurlyeq. Regarding the initialization, clearly no base pair can exist over an empty strand set, as well as over one strand where the number of enclosed base pairs between i and j is less than θ. Therefore, these table entries are correctly initialized by 0 .
Let us assume that all $M_{R^{\prime}, t_{k}, u_{\ell}, c}$ with $\left[R^{\prime}, t_{k}, u_{\ell}, c\right] \preccurlyeq\left[R, s_{i}, r_{j}, c\right]$ have been computed correctly.

- Case 1: $s_{i} \notin S$. If $i+1 \leq|s|$, we have $E(R, S)=\operatorname{MFE}\left(\left[R, s_{i+1}, r_{j}, c\right]\right)=M_{R, s_{i+1}, r_{j}, c}$ by Observation 23 and our induction hypothesis.
Else, we first assume $c \neq 1$. Consider the strand t that follows s in the polymer graph representation of S and consider the value c^{\prime} that specifies connectivity between t and r in S. Since i is unpaired, we again have $E(R, S)=\operatorname{MFE}\left(\left[R-\{s\}, t_{1}, r_{j}, c^{\prime}\right]\right)-\mathbb{1}_{c^{\prime}=0} K_{\text {assoc }}=$ $M_{R-\{s\}, t_{1}, r_{j}, c}-\mathbb{1}_{c^{\prime}=0} K_{\text {assoc }}$ as above.
Finally, if $c=1$, we look for the MFE of a structure in $\left[R, s_{i}, r_{j}, c\right]$ where s and r are connected by a base pair. Since there is only one base in s remaining and we leave it unpaired, there is no such structure and thus $\operatorname{MFE}\left(\left[R, s_{i}, r_{j}, 1\right]\right)=+\infty$.
- Case 2: $S=\left\{\left\{s_{i}, r_{j}\right\}\right\} \cup S^{\prime}$, where S^{\prime} is the best structure for any $I^{\prime} \prec\left[R, s_{i}, r_{j}, c\right]$ with s and r arbitrarily connected (that is, $] R, s_{i}, r_{j}, 2[$). First assume $c \neq 0$. In this case, we have $E(R, S)=E_{s_{i}, r_{j}}+\operatorname{MFE}(] R, s_{i}, r_{j}, 2[)=E_{s_{i}, r_{j}}+\bar{M}_{R, s_{i}, r_{j}, 2}$, where we could apply Lemma 24 because of the induction hypothesis.
Now assume $c=0$. We minimize over all structures such that s and r are not connected, but require $\left\{s_{i}, r_{j}\right\} \in S$. Thus $\operatorname{MFE}\left(\left[R, s_{i}, r_{j}, 0\right]\right)=+\infty$.
- Case 3: $S=\left\{s_{i}, t_{k}\right\} \cup S^{\prime}+S^{\prime \prime}$ for some $t_{k} \neq r_{j}$, where S^{\prime} (resp. $S^{\prime \prime}$) is the best structure for any $I^{\prime} \prec\left[R^{\prime}, s_{i}, t_{k}, c\right]$ (resp. $I^{\prime} \prec\left[R^{\prime \prime}, t_{k}, r_{j}, c\right]$), with R^{\prime} being all strands between s and t in the polymer graph representation of S, and $R^{\prime \prime}$ being all strands between t and r.
Note that s and t are connected, thus in S^{\prime} the connectivity bit will be set to 2 . On the other hand, the connectedness of t and r (for structure $S^{\prime \prime}$) is by transitivity of connectivity determined by the connectedness between s and r, that is, c. We then have $\operatorname{MFE}\left(\left[R, s_{i}, r_{j}, c\right]\right)=E_{s_{i}, t_{k}}+\operatorname{MFE}(] R^{\prime}, s_{i}, t_{k}, 2[)+\operatorname{MFE}(] R^{\prime \prime}, t_{k}, r_{j}, c[)$.

We now briefly discuss the running time. The number of table entries is bounded by $2^{m} \cdot n^{2}$, where $n:=\max _{r \in R} \cdot m$ is the maximum size of the concatenated sequence. Clearly, the last case of the DP equation dominates the running time for computing one entry. In the worst
case, we iterate over $2^{|R|}$ subsets and n entries, which gives $\mathcal{O}\left(2^{|R|} \cdot n\right)$. Partitioned by subset size, we get

$$
\sum_{t=0}^{m}\binom{m}{t} n^{2} \cdot 2^{t} n=n^{3} \cdot \sum_{t=0}^{m}\binom{m}{t} 2^{t}=n^{3} \cdot \sum_{t=0}^{m}\binom{m}{t} 1^{m-t} 2^{t}=n^{3} \cdot(1+2)^{m}=3^{m} \cdot n^{3}
$$

which bounds the total running time. Together with Lemma 25, we conclude.
Detailled conditions and edge cases. When we minimize over all subsets, the following conditions must be respected:

$$
\begin{aligned}
& \quad\{s, t\} \subseteq R^{\prime} \subseteq R \wedge 1 \leq k \leq|t| \wedge(k=|t| \rightarrow c \neq 1) \\
& \wedge\left(s=t \rightarrow\left(k>i+\theta \wedge R^{\prime}=\{s\}\right)\right) \\
& \wedge\left(r \in R^{\prime} \rightarrow\left(t=r \wedge k<j \wedge R^{\prime}=R \wedge c \neq 0\right)\right)
\end{aligned}
$$

We minimize over all possible triples $\left(R^{\prime}, t, k\right)$. A set R^{\prime} must clearly include s and t to form a valid interval and k must be a valid position of t. If s_{i} is paired to $t_{|t|}, s$ and j are disconnected $(c \neq 1)$. If $s=t$, we must respect θ and there is only one strand in R^{\prime}. Finally, $r \in R^{\prime}$ implies that s_{i} forms a base pair with some base of r (thus $t=r$ and $\left.R^{\prime}=R\right)$, connectivity has to be allowed $(c \neq 0)$ and t_{k} must be in the interval $(k<j)$. These conditions are sufficient and match our algorithm.
When we minimize over two new inner strands (in the last case of \bar{M}), we clearly cannot choose the same strand for t and u, except if $|R|=3$. Furthermore, we can clearly only minimize over new inner strands if such strands are still available. If $|R| \leq 3$, there may only be one available strand, or none at all, in which case the energy contribution is 0 . We omit these edge cases in the presentation of the algorithm to maintain readability.

B. 2 Running time for Section 4.2

We need table entries for each possible configuration of remaining number of occurrences and for specifying the remaining number of bases on the leftmost and rightmost strand. Using $n:=\max _{r \in R}|r|$, we bound the number of table entries by

$$
n^{2} \cdot \max _{s_{1}, \ldots, s_{p}: s_{1}+\ldots+s_{p}=m} \prod_{i=1}^{p} s_{p} \leq n^{2} \cdot\left(\frac{m}{p}\right)^{p}
$$

The running time for computing one table entry is dominated, as for the previous section, by the last case. We need to iterate over $\mathcal{O}\left(\left(\frac{m}{p}\right)^{p}\right)$ configurations to split our region into two strand sets, p lengths to determine the length of the strand on which we split and n positions for the index of the split. We finally obtain a running time of $\mathcal{O}\left(\left(\frac{m}{p}\right)^{2 p} \cdot n^{3} \cdot p\right)$, which is an XP algorithm parametrized by p.

B. 3 Proof for the connectivity in Section 4.4

Analogous to Section 4.1, we define an interval $\left[m, s_{i}, r_{j}, c\right]$ and a relation $\left[m^{\prime}, t_{k}, u_{\ell}, c^{\prime}\right] \preccurlyeq$ [$\left.m, s_{i}, r_{j}, c\right]$ if and only if $m^{\prime}<m-1$ or $m^{\prime}=m-1 \wedge(s=t \vee r=u)$ or $m^{\prime}=m \wedge s=$ $t \wedge r=u \wedge i \leq k \wedge \ell \leq j$. Since we just change the representation of our set R to an integer m, the correctness of the algorithm can be shown by the same arguments as for the exponential algorithm. We only show here that the connectivity specifier $c \in\{1,2\}$ actually enforces connectivity. For this, we introduce the following notation: $\gamma\left(m, s_{i}, r_{j}\right)$ means that the MFE structure computed by $M_{m, s_{i}, r_{j}, 1}$ is connected, and $\bar{\gamma}\left(m, s_{i}, r_{j}\right)$ means that the

MFE structure computed by $M_{m, s_{i}, r_{j}, 2}$ is either connected or consists of two connected components, one containing s and one containing r. In other words, adding a base pair between s and r to such a structure will make it connected.

- Lemma 26. $\gamma\left(m, s_{i}, r_{j}\right)$ and $\bar{\gamma}\left(m, s_{i}, r_{j}\right)$ hold.

Proof. Clearly, a secondary structure over an interval with $m=1$ is always connected, i.e. $\gamma\left(1, t_{k}, t_{\ell}\right)$ and $\bar{\gamma}\left(1, t_{k}, t_{\ell}\right)$ hold for any valid t, k, ℓ. By induction over \preccurlyeq, assume that $\gamma\left(m^{\prime}, t_{k}, u_{\ell}\right)$ and $\bar{\gamma}\left(m^{\prime}, t_{k}, u_{\ell}\right)$ for any $\left[m^{\prime}, t_{k}, u_{\ell}, c^{\prime}\right] \preccurlyeq\left[m, s_{i}, r_{j}, c\right]$. We show $\gamma\left(m, s_{i}, r_{j}\right)$ and $\bar{\gamma}\left(m, s_{i}, r_{j}\right)$. By case distinction:

- Case 1: $s_{i} \notin S$. If $i+1 \leq|s|$, the structure is connected by assumption. Else, if $c=2$, we need that a connection between s and r would make the structure connected. Indeed, by assumption, $\left[m-1, t_{1}, r_{j}, 1\right]$ is connected, and together with a base pair between s and r, all strands are in one connected component. If $c=1, s$ and r are not yet connected and we do not connect them with the last possible base $s_{|s|}$, thus no connected secondary structure with these constraints exists.
- Case 2: $\left\{s_{i}, r_{j}\right\} \in S$. By hypothesis, the structure for $] m, s_{i}, r_{j}, 2[$ would be connected together with a base pair between s and r, thus the structure for $\left[m, s_{i}, r_{j}, c\right]$ is connected.
- Case 3: $\left\{s_{i}, t_{k}\right\} \in S$ for some t_{k} in the region. By assumption and the base pair $\left\{s_{i}, t_{k}\right\}$, the strands from s to t are connected. If $c=1$, then by assumption $] m-m^{\prime}+1, t_{k}, r_{j+1}, 1[$ is connected and thus all the structure is connected. For $c=2$, assume a connection between s and r. Now by the fact that s is connected to t and transitivity, r is connected to t. We can apply our induction hypothesis to conclude that the substructure for the strands from t to r is connected, and by that, the complete structure is connected.

We now argue (somewhat informally) why there cannot be a better connected secondary structure that the algorithm ignores. Assume that the last case of the \bar{M} equation is defined as for 4.1 , that is, we minimize over the two next inner strands. Any structure that uses this case cannot be connected (as the component including s and r has no way of being connected to the component including the inner strands).
Assume also that when minimizing over strands, we lift the connectivity requirement $(c=1)$. In any secondary structure than can be obtained by at some point (at interval [$\left.m, s_{i}, r_{j}, 2\right]$) minimizing over a strand with $c=2$ but not with $c=1$, we know that the chosen inner strand (say t) is not connected to r in the constructed secondary structure restricted to the region from s_{i} to r_{j}. Since the outer region before s_{i} and after r_{j} does not contain any base of strand t, strand t will not be connected to r in the complete structure.
So, after applying these changes to the DP, we cannot achieve a better connected secondary structure than before. The DP is now almost equivalent to the DP in Section 4.1, with representing the set R by a natural number m. We can thus repeat the correctness proof of section Section 4.1 to show that any (connected) secondary structure is covered by the equations, and thus the output of our DP is optimal.

WABI 2024

Figure 9 Probability of exterior heterogeneous base pairs in a two-triplet-pattern strand soup with 20 repeats and 3 interacting strands.

[^0]: 1 To whom correspondence should be addressed
 © Jane Open Access and Joan R. Public;
 licensed under Creative Commons License CC-BY 4.0

