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Abstract11

Inverse folding is a classic instance of negative RNA design which consists of finding a sequence that12

uniquely folds into a target secondary structure with respect to energy minimization. A breakthrough13

result of Bonnet et al shows that, even in simple base pairs-based (BP) models, the decision version14

of a mildly constrained version of inverse folding is NP-hard.15

In this work, we show that inverse folding can be solved in linear time for every target structure16

that contains no isolated BP and no isolated stack BP. (i.e. when helices have all sizes more than17

h = 3). For structures featuring shorter helices, our linear algorithm is no longer guaranteed to18

produce a solution, but still does so for a large proportion of instances.19

Our approach introduces a notion of modulo m-separability, generalizing a property introduced20

by Hales et al. Separability is a sufficient condition for the existence of a solution to the inverse21

folding problem. We show that, for any input secondary structure of length n, a modulo m-separated22

sequence can be produced in time O(n.2m) anytime such a sequence exists. Meanwhile, we show23

that any structure such that h = 3 is either trivially non-designable, or always admits a modulo-224

separated sequence (m = 2). Solution sequences can thus be produced in linear time, and even be25

uniformly generated within the set of modulo-2 separable sequences.26
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1 Introduction31

RNA inverse folding is a fascinating algorithmic problem which, given a target secondary32

structure T , consists of designing one or several sequences, all of which should uniquely33

fold into the target T according to a reference folding prediction algorithm. Considering34

a folding prediction algorithm as a mathematical function Φ : {A, C, G, U}⋆ → S ∪ {⊥}35

mapping an RNA sequence to a unique predicted structure (or ⊥ if equally likely alternatives36

exist), inverse folding can be abstracted as the search for a preimage w ∈ Φ−1(T ) of the37

target structure T . This naturally generalizes into a variety of design tasks which, given38

a predictive algorithm implementing a function Φ, aim to create one or multiple instances39

predicted to behave in a certain way. Such a formulation is, in general, overly broad (e.g.40

it encompasses the concept of one-way functions in cryptography) to inspire reasonable41

hopes for a general solution. Still, a restriction of the inverse problem to certain types of42

computable functions/algorithms (e.g. amenable to dynamic programming) appears realistic43

and generally relevant to (synthetic) biology, yet poorly studied to this day.44

In the specific case of RNA, despite being the object of substantial attention since45

its formal introduction in the early 1990s [8], the complexity of RNA inverse folding has46

remained elusive for almost three decades. A generalization of RNA inverse folding, including47

the energy model as part of the input, was shown to be NP-hard by Schnall-Levin et48

al [18]. However, their reductions critically relied on (ab)using the energy model to encode49

a 3SAT instance, leaving the hardness of the problem largely open for a fixed energy50

model. The classic complexity of inverse folding was only settled, in 2018, when Bonnet et51

al [2] finally showed the NP-hardness of RNA folding in a classic base pairs maximization52

setting. Such computational intractability (retrospectively) legitimizes a very large quantity53

of heuristic or exponential-time methods, based on local search [8, 3, 1, 22, 16], bio-inspired54

metaheuristics [11, 4, 9, 12], global sampling [15, 21], constraint programming [5, 7] and,55

more recently, neural networks-inspired generative models [17].56

In parallel to complexity studies, Hales et al [6] revisited the problem from a structural57

angle, attempting to characterize designable or undesignable families of secondary structures.58

The authors showed that saturated structures, having all positions paired, are designable59

if and only if their multiloop degrees do not exceed 4. They also introduced a notion of60

separability, a sufficient, yet not necessary in general, condition for a sequence to be a design61

for a given target. This notion allowed them to show that any target structure either features62

an occurrence of a locally-undesignable motif {m3•, m5}, or can always be transformed into63

a separable structure by adding at most one base pair per helix. More strikingly, they64

proposed linear-time algorithms for producing a single solution for each characterized class65

of designable structures, painting a – puzzling – contrasted picture of general hardness (as66

per Bonnet et al [2]) and practical facility for inverse folding.67

In this work, we further those studies and show that, while conceptually simpler, the68

existence of a separated design for a given structure remains NP-hard. Conversely, any69

structure with helices of length greater than 3 base pairs is either trivially undesignable (i.e.70

contains {m3•, m5}), or separable and can be designed in linear-time. This constraint is71

relevant to the objectives of RNA design, as targeted secondary structures are typically stable72

and tend to avoid shorter – unstable – helices. This result hinges on the introduction of a73

modulo m version of separability, coinciding with general separability whenever m ≥ n/2,74

for which we give a Fixed-Parameter Tractable (FPT) algorithm running in time O(n.2m).75

We proved that this algorithm solves all instances with minimal helix lengths of 3 BPs when76

invoked with m = 2 and, even in this restricted setting, solves many instances with shorter77
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Figure 1 Local design rules. Base pair compatibility graph (A) and incompatibility graph for
base pairs and unpaired nucleotides occurring within a loop (B): Connected base pairs, when jointly
occurring within a loop of the target structure, can refold to form a local, an alternative structure
having same number of base pairs as the target (C, left). Unpaired nucleotides may also interfere
with some (A or C) or every (G or U) base pairs, leading to local alternatives (C, right).

helices in practice. Based on an unambiguous dynamic programming, our algorithm can be78

adapted into a random generator of separated designs. Finally, we show through empirical79

studies that separated sequences, despite being only guaranteed to constitute designs with80

respect to base pair maximization, are also likely to represent designs in the more realistic81

Turner energy model, and are far superior in this setting than compatible sequences.82

2 Problem statement, definitions, and prior work83

Algorithmically, RNA can be abstracted as a nucleotide sequence, i.e. a string w ∈84

{A, C, G, U}n where n denotes the length of ω. Given a length n, a (non crossing/pseudoknot-85

free) secondary structure is a set T ⊂ [1, n]2 consisting of base pairs such that:86

Each position in [1, n] is involved in at most one base pair;87

Base pairs in T are pairwise non-crossing: ∀(i, j) ̸= (k, l) ∈ T , i < k, either i < k < l < j88

or i < j < k < l.89

The set Sw of secondary structures compatible with an RNA sequence w is defined as:90

Sw := {Secondary structure T | ∀(i, j) ∈ T, {wi, wj} ∈ {{G, C}, {A, U}, {G, U}}} .91

Without loss of generality, a secondary structure can be represented as a tree T =92

(V (T ), E(T )), whose nodes V (T ) are in bijection with base pairs (internal nodes2) and93

unpaired regions (leaves), and whose edges represent the inclusion of base pairs. Given a94

node v ∈ V (T ), we denote by parent(v) the parent of v in T , and by children(v) the list of95

children of v in T . A loop is the subtree restricted to node and its (direct) children. The tree96

is rooted in a special Root node, associated with the whole sequence interval. An helix of97

length ℓ of the tree is a maximal path v1, . . . , vℓ of base pair nodes such that each vi with98

i < ℓ has a single child vi+1 (no leaf attached). A helix of length 1 is an isolated base pair. A99

helix of length 2 is an isolated stack. We define h asthe minimum length over all helices of T .100

As the target tree is always explicit and unmodified through proofs and algorithms we do101

not specify it explicitly in the notations.102

RNA inverse folding starts from a target secondary structure T , and attempts to construct103

a sequence ω ∈ {A, C, G, U}n whose only base-pair maximizing secondary structure is T .104

▶ Problem 1. Inverse-FoldingBP105

Input: Target secondary structure T , sequence length n106

Output: Sequence w ∈ {A, C, G, U}n satisfying both:107

2 Base pairs may also be leaves of the tree when involving consecutive positions, which happens rarely in
practice. We thus qualify as internal node any node in bijection with a base pair.
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Figure 2 Exhaustive designability analysis of 12nts RNA sequences/structures. (Left)
For a minimum base pair span of θ = 0, there exists 15 511 secondary structures over 12 nucleotides,
of which little over half (8 111) admits at least a solution to the inverse folding problem. (Right)
The number of valid solutions varies substantially between targets and appears to depend on the
number of base pairs. Overall, out of the 16 777 216 RNA sequences of length 12, only 399 348
(≈ 2.4%) represent a valid design for some structure.

Compatibility with target structure: T ∈ Sw;108

Uniqueness of the target as the optimal fold for the sequence: ∀T ′ ∈ Sw, T ′ ̸= T, |T ′| < |T |.109

or ⊥ if no such sequence exists.110

Nevertheless, Inverse-FoldingBP, mildly extended to allow further restrictions on individual111

sequence positions, was shown to be NP-hard by Bonnet et al [2].112

A sequence is called a design for a structure T if it represents a solution to the inverse113

folding problem for the input T . Note that the uniqueness condition can be tested in114

polynomial time using a variant of the Nussinov algorithm [13, 6]. In addition to showing115

that Inverse-FoldingBP is in P, such an algorithm enables, for moderate sequence lengths,116

a systematic folding of all sequences in order to characterize the set of structures admitting117

a solution. For instance, Figure 2 shows that, while only 2.4% of RNA sequences of length118

12 represent a design for some target, roughly half of the secondary structure admits at least119

one solution sequence, and ≈ 49 on average, for the inverse folding problem.120

We remind that, as noted by Halès et al [6], two key motifs are not designable in a base121

pair maximization setting:122

The m5 motif consists of 5 base pairs occurring on the same loop (not counting the Root).123

No sequence can be designed for such a motif, since exposing 5 base pairs on a loop124

always allows for local refolding to have the same number of base pairs. This follows from125

the inspection of Figure 1, where the largest set of mutually compatible base pairs clearly126

has cardinality 4;127

The m3• motif consists of 3 base pairs (excluding the Root) and at least one unpaired128

position. Indeed, as shown in Figure 1, the presence of an unpaired nucleotide either129

forbids the co-occurrence of any adjacent base pair (G or U), or only allows three (C or130

A). Since at most two of those base pairs can co-occur in a successful loop design, m3• is131

not designable.132

Any occurrence of these structures (or of any other undesignable structure, cf [20]) as a133

subgraph of an instance makes the instance undesignable.134
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Figure 3 A proper coloring is necessary towards design. In (A), having two children
implies that the sequence derived from this coloring features a motif where G and C can reconfigure
locally. In that case, they form an alternative structure that contains the same number of base pairs.
Conversel, in (B), the proper coloring ensures that locally no alternative of equal (or better) energy
exists by forcing some consecutive incompatibilities.

2.1 Inverse folding as a tree coloring problem135

We start by reminding the coloring framework introduced by Halès et al [6].136

▶ Definition 1 (Coloring). A coloring of a (secondary structure) tree T is a function χ :137

V (T ) → { , , ,∅} associating a color to each node (except the root and the leaves which138

always get ∅).139

A coloring of a tree T typically induces multiple RNA sequences that are compatible with,140

but not guaranteed to fold into, the given secondary structure through letters assignment141

rules. Namely, in any sequence w derived from a coloring χ, we have for each (i, j) ∈ T :142

If χ((i, j)) = → (wi, wj) = (G, C);143

If χ((i, j)) = → (wi, wj) = (C, G);144

If χ((i, j)) = → (wi, wj) ∈ {(A, U), (U, A)}.145

For nodes, the freedom in choosing (A, U) or (U, A) depends on the context: the choice146

may be unconstrained (e.g. when isolated within a helix), or forced (e.g. when two gray147

nodes are involved in a multiloop or stack). However, this property will only impact the148

number of sequences associated with the coloring, but bears no consequence on the existence149

of a solution to Inverse-FoldingBP, since the problem asks for the production of a single150

sequence.151

Denote by c the inverse of a color c, defined as = , = and = .152

▶ Definition 2 (Proper Coloring). A coloring χ is proper when, for each node v ∈ V (T ), the
vector of colors C, assigned to the node and its children, respects the following constraints:

|C| ≤ 1, |C| ≤ 1 and |C| ≤ 2 with C :=
[

χ(v)
]
.
[
χ(v′) | v′ ∈ children(v)

]
.

These conditions must also hold for the colorless Root, but with C being restricted to the153

colors of children(Root).154

In terms of RNA design, the proper condition is necessary for an associated sequence to be155

a solution to inverse folding. Indeed, any coloring that is not proper will be associated with156

sequences that can be locally reconfigured, this without losing any base pair (see Figure 3157

for an example).158

▶ Definition 3 (Levels). Given a coloring χ of a tree T , the level L : V (T ) → Z of a node v159

is L(v) := |p| − |p| where p denotes the shortest node sequence from parent(v) to Root.160



T. Boury, L. Bulteau and Y. Ponty XXX:5

4

54

8 7

5

6

6

4

64

7 7

5

7

7

Root

1-55

2-54

3-53

4-52

5-16

6-15

7-14

8-13

9
10 11

12

17-33

18-32
19

20

21-29

22-28

23
24

25
26

27

30

31

34-51

35-50

41-49

42-48

43
44

45
46

47

36-40

37
38

39

((((((((...))))((..((..))..))(((...)((.....))))))))

1) Target structure

GGGGGGGGAAAACCCCUGAAGGAAAAAC
CAACAAGGAAACAGAAAAACUCUCCCC

2) A proper coloring

Root

1-55

2-54

3-53

4-52

5-16

6-15

7-14

8-13

9
10 11

12

17-33

18-32
19

20

21-29

22-28

23
24

25
26

27

30

31

34-51

35-50

41-49

42-48

43
44

45
46

47

36-40

37
38

39

GGGGAGGGAAAACCCUUGAAGGAAAAAC
CAACAGGGAAACAGAAAAACUCCCCCC

3) A separated proper coloring

Figure 4 1) 2D and dot-bracket representations of a secondary structure. Helices of sizes
respectively 1, 2 and 3 are represented in light red, purple and blue. 2) Same secondary structure as
a tree. The tree is colored with a proper non-separated coloring as the level of leaf 19 is the same
as the level of the node 34-51. Note that even if the current coloring is non-separated, it does
not mean that the tree is not separable: a direct retrieving of some corresponding nucleotide letters
leads to a design in that case. 3) Same secondary structure as a tree but the coloring is separated
(necessarily proper). Thus, this coloring yields one or multiple designs (depending on the choice of
AU or UA with the nodes). Even more, this coloring is 2-separated as every level of the leaves is
odd while every level of the nodes is even.

On an RNA level, the concept of level helps categorize, and possibly control, the set161

of alternative structures to the target. Indeed, consider a sequence w generated from a162

coloring χ. First remark that, in order for an alternative structure to be competitive, every163

occurrence of C must be paired. Whenever two positions i and j interact to form a base pair,164

it can be shown that the inner interval ]i, j[ interval contains L(i) − L(j) more G than C.165

Meanwhile the outermost interval [1, i[ ∪ ]j, n] features the opposite imbalance (L(i) − L(j)166

more C than G). In other words, any structure that contains a base pair (i, j) /∈ T already167

has 2 × |L(i) − L(j)| fewer base pairs than the target structure. Thus only structures made168

of pairs (i, j) such that L(i) = L(j) need to be considered as viable alternatives to T . This169

property can be exploited as a design principle, as formalized by the following property.170

▶ Definition 4 (Separated coloring). A coloring χ is separated for a target T if and only if it
is proper and the levels of -colored nodes and leaves do not overlap:

{L(v) | χ(v) = } ∩ {L(v) | v is a leaf} = ∅

This immediately suggests a design strategy that associates A to unpaired positions and171

assigns and colors such that nodes end up as different levels as the leaves. Indeed,172

in this setting, Hales et al [6] showed that the proper coloring of a saturated structure173

(without unpaired position) yields a sequence that uniquely folds with respect to base pair174

maximization. It follows that a competitive/alternative structure may only result from a base175

pair (i, j) /∈ T , a position of which is a node while the other is a leaf. Ensuring that all176

nodes and leaves are found at different levels is thus sufficient to guarantee the designability177

of T , i.e. the existence of a solution to this instance of the inverse folding problem.178

More generally, we say that a target secondary structure T is separable if there exists a179

coloring χ such that ‘χ is separated for T . We recall the main results of Halès et al [6] here.180

▶ Theorem 1 (Separable =⇒ Designable (Halès et al, 2017)). If a tree/secondary structure181

T is separable, then T is designable.182
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Figure 5 Designability does not imply separability. Left: A target structure that does not
admit any separated coloring instance. Note that the coloring χ shown here puts the node 8-9
and the leaf 3 both at level 1. Right: Sequence w compatible with the coloring χ, which provably
admits T as its single base pair-maximization structure (i.e. w is a design for T ).

Moreover, given a separated coloring, an RNA sequence that uniquely folds into T , i.e. a183

solution to the inverse folding problem, can be found in linear time.184

▶ Remark 2. Note that any design sequence w, generated through a separated coloring,185

avoids any alternative structure featuring GU base pair(s). Indeed, every G and C need to be186

paired to achieve the number of base pairs featured in the MFE. Meanwhile, the formation187

of any GU base pair, leaves one C and one A unpaired, resulting in the overall loss of at least188

one base pair. Structures featuring GU base pairs can thus be safely ignored.189

3 Separability: Intrinsic and computational limits190

Despite utilizing separability to explore a design of approximative instances, the work of Halès191

et al [6] left open the complexity of searching for a separated coloring, as well as the existence192

of designable, yet non-separable, structures. An exhaustive search for all structures with193

up to 12 bases, summarized in Figure 2, shows that for such small instances, all designable194

instances are separable.195

However, we show that non-separable designable instances can be constructed.196

▶ Proposition 1 (Designable ≠⇒ Separable). There exists a target structure which: i) does197

not admit a separated coloring; and ii) admits a solution to the inverse folding problem.198

Proof. We use the tree T of Figure 5 as a counterexample to the notion that separability199

fully captures designability. First, note that a separated coloring χ of T would be extremely200

constrained. Node 5 − 18 should be and the nodes 2 − 4 and 19 − 21 are and201

respectively, or vice-versa due to their respective leaf. Thus, we have two leaves at levels 1202

and −1. At least, one of the two children of 5 − 18, w.l.o.g 6 − 7 is or . One child of203

6 − 7 is then necessarily , leading to a child of level +1 or −1. With two leaves at level204

+1 and −1, a direct consequence is that T is non-separable.205

Now, we show that T is designable. We propose the sequence w of Figure 5. Using a206

simple dynamic programming algorithm, it is possible to check that the best folding for w is207

unique and corresponds to the secondary structure encoded as the tree T . Intuitively, the208

only competitive alternative base pair is the one corresponding to the overlap of the levels. It209

consists of joining the U from 8 − 9 with the A at position 3. By doing so, note that the base210

pair 5 − 18 will be disconnected with no way to pair A with another U due to the connection211

between 5 and 7. ◀212

Notice that, despite not being separated, the coloring shown in Figure 5 is compatible with213

a sequence that is a design for its target. This illustrates the fact that, while not being214



T. Boury, L. Bulteau and Y. Ponty XXX:7

Figure 6 Instances of Inverse-FoldingBP and main results. For unconstrained instances
(Left), solving Inverse-FoldingBP is probably NP-hard, as suggested by the hardness of a mildly
constrained version [2]. Finding a design for a separable target is also NP-hard but, for any fixed
modular level m, m-separable targets can be designed in Θ(n) time. Testing increasing values of m

gives an algorithm, FPT on m, for all separable structures. When h ≥ 3 (Right), Thm 6 applies
and the hierarchy collapses: any instance becomes 2-separable, thus separable and designable, and
Inverse-FoldingBP can be solved in Θ(n) time.

guaranteed to uniquely fold as their intended target, sequences produced from non-separated215

colorings may still represent solutions for the inverse folding problem.216

Regarding computational complexity, although looking for a separable coloring is not217

directly equivalent to finding a design for a structure, we show that this decision problem218

(formalized below) is also NP-complete.219

▶ Problem 2. Separability220

Input: Target tree T (with no m3• or m5 motif)221

Output: Coloring χ of the tree T such that χ is separated222

▶ Theorem 3. Separability is NP-complete.223

The proof can be found in the appendix. It is obtained by reduction from Bin Packing,224

with a tree using one branch per item. Leaves and nodes enforce that items must be225

packed in consecutive ranges of levels (with levels at transitions between successive items226

and other levels saturated with leaves). Then, separating nodes are placed to enforce227

that series of consecutive items sum up to the target bin size, thus enforcing that items are228

ordered according to a correct bin packing.229

4 Modulo separability as a parameterized tractable alternative230

Then, we introduce a stratified version of separability, called modulo m-separability, or231

m-separability in short, which prescribes different modular values for the levels of and232

leaves nodes. Figure 6 describes the relative positioning of classes of instances and associated233

complexity results.234

▶ Definition 5 ((Modulo) m-separability). Let m be an integer. A coloring χ is m-separated
(or separated with modulus m) for a target secondary structure T , if an only if χ is proper
and

{L(v) mod m | χ(v) = } ∩ {L(v) mod m | v is a leaf} = ∅

using for negative levels l < 0 the classic l mod m := (l + ⌈−x/m⌉ × m) mod m.235

Structure T is m-separable if it admits an m-separated coloring.236

Clearly, modulo separability implies classic separability: if a coloring χ is m-separated for237

a target structure T , then χ is separated for T . Conversely, if a target structure admits a238

separated coloring, assigning levels in [−a, b] to and leaf nodes, then the same coloring239

is provably m′-separated for m′ := (b + a + 1) (since, for l, l′ ∈ [−a, b], l ̸= l′ implies that240

WABI 2024
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l mod m′ ̸= l′ mod m′). Note that, since there are at most n/2 base pairs/internal nodes in241

a target tree, then 0 ≤ a, b ≤ n/2, and we have m′ ≤ n.242

The concept of m-separability thus provides an angle to address the generation of separated243

colorings, so we introduce below the associated formalized algorithmic problem.244

▶ Problem 3. Modulo Separability245

Input: A tree T (with no m3• or m5 motif), a modulus m ∈ N246

Output: A coloring χ of T that is m-separated, or ⊥ if no such coloring exists.247

As noted above, the problem specializes in the Separability problem when m = n, implying248

that Modulo Separability remains NP-complete. However, it can be efficiently solved for249

moderate values of m, as shown below. In practice, we can focus on small values of m since250

in practice 99% of instances without isolated base pairs are separable with modulus m ≤ 6251

(cf Table 1).252

4.1 Fixed parameter tractable algorithm for modulo-separability253

We now show that, for any fixed modulus m, Modulo Separability can be solved in linear254

time. In particular, the problem is Fixed Parameter Tractable (FPT) for the parameter m.255

Towards that goal, we consider a constrained version of Modulo Separability, where256

the modular values of levels are prescribed. Formally, we enforce that leaves only occur at257

modular levels in ξL ⊆ [0, m[, and nodes only occur at levels [0, m[\ξL. In this constrained258

version of Modulo Separability, the existence of a valid solution can be solved in linear259

time using dynamic programming.260

Namely, let us denote by dξL

v→c,ℓ the existence of a valid assignment (i.e. solution) for261

a subtree of T rooted at internal node v, with v occurring at level ℓ, and being assigned a262

prior color c. Provably, dξL

v→c,ℓ can be computed recursively by progressing along the tree,263

keeping track of the current level and checking that leaves and end up being assigned at264

modular levels ξL and [0, m[\ξL respectively. This leads to the following formula:265

dξL

v→c,l =



False
if ℓ ∈ ξL ∧ c =
or ℓ′ /∈ ξL, and ∃ leaf in children(v)

True if children(v) = ∅

∨
c′ proper

coloring of
children(v)
given v → c

∧
v′∈children(v)

dξL

v′→c′(v′),ℓ′ otherwise.
266

with ℓ′ := ℓ + δ(c) mod m267

where δ denotes the level increment induced by a color c, defined as δ( ) = +1, δ( ) = −1268

and δ( ) = 0. Moreover, in the outermost loop, the color assignment explored for children is269

meant to be locally proper: the colors c(v′) of the children, in conjunction with the color270

c of v must obey the conditions of Definition 2. Note that, in the absence of m3• and m5,271

the number of (proper) assignments is bounded by a constant, so this conjunctive loop272

does not impact the complexity. The existence of a ξL coloring for the full tree is then273

SeparableξL
:= dξL

Root→∅,0.274

The decision version of the problem can thus be solved in Θ(m.n) time. Indeed, the275

number of left-hand side terms scales in Θ(m.n), the number of proper coloring for children276



T. Boury, L. Bulteau and Y. Ponty XXX:9

is bounded by a constant (since avoiding m3• and m5 =⇒ |child(v)| < 5), and the total277

number of executions of the conjunctive loops is in overall Θ(n). A backtracking procedure278

could also be defined to reconstruct a solution coloring in Θ(n) if such a solution exists279

(SeparableξL
= True) or return ⊥ otherwise (SeparableξL

= False).280

An algorithm for Modulo Separability can then be obtained by explicitly considering281

all the possible subsets of admissible modular levels for leaves:282

If T contains m3• or m5, return ⊥283

For each ξL ⊆ [0, m[:284

If #DesignsξL
> 0, then backtrack to produce ξL-separated design285

Return ⊥286

The algorithm is correct since any ξL solution is also m-separated, and any m-separated287

coloring implies a partition of the leaves and nodes into disjoint levels ξL and χ ⊆ [0, m[\ξL288

respectively. A m-separated coloring is thus always found by invoking the DP algorithm over289

the 2m subsets ξL ∈ [0, m[. The overall complexity of the algorithm is in Θ(n.m.2m) time290

and Θ(m.n) memory, and we conclude with the parameterized complexity of the problem291

with respect to m.292

▶ Theorem 4. Modulo Separability is Fixed Parameter Tractable for the modulus m293

4.2 Random generation of m-separated RNA sequences294

We then turn to the uniform random generation of m-separated sequences, defined as a295

design w for T , featuring A on unpaired positions, and such that the coloring χw, obtained by296

replacing base pairs with suitable color ((G, C) → , (C, G) → and (A, U) or (U, A) → ),297

is m-separated.298

▶ Problem 4. Uniform Modulo Separated Generation
Input: Target tree T (with no m3• or m5 motif)
Output: RNA sequence w, associated with m-separated coloring χw, such that

P(w | χw is m-separated) = 1
|{w′ | χw′ is m-separated}|

Again, we approach this problem by first solving a more constrained version where the299

modular levels of leaves are explicitly given as a set ξL. Then, in the spirit of Reinharz et300

al [15], we adapt the above recurrence, through a simple algebra change, to count the number301

pξL

v→µ,l of RNA sequences, associated with a ξL separated coloring (for a subtree of T rooted302

at v, with v occurring at level l, and being assigned a nucleotide assignment µ).303

pξL

v→µ,ℓ =



0 if ℓ ∈ ξL and µ ∈ {(A, U), (U, A)}
0 if ℓ′ /∈ ξL and v has a leaf attached
1 if children(v) = ∅∑
µ′ proper assignment
children(v)→Σ2∪{∅}

∏
v′∈children(v)

pξL

v′→µ′(v′),ℓ′ otherwise (ℓ′ := ℓ + δ(µ) mod m).
304

where µ′ is a nucleotide assignment to the children of v, consistent with a proper coloring305

and additionally respecting natural constraints on the content ((A, U) or (U, A)) of pairs of306

nodes (same for both if one parent of other, different content if siblings). Once again, the307

colorless Root node needs to be distinguished, and the overall number of designs is given by308

#DesignsξL
:= pξL

Root→∅,0.309
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The following backtrack procedure then produces a uniform random RNA sequence that310

corresponds to a m-separated coloring for a fixed set ξL. In that case, by abuse of language,311

we say that the sequence is ξL separated. More precisely, backtrack(v, c, ℓ) produces a random312

sequence, associated with a ξL separated coloring, for the subtree anchored in v, reached at313

height ℓ, where the root is assigned a pair of bases µ ∈ Σ2. It first picks a random proper314

assignment µ′ for the children, weighted by the corresponding number of solutions (namely,315 ∏
v′∈children(v) pξL

v′→µ′(v′),ℓ′ , with ℓ′ := ℓ + δ(µ) mod m). The resulting sequence is then316

∏
v∈children and leaves(v)

{
A If v′ is a leaf
b.backtrack(v′, µ′(v′), ℓ′).b′ otherwise, with µ′(v′) = b.b′

The resulting algorithm, consisting of precomputing all pξL

v→µ,ℓ, followed by a sequence of317

k backtracks, provably returns k random, uniformly-distributed and independent designs318

that are ξL separated in time Θ(n.m + k.n).319

To leverage the uniform generation for a fixed ξL into a uniform generation of m-separated320

designs, we implement a strategy (see [14, pp 77] for details), proven in Appendix C, which321

start by generating some ξL, and then uses a suitable rejection to correct the emissions322

probabilities of sequences compatible with several ξL.323

▶ Theorem 5. Uniform Modulo Separated Generation can be performed in an324

average-case complexity that is Fixed Parameter Tractable for the modulus parameter m.325

5 Structures without isolated stacks and base pairs are 2-separable326

Although separability does not give a full characterization of designability in general (cf327

Prop. 1), we obtain a much stronger result for structures without small helices, as hinted by328

the fact that all counter-examples and hardness gadgets heavily use isolated base pairs in329

their construction. Indeed, we show that a 2-separated coloring can be constructed for all330

structures without forbidden motifs (m3•, m5) and h ≥ 3, so indeed all such structures are331

designable. Since avoiding (m3•, m5) is a necessary condition for designability, we obtain the332

stronger characterization stated in Corollary 9.333

▶ Theorem 6. Every (m3•, m5)-avoiding target T , having h ≥ 3, admits a 2-separated334

coloring335

Proof. First, let us remark that helices can be treated as atomic objects, and compacted336

into the edges of a helix tree, whose edges are helices (sequence of consecutive BP nodes),337

and whose internal nodes are either:338

Multiloops, consisting of 2 or 3 children/BPs/Helices, and no leaf (so m3• does not occur);339

Internal/Bulges/Hairpin (IBH) loops, consisting of at most 1 BP/Helix and featuring at340

least one leaf/unpaired node.341

Remark that, while constructing a separated coloring assigning a modular level ξL to leaves,342

those two motifs are the only sources of immutable constraints:343

Any proper coloring of a multiloop features at least one node, so the levels of chil-344

dren/nodes need to be set to a level ξL := ξL + 1 mod 2;345

Any IBH loop features at least one leaf within its children, which needs to be set to a346

modular level ξL.347

Conversely, beyond their first BP, helices may be colored with very limited constraints and348

can be used to offset multiloops and IBH loops.349
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Figure 7 Existence of coloring for helices consisting of h ≥ 3 base pairs, such that the modular
level of the following nodes is offset as needed. Additionally, those colorings can be chosen to respect
a prescribed level for nodes and, a predetermined color for the first node/base pair of the helix.

▶ Lemma 7. Let ξL denote the prescribed modular level for nodes. Consider an helix H350

consisting of h ≥ 3 BPs, whose first BPs is assigned some color c ∈ { , , }.351

Then for each modular level l ∈ [0, 1] for the first BP of H (c = only if l = ξL), and352

targeted exit modular level l′ ∈ [0, 1], there exists a coloring for the rest of H such that:353

The modular level of the upcoming nodes, i.e. those immediately following H, is l′;354

Base pairs can only be -colored at modular level ξL.355

Proof. The proof is essentially based on case decomposition, and summarized in Figure 7.356

We show that, for any l and h, there exists a color assignment to the first 3 nodes of the357

helix, such that the modular level of upcoming nodes is either 0 or 1, so l′ can be reached.358

Moreover, if such a coloring starts with or , and uses a single node, then there exists359

an alternative coloring placing this node at the opposite modular level, so one of them360

places their node at the intended level ξL. Finally, if the first node is set to , then the361

consistency condition above implies that l mod 2 = ξL, so that nodes are naturally found362

at an admissible modular level. ◀363

It follows that any helix tree starting with an initial helix H can be colored into a 2-separated364

coloring. Starting at initial level l = 0 and having initial BP color c (̸= if ξL = 0), color365

the rest of H as shown in the proof of Lemma 7, depending on ξL and the type of upcoming366

loop (target l′ = ξL for Multiloops; l′ = ξL for IBH loops), while ensuring that nodes end367

up at ξL modular level (which can always be done from Lemma 7). The remaining nodes of368

the loop are then colored in a proper/greedy manner, and we iterate the process recursively369

on the children helices of the loop (if any) until the full tree is colored.370

Since its level cannot be offset, the Root node must be treated as a special case. Indeed,371

if the Root has at least one leaf/unpaired position, then the modular value 0 is taken by372

the leaf, so we must have ξL = 0. Conversely, if the Root supports at least 3 helices, then373

at least one needs to start with a node, so we must have ξL = 1. Regardless of this374

restriction on ξL, in both cases the first base pair of each helix (if any) supported by the Root375

can be properly colored, and helices can be independently colored using the above strategy,376

ultimately yielding a 2-separated coloring. ◀377

▶ Corollary 8. Inverse Folding, restricted to instances with h ≥ 3 (containing no isolated378

base pair and no isolated stacks) is solvable in linear time and space.379

It is a direct consequence of Theorem 6 and of the DP scheme introduced in Section 4.1.380

Indeed, for m = 2, the DP algorithm only needs to be run twice (ξL = 0 and ξL = 1) in linear381

time/space, to produce a 2-separated coloring whenever such a coloring exists (guaranteed382

by Theorem 6). The coloring can then be transformed into a design, i.e. a solution to the383
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Figure 8 Main gadget used to build non-separable instances with h = 2. Left: Admissible
colors for each node (up to branch symmetries). Right: Example coloring and levels of a selection of
leaves and nodes. Note that along with the node at level ℓ, there always exists a leaf at level
ℓ + m or ℓ − m for 2 ≤ m ≤ b, ruling out modulo separability for small m.

inverse folding problem. Similarly, Uniform Modulo Separated Generation can384

also be performed in linear expected time and space as long as input instances contain only385

helices of size 3 or more.386

▶ Corollary 9. Let T be a target structure with h ≥ 3, then the following are equivalent: i)387

T is designable; ii) T is 2-separable; and iii) T avoids (m3•, m5).388

With this result, the hierarchy of instances collapses as depicted on the left of Figure 6 A389

natural follow-up question is whether the bound 3 on the helix length is tight. Indeed, there390

are non-separable and designable instances with h = 1 (Proposition 1), but the question391

remains for h = 2. In Proposition 10 we give a non-separable instance without isolated base392

pairs, so h = 3 is indeed tight to ensure separability.393

▶ Proposition 10. There exist non-separable structures with h = 2.394

The full proof relies on a counterexample built from the gadget in Figure 8. Intuitively,395

T (a, b) saturates all levels modulo b with leaves, so that none remains available for nodes.396

Meanwhile, the presence of multiloops forces proper colorings to use nodes, so a collision397

occurs and the gadget is not m-separable for any m ≤ b. By assembling 5 copies of T (a, b)398

with large b and increasing values of a, we obtain a target that is not separable for any m.399

6 On the relevance of separated sequences towards realistic designs400

While the existence of a linear-time algorithm for a reasonable restriction of the inverse folding401

problem is already notable, its practical relevance may be perceived as hindered by several402

limitations: our algorithms are only guaranteed to produce design solutions for helices beyond403

3 base pairs; Proper colorings only allows the design of highly-constrained (multi)loops; and404

solutions to the base pair inverse folding are not guaranteed to represent good solutions405

in more realistic energy models, such as the Turner nearest-neighbor model. To assess the406

promises offered by separated designs in realistic settings, we performed computational407

experiments to assess the potential of the concept of separated colorings to serve as a basis408

for the design of future RNA design methods.409
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m⊖ – Min. separating modulus 2 3 4 5 6 7 8 9 10+
Number of instances 7720 202 1101 537 349 77 9 5 0

Table 1 Minimal modulus ⊖ required for 10 000 instances of size n = 100 with min hairpin loop
θ = 3 containing some isolated stacks (helices restricted to 2 base pairs) to be separable modulo m.
All instances we found to be modulo separable.

6.1 Targets with isolated BPs/stacks are frequently separable410

While our algorithm is only guaranteed to produce a design when h ≥ 3, it also produces411

(guaranteed correct) solutions for input with smaller helices, as long as a separated coloring412

exists for them.413

For very small targets, an exhaustive analysis is feasible, consisting of folding/testing the414

unicity of the MFE folding for all sequences of length n = 12 (see Figure 2). Moreover, once415

a design w is found for a target T , it is easy to test if the associated coloring χw is separated,416

and to compute minimal modulus value m⊖ such that χw is m⊖ separated. We found that417

all of the 8 111 designable targets are also separable, despite a very large proportion of them418

featuring isolated stacks and base pairs. Moreover, all designable targets admit separated419

solutions associated with very small values of the modulus m (7 690 for m = 2, 420 for m = 3420

and m = 1 only for the empty structure).421

To further measure the proportion of separable structures within larger targets featuring422

isolated stacks, we implemented a uniform random generation algorithm [14]. We produced423

random target secondary structures of length 100 with a min base pair span of θ = 3. We424

used rejection to produce a synthetic dataset consisting of 10 000 targets having at least425

one helix of size 2 while avoiding m3• and m5. For each target T , we ran an in-house426

implementation of the algorithm in Section 4.1 with increasing modulus, to find the minimal427

modulus m⊖ such that T admits a m⊖ separated coloring. Table 1 summarizes our results,428

which we discuss below.429

Remarkably, all of the 10k targets in the datasets could be designed using our algorithm,430

and thus admit a separable coloring. Moreover, roughly three-quarters (77%) of the targets431

were found to be 2-separable, and less than 1% of the targets required the consideration of432

values for m⊖ beyond 6. The max value for m⊖ in this dataset was 9, an order of magnitude433

lower than the sequence length. Clearly, since we have shown the existence of non-separable434

instances with isolated stacks and no isolated base pair, this observation does not generalize435

to arbitrary sequence lengths. However, the large size of these counterexamples suggests that436

the proportion of separable structures, despite ultimately decaying exponentially [20], may437

remain non-negligible for relevant RNA target sizes.438

6.2 Separated designs are promising candidates in the Turner model439

We now consider a more realistic setting, where the inverse folding problem is now considered
with respect to the Turner nearest-neighbor energy model [19]. To assess the value of a
sequence in the Turner model, we introduce a metrics which we call the (signed) energy
distance ∆∆G(w, T ) of a target T to its most stable distant alternative for the sequence w:

∆∆G(w, T ) := ∆G(w, Altdmin(w, T ))−∆G(w, T ), Altdmin(w, T ) := min{∆G(w, T ′) | |T ′, T | ≥ dmin}

where ∆G(w, T ) is the Turner free-energy, |T, T ′| := |T △ T ′| denotes the base-pair distance,440

and dmin represents the minimum base pair distance to T . Both ∆G and Altdmin(w, T )441

can be obtained by appropriate calls to the ViennaRNA package [8], namely RNAeval and442
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a) Target structures avoiding m3• and m5
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Figure 9 Comparison of compatible (baseline), separated, and relaxed models for
targets having θ = 3, h = 3. For energy distance parameters, we took dmin = 3 and E = 5.

RNAsubopts, using max energy distance parameter E = 5 (so our estimation of ∆∆G(w, T ) is443

bounded by 5). A positive energy distance confirms that w is a solution to the Turner version444

of inverse folding, and dominates its competitors by ∆∆G(w, T ) kcal.mol−1. Meanwhile,445

a negative energy distance indicates that the target T is dominated by some alternative446

structure, having ∆∆G(w, T ) kcal.mol−1 lower free-energy than the target.447

We consider three strategies for sampling sequences: i) The compatible model uniformly448

generates random sequences compatible with the target (A for unpaired positions; AU, UA,449

GC or CG for base pairs); ii) The separated model uses the sampler described in Section 4.2450

to generate sequences that are 2-separated and proper; iii) The relaxed model generates451

sequences that are 2-separated, but not necessarily proper by assigning uniform random452

pairs to the base pairs of a multiloop. The relaxed model enables a heuristic extension of453

our algorithms supporting multiloops of arbitrary degrees, noting that the local refolding454

(see Figure 3) occurring in the BP model for non-proper sequences are either unrealistic or455

outright impossible, in the Turner energy model.456

Separated sequences substantially improve over compatible random sequences.457

We first asked a moderately ambitious question: Are separated sequences better candidates for458

design in the Turner model than sequences whose only property is to be compatible with the459

target? Indeed, separated sequences are only guaranteed to represent a design for their target460

in the BP max. model. We first considered instances of target structures of size n = 100,461

known to admit a solution to Inverse-FoldingBP (θ = 3, no m3• or m5, and h ≥ 3). We462

generated 10 000 such random targets and, for each target, sampled a single sequence using463

each of the 3 strategies above and computed the energy distance.464

The results, summarized in Figure 9.top suggest that separated sequences represent a465

substantial improvement over merely compatible sequences. Indeed, while 10% of compatible466

sequences ended up being good design candidates (∆∆G > 0), the proportion of successful467

designs increases to approximately one-third (31%) for separated sequences, and further to468

40% for relaxed design. A similar trend can be observed for the average ∆∆G (distance to469
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the first alternative/competitor) among successful designs, being of 0.75/1.05/1.13 kcal.mol−1
470

in the compatible, separated and relaxed models respectively. The surprisingly good behavior471

of the relaxed model, which was mostly introduced to overcome unrealistic limitations on472

multiloops, remains to be explained.473

Relaxed sequences enable designs for multiloops having higher degrees. We also474

tested the capacity of the relaxed model to generate solutions for multiloops of higher degrees,475

noting that the avoidance of m3• and m5 restricts the maximum degree of a multiloop to 4.476

We used the above-mentioned generation algorithm to generate uniform design targets of477

size n = 100, featuring at least one (but frequently many) occurrence of m3• and m5. As478

shown in Figure 9.bottom, compatible sequences are again substantially outperformed by the479

relaxed separated model in this setting, with 31.5% of the separated/non-proper sequences480

(4.6% of compatible sequences) representing successful designs (∆∆G > 0), on average 0.84481

kcal.mol−1 more stable than their best competitor.482

7 Conclusion483

Adapting a coloring perspective initially introduced by Halès et al [6], we have shown that484

the inverse folding problem can be solved in linear time for all target secondary structures485

having minimum helix length equal to 3. Towards that main result, we have established the486

existence of designable, yet non-separable, instances of inverse folding, and the NP-hardness487

of finding a separable design in the initial sense of Halès et al. We have also introduced488

concrete algorithms for the problem of finding a m modulo-separated coloring, which we489

have shown to be NP-hard yet FPT-solvable for m. Already for m = 2, the scope of our490

algorithms encompasses all targets without isolated base pairs and stacks, but also extends491

much beyond, in a way that remains to be fully characterized. Beyond base pair maximization,492

modulo-separated sequences may also represent a solid foundation towards concrete design493

methodologies. Namely, we empirically showed that, for the Turner energy model, separated494

sequences tend to represent better design candidates than merely compatible sequences,495

and that the limitations on loop degrees (intrinsic to the BP maximization model) can be496

overcome by relaxing our design model while retaining substantial performances.497

Future work should focus on how much of designable sequences are covered by sequences498

obtained with (modulo-)separated colorings. More importantly, does the space of (modulo-499

)separated colorings always/often contain a design with respect to the nearest-neighborhood500

Turner energy model? Even if it unlikely to hold unconditionally, it is plausible that some501

extensions of separability and m-separability will achieve theoretical and practical solutions502

of the problem in more general energy models. As a first step, separability in a stacking503

energy model seems a relevant goal, even if less ambitious than the Turner model. It would504

probably require to go beyond the current coloring formalism, implying the introduction a505

more general notion of defect to encapsulate imbalance at the dinucleotide level.506

WABI 2024



XXX:16 Exact linear-time RNA design for min Helix length 3

References507

1 Mirela Andronescu, Anthony P. Fejes, Frank Hutter, Holger H. Hoos, and Anne Condon. A new508

algorithm for rna secondary structure design. Journal of Molecular Biology, 336(3):607–624,509

2004. URL: https://www.sciencedirect.com/science/article/pii/S0022283603015596,510

doi:10.1016/j.jmb.2003.12.041.511

2 Édouard Bonnet, Paweł Rzążewski, and Florian Sikora. Designing rna secondary structures is512

hard. Journal of Computational Biology, 27(3):302–316, 2020. PMID:32160034. arXiv:https:513

//doi.org/10.1089/cmb.2019.0420, doi:10.1089/cmb.2019.0420.514

3 Anke Busch and Rolf Backofen. INFO-RNA–a fast approach to inverse RNA folding. Bioin-515

formatics, 22(15):1823–31, 2006.516

4 Ali Esmaili-Taheri and Mohammad Ganjtabesh. ERD: a fast and reliable tool for RNA design517

including constraints. BMC Bioinform., 16:20:1–20:11, 2015.518

5 Juan Antonio Garcia-Martin, Ivan Dotu, and Peter Clote. RNAiFold 2.0: a web server519

and software to design custom and Rfam-based RNA molecules. Nucleic Acids Research,520

43(W1):W513–W521, 05 2015. arXiv:https://academic.oup.com/nar/article-pdf/43/W1/521

W513/7476300/gkv460.pdf, doi:10.1093/nar/gkv460.522

6 Jozef Hales, Alice Héliou, Ján Manuch, Yann Ponty, and Ladislav Stacho. Combinatorial RNA523

design: Designability and structure-approximating algorithm in watson-crick and nussinov-524

jacobson energy models. Algorithmica, 79(3):835–856, 2017.525

7 Stefan Hammer, Wei Wang, Sebastian Will, and Yann Ponty. Fixed-parameter tractable526

sampling for RNA design with multiple target structures. BMC bioinformatics, 20:209, April527

2019. doi:10.1186/s12859-019-2784-7.528

8 Ivo L Hofacker, Walter Fontana, Peter F Stadler, L Sebastian Bonhoeffer, Manfred Tacker,529

and Peter Schuster. Fast folding and comparison of RNA secondary structures. Monatshefte530

für Chemie/Chemical Monthly, 125(2):167–188, 1994.531

9 Robert Kleinkauf, Martin Mann, and Rolf Backofen. antaRNA: ant colony-based RNA sequence532

design. Bioinformatics, 31(19):3114–3121, 05 2015. doi:10.1093/bioinformatics/btv319.533

10 William Andrew Lorenz and Yann Ponty. Non-redundant random generation algorithms for534

weighted context-free grammars. Theoretical Computer Science, 502:177–194, 2013. Generation535

of Combinatorial Structures. URL: https://www.sciencedirect.com/science/article/pii/536

S0304397513000443, doi:10.1016/j.tcs.2013.01.006.537

11 Rune B. Lyngsø, James W. J. Anderson, Elena Sizikova, Amarendra Badugu, Tomas Hyland,538

and Jotun Hein. Frnakenstein: multiple target inverse RNA folding. BMC Bioinform., 13:260,539

2012.540

12 Nono S. C. Merleau and Matteo Smerlak. arnaque: an evolutionary algorithm for inverse541

pseudoknotted RNA folding inspired by lévy flights. BMC Bioinform., 23(1):335, 2022.542

13 R Nussinov and A B Jacobson. Fast algorithm for predicting the secondary structure of543

single-stranded rna. Proceedings of the National Academy of Sciences, 77(11):6309–6313,544

1980. URL: https://www.pnas.org/doi/abs/10.1073/pnas.77.11.6309, arXiv:https://545

www.pnas.org/doi/pdf/10.1073/pnas.77.11.6309, doi:10.1073/pnas.77.11.6309.546

14 Yann Ponty. Ensemble Algorithms and Analytic Combinatorics in RNA Bioinformatics and547

Beyond. Habilitation à diriger des recherches, Université Paris-Saclay, May 2020. URL:548

https://theses.hal.science/tel-03219977.549

15 Vladimir Reinharz, Yann Ponty, and Jérôme Waldispühl. A weighted sampling algorithm550

for the design of RNA sequences with targeted secondary structure and nucleotide dis-551

tribution. Bioinformatics, 29(13):i308–i315, 06 2013. arXiv:https://academic.oup.com/552

bioinformatics/article-pdf/29/13/i308/50704314/bioinformatics_29_13_i308.pdf,553

doi:10.1093/bioinformatics/btt217.554

16 Matan Drory Retwitzer, Vladimir Reinharz, Alexander Churkin, Yann Ponty, Jérôme555

Waldispühl, and Danny Barash. incaRNAfbinv 2.0: a webserver and software with556

motif control for fragment-based design of RNAs. Bioinformatics, 36(9):2920–2922,557

https://www.sciencedirect.com/science/article/pii/S0022283603015596
https://doi.org/10.1016/j.jmb.2003.12.041
https://arxiv.org/abs/https://doi.org/10.1089/cmb.2019.0420
https://arxiv.org/abs/https://doi.org/10.1089/cmb.2019.0420
https://arxiv.org/abs/https://doi.org/10.1089/cmb.2019.0420
https://doi.org/10.1089/cmb.2019.0420
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/43/W1/W513/7476300/gkv460.pdf
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/43/W1/W513/7476300/gkv460.pdf
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/43/W1/W513/7476300/gkv460.pdf
https://doi.org/10.1093/nar/gkv460
https://doi.org/10.1186/s12859-019-2784-7
https://doi.org/10.1093/bioinformatics/btv319
https://www.sciencedirect.com/science/article/pii/S0304397513000443
https://www.sciencedirect.com/science/article/pii/S0304397513000443
https://www.sciencedirect.com/science/article/pii/S0304397513000443
https://doi.org/10.1016/j.tcs.2013.01.006
https://www.pnas.org/doi/abs/10.1073/pnas.77.11.6309
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.77.11.6309
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.77.11.6309
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.77.11.6309
https://doi.org/10.1073/pnas.77.11.6309
https://theses.hal.science/tel-03219977
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/29/13/i308/50704314/bioinformatics_29_13_i308.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/29/13/i308/50704314/bioinformatics_29_13_i308.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/29/13/i308/50704314/bioinformatics_29_13_i308.pdf
https://doi.org/10.1093/bioinformatics/btt217


T. Boury, L. Bulteau and Y. Ponty XXX:17

01 2020. arXiv:https://academic.oup.com/bioinformatics/article-pdf/36/9/2920/558

48986446/bioinformatics\_36\_9\_2920.pdf, doi:10.1093/bioinformatics/btaa039.559

17 Frederic Runge, Danny Stoll, Stefan Falkner, and Frank Hutter. Learning to design RNA. In560

Proceedings of ICLR 2019, 2019.561

18 Michael Schnall-Levin, Leonid Chindelevitch, and Bonnie Berger. Inverting the viterbi562

algorithm: an abstract framework for structure design. In ICML, volume 307 of ACM563

International Conference Proceeding Series, pages 904–911. ACM, 2008.564

19 Douglas H. Turner and David H. Mathews. NNDB: the nearest neighbor parameter data-565

base for predicting stability of nucleic acid secondary structure. Nucleic Acids Research,566

38(suppl_1):D280–D282, 10 2009. arXiv:https://academic.oup.com/nar/article-pdf/38/567

suppl_1/D280/11217894/gkp892.pdf, doi:10.1093/nar/gkp892.568

20 Hua-Ting Yao, Cedric Chauve, Mireille Regnier, and Yann Ponty. Exponentially few RNA569

structures are designable. In ACM-BCB 2019 - 10th ACM Conference on Bioinformatics,570

Computational Biology, and Health Informatics, pages 289–298, Niagara-Falls, United States,571

September 2019. ACM Press. URL: https://inria.hal.science/hal-02141853, doi:10.572

1145/3307339.3342163.573

21 Hua-Ting Yao, Jérôme Waldispühl, Yann Ponty, and Sebastian Will. Taming Disruptive Base574

Pairs to Reconcile Positive and Negative Structural Design of RNA. In Proc. of the 25th575

Annual International Conferences on Computational Molecular Biology (RECOMB’21), 2021.576

URL: https://inria.hal.science/hal-02987566.577

22 Joseph N. Zadeh, Brian R. Wolfe, and Niles A. Pierce. Nucleic acid sequence design via578

efficient ensemble defect optimization. Journal of Computational Chemistry, 32(3):439–452,579

2011. doi:10.1002/jcc.21633.580

WABI 2024

https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/36/9/2920/48986446/bioinformatics_36_9_2920.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/36/9/2920/48986446/bioinformatics_36_9_2920.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/36/9/2920/48986446/bioinformatics_36_9_2920.pdf
https://doi.org/10.1093/bioinformatics/btaa039
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/38/suppl_1/D280/11217894/gkp892.pdf
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/38/suppl_1/D280/11217894/gkp892.pdf
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/38/suppl_1/D280/11217894/gkp892.pdf
https://doi.org/10.1093/nar/gkp892
https://inria.hal.science/hal-02141853
https://doi.org/10.1145/3307339.3342163
https://doi.org/10.1145/3307339.3342163
https://doi.org/10.1145/3307339.3342163
https://inria.hal.science/hal-02987566
https://doi.org/10.1002/jcc.21633


XXX:18 Exact linear-time RNA design for min Helix length 3

A NP-completeness of general separability (Proof of Theorem 3)581

Separability is clearly in NP, since any coloring (certificate) can be checked in linear582

time. We prove hardness by reduction from Bin Packing which we formulate as an interval583

packing problem.584

▶ Problem 5. Interval Packing585

Input: set of pairwise distinct integers A = {a1, · · · , an}, integers k and B586

Output: function x from A to intervals of [0, kB − 1[ such that:587

x(ai) is an interval of size ai588

x(ai) and x(aj) are disjoint for i ̸= j589

x(ai) does not contain both jB − 1 and jB for any i, j.590

This is a reformulation of Bin Packing: fitting items for a total size of B is equivalent to591

finding a partition of a size-B interval into smaller intervals. The problem remains NP-hard592

even when input integers are encoded in unary (which corresponds to the fact that Bin593

Packing is strongly NP-hard). We further require that all items have size ai ≥ 5594

Object and border gadgets. We first give the main gadgets for our reduction, see figure 10595

for more details.596

▶ Definition 6. An object gadget of size q ≥ 3 is a chain of q + 3 nodes c0, . . . cq+2 with a597

child attached to c1 and cq+1 and leaves attached to all other nodes ci.598

A period-p border gadget of size q is a chain of q nodes c0, . . . cq−1 with a child attached599

to ci for all i ≡ 0 mod p and leaves attached to all other nodes ci.600

▶ Proposition 11. If an object gadget of size q appears in a tree with a separated coloring χ,601

with ℓ = min{L(ci) | 1 ≤ i ≤ q} such that602

there are nodes at levels ℓ + 2 and ℓ + (q + 2)603

there are leaves at levels ℓ + i for all 1 ≤ i ≤ q + 3, i ̸= 2, q + 2.604

If a period-p gadget of size q appears in a tree with a separated coloring χ, with the root605

at level ℓ, then there exists some direction d ∈ {−1, 1} such that606

there are nodes at levels ℓ + d · i + 1 for all 1 ≤ i ≤ q, i ≡ 0 mod p;607

there are leaves at levels ℓ + d · i for all 1 ≤ i ≤ q + 3, i ̸≡ 0 mod p.608

Proof. First note that in either gadget, all nodes ci have the same non- color. Indeed,609

nodes with a leaf attached or a leaf sibling cannot be , so all ci are or . Furthermore,610

by the proper coloring constraints, consecutive nodes must be of the same color, so all ci611

have the same color. Thus, writing ℓr for the root level, we have that the level below each612

node ci is ℓr + di, with d = 1 if the whole chain is and d = −1 otherwise.613

Furthermore, all nodes attached to the chain must be by the proper coloring constraints.614

This directly gives the desired property for border gadgets. For object gadgets, the minimum615

level ℓ along the chain is either ℓr (if d = 1) or ℓr − q − 3 (if d = −1), and in both cases, for616

each level ℓ + i with 1 ≤ i ≤ q + 3, there is either a node (i = 2 or i = q + 2) or a leaf617

(otherwise). ◀618

Reduction. Given an instance A, k, B of Interval Packing, we build a tree T as follows:619

We start with a chain P of n + 1 nodes denoted p0, . . . , pn.620

For each i ≥ 1 we attach a chain (denoted Pi) of Bk nodes to pi, and an object gadget621

Ci of size ai to the end of the chain.622

We attach a period-2 border gadget of size 2kB to p0, denoted X1.623
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Figure 10 Left: details of the four main parts of the reduction, i.e. an object gadget Ci of size ai

(in this example with ai = 5), border gadgets X1 and X2 with respective periods 2 and 3, and the
separator chain S). Right: general layout of the tree built in the reduction.

We attach a chain S of kB + 3 nodes to p0 with:624

a leaf to the (iB + 1)st node of S for each 0 ≤ i ≤ k,625

a second child, called separator, to the (iB + 2)nd node of S for each 0 ≤ i ≤ k,626

a period-3 border gadget of size 2kB at the end of S, denoted X2.627

We will now show that there exists a solution for unary bin packing if and only one can find628

a separated coloring for T .629

From interval packing to separated coloring.630

In this section, we consider an interval packing x assigning an interval of [0, kB − 1[ to631

each item ai. We write xi such that x(ai) = [xi, xi + ai − 1[, and we color the tree T as632

follows (see Figure 11):633

All nodes ci in object gadgets, all non-separator nodes in S and all nodes ci in X1 are634

colored ,635

All nodes ci in X2 are colored .636

The first three nodes of Pi are colored , and the last xi nodes of Pi are colored637

(note that Pi has length kB ≥ xi + 3 since xi + ai < kB and ai ≥ 5).638

All remaining nodes are colored .639

We show that this coloring is separated, in particular, we show that the level of each640

node is of one of the following types, and that leaves are not of these types:641

a. 0, 2 and kB + 2642

b. xi + 2 for each 1 ≤ i ≤ n643

c. j − 1 for j ≤ 0, j ≡ 0 mod 2644

d. kB + j + 4 for j ≥ 0, j ≡ 0 mod 3645

For the chain P , all nodes are and have level 0 (type a). For each Pi, there are nodes646

at levels -1 and 0 (types a and c), and the chain ends at level xi. For each object gadget647

Ci, there are nodes at levels xi + 2 (type b), and xi + ai + 2 (type b or a, since this648

corresponds to the start of the next interval or to kB + 2). There are also leaves in Ci at649

each level xi + j for j = 1, 3, 4, . . . ai, ai + 1, ai + 3 which are all values between 1 and kB + 3650

and indeed do not correspond to any of the four types above. For gadget X1, there are651

nodes at odd levels from −1 down to −2kB + 1 (type c), and leaves at even negative levels.652

For the chain S, there are nodes attached at levels iB + 2 for each 0 ≤ i ≤ k, which are653

necessarily of the form xi + 2 (type b) for some i (since each iB must be the start of some654
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Figure 11 Example of the reduction with n = 4 items with sizes {3, 4, 5, 6} to be sorted into k = 2
size-9 bins. A separated coloring is shown, corresponding to the solution {3, 6}, {4, 5} (a selection of
leaf and levels are depicted). Each item is mapped into a branch Pi followed by an object gadget
Ci, containing 2 nodes separated by the size of the item. Leaves in object gadget enforce that
any two gadgets may overlap only if the nodes are aligned. The bins are implemented using the
separator sequence S, with nodes at every Bth position, enforcing that series of consecutive items
are packed into size-B bins. Finally, border gadgets X1 and X2 may not overlap with any other
gadget, and enforce that all object gadgets and separators are packed together in a size-kB range of
levels.

interval of x). Leaves in S are at level 1 and kB + 1, which are not of any type (in particular655

for type b, this is true since ai ≥ 5). Finally, for gadget X2, the nodes are of type d, and656

the leaves occupy remaining levels beyond kB + 4.657

From separated coloring to interval packing658

Suppose now that T admits a separated coloring χ, and consider the gadget X1. Its root is659

at level ℓX1 ∈ {−1, 0, 1}, and by Proposition 11, there exists some dX1 ∈ {−1, 1} such that,660

for each level ℓX1 + dX1j, there is a leaf (for even j) or a node (odd j). Without loss661

of generality, we assume that dx1 = −1 (i.e., the chain in X1 is ): if this is not the case662

we swap and colors overall. Thus, there are leaves and nodes at alternating levels663

between −2 and −2kB + 1 (at least).664

Consider the chain S. For any 0 ≤ i ≤ k, the (iB + 2)nd node of the chain cannot be665

(since it has a leaf sibling) so one of its two children must be . We write s0 ≤ s1 ≤ . . . ≤ sk666

for the levels of such nodes in ascending order: from the position of the nodes we have667

sj+1 ≤ sj + B. Furthermore, s0 ≤ 3 and sk ≤ kB + 3 (using the distances to the root).668

Consider now X2. Its root is at most one level away from a separator, so at level ℓX2669
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with s0 − 1 ≤ ℓX2 ≤ sk + 1. By Proposition 11, there exists some dX2 ∈ {−1, 1} such that,670

for each level ℓX2 + dX2j with 1 ≤ j ≤ 2kB, there is a node (i ≡ 0 mod 3) or a leaf671

(otherwise). In particular, we necessarily have dx2 = 1, since otherwise there would be two672

consecutive levels among levels {−2, −3, −4}, which would raise a conflict with X1.673

For any i ∈ [1, n[, consider object gadget Ci. Its minimum level is ℓi with −kB−n−ai−3 ≤674

ℓi ≤ kB + ai + n + 3 , and by Proposition 11, for each level ℓi + j with 1 ≤ j ≤ ai + 3, there675

is a node (j = 2, ai + 2) or a leaf (otherwise). In particular, ℓi ≥ s0 − 5 (as otherwise676

there would be consecutive leaves at consecutive levels under s0 − 2, in conflict with X1)677

and ℓi + aj ≤ sk + 5 (otherwise there would be leaves at consecutive levels higher than678

sk + 3, in conflict with X2). Finally, since levels s0 and sk have nodes and ai ≥ 5, then679

for i such that ℓi ≤ s0 − 2, we have ℓi = s0 − 2. Similarly, for i such that ℓi + ai + 2 ≥ sk,680

we have ℓi + ai + 2 = sk. And for any i and j, if ℓi + 2 ≤ sj ≤ ℓi + ai + 2, we have681

sj ∈ {ℓi + 2, ℓi + ai + 2}.682

Pick any two object gadgets Ci, Ci′ with ℓi ≤ ℓi′ . Then ℓi ̸= ℓi′ (otherwise, since ai ≠ ai′ ,683

there would be a conflict at level ℓi + min{ai, ai′} + 2), and ℓi′ ≥ ℓi + ai (otherwise, there684

would be a conflict at level ℓi′ + 2).685

We now have all the tools to build an interval packing. We write xi = ℓi − s0 + 2 and686

σj = sj − s0. By the remarks above, we have that intervals [xi, xi + ai − 1[ are pairwise687

disjoint. Furthermore, they are all included in interval [0, σk − 1[. Since they have total688

size
∑n

i=1 ai = kB and σk = sk − s0 ≤ kB, we have σk = kB, which is only possible with a689

fully chain S: so we get σj = jB for all 0 ≤ j ≤ k. And finally, if σj ∈ [xi, xi + ai − 1[,690

then ℓi + 2 ≤ sj ≤ ℓi + ai + 2 which yields sj ∈ {ℓi + 2, ℓi + ai + 2}. This translates into691

σj ∈ {xi, xi + ai}, so necessarily σj = xi and σj − 1 /∈ [xi, xi + ai[. Overall gadget levels692

relative to the first separator s0 give a valid partition of [0, kB − 1[ into pairwise disjoint693

size-ai intervals non-overlapping block border positions jB, so they give a valid Interval694

Packing solution.695

B Non-separable target w/o isolated BPs (Proof of Proposition 10)696

We start with the following remark:697

▶ Proposition 2. If u0, . . . , uk is a path in T and each ui for even i has a leaf attached to it698

then, for any coloring χ of the path, we have χ(u0) ∈ { , } and χ(ui) = χ(u0) for all i.699

Proof. Indeed, by the proper coloring constraint, every node with an attached leaf or with a700

leaf sibling may not be , so all χ(ui) ∈ { , } for all i. Moreover, there can be no direct701

edge between and nodes, so χ(ui) = χ(ui−1) for all i which gives the desired property702

by induction. ◀703

We now build a non-separable instance I without size-1 helix nor (m3•, m5) motif. Let704

a ≥ 2 and b ≥ 2 be even numbers. Let T (a, b) be the gadget from Fig 8, containing a length-a705

path from the to an internal node denoted t, and three length-b branches attached to t.706

Further attach a leaf to every node at an even distance from the root (except t itself). Note707

that all helices in T (a, b) have length 2. The level of a copy of some T (a, b) gadget is the708

level reached under node t of this gadget.709

We build the instance I as a tree containing 5 copies of the gadget T (a, b), precisely710

I = (((T [10, 100], T [20, 100])), ((T [30, 100], T [40, 100])), T [50, 100]).711

First note that for a copy of gadget T (a, b) at level ℓ in any separable coloring, there is712

a node at level ℓ, since the node t has three children and at least one must be . Also,713

there exist two integers u, v such that, for every x ∈ [1, b[, there is a leaf at level ℓ + ux if x714
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is odd, and level ℓ + vx if x is even. Indeed, pick one gray child U of t, and one non-gray715

child V . All vertices under U form an all-white or all-black branch by Proposition 2 (we let716

respectively u = −1 and u = 1), and vertices at levels l + u, l + 3u, . . . , l + bu (or l + (b − 1)u)717

have a pending leaf. We similarly define v = 1 if V is black and v = −1 if V is white, and718

vertices at levels l + 2v, l + 4v, . . . , l + bv (or l + (b − 1)v) have a pending leaf. From the719

above, if there are nodes at levels ℓ1 and ℓ2 with ℓ − b ≤ ℓ1 < ℓ < ℓ2 ≤ ℓ + b, then ℓ1 ̸= ℓ2720

mod 2 (since otherwise, one of ℓ1, ℓ2 could be written as ℓ + ux with even x, so that level721

would be a leaf level).722

Aiming at a contradiction, assume that I admits a separable coloring. Let ℓ1 ≤ ℓ2 ≤723

ℓ3 ≤ ℓ4 ≤ ℓ5 be the levels of all five copies of the T [a, b] gadgets of I, in ascending order.724

Then from the length of the branches from the root, we have ℓi ∈ [−50, 50] and ℓi ̸= ℓj .725

Then by the remark above applied to the gadget with level ℓ2, we have ℓ1 ̸≡ ℓ3 mod 2, and726

similarly using gadgets with level ℓ4 we have l3 ̸≡ l5 mod 2 and l1 ̸≡ l5 mod 2, leading727

to a contradiction (any three integers such as ℓ1, ℓ3 and ℓ5 may not have pairwise distinct728

parities).729

C Leveraging random generators at fixed modular levels into a730

uniform random generation of separated sequences731

▶ Theorem 12. Uniform Modulo Separated Generation can be performed in an732

average-case complexity that is Fixed Parameter Tractable for the modulus parameter m.733

We consider a rejection-based approach, which starts by precomputing all #DesignsξL
in734

time Θ(n.m.2m) (see Section 4.2), and accumulates them into Zm :=
∑

ξ′
L

⊆[0,m[ #Designsξ′
L

.735

It then iterates the following steps until a suitable sequence is returned:736

1. Choose some ξL ⊂ [0, m[ with probability P(ξL) = #DesignsξL
/Zm737

2. Generate a ξL separated sequence w738

3. Compute the number Ξw of ξ′
L ⊂ [0, m[ such that w is ξ′

L separated739

4. Accept/return w with probability 1/Ξw; Reject/restart from 1. otherwise.740

Due to the full reset on each rejection, the emission probability pw of any suitable w does
not depend on the prior sequence of rejections (folklore, proven in [14, pp 77]), and we have:

pw ∝
∑

ξL such that w
is ξL separated

P(ξL) × P(w | ξL) × 1
ΞL

=
∑

ξLsuch that w
is ξL separated

#DesignsξL

Zm
× 1

#DesignsξL

× 1
Ξw

Some terms directly cancel out and, by definition, we have
∑

ξLsuch that w
is ξw separated

1 = Ξw. It follows741

that pw ∝ 1/Zm, a term that no longer depends on w, from which we conclude that the742

generation is uniform.743

Complexity-wise, a prior accumulation of the 2m terms #DesignsξL
, each smaller than744

4m, into a suitable data structure (see Lorenz and Ponty [10] for details) enables a random745

choice of ξL (Step 1.) in Θ(n.m). Once ξL is chosen, the above DP algorithm uniformly746

generates w in time Θ(m.n) (Step 2). The computation of Ξw (Step 3) is trivial and consists747

in identifying, in time Θ(n + m), the subset Φw ⊆ [0, m[ of modular levels that are populated748

by neither leaves nor nodes in χw. Indeed, those levels represent the only degrees of749

freedom available while choosing a compatible ξL, the others modular values being forced750

to either or leaves. Since such modular values can be independently chosen to be in751

or out of ξL, then we have Ξw = 2|Φw|. Clearly, we have Ξw ≤ 2m, so the expectation752

of the number of (independent) rejections admits an upper bound in 2m, and the overall753

average-case complexity is in Θ(n.m.2m).754
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