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Study of the behaviour of Nesterov Accelerated Gradient in a
non convex setting: the strongly quasar convex case

J. Hermant* J.-F. Aujol* C. Dossalf A. Rondepierref

Abstract

We study the convergence of Nesterov Accelerated Gradient (NAG) minimization algorithm
applied to a class of non convex functions called strongly quasar convex functions, which can
exhibit highly non convex behaviour. We show that in the case of strongly quasar convex functions,
NAG can achieve an accelerated convergence speed at the cost of a lower curvature assumption.
We provide a continuous analysis through high resolution ODEs, in which negative friction may
appear. Finally, we investigate connections with a weaker class of non convex functions (smooth
Polyak-Yojasiewicz functions) by characterizing the gap between this class and the one of smooth
strongly quasar convex functions.

Keywords: Non-convex optimization, first order algorithms, strongly quasar convex, convergence
rates, geometrical properties.

1 Introduction
We are interested in the following unconstrained minimization problem:

min F(z) := F* (P)

z€R4

where F': R? — RU {400} is such that arg mingcge F(z) is non empty. For large scale optimization,
a popular class of algorithms are the first order algorithms, because of the relative cheapness of the
iterations. These algorithms only make use of the function and its gradient, which are more compu-
tationally tractable than the Hessian that may be used by second order algorithms. We will study
a specific type of first order algorithms called Nesterov Accelerated Gradient algorithms, which are
variants of the gradient descent including an inertia mechanism. In the convex setting it is well known
that among first order algorithms, it allows to get an accelerated rate of convergence compared to
gradient descent. In the convex case, the seminal version of Nesterov achieves a rate of convergence to
the minimum F* of O (n%) [31], this bound being optimal and improving over the O (%) rate of the
gradient descent. When F is u-strongly convex and L-smooth (i.e. C' with a L-Lipschitz gradient),
another version of NAG [32] leads to an analogous acceleration phenomenon as we upgrade a (1 — £)
linear convergence rate into (1 — \/%), where £ < 1 may be extremely low for high dimension func-
tions. In recent applications, the problem of minimizing non convezr functions has become crucial, e.g.
in the field of machine learning. However, it is also known that the lack of regularity cancels these
accelerations phenomenons. For example it has been shown that gradient descent is optimal among
first order methods for the (non necessary convex) class of functions with a Lipschitz gradient [10], see
also [40), 18] for similar results on other classes of functions. This means that in some cases, the benefit
of Nesterov accelerated gradient in term of global convergence rate can not be proved. Convexity
is however non necessary to get acceleration over gradient descent: for example [9, 22] show that a
modified version of NAG accelerates over gradient descent for the class of functions with Lipschitz
gradient and Hessian. In the case of convexity relaxation, the quasar convezr (originally weak-quasi
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convex [20]) class of functions has gained a rising interest [21], B9 [14], 24 [I6]. These functions are
defined by the following inequality:

Elle* - 2 1

F* > F(z) + %(VF(x),m* —z)+
with 2* a minimizer, 2 an arbitrary point belonging to R?, v € (0,1], u > 0. The case u > 0
defines strongly quasar conver functions, which are the main focus of our work. We argue that this
class is interesting to study NAG in a non convex setting. Indeed while these functions verify specific
properties (only one critical point, being the global minimizer), they still may exhibit highly non convex
behaviour. Moreover, it has been empirically observed that the loss function of some neural networks
has a quasar-convex like structure [43].

1.1 Related work

In the case of (strongly) quasar convex functions, there exists first order algorithms achieving acceler-
ated rates similar to those achieved in the (strongly)-convex case. In the L-smooth and (1, u)—strongly
quasar convex setting, [42] uses a Runge Kutta discretization procedure of the Heavy Ball ordinary
differential equation to get a 1 — (%£)” convergence rate, v = 2{93131) where s is such that the sth
derivative is Lipschitz. This means that in this case the function is needed to be high order smooth
to be close to the 1 — \/% accelerated rate. The authors of [39] apply the continuized acceleration
framework [I3] to (v, u)-strongly quasar convex functions, which consists in a continuous stochastic
differential equation approach leading to a stochastic version of the Nesterov accelerated Gradient.
This stochastic version achieves an accelerated rate 1 — ’y\/% in expectation, and convergence of it-
erations with high probability can be deduced. Finally [19] [34] shows accelerated rates in term of
number of iterations, but each iteration relies on a low dimensional sub-optimization problem to solve.
In [21], the cost of this sub-problem (binary line search) is explicitly computed, and the authors show
that their algorithm achieves an almost optimal rate (up to a log factor) for L smooth (v, u)-strongly
quasar convex function in term of gradient and function evaluations.

Among recent interpretations of NAG (e.g. [8[23]), an important one is the ODE framework, in which
these algorithms are seen as a discretization of an ordinary differential equation [35, [38]. One can
show similar convergence results for the algorithms and for the solutions of these equations, mainly
via Lyapunov approaches. This continuous analog gives interesting insights: it enables physical inter-
pretation, convergence in this setting may be proved with less technical considerations than for the
discrete counterpart, and importantly the strategies of proof may be adapted when we want to trans-
pose results in the discrete setting, aiming to show algorithms convergence. This has been extensively
used in a convex setting, see e.g. [38] 37, Bl Bl (2, 36l 27]. However to the best of our knowledge, it has
not been used yet in a quasar convex setting. In this paper, we will make a step in this direction using
this framework to analyze convergence in the setting of strongly quasar convex functions.

1.2 Contributions

Although in term of gradient/functions queries, accelerated convergence has already been achieved in
[21], we believe that the adaptive process used lower the understanding of the algorithm behaviour in
this setting, and in particular we can hardly interpret this algorithm as a discretization of a continuous
damped system. Thus we address the following question.

Can Nesterov accelerated gradient algorithm achieve acceleration for the class of
strongly quasar convex functions without solving an optimization sub-problem at each
iteration 7

To explore this question, we provide the following contributions:

1. We show that NAG achieves an accelerated rate of convergence for the class of smooth strongly
quasar convex functions when adding an assumption over lower curvature. We extend this result
to composite non differentiable functions, in which case specific difficulties appear.

2. We provide a continuous analysis of the high resolution ODE associated to NAG in the strongly
quasar convex setting. We will see that the gradient correction term induces weird behaviour



for non convex functions (e.g. potentially negative friction), although we can show accelerated
convergence rates. We highlight a divergence between continuous and discrete analogies when
the considered function is too non convex.

3. We prove a more general result about minimization in non convex setting: we give a geometric
necessary condition for functions belonging to a subclass of strongly quasar convex functions
(Polyak-Lojasiewicz functions) to be able to achieve accelerated convergence rates with first
order methods. It is done by characterizing the gap between this class and the one of strongly
quasar convex functions. We also give new properties of strongly quasar convex functions, as a
property of on average strong convexity behaviour. We also give a construction of a pathological
non convex function to prove that smooth strongly quasar convex function are not necessarily
locally convex.

Organisation of paper In section 2 we define the class of functions we study in this paper, and
give a brief overview of their potential non convex behaviour. In section 3 we discuss the convergence
of NAG applied to strongly quasar convex functions. In section 4 we present a continuous analysis
of NAG in strongly quasar convex setting. In Section 5 we present new properties of strongly quasar
convex functions. In section 6 we present our numerical experiments.

2 Preliminaries

Throughout the paper, we will often consider differentiable and non necessarily convex functions F' :
R? — R. A function F : R? — R is said L-smooth for some L > 0 if F is C' and has a L-Lipschitz
gradient:

V(w,y) € RT x RY, [|VF(z) — VFE(y)| < Lllz —y]|-

Note that F'is L-smooth if and only if F' admits lower and upper quadratic bounds parameterized by
L at every point. More precisely:

Property 1. Let F : R* — R. F is L-smooth for some L > 0 if and only if it verifies for all z,y in
Re:
L L
F(z)+(VF(2),y = z) = Sllo = y|* < F(y) < F(2) + (VE(@),y — 2) + o = y]*. (2)

Proof. The fact that L-smooth implies the inequality is just the well-known descent lemma, see
for example [32]. The converse is also well known when dealing with convex functions. Less trivially,
it still holds in the non convex case. To the best of our knowledge the equivalence is not proved in the
literature, but a proof has been proposed onlineﬂ and is adapted here to our context.

Assume first that F' verify with L = 1. Let d € R%. Evaluation of at 4 different pairs of points,
we get:

F(erd)—F(JJ)—<VF(33),y+d—%‘><%||y+d—xll2 (3)
l*ﬁ(’db‘—ci)—F(y)—<VF(y),9c—d—y><%|Iy+d—xll2 (4)
—(Fly+d) - F(y) = (VF(y),d)) < %Ildl\2 (5)
—(F(z —d) = F(z) = (VF(z),=d)) < %Ild\l2~ (6)

Adding all this inequalities yields:
(VF(z) = VF(y),x —y —2d) < |ly +d — z|* + [|d||? (7)

Set g := VF(z) — VF(y) and choose d such that  —y —2d = g. Then d = (z —y — g) and
y+d—ax=—3(x—y+g). This results in:

1 1 1 1
ol < glle =y + gll> + 7lle =y — gl* = 5z — P + 3 gl )

! Characterization of Lipschitz derivative, https://math.stackexchange.com/q/4264948 (version: 2021-10-01), Math-
ematics Stack Exchange
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which implies F' is with 1-Lipschitz gradient. It is straightforward to extend it to functions verifying
with arbitrary Lo > 0, as it implies Lﬂo verify with L = 1, inducing VL—f is 1-Lipschitz, thus
inducing the result. O

This provides quadratic lower and upper bounds on the function, both parameterized by the con-
stant L. However, we will later consider different parameterizations for these bounds. To do so we
now introduce the class of (a, L)-curvatured functions.

Definition 1. Let F : RY — R be a differentiable function and (a,L) two real constants with L > 0
and a < L. The function F is said to be (a, L)-curvatured if it satisfies for all x,y € R4:

F() + (VF(@).y — ) + 5o~ 3l> < F(y) < F@) + (VF@),y—2) + 2z —yl”. (9)

This is a generalisation of L-smoothness as we allow for different characterizations of lower cur-
vature. In particular, observe that a (—L, L)-curvatured function is exactly a L-smooth function, a
(0, L)-curvatured function is a L-smooth convex function, and a (u, L)-curvatured function with 4 > 0
is a L-smooth and p-strongly convex function.

In this paper we will also consider the subclass of C? functions having a p-Lipschitz Hessian (for some
p = 0), i.e. functions that verify the following:

V(z,y) e R xR, |||V?F(z) — V2F(y)||| < pllz — ylI. (10)

where for the matrix norm |||.|||, we choose the norm induced by the euclidean norm on R%.

2.1 Strong convexity and the question of acceleration

In the paper, we study a relaxation of a well known property called strong convexity, which we recall
below. Note that as we mainly studied the differentiable functions case, we state the definitions in this
case. In Section [3.3] we will consider possibly non differentiable functions.

Definition 2. Let F : R? — R be a differentiable function. The function F is said p-strongly convex
for some p > 0 if it satisfies:

V(w,y) € R xR, F(@) + (VF().y — ) + Sl =yl < F(y), (1)

This is a stronger hypothesis than convexity (which corresponds to the above inequality with
@ = 0). Strongly convex functions are not only lower bounded by linear approximations, but by
quadratic approximations. In particular, these functions do verify the p-quadratic growth hypothesis.

Definition 3. Let F : R? — R such that X* = argmin F # () and F* = min F. The function F has
w-quadratic growth for some p > 0 if:

Vz € R, gd(x,X*)Q < F(z) — F*. (12)

It is straightforward to see that under the strong convexity assumption, the function F' has a
unique minimizer. The quadratic growth property ensures that, around this minimizer, the function
can not become flatter than a quadratic. This gives a control about how fast the gradient can vanish
to zero when approaching the minimizer. It allows, for L-smooth and p-strongly convex functions, the
gradient descent method to generates a sequence {x,, }nen that yields a linear convergence F(x,,)—F* <
@) ((1 — %)") As mentioned in introduction, using other first order methods, this rate can be improved
into a O ((1 — y/E)™) rate. Noticing that necessarily 1 < L, and that in high dimension, the ratio £
(which represents the inverse of the conditioning of the function to minimize) can be very small, this
is actually a significant improvement.



Acceleration for relaxations of strong convexity In practice however few problems really suit
the strong convexity hypothesis. Therefore, there is a need to replace it with weaker assumptions. p-
strong convexity provides a lower bound on the function, while L-smoothness provides an upper bound.
Many relaxations of p-strongly convex and L-smooth functions generalize this fact by defining another
pair of assumptions, a lower one parameterized by a constant p > 0 and an upper one parameterized by
a constant L > 0. In many cases, the property u < L and the convergence rate associated to gradient
descent in O ((1 - %)") remains true. This enables to generalize, in these cases, the characterization
of acceleration as the exchange of & for /. See [I7] for an insightful discussion about lower and
upper conditions.

An example of such relaxation is the class of aforementioned L-smooth functions having a u-
quadratic growth. However this is a too weak relaxation, since we lose almost all control over the
function. In particular critical points can be non (global) minimum.

This is why we need to consider slightly stronger hypotheses, such as the class of p-Polyak-
Lojasiewicz functions (p-PL), which is a non-convex relaxation of the class of p-strongly functions:

Definition 4. Let F : R* — R be a differentiable function with X* = argmin F # () and F* = min F.
The function F is p-Polyak-Lojasiewicz (u-PL) for some u > 0, if:

1
Vr € RY, F(z) — F* < ﬂ||VF(:E)||2. (13)

Note that u-PL functions have a p-quadratic growth [I5]. The Lojasiewicz property [29, B0] is a key
tool in the mathematical analysis of continuous and discrete dynamical systems, initially introduced
to prove the convergence of the trajectories for the gradient flow of analytic functions. The Polyak-
Lojasiewicz property is nothing more than the global version of the Yojasiewicz property with an
exponent %, and appears in important practical problems [28] [].

It has been shown in [23] that gradient descent ensures, for L-smooth functions satisfying u-PL
property, a linear convergence: F'(x,) — F* < (1 — £)"(F(x9) — F*). Importantly, in [40] is computed
a lower bound of the number of gradient queries needed to achieve, with a first order method, a point
# such that F(&) — F* < e(F(zo) — F*) for some € > 0. They show that for every first order method,
there exists a function such that this number of gradient queries is of the order £ log (é) This bound
is achieved, up to a constant, by gradient descent. Strikingly, it induces that for these functions, the
Nesterov accelerated gradient algorithms are prevented to achieve an accelerated linear convergence
of the form F(z,) — F* < K1(1 — /E)"(F(2¢) — F*), where K; would have been a positive constant
independent of p and L. This implies that we need a more restricted class of functions to achieve
this acceleration, and leads us to consider a stronger hypothesis, namely the strong quasar convexity,
which is another relaxation of strong convexity.

2.2 A relaxation of strong convexity: strong quasar convexity

In this section we define the notion of strong and non-strong quasar convexity and then give a brief
insight on why this class of functions can exhibit highly non convex behaviour. This last point will be
more deeply discussed in section

Definition 5. Let F : R — R a differentiable function with a non-empty set of minimizers and
F* = min F. Let 2* be a minimizer of F and v € (0,1], p > 0. The function F is said y-quasar
convez with respect to x* if it satisfies

1
Vo € RY, F* > F(z) + ~(VF(z),z* — x), (14)
Y
and (v, p)-strongly quasar convex with respect to x* if:

1
Vo € RY, F* > F(z) + —(VF(z), 2" —2) + &

5 57" ==l (15)

We refer to any minimizer z* at which holds, as a quasar-convex point of F'. The class of
(strongly) quasar convex functions was first introduced in 2017 by [20] (with v > 0) who refer to it
as weak quasi-convezxity, implicitly re-used by [38] and [4, [I] as a flatness condition (with v > 1), and



revisited more recently in [2I] that gave quasar convexity its name. A nice property of this class of
functions is that any critical point of (strongly) quasar convex function F is a global minimizer of F.

Moreover, the set of minimizers X* of a quasar convex function has some strong regularity: it is a
star convex set i.e. there exists z* € X™* such that:

Vee X*, vt e0,1], te* 4+ (1 —t)z e X, (16)

and is reduced to a single point for strongly quasar convex functions, see [21, Appendix D, Observations
3 and 4].

Lastly, observe that the Polyak-fojasiewicz and the quadratic growth properties can be seen as
relaxations of strong quasar convexity, as stated by the following result:

Proposition 1. Let F : R — R be a (v, i1)-strongly quasar convex function for some (v, ) € (0, 1]xR

and x* its minimizer. Let F* = min F. Then:
1. F is uy*-PL, i.e.

1

Va e RY,
! 272u

IVF(@)|* > F(x) - F*. (17)

2. [21), Corollary 1] F has a %—quadmtic growth, i.e

Vz eRY, F(z) - F* > 7_7”3: — | (18)

s

hx, y)

t\\i@

Fitu+(1-tw)

Figure 1: An example of strongly quasar convex function built as , whose explicit expression is
given in section [6] On the left, the graph of this function. On the right, a cut of this graph along a
segment [uv], where u,v € R?, and such that the minimizer does not belong to this segment.

Strongly quasar convex functions may exhibit highly non convex behaviour. Let us take the con-
struction of such functions described in [25] 2] to highlight the non-convexity of strongly quasar
convex functions. Let f : R — R such that it is (v, u)-strongly quasar convex, with f* = f(0) = 0.
Let g : S“~! — R be an arbitrary continuous function defined on the unit circle of R such that g > 1.
Consider

he) = F(llzl)g (”|> 2 eRL (19)

This function is (7, u)-strongly quasar convex independently of the choice of g (see |21, Appendix D.3|
for the non strongly quasar convex case, and see Appendix for the strongly quasar convex case).
An example of such a function is displayed on the left side of Figure[I] Radially this function behaves
like cf(J|z||) where c is constant. Restricted to this direction, the function is unimodal and critical
points are minimizers |21, Observation 1]. However since g may be extremely non convex, we see that
taking the segment between two arbitrary points g and x;, smoothness aside we will have no control



over the behaviour of the function (e.g. right side of Figure [1f).

This lack of local regularity may not be a big deal with gradient descent, as it follows a descent direction
at each iteration. However, in the case of NAG, the presence of inertia prevents from controlling the
direction of the trajectory. We will see later that this lack of local regularity complicates considerably
the potential acceleration of NAG.

3 Acceleration with curvature assumption for strongly quasar
convex functions

3.1 The gradient descent case

As we are interested in faster algorithms than gradient descent, we first set the convergence results
associated with this algorithm. We recall it is defined for some o € R?%, s > 0 by the following recursive
formula:

Tpt1 = Tp — SVEF(xy). (GD)

Let us first recall a known result for smooth strongly convex functions. In the p-strongly convex and
L-smooth case, it is well known that gradient allows for linear decrease.

Proposition 2 ([32]). Let F' : R — R be a L-smooth and u-strongly convex function for some
0 < p <L, and x* its minimizer. Let F* = min F. Let (x,)nen be generated by (@) with stepsize
s = % Then:

1

n
T eN, o, —a* 2 < (1= 5 llzg =% (20)

Proposition [2] can be extended to the class of strongly quasar convex functions. To the best of our
knowledge, the following proposition is not clearly stated in literature. The case v = 1 is proved in
[17]. A result can be found in the stochastic case in [I6], from which a result for the deterministic case

can be deduced. Their stepsize is however lower than ours, so it yields a slower rate of convergence.

Proposition 3. Let F : R? — R be a L-smooth and (v, 1)-strongly quasar convex function for some
0 <pu<L,~e(0,1], and let x* be its minimizer. Let (z,)nen be generated by (@) with stepsize
s < % Then:

VneN, F(z,)— F* < %(1 —yus)"(F(zo) — F7). (21)
Proof. Let z* be the quasar convex point of F' and:
Bn = Flan) = F* + Slan — 2|2 (22)
We compute
Buti = By = Fleni1) = F(@a) + Sllenss — 2|2 = Sz — 2| (23)
Flins1) = Fan) = ps(en =" VE@)) + SEIVEGE (@)

The L-smooth inequality implies that: F(xn41) — F(z,) < —%HVF(xn)H2 provided that s < %
Combined with the (v, u)-strongly quasar convexity to control the scalar product, we get:

2
s . f . 0
Euit = En < —SIVF(a) | = us(F(wn) = F) = st lan — o |2 + 25 |V F@a)? - (25)

= 2 (s = 1) IVF(@a)|2 = yps (Fl@a) = F* + &l = ") (26)
as s < % the first term is negative, inducing
E,i1— B, < —yusE, = Enp1 < (1 —yps)E,,. (27)
By induction, we then deduce:
YneN, F(z,) — F* < (1 —yps)"(F(zo) — F* + ngo —z*|?). (28)
Using the %—quadratic growth induced by the (v, u)-quasar strong convexity of F (see Corollary 1
[21]), we finally get the expected convergence rate. O



3.2 The Nesterov Accelerated Gradient case

Nesterov accelerated gradient scheme to optimize L-smoooth and p-strongly convex function (NAG-
SC) is often written in the following way [33 Algorithm (2.2.22)]:

o E
Yn = Tn + 17 7 (@0 = T (NAG-SC 2 POINTS)
Tni41l = Yn — %VF(yn)

L L
Zn = 1+ — | Yn — —Tn,
7 7

this algorithm can be rewritten as a 3-points scheme, see [33 Algorithm (2.2.19) with vy = pyl:

Introducing the auxiliary variable:

Yn = (1+i/7> o+ (1= 1+1 =)
L L
Tni1 = Yo — LVF(yy) (NAG-SC 3 POINTS)

Zny1 = (1 - \/%)Zn + %(yn - %VF(yn))
We have the following well known result.

Theorem 1 ([32]). Let F : R? — R be L-smooth and p-strongly convex function for some 0 < pu < L,
and x* its unique minimizer. Let F* = min F. Let (z,)nen be the sequence generated by (NAG-SC

POINTYS|) with xg = z9. Then:

N, Fla)— < (14/8) (Flao) = F*+ Gl - 17). (29)

Observe that this is a considerable improvement over the O ((1 — %)") rate given by gradient
descent (stepsize +), as £ < 1 may be extremely low for high dimensional functions.
Let us now introduce a generalization of the classical (NAG-SC 3 POINTS) algorithm, see Algo-

rithm [l

Algorithm 1 Nesterov Accelerated Gradient (3 points form)

Let zg = x9
forn=0,...,do
Yn = QnTyp + (1 - an)zn
Tnt1 = Yn — SVEF(yn)
end for

For (strongly) quasar convex function minimization, this algorithm is used to get acceleration,
in expectation and in probability with stochastic coefficients in [39], and deterministically in [21].
However importantly, the latter uses a binary line search at each iteration of the algorithm to compute
a good ay,. The cost of this computation in term of function and gradient evaluations results in a log
factor in the convergence bound. Yet we believe that this adaptive process lower the intuition we can
get about the algorithm. In particular, we can hardly interpret this algorithm as a discretization of
a continuous damping system. This is the gap we address in the following result, where we use the
notion of curvature function @:

Theorem 2. Let F : R* = R be a (v, ju)-strongly quasar convex function for some (v, p) € (0,1] x R
and F* = min F. Assume additionally that F is a (p, L)-curvatured function for some L > 0 and
p < L. Let (xn)nen be a sequence of iterates generated by Algorithm 1 with parameters:

Sg%; O‘n:ﬁ\/ﬁa ﬁnzl—fyv‘us’ nnzﬁ



If p > —'y\/g, then:
V€N, Fla,) = F* < 2 (1= i) (Flao) = F) (30)
See the proof in Appendix [C.1.1} where we prove linear decrease of the following Lyapunov function
E, :F(wn)—F*—l—gHzn—x*Hz. (31)

More precisely, we show F,1 < (1 — 7\/%)1*7”, V¥n € N. The (p, L)-curvature assumption with p < 0
allows us to replace convexity by a weaker bound control, namely:

Wi € N, (VF(y) 20 = 9a) + F(ya) = Flan) < =l = gl

Fixing s = %, the curvature bound becomes p > —vv/uL = —’y\/%L. Parameterizing the algorithm
with an arbitrary step size s < % allows us to highlight that we can trade restriction on the curvature
with convergence speed. Formally:

Corollary 1. Let F : RY — R be a L-smooth and (v, ju)-strongly quasar convex function for some
0<pu<L,ve (0,1, and let F* = min F. Let (xy)nen generated by Algorithm 1 with parameters

s=v*%, a, = ﬁ\/ﬁw Bn =1—~v/us and n, = % Then:

2 AN
_Fr < Z A2 — F*).
W €N, Fle,) = F* < 2 (1-922)" (Plag) ~ ) (32)
Proof. Just solve —'y\/g = —L, we get s = vzﬁ. O

We see that we can delete the curvature assumption, but at the cost of acceleration. The negative
curvature problem has already been observed under other non convex hypothesis. Authors in [9] 22]
prove acceleration convergence to a critical point in a Hessian Lipschitz setting, where they use NAG
when curvature between iterates is not too negative, otherwise an alternative step using Hessian
Lipschitz property is performed. In our case, alternative step using Hessian Lipschitz property is
hardly useful as our Lyapunov designed to obtain linear convergence is less adapted to this argument.

Comparison with the algorithm of [2I, Algorithm 3] (binary search) The algorithm 3

presented in [21] is parameterized with s = 7 (where the parameter L,, is computed by backtracking)

and with the same sequences 7,, and (,, as defined in Corollary [I} while their «,, sequence is computed
using a binary line search process, and is not explicit. This results in a log (’y‘lﬁ> factor added to

the number of gradient and function evaluations needed, that does not appear in our convergence rate.
This means that on the restricted class of functions defined in Theorem [2[ with s = %, the bound
provided in Theorem [2] is better by this log factor.

2 points scheme form of algorithm 1 Following arguments of [26], we can rewrite our algorithm
in a 2 points sequence scheme, as stated with this result:

Proposition 4. The algorithm 1 with parameters s < %, ap = ﬁ, Bn =1—yy/ps and n, = %

can be written as the following 2 points scheme:

14/1us 14/1s

(NAG-SQC 2 POINTS)
Tn4+1 = Yn — SVF(yn)

{ Yn = Tn + T (2, — 1) + 22 (y = 1) (@0 — Ynt)

When v = 1, we recover the classical Nesterov scheme for minimizing strongly convex functions.
Note that 2 points scheme versions are widely present in the literature. Considering the 2 points or
the 3 points version gives different interpretations of the algorithm, and switching from a version to
another is not obvious. The proof of Proposition [4]is in Appendix



3.3 Composite non differentiable case

A natural way to extend the differential case to the non differentiable one is to consider the class of
composite functions F = f + g, where f is assumed to be at least differentiable and strongly quasar
convex, and ¢ convex, proper lower semi-continuous, and such that its proximal operator [I1] can be
computed:

pros, o) = argmin (4(0) + o~ ). (53)

Typical example of such functions are the composite functions with a ¢; penalisation term: F =
f + l|z|li. The idea is then simply to replace the gradient in Algorithm 1 by the composite gradient

mapping:
Vi(yn) —

which may be seen as a generalization of the gradient (we recover it when g = 0). It leads us to
Algorithm 2.

! (yn - prOng(yn - Svf(yn)D (34)

S

Algorithm 2 Proximal Nesterov Accelerated Gradient (3 points form)

Soit zg = xg
for k =0,..., do
Yn = OpnTp + (1 - an)zn
Tnt1 = prOng(yn — sV f(yn)) = Ts(yn))
Znt1 = Bnzn + (1= Bn)yn — L:(yn —Ts(yn))
end for

Extending Theorem [2] to the non-differentiable case introduces an additional technicality since a
minimizer/quasar point of f is generally not a minimizer of the composite function F. In other words,
if f is strongly quasar convex with respect to its minimizer x;, there is clearly no guarantee that
this assumption holds at a minimizer 2}, of F. Therefore, we propose an extension of strong quasar
convexity with respect to another point than a minimizer as suggested in [2I, Appendix D.2]:

Definition 6. Let f : R — R and & € RY. The function f is said (1, u)-strongly quasar convex with
respect to T if:

Vo e R, Wt e [0,1], f(td+ (1 —t)z) +t(1—1) gugz —a|® <tF@E) + (1—t)f(2),
or equivalently, when f is additionally assumed to be differentiable:

Vo €RY, (@) > f(@) + (V@) & — ) + Sllé — % (35)

The equivalence is showed in [2I, Lemma 11|, whose proof works for & not being a minimizer, if we
consider (7, u) strong convexity with v = 1.

The v < 1 case Taking v < 1 does not cope well with quasar convexity with respect to an arbitrary
point. Assume that for some f € C!, u > 0 and « € (0, 1] the following holds:

Vo € RY, () > /(@) + (Vf(@).d —a) + o —al®. (36)

with & such that Vf(&) # 0. Set x;, = & — hV f(&), h > 0. Using a order 1 Taylor-Young development
we have:

f(@) = flen) + (VI (xn), & —xn) + o(|[& — xnl]) = flen) + MV f(zn), V() +o(h)  (37)
Combining this with evaluated in z = x,, we have:

@1, 1) (1 1)+ 24 > Wposa)? (39)
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As h goes to 0, the right hand side goes to 0 while the left hand side goes to ||V f(Z)]| (1 - %) because
f is C1. As the latter is strictly negative for v € (0, 1), it implies that in our definition v must be
equal to 1.

Observe now that Definition [] is not an empty definition, and that such functions can easily be
defined. A possible construction consists in adding some convex function to a (1, u)-strongly quasar

convex function.

Lemma 1. Let f: R — R be (1, uu)-strongly quasar convex with respect to & and g : R? — R be conver,
both non necessarily differentiable. Then F := f + g is (1, u)-strongly quasar convex with respect to .

Proof. The proof is straightforward by summing the respective inequalities of (1, u)-strong quasar
convexity of f and convexity of ¢ written between any € R? and %. O

As a special case of Lemma |1} observe that if f is (1, u)-strongly quasar convex with respect to its

minimizer 2%, then z7% is not necessarily a minimizer of F', but it is nevertheless a quasar convex point
of F.

Convergence result for Algorithm Using the extended definition of (1, u)-strongly quasar
convexity, we are ready to state our result.

Theorem 3. Let F = f + g where f : R — R is a L-smooth function for some L >0 and g : R* = R
18 convezx, proper, lower semi-continuous. Assume that F' has a non empty set of minimizers and that
fis (1, p)-strongly quasar convex with respect to x§ € argmin F for some 0 < p < L and (p,L)-
curvatured for some p < L. Let (zn)nen be the sequence of iterates generated by Algorithm @ with
parameters:

Sg%,an:1+\1/ﬁ7ﬁn:1_\//ﬂ;nn:%'
pr}—\/g, then:
Vn €N, F(z,)— F*<2(1—/ps)" (F(zg) — F). (39)

Proof is in Appendix [C-I.3] It uses the same Lyapunov function as in Theorem [2] and it makes use
of the theorem from [7].
It might seems weird, for practical purpose, to ask strongly quasar convexity at a point which is not
a minimizer of the aforementioned function. It allows to show that theoretically, convexity of f is not
necessary to extend the accelerated result in the differentiable case to the composite case. Note that
together with difficulties of defining (strongly) quasar convex functions with respect to an arbitrary
point, arguments used in our proof do not work if v < 1. In that case, the v < 1 relaxation is non
trivial, while in some cases it just demands computations adjusting.

Remark As a direct consequence of Lemma [I] if F' is such as it is defined in Theorem [3] it is then
(1, p)-strongly quasar convex with respect to its minimizer z7%.

4 Continuous analysis

4.1 High resolution ordinary differential equation

Considering Nesterov accelerated gradient algorithm as a discretization of an ODE is a powerful tool,
helping to gain intuition, finding and generalizing new convergence results [38], [37].

In [36] are introduced high resolution ODEs to study first order optimization algorithms. The interest
of these ODEs is to describe more accurately the behaviour of the corresponding algorithms than those
commonly used and known as low-resolution ODEs. This is made by keeping O(+/s) terms during the
discretization process, inducing that the ODE depends on the stepsize s. In particular, while Polyak’s
Heavy Ball [35] and NAG can be seen as discretizations of the same low resolution ODE:

X(t) +2/uX(t) + VF(X(t)) =0

11



these algorithms correspond to two different high resolutions ODEs (see [36] for more details):

X(t) +2y/pX () + (1 + us)VE(X(t) =0 (HB-ODE)
X(t) +2/pX () + VsVEE(X ()X (t) + (1 + /us)VE(X(t) =0 (NAG-SC-ODE)

As Polyak’s Heavy ball cannot achieve an accelerated rate for smooth strongly convex functions, while
NAG can, understanding how the two high resolution ODEs differ is thus interesting. The only
differing term is /sV2F (X (t))X (t), which corresponds in the algorithm to what the authors refer
to as a gradient correction term. In , factorizing X terms, we see that the damping
coefficient becomes 2,/p + /sV2F (X (t)), which is now adaptive to the position of X. In particular
if X is colinear with the eigenvector corresponding to the highest eigenvalue of V2F (possibly L), the
new damping rate increases, thus reducing oscillations.

As we stated in Proposition 4] in the case of (1, p)-strongly quasar convex functions, Algorithm 1
with right parameters defines the same algorithm as the classical Nesterov Algorithm to minimize
p-strongly convex and L-smooth functions. In that case, we will get the same high resolution ODE
(INAG-SC-ODE)). We see then immediately that this Hessian term will induce specific behaviour in

a non convex case. In particular if X is colinear to the eigenvector of V2F (X (t)) associated with
eigenvalue — L, the damping rate becomes

2y — L5 X (2).

Take s = % and it is negative (if p is not too close to L). The case of negative damping rate is unusual.
In particular, it induces the increase of the total mechanical energy (F(X(t)) — F* + %HX(t)Hz)

High resolution ODE for Algorithm Recall that with the choice of parameters of Theorem
Algorithm 1 is

yn = 1+}/ﬁxn + I%Zﬂ’
Tpy1 = Yn — SVEF(yn) (NAG-SQC-DISCRETE)

Zng1 = 1 — Y /HSzn + V/118Yn — \/EVF (Yn)

The high resolution ODE associated with (NAG-SQC-DISCRETE) can be written in the following
way:

(1 + ?m) X(t) + 1+ VX (t) +VsVEE(X ()X () + (1 +~/us)VE(X(t) =0
(NAG-SQC-ODE)
The derivation of this ODE is detailed in Appendix Observe that if taking v = 1, we recover
. Despite the eventual negative friction of (NAG-SQC-ODE)), one can get results for
the convergence of the solution of this equation that are similar to the one obtained in the strongly
convex setting [37], up to a v factor.

Proposition 5. Let F' be (v, u)—strongly quasar convex and L-smooth for some0 <pu<L,v€ (0,1].
Assume X is solution of (NAG-SQC-ODE) with 0 < s < +, X(0) = Xo and X (0) = 0. Then:

F(X() = F* < Ko(y, 1, L, s>§<F<Xo> _Fryerf (40)

where Ko(v, p, L, s) can be uniformly bounded by 7.

To prove Proposition [5] we aim to show the linear decrease of a Lyapunov function of the form:

2

E(t) = 6(F(X(t)) — F*) + % H (1 + “;m) X (1) + MX (1) — 2*) + VSVE(X(1)) (41)

where 0, A belong in R and are well chosen parameters. See Appendix [D] for the proof.
The /i in the exponential exponent is how we characterize possibility of acceleration in the continuous
case for strongly convex functions. The gradient flow (ODE version of gradient descent) achieves a

12



similar rate of convergence, with a y exponent instead of /.

The result of Proposition [5]is then quite surprising: it means that occurring of negative damping along
the trajectory is not a problem, and that accelerated convergence occurs anyway despite this weird
behaviour. Thus, while non convexity may impact negatively the convergence of Algorithm [I] it is not
the case for the associated continuous system. This would indicate that non convexity impacts the
discretization process. We confirm this intuition in the next section.

Remark: Taking s =0 in (NAG-SQC-ODEJ), we can automatically deduce the low resolution ODE
associated with (NAG-SQC-DISCRETE).

4.2 The continuous/discrete rupture

As showed in the previous section, one can achieve accelerated convergence with the solution of the
high resolution ODE (NAG-SQC-ODE]) associated to Algorithm 1, without the need to add restriction
on curvature.

As the Algorithm and the discrete Lyapunov function we use are discretization of continuous coun-
terparts, one expect these to be similar. More precisely, ordering term by their dependence on s (1,
O(Vs), O(s),...), one expects the "main terms", namely the one with lower dependence on s, to
appear both in continuous and discrete setting, while eventually, the discretization process will make
appear new terms with higher dependency on s. In this section, we see why it is not necessarily the
case when non convexity steps in.

Continuous/discrete Lyapunov comparison Recall the continuous Lyapunov used to prove
Proposition

E(t) = 0(F(X(t) - F7) + %HUX(t) +AX () = 27) + VsVE(X (1) (42)

where, depending on the values of 7, u, L, we have v € [1, %],5 € [1,3] and X € [/, %\/m (see the
exact values in Appendix @[) The discrete Lyapunov used to prove Theorem [2| can be written the
following way:

By = Flan) = F*+ 12 s g, = o)+ VBV PP (43)

The fact that {F, }nen is a discretization of £ appears here clearly.

Derivation difference In the continuous case, we studied &, where we aimed to show &£(t) <
—7%5 (t). We emphasize the two following facts:

e Derivation of §(F (X (t)) — F*) leads to 6(VF(X), X).
e Derivation of the norm term leads, among other terms, to —(VF(X), X) (up to a parameter).

Appropriate parameter tuning allows to cancel this terms, as can be seen in the proof of Proposition [5}
In the discrete case, we study a discrete derivation E, ;1 — F,. Importantly, the two aforementioned
derivation, that were the same in the continuous setting, will be different here.

e Discrete derivation of F'(z,41) — F* leads to F(xp4+1) — F(xp).
e Discrete derivation of the norm term brings, among other terms, to —(y, — Z,, VF (yn))-
More precisely, with an other view of the proof of Theorem [2] (see details in Appendix |D.1]), we get:

Eni1— B, < *V@En +(1— 7\/@) (F(yn) — F(2n) +(VE(Yn); Tn — Yn))

Derivation difference

e —”y\/ﬁTS)\/gllyn ~ ol (44)
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Recall we want to end up with E, 41 — E, < —v,/usE,,. Then in , apart from the negative kinetic

term, that can be matched with a continuous counterpart (—v ‘/’;v | X (¢)||? term in line ), what

remains is the difference of the two aforementioned derivation, i.e.:

F(yn) = F(2n) + (VF(Yn), Tn — Yn)- (45)

In contrast to the continuous case, we can not just use parameter tuning to control this term. Convexity
is exactly the assumption we need to get rid of this derivation difference term. However, if F is (a, L)-
curvatured with a < 0, the best control we have is the following:

F(ya) = F(@n) + (VE@Wa): 20 = ya) < =3 20 = yul® (46)

The lower below zero is a, or with other words the more non convexity we allow, the more this extra
term can be big, up to a +%||z, —y,||* term in the L-smooth case (a = —L). If this term was appearing
in the continuous case, the same restriction on the curvature as for Theorem [2] would be necessary.
This highlights that when considering properties satisfied by the solution of a continuous system, the
transfer of this properties to the discrete case via discretization can be hurt by non convexity.

Parallel with [13] This discretization problem occurring for non convex functions can be circum-
vented with the stochastic approach introduced in [I3], later applied for (strongly) quasar convex
functions minimization in [39]. Indeed, the iterations of their algorithm are defined as evaluations of
a continuous process at some random times Ty, T7,... Then, a convergence result associated to this
continuous process almost automatically transfer to the thus defined algorithm. Finally, this algorithm
is practically usable as they show it can be written as a recursive formula of the form of Algorithm
with stochastic coefficients. Importantly with this view, the algorithm is not seen as a discretization
of a continuous system in the sense that the algorithm trajectory would converge to the continuous
one when a stepsize goes to zero. This explains that the non convexity negative impact described in
this section does not occur.

5 Geometrical considerations

In this section, we investigate some new properties of strongly quasar convex functions. Moreover
in the last subsection, we create a connection with the class of smooth PL functions (Definition .
Firstly, we see how we can characterize strong quasar convexity in a similar but weaker way than
strong convexity.

How weaker than strong convexity is strong quasar convexity ? Compared with strong
convexity, the main difference is that we lose lots of local information. While for C? p-strongly convex
functions we have (V2F(x)y,y) > plly||? for all z,y € R? (or equivalently, all eigenvalues of the Hessian
matrix are above p), we lose this regularity with strongly quasar convex functions. Actually, we see
that we only have, on average, a similar regularity on the segment joining points z € R? and the
minimizer z*.

Proposition 6. Let F' be C? and (v, u)-strongly quasar convex for some v € (0,1], u > 0. Let x # x*
and t > 0. Then:

I

ds > 75 (47)

t
See appendix for the proof.

1 [PV (2" + s(x — 2%))(2* — z),2* — )
/0 [ — |2

5.1 Dismissing local convexity argument for non C? strongly quasar convex
functions

One may think that the property of uniqueness of the minimizer of strongly quasar convex functions
induces that when we are close enough to the minimizer, the function is cuve-shaped and we avoid
negative curvature, i.e. the function is locally convex around the minimizer. This is true if the function
is 2. The two following results holds under the assumption of a quadratic growth function with a
unique minimizer, which is a weaker statement than strong quasar convexity (see Section .
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Proposition 7. Let F be C2, with a unique minimizer x*, and a p-quadratic growth. Then, there
exists 1 > 0 such that for all x € B(xz*,n), F is strongly convez.

Sketch of Proof. The quadratic growth property around z* implies that V2F(z*) is definite positive.
By continuity of the Hessian we get the result. Rigorous proof is deferred in appendix O

If we add a Hessian Lipschitz property, we can uniformly bound the distance from the minimizer
that guaranties we do not reach a certain negative curvature.

Proposition 8. Let F : R? — R be C?, with a unique minimizer x*, with pu-quadratic growth, and

with its Hessian being p-Lipschitz. If for some s € R, we have ||lx — 2*| < £2=, then:

(x — x*)TV2F(a|7|)2(x —z¥) > (48)

Equivalently, ||z — z*|| < “;“‘ implies that all eigenvalues of V2F(x) are above s.

Proof is in Appendix [A23]

Non C? functions When dropping the C? assumption, one can not ensure the local convexity
property anymore, even when considering segments joining the minimizer (on which we have the
stronger structure assumption). This is stated in the following result.

Proposition 9. One can construct f : [0,1] — R strongly quasar convex with minimizer x*, L-smooth,
such that for all x # x*, there exists xg # x* such that:

|z* — zo| < |2* — 2| and f"(xo) = —L (49)

Sketch of Proof. The idea behind the construction is the following: the function f is build such that
its curvature alternates L and —L, given that the L curvature will occur more often than —L to ensure
that the function grows enough to be strongly quasar convex.

To create such a function, we define the following set

1 1 1 31 1 71 1
E = - m J— —_— = _—— . 50
U [2n’2n1> |:2n +42n’2n1:| U [42n’2n1) ( )

n>1

partition of [0,1] subpart of partition

Then we define f on [0, 1], such that:
v [ -L ifzeE
MO { L else

with f/(0) = f(0) = 0. f is clearly such that it will reach its lower curvature —L in all vicinity of its

minimizer. It remains to show that it is strongly quasar convex, which is done in Appendix [A-4]
O

Other pathological examples The construction used to show Proposition [J] can be adapted to
make other pathological behaviours. For example, consider p-quadratic growth functions, i.e. which
satisfy for all z € RY, f(z) — f* > &||z — 2*||?. This defines functions lower bounded by a quadratic,
but it may have critical points that are not (global) minima. However due to the local regularity
around a global minimizer x* offered by the quadratic growth, one may ask the following question:

Can we ensure that a smooth function with unique minimizer z* satisfying p-quadratic
growth has no other critical points when sufficiently close to x* ?

We address this question in appendix [A.4] answering negatively by constructing a counter example
based on the aforementioned construction.
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5.2 A necessary condition for acceleration 7 A link with Polyak Lojasiewicz
condition

Recall that a function is u-Polyak Lojasiewicz (u-PL) if there exists u > 0 such that for all € R%, we
have:

1 2 *
I VE@I > Fz) - F°. (51)

As already mentioned in section according to [40], for u-PL and L-smooth functions we can not
get the acceleration phenomenon we witness for strongly convex functions. As we know that this
acceleration can occur for the class of smooth strongly quasar convex function, it is interesting for
a comprehension purpose to understand what is the gap between these functions and smooth PL
functions. In other words:

What is missing for smooth PL functions to obtain acceleration ?

We propose an answer in this section. Strong quasar convexity implies uniqueness of minimizer, so for
the sake of comparison we will consider the class of smooth PL function with a unique minimizer. Note
that the function built in [40] to get the lower bound on smooth PL functions has a unique minimizer.
There is thus still a point for comparison with this restricted class of smooth PL functions with unique
minimizers, as gradient descent remains optimal when restricting to this class.

Theorem 4. Suppose F' is a u-PL, L-smooth function with a unique minimizer for some 0 < u < L.
There exists (v, 1') € (0,1] x R such that F is (y,u’)-strongly quasar convex if and only if there exists
some a > 0 such that F is satisfying the following uniform acute angle condition:

(VF(z),z — x*)
~IVE@)|lz — 2|

vz € RY, >a>0. (UAACQ)

The proof of Theorem [4 and complements are deferred in Appendix [B] in which we give explicit

parameters (v, 1') depending on a, u and L.

The condition can be interpreted in the following way: for all = € R?, the descent direction
(=VF(x)) forms an acute angle with vector starting from x to the minimizer z*. When it does not
hold, following descent direction bring us to an orthogonal or opposite direction to the one that would
make us closer to the minimizer.

Comments on Theorem The need of condition in order to get acceleration is rather
intuitive. Indeed it states that the momentum we accumulate is coherent, as it is directed toward
the minimizer. For u-PL and L-smooth functions, that are not necessarily satisfying the
condition, we know that momentum does not allow to achieve accelerated rate [40]. Worse, in this case
momentum appears to hurt the convergence rate. While the Polyak’s Heavy Ball algorithm also leads
to a linear convergence that is not better than gradient descent [12], it also deteriorate as we increase
momentum. Thus, the fact that does not hold can make momentum hurt the convergence
speed.

6 Numerical experiments details

6.1 Explicit expression of the function displayed in Figure
The function displayed in Figure [1|is A : R? — R, and is built in the following way:

hz) = F(l2l)g (én) (52)
where f(t) = t* and

N
1
g(x1,m0) = Z al sin(bjz1)? + ¢ COS(dix2)2) +1 (53)
’L:1

with NV = 10 and the {a;};, {¢;}: are independently and uniformly distributed on [0, 20], and the {b;},,
{d;}; are independently and uniformly distributed on [—25, 25].
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B Continuized
—— Algorithm 1
—— Hinder et al.

logiFixa))
logifixa))

—— Mean continuized
=== Sup/Inf continuized
— Hinder et al

—— Gradient descent
—25 { —— Algorithm 1

o Iterations 3000 o CPU time 27

8 — y=log(En)
— y=logiF(xn))

—20

0 Iterations 3000

Figure 2: We compare the performance of an Algorithm using a line search procedure (Hinder et al.
[21]), a stochastic algorithm (continuized [13]), and Algorithm [1} It is done iteration wise on the top
left plot, while the top right compare the time needed to achieve a e-solution. On the lowest plot we
show the behaviour of Algorithm [I] with our choice of parameter in the presence of strong negative
curvature regions.

6.2 Algorithm performance

We tested our algorithm on a function h : R — R, d = 100, where
x
h(z) = f(llz]))g Tl (54)

with f(t) = ¢*, and

100

g(.’lﬁh L. ,mloo) = Z (ai Sin(bi.’lii)Q) +1 (55)

i=1
where {a;}; are independently and uniformly distributed on [0,1] and the {b;}; are independently
and uniformly distributed on [—2.5,2.5]. This function is (1, 2)-strongly quasar convex, as f is (1, 2)-
strongly quasar convex (see Proposition. Recall that this type of functions exhibits, by construction,
lots of negative curvature. Hence, importantly, on these functions the assumption on the curvature of
Theorem [2 is not satisfied.

Description of the experiments We performed numerical experiments on this function. We com-
puted L at each iteration with the same backtracking process as in [21]. We compared the performance
of Algorithm 1 using our choice of parameters with two other methods:

1. Algorithm 1 with line search computing the (o), [21].
2. Algorithm 1 with stochastic coefficients obtained using continuized framework [13] [39].

As the line search procedure induces more computational complexity, we compared the performance in
two different ways: firstly iteration wise, and secondly we compared the CPU time needed to achieve
an e-precision, i.e. a point & such that h(2) — h* <e, e > 0.

The continuized framework leads to stochastic algorithm and thus to result of convergence are of
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stochastic nature. Hence, to make the comparison with deterministic algorithms more relevant, we ran
several times the algorithm. We make the following precision:

e For the iteration wise comparison, displayed on top left of figure[2] we ran 50 times the algorithm.
We plot the mean trajectory (Mean continuized), as well as the infimum and supremum of all the
trajectories along the iterations (Sup/Inf continuized). The pink zone between these two plots
thus contains all the trajectories.

e For the CPU time needed to attain a e-precision, displayed on top right of figure 2| we ran 10
times the algorithm. Here we simply plot 10 trajectories, corresponding each to a different run
of the algorithm. We set ¢ = 1076,

A note on the using of Backtracking When using this backtracking, there is necessarily a di-
vergence with our theoretical background. The L, is computed such that F(y, — LiVF (yn)) <

F(yn) — 57— [VF(yn))||?. However to compute y,,, we need c,, which needs the L, we are willing to
compute. We thus chose to compute «,, with the previous L,,_1.

Observations This precision being made, we can now state our observations.

1. The two top plots displayed in figure [2] are not very surprising: iteration wise, the binary search
procedure offers a better speed. However when considering the CPU time needed to achieve
a e-precision, doing without line search allows for better performance as the iterations are less
computationally heavy.

2. We observe empirically that a high amount of strong negative curvature encountered during the
running of Algorithm 1 correlate with "bad behaviour" of the algorithm. The lowest display of
Figure [2] is characteristic of the non monotone decreasing behaviour of the Lyapunov function
FE,, we can witness when the algorithm crosses strong negative curvature regions.

7 Conclusion

In this paper, we highlight that the Nesterov accelerated gradient algorithm may need curvature
assumption to get accelerated rate in a non convex setting. As observed in previous works, we saw
here that too strong negative curvature is difficult for this algorithm, at least regarding the nature of
convergence results we are seeking. Interestingly, as it is the case for Polyak’s Heavy Ball [35] in the
strongly convex case, we saw that proving accelerated convergence of high resolution ODE associated
to NAG in (strongly) quasar convex does not ensure convergence of discrete counterpart. Finally, it
is still an open question whether there exists a deterministic algorithm achieving an accelerated rate
on the class of smooth (strongly) quasar convex functions, without adding assumption, and without a
subroutine to compute a parameter (as binary line search).
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A Some properties on strongly quasar convex functions

In this section, we prove our claims about properties of strong quasar convex functions.

A.1 Strong convexity on average on segments joining the minimizer

Proposition. Let F be (v, u)-strongly quasar convex. Let x # x* and t > 0. Then we have

t

(56)

t 2 * ek * * __
R e [ K T’
0

[l — |2

Proof. Let F : R — R (v, u)-strongly quasar convex. Define, for ¢ € R, the function g(t) =
F(z* +t(x —x*)). We have ¢'(t) = (VF(z* + t(x — x*)),z — «*). By strong quasar convexity of F', we
have

1
Fz* +t(x—2") + ;<VF(.T* +t(x—a), 2" — (" +t(x —2%)) + ng* —(z* +t(x —2")|* < F*
(57)
t t? .
= g(t) = g/ + -l = °* < 4(0) (58)
t) —g(0 ¢ ¢ ¢
5O I0 Iyt = [ 6)s = [(VPRGE + s(e -0 o = o)
0 0
(59)
Where for the last line we suppose ¢ > 0. From this we deduce:
1 [Y(V2F(a* + s(x —a*))(z* — 2),2" — ) 1
- ! ds > v— 60
] [FRrE 27 e
O

In particular, the above reasoning remains true for non strongly quasar convex functions taking
1 =0, inducing a on average convexity on segments joining minimizers:

t

1 /t (VEF(a* 4 sz —a") @ —a),a" =) (61)
0

[l — 2|
A.2 Synthetic strongly quasar convex example proof

In this section, we will use the useful following characterization of strong quasar convexity.

Lemma 2 ([2I], lemma 11). Let f : X — R be differentiable function with a minimizer x*, where the
domain X C R? is open and convex. Then, the following two statements:

flz*+ (1 —t)z)+t <1 — 2f7> %LHI* — x| <Atf(z*) + (1 —~t)f(z),Vz € X,t €[0,1]  (62)

1
f(a®) = flx) + ;(Vf(l”),m* —z)+ g\lﬂf — [P,V e X (63)
are equivalent for all p > 0, v €]0,1].

Now let f : R — R such that it is (v, 4)-strongly quasar convex and f(0) =0 = f*. Let g : S9! — R
differentiable and such that g(x) > 1 for all x € S?~1. We define

) = el () (64)

]

We have h(z) — 0 as ¢ — 0, we extend h to 0 by continuity defining h(0) = 0. We clearly have
h* = h(0) = 0. We prove here the following statement.
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Proposition 10. h is (v, u)-strongly quasar convet.

Proof. We use lemma [2| characterization of quasar strong convexity. We thus aim to show that for all
r € R% and all t € [0, 1], we have

htz* + (1 — t)a) + ¢ (1 - 2_157) et — 2> < yth(a) + (1 = 10)h(z) (65)
First since * = 0 we have
Bt + (1)) = (L~ 02) = (1 =0l o () (66)
By strongly quasar convexity of f, we get
(1= 0) < (@ =0(lel) ~ 1 (1= ) Bl = ol ) o () (67)
x ENWY e e
“ed (“i(gx) (1-37) 5 =l () o

We conclude by computing:

h((1—t)z) +t (1 - 2’;) “Qiux* —z|? < (1 —At)h(z) + ¢ (1 - 21;) %Ix* — af? (1 —9 <”§”>)

(69)
Recalling h* = h(0) = 0, we conclude using our condition g > 1, and we do have the characterization
of (v, u)-strong quasar convexity. O

A.3 Local strong convexity around the minimizer for C? functions

Proposition. Let F be C?, with a unique minimizer x*, with u-quadratic growth. There exists > 0
such that for all x € B(z*,n), F is strongly convet.

Proof.

Step 1: V2F(z*) is definite positive We start by showing that V2F(x*) is definite positive, i.e.
for all x € R4\{0} we have (V2F(z*)z,x) > 0. Let g(h) = F(z* + h(x — 2*)), h > 0 and = # z*. We
perform an order 2 Taylor development at 0 of g:

2

(1) = 9(0) + b (0) + 24" (0) + o(1?) (10)

SFa*+h(z—a*)=F"+h(VF(z"),z —x*) +%<V2F(x*)(x —z*),x —2%) + o(h?) (71)
=0

h2
2
As F' is with p-quadratic growth, we have:

SFa* +h(r—2%) - F* = (VQF(x*)(x—x*),x—x*> +0(h2) (72)

* M *
F) - F* > Sllo - a2 (73)
We thus have
AVPF() (@ — o), x = 2) +o(h?) > B e a7 (74)
(V2F (z*)(x — 2*), 2 — x*) 2 o(h?)
> 75
[ R P L ER =
Taking h — 0, we get
2F * ok ok

[ — |2

Taking = = y + z*, we get that for all y € R¥\{0}, we have (V2F(z%)y,y) > plly|* > 0. We showed
that V2F(z*) is definite positive.
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Step 2: extension in a local vicinity We showed in step 1 that all eigenvalues of the Hessian
matrix evaluated at z* are strictly positive. As we assumed V2F is continuous, for all € such that
0 < & < u, there exists n > 0 such that for all x € B(z*,n), the eigenvalues of V2F(z) are above u — €.
This means that on this ball F' is strongly convex, thus showing the claim. O

Proposition. Let F': R* — R be C?, with a unique minimizer x*, with pu-quadratic growth, and with

its Hessian being p-Lipschitz. If for some s € R, we have |z — x*|| < ”;5, then:
_ x\T'x72 X
(x —x*)' V2F(z)(x x))s (77)
[l — @[
Equivalently, ||z — x*[| < 222 implies that all eigenvalues of V2F(z) are above s.

Proof. If the Hessian is p-Lipschitz, we have by definition:
[[V2F(2*) - V2F(@)|]| < plle — o7 (78)
This induces that V2F(z) € Bpjz_z+ (V2F(2*)). Then there exists M € R4*¢ such that
V2F(a) = V2P(*) + M, [[IM]]| < pllz — o*| (79)

Note that M is symmetric because V2F(x) and V2F(x*) are symmetric. By the choice of the norm,
we have:
—pllz = 2"|lllyl* < yTMy < pllz — 2*||[[y||? (80)

Thus,
(¢ —2*) 'V F()(x —2") 2 (z — ") VPF (a")(x — 2*) — pllz — 2*|® (81)

Now, we have already showed that under our assumptions over F', we have (V2F(z*)(x — %),z —
x*) = plle — 2*||?, Vo € R4\ {z*}. Using this in leads to:

(x — 2*)TV2F(2)(z — z¥)
(B

Z (= pllz—=7) (82)

(z—z*)TV2F(z)(z—x")
lo—a=?

Finally, to ensure > s € R, it suffices to have

nx—ﬁnsﬁgﬁ (83)

A.4 No local convexity for non C? functions: a non convex pathological
constructions

We construct in this section a type of functions that exhibit pathological non convex behaviour around
their minimizer. This functions are defined on R, so this pathological behaviour does not need several
dimensions to happen.

A.4.1 Proof of proposition [9]

Proposition. One can construct f : [0,1] — R strongly quasar convex with minimizer x*, L-smooth,
such that for all x # x*, there exists xg # x* such that:

|z* — zo| < |2* — 2| and f"(xo) = —L (84)
Proof. Let
1 1 1 31 1 71 1
E = — — | N =4+ -, — = I —— 85
nL>Jl |:2n’2n1 [ |:2n +42n’2n1] nle |:42n’2n1 [ ( )
partition of [0,1] subpart of partition

24



and

Let f be a function defined on [0, 1], such that:

I | —-L ifzeFE
fi(x) = { L else.

We suppose f/(0) = f(0) = 0. f is clearly such that it will reach its lower curvature —L in all vicinity
of its minimizer. We now want to show that f is strongly quasar convex.

Suppose z is such that Ik > 1, z = 2% Then,

@) =@ -ro= [ freds= [ s [ s (57)
[0,] E, [0,2]\E,,
By definition of f”, this simply becomes
fl(x) = _L)‘(En) + L)‘([va] \En) = L(x - 2)‘(En)) (88)

Where A(.) is the Lebesgue measure. But by construction A\(E,) = %x, which means

L

J'(@) = 5 (59)
Now suppose z = 2% +e,where k> 1and 0 <e < %Qik This time we get
L1 L, 1 L
fa)= [ peds= [ pdse [ peds= S rlez St =g (0)
[0,] 0,21 1 22 2°2 2

Finally, suppose = 5= + 224 + ¢, wheren > 1 and 0 <e < 5.

L1 3L 1 L
@ = [ reds= [ fis+ [ P()ds = 55+ g Le > o (91)
[0,z] [0, 55 +3 5] [ +32 ok 2] 22 4 2 2

But here z < 2,%1, which gives

z (92)

Finally, for all « € [0,1], we have f’(z) > Zz. To prove that this function is strongly quasar convex,
let’s remark by definition of f” that f(z) < £22, and then using f’(z) > %z, we have that for any
w>0:

_ktL,

T (z)x + g <

L L
() 5 o Pl Boa g g (93)

2 2

In words we showed that f is (HJ%L, ) —strongly quasar convex. In conclusion, we created a 1d function
which is strongly quasar convex, and for which there exists no neighbourhood around minimizer such
that negative curvature is excluded. O

A.4.2 Quadratic growth and local uniqueness of critical points ?

We recall that a function satisfies p-quadratic growth hypothesis if it satisfies
* M * (12
f@) =" = Slle— a7 (94)
Suppose such a function has a unique minimizer. Regarding the local regularity around x* provided

by this hypothesis, it is not obvious whether there exists a vicinity around this minimizer such that
there is no other critical points. We provide a counter example.
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Proposition 11. There exists a quadratic growth function f : [0,1] — R such that in all vicinity of
its minimizer, f has an infinite amount of critical points.

1 1 1 11 1 31 1
E = — e — c -
LJ ({Qn’Qn—l[rw[Qn +2271’271—1]) LJ [22n’2n—1[ (95)

n>1

foe U [t

k>2n+1

Let f be a function defined on [0, 1], such that:

f”(x):{ 1—1 ifrekl

Proof. Let

and

else.

We suppose f/(0) = f(0) = 0. Suppose z is such that In > 0, z = 2% Then,
) =@ - FO= [ feds= [ s [ e (97)
[0,2] En 0,2\ En

By definition of f”, this simply becomes
f'(@) = =AMEn) = M(0, 2]\ Bn) =z — 2\(En) (98)
Where A(.) is the Lebesgue measure. But by construction A(E,) = 3z, which means
fl(x)=0 (99)

This means our function has infinite amount of critical point in all vicinity of minimizer. We want
now to show that f is a quadratic growth function.

We supposexzzik—l—g, where £ > 1 and 0 < e < %i

This time we get

P
Py = fs)ds = / F(s)ds + / F(s)ds = ¢ (100)
[0,2] [0, 5%] (57 2]
Now suppose & = % + %2% +e¢e, wheren>1and 0 <e < %2%

We have then

1 1\ oo 51
[zm 3w +353m] (57,5 5m]

Summing over n we get

1 5 1 5 & 5 1 501V
f(znl) 4;2% 41-17 122202 7 12 (2n1> (103)
Ifx:2ik+5,wherek>land0<€§%%,Wehave

f@)f(i)[l]f®%;<f50 (104)

=f(x) = +ort - =t st - o (105)
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However as = > 5, we get that f(z) > 2%

Now suppose z = 2% + %% + ¢, wheren > 1 and 0 < € < %2% We show by contradiction that

f(x) > $52°. Suppose f(z) < S22, Note that as we showed

!
- _ 1
fla)= 5o~ (106)
we have
5 151 5 11 61 9
Sr— = 4 T, =——+-—2=0 107
) = e T e T o TE T e T 1o (107)
So we have both: ,
5 5 , 5 o 5
il <[ = = — 1
flz) < 5% and f'(x) (1230 > 6% (108)

The second inequality holds for all y in [2% %2%, 2,%1

already showed that f(5r) = 3 (27%1)2, leading to a contradiction. We conclude that f(z) > S22
We then showed that

], inducing that f(y) < Zy?. However, we

5 5

fla) = fla)— £ > P = B o a7y (109)

or in words, f has infinite amount of critical point in each vicinity of minimizer and is %—quadratic
growth.
O

B A PL-Strongly quasar convex link

In this section we characterize the difference between smooth PL functions (Definitions [2| and [3|respec-
tively) and smooth, strongly quasar convex functions. The idea of the following discussion is to use
relation of pu-PL functions with intermediate conditions that we can relate to strongly quasar convex
functions.

Remark 1 We can not claim that all the following lemmas are new. We indicated a citation when
we were aware that a result already exists in the literature.

Remark 2 We will introduce geometrical conditions that can hold considering projection onto the
set of minimizers. As we aim to show a link with strong quasar convexity, we will restrict ourselves
to functions with a unique minimizer. This means that some of the definitions we will introduce are
specifically here restricted to this unique minimizer case.

For the first lemma, we introduce the following condition.
Definition 7 (Error Bound). F : R? ~ R is §-Error Bound (9-EB) if
Vz e RY  |VF(2)| = 6|z — =¥
Lemma 3. A p-PL function is p-EB. A 0-EB and L-smooth function is %-PL,

It is shown in [23]. As it is short we will give the proof.

Proof.

PL = EB Let F' be y-PL. By definition and using the fact that a u-PL function is also u-quadratic
growth (see [I5] theorem 11, or [23]):

1 oo M * *
IIVF(x)HQﬂ 2 F@)-F" > Jllz —2 12 = |[VF(@)]| > pllz - =*| (110)
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EB + L-smooth = PL Suppose F'is p-EB and L-smooth. We have
(L-smooth) 924
> =
- L

Where we use the fact that a L-smooth function verifies F(z) — F* < £ ||lz — z*||2. O

IVE@)] 2 6z — o (F(z) - F*) (111)

We now introduce the notion of RSI functions [41].
Definition 8. F : R% — R is v-RSI if
(VF(z),z — ") > v|z — 2*||?), VzeR?

Using Cauchy Schwartz, we immediately see that v-RSI implies v-EB. We show that up to the a
supplementary condition, the converse also holds.

Lemma 4. Suppose F is satisfying the following uniform acute angle condition:

VF(z),x —z*)
VeeRY, 1> < ’
IVE ()|l — ]|

>a>0 (UAAC)

then
F is0-EB = F is 8a-RS1T

Proof. We have

o O(ED) VF(z),z — z*
ole—atl’ S |VE@)| < V@)

= fallz — z*||% < VF(x),z—x* 112
i o —a* | < (VF( ) 1)

O

In the following result, we establish a link with a last intermediate condition, namely verifying
quadratic growth and (non strong) quasar convexity.

Lemma 5. Let F' be L-smooth. Then:

1. (F is (v, p)-strongly quasar convex) = (F' is 35 -RSI)

2. (Fisv-RSI) + (y< %)= (F is (7, £ - %)-strongly quasar conver)

Proof.

Point 1. Using definition of strong quasar convexity, and the fact that it implies % quadratic
growth (Proposition 2.), we have:

2
(VF(2),2 —a%) > y(F = F) + Lz — " > 2(;7—M'y)”x —o P+ e -2 (113)
_ 27_“7 |z — 272 (114)
Point 2. We start with the definition of »-RSI:
1
(VF(z),x —2*) 2 v|x — x*H2 =0> ;<VF(I),J?* —xz) + %Hx - x*||2 (115)

L
= — 3l =" >

1 . v L w12
;(VF(x),x — )+ (7 - 2) le —2*||© (116)

Where v € (0,1] is to be precised. L-smooth property implies F'(z) — F* < £||z — z*||2, thus we have:

1 L
F* > F(x)+ = (VF(x),z" —x) + (V — 2> |z —z*|? (117)
Y Y
Hence, choosing v such that % — % >0=79< ZT”, we have that F' is ('y, % — %)—strongly quasar
convex. O
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Note that we did not really need gradient Lipschitz property to hold, rather a weaker upper
quadratic growth condition (this also holds for Lemma |3):

L
Dz~ 2| > Fa) - F* (118)

An important point here is that Ly may be significantly lower that L. See [I7] for a discussion about
alternative upper conditions.

With all these lemmas, we are ready to state our result.

Theorem 5. Let F' be L-smooth and pu-PL with a unique minimizer. Then we have that there exists
v, ' > 0 such that F is (v, p')-strongly quasar convex if and only if for some a € (0,1], F satisfies the
following uniform acute angle condition:

(VF(z),z — x*)

Vo € Rd, 1>
[VE(z)||[|z — |

>a>0 (UAAC)

In particular if (m) holds, then as long as v < 2£% F is (7, £ 7) strongly quasar convex.

Proof. Let F be L-smooth and p-PL. We have by Lemmalthat F is i-EB. By Lemmal[d] F is pa-RSI.

By Lemma Fis 75 e 7)—5tr0ngly quasar convex as long as v > 2”“ Obviously, if there exists
x # x* such that lb does not hold, then RSI can not hold. As strong quasar convexity implies
RSI (Lemmal[5), this is a necessary condition for theorem 5 to hold. O

Finally, we show that strong quasar convexity implies the PL condition without the need of adding
assumptions.

Proposition 12. Let F be (v, j1)-strongly quasar convex. It is then py*-PL.
Proof. We have

1,1 \ s 1
57 V@) + Vi 2P = 5

Writting the definition of (v, u)-strong quasar convexity, we have

1
IVE@P + {VEG@),at =)+ Slle—atlP o (19)

F* > F(z) + %(VF( )fff**95>+H||f'3*9ﬂ"‘||2 (120)
= X li r —X 2 X 2

= F(z) 2\\7\/ﬁ F(z) + V(™ —2)[|” - H||VF( )| (121)

(@)]* = F(x) - F* (122)

O

One can find a summary of the previous discussion in figure [3]

C Proofs of section 3

C.1 Differentiable strongly quasar convex
C.1.1 Proof of Theorem [2]

In this section, we detail the proof of Theorem [2f whose statement is recalled here: let F' be a (v, p)-
strongly quasar convex function for some (7, 1) € (0, 1] x R% having a (p, L) curvature for some L > 0
and p < L. Let (x,)nen generated by Algorithm

Yn = QpTnp + (1 - an)zn
Tnt1 = Yn — SVF(yn)
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(5QC)

A

1if L-smooth

(RSI)I

(PL) - (EB)

AR -

if L-smooth

Figure 3: Summary of the Lemmas of Appendix|B| See Definition [5{for SQC (strongly quasar convex),
Definition (8] for RSI, Definition [7| for EB (error bound), and Definition {4 for PL (Polyak-Lojasiewcz).
Solid lines are implications that hold without the need of adding another assumption. Red dashed lines
are implications that hold under L-smooth assumption, while the green dashed line is for implication

holding under the (UAAC) condition.

with parameters

1 1

< ) n — =, 1’7,21_ =P, n —
sLa71+TLSaB Vs =B, n

Sl
I

Assuming that p > —'y\/g we want to prove that:

2

Vn €N, F(z,) — F* < 7(1—7\/,13)" (F(z0) — F*) (123)

where F* = min F. Let x* be the unique minimizer of F. We introduce the following Lyapunov
energy:

E, = F(z,) — F* + %Hzn ek (124)
The main idea of the proof consists in finding parameters and conditions such that the following

inequality holds
E,.1— FE, <cE, (125)

with ¢ < 0 being as small as possible. We will then deduce the convergence rate (123]) by induction.
Step 1. Since:
_ M * (|12 1S * (|2
Epi1 — By = F(Tn41) — F(za) + §||Zn+1 ot §||Zn S (126)
let us start by considering the right term:

An = Jzngr —2"|® = [lzn — 27|
1820 + (1 = B)yn — 1V E(yn) — &*[* — ||z — 2|
= (B =Dlzn —2* 2+ (1= B)lyn — =* 1> + I VF (y2) I
+2B(zn — 2%, (1 = B)(yn — ") =V F(yn)) — 2(1 = B)YN(VF(yn), yn — %)
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by construction of Algorithm [T The tricky part here is to control the first scalar product: using the
definition of Algorithm |I, we can rewrite 2, = yn + 1% (Yn — T»), and thus

(20 — 2", (L= B)(yn — &) =1V F(yn))

= (yu — 2" (1= B) (g — ") = nVE () + 17— — @0, (1= B) (g — ) = 1V F(5)

= (1= Bllyn =@ I> = 0lyn = 2", V(ya)) = Ty — @n, VE(ya))

[e%

+m(l - ﬂ)(yn — TnyYn — x*>

Observe now that applying the relation 2(a,b) = ||a + b||> — [|a||* — ||b]|? to @ = y, — 2* and b =
ﬁ(yn — ), we get:

o 1 , 1/ a \’ , 1 )
T \In — n;n_*zf n_* Y n -~ 4n 5 n_* ) 12
ol = gt =) = gl =P = 5 (155 ) el = Gl - 120)
so that:
(o 07, (L= B)la — 2°) — 1V ()
L8 (a1 = (22) o = 2l = i — 0%, TG
2 l—a ’
«
_ — 4y, VF
1_a77<yn Ty VE(Yn))
and
Bu = (=Bl 2+ (= Bl — "I + 2 V()
2
« aﬁ *
809 (125 ) T = anll = 22T ). = 00) = 20T F ) — )

Reinjecting A,, in the expression of E, 11 — E, and by definition of the Lyapunov energy F,,, we then
get:

Bt = By = =(1= B)Bu + Fl@nia) = F* = B(F(aa) = F) + 5(1= B)llyn — o7 + En’VF(5)|”

=

2
o 2 afnu .
~Epa-p (22— — |2 - v E ) — F — ).
250 0) (125 ) o = 20l = S22 F ) = )~ i TF ()~ )
(128)
Step 2. Let us now prove that for any n € N, we have: E,, 11 —E, < —(1—3)FE, for some well-chosen

values of the parameters 3, n and a.
Remember that F' is assumed strongly quasar convex, hence:

% * TH *
Vi €N, (VE(yn),yn —27) > 1(F(yn) = F7) + Ly — o2 (129)
and L-smooth which induces that:

1
Vs < 7. W eN, SV < Flyn) = Fleni) (130)
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Reinjecting these two inequalities into F,, 1 — F,, we then get:
En+1 - En < _(1 - B)En + F(anrl) - - B (F('Tn) - F*) + %772(F(yn) - F(mn+1))

~BOZD () =l = 22T P ), g = )~ () — )

(1= B —ymu)llyn — 2*|?

+
< —(1=B)Bn + (En? = yum)(F(ya) = F*) + (1= Ent) (F(@ns1) = F7)

=

= 8(F(en) = F) = SR () 0 — )~ PO () -l a3)

1 .
+ 51 =B =)y, — = 12

Choosing now n = \/% and 8 =1—ynu = 1 — v,/us to cancel out the terms in F(z,41) — F* and

llyn — 2*||?, we deduce:

B = B € 1B + (L0 () = o)
=T (VPG =)~ T R —l?) . (122)

Suppose additionally that the lower curvature is bounded from below by p, hence:
Vi €N, Flyn) + (VF(yn),n = ya) + 2llen = yul> < Flan),

or equivalently:
p
¥n €N, (VE(yn), 0 = yn) < F(@n) = F(yn) = Sllzn = unl*

Injecting the very last inequality into (132)) we get:

Buis = Bu < ~/ISEw + (1= 298) (1= VAT ) (Flon) - Flan)
+(1 —%ﬁ)r = (—p— 1_aaw> [

to cancel out the term in F(y,) — F(z,), so that we finally get:

1 —~v/us N{T 9
5 ( P yn — 20l YV HS

Lastly, choose a = T\l/ﬁ

En+1 -E,= —TV usky, +

provided that the lower curvature satisfies: p > —v

o5

Step 3. To conclude, we proved that:

Ent1— E, < —y/psE, = Epi1 < (1 —v/ps)E, (133)
By induction:
Ve N, Epay < (1—yy/is)" ™ By = (1 — yy/ms)" ! (F(ﬂco) —F gnxo - x*u?) (134)
In the last equality we use that by definition of Algorithm [1|zg = z5. We then use the fact that (v, u)
strong convexity implies 2Vfﬂy—quadratic growth (corollary 1 [21]), i.e
* TH * |2
VeeRY, Flz)—F > —" |z — =« 135
@)= F" > g la =] (135)
which finally yields to:
2 *
F(xy,) — F” <3 (1 —yy/m8)" (F(20) — F"). (136)



C.1.2 2 points scheme version of algorithm 1

Here we build upon the work [26], where they show there exists an equivalence between a 3 points
and 2 points scheme version of Nesterov Accelerated gradient. We want to deduce a 2 points scheme
from our 3 points one, but we can not directly apply their result because the 3 points algorithm they
consider is slightly different.

Proposition 13. The algorithm

Yn = Qpp + (1 - an)zn
Tpp1 = Yn — SVE(yYn) (137)
Znt1 = Pnzn + (1 - ﬁn)yn - nnVF(yn)

can be written as the following 2 points scheme

Yn = Tn + 11 Bn—1 (T — Tno1) + (1 — an) (L";l - %’":fﬁ“ - 1) (Tn = Yn—1)
n—1 n—1 (]_38)
Tn4+1 = Yn sV F(yn)

Proof. We adapt the proof of Lemma 2 from [26], which is mainly based on Thales theorem. In their
result, the o, is % and 8,2, + (1 — Bn)yn is z,. The main idea is that if a vector w is colinear to v,

i.e. AN € R u = Av, then A\ = %, which we can find using Thales theorem. As in the original proof,
let us rewrite as:
Ty = ozna:j;_l + (1 —ap)z,
Znt1 = Bnzn + (1 - /Bn)xn - UWLVF(ZEn)
+

where z | = 21 — sVF(xy—1). We suppose VF(z,_1) # 0 (non degenerate case). We set v, =
Buzn + (1 — Bn)xy, and let’s set A on the [z ;x,] segment such that Az,.; || zz;}. Let B on
xjﬂxj N Upzpt1. Since Azy i1 || Bznt1, we have by Thales theorem:

(139)

I1B—All _ [lznt1 — sl
IB—aill  llznt1 -zl
Then, by definition:
Znt1 = Tl = Qng1(Zn41 — x:) = ani1 = (%) (141)

As B— A = X(B —z;}) for some X\ € R (colinearity), with previous computation we have A = ay,41
and then
B—A=a,.1(B-1}) (142)

Similarly, the colinearity of Bz and x; x| together with x,2;" || v, B leads to B—z;f = A(z}f -2 )
where

B -zt Vp, — T,
e e 1)
where we have
Un = Tn = Bnzn + (1= Bp)on — @0 = Bulzn — 20) = Bran(zn — 25_4) (144)
@y — g = (1= an)(en — 1) (145)
such that
B~ = gt (o ) (146)
Combining and (146)), we get
A—ay =(B-ua))—(B-A)=(B-uay)=(B-u))—an1(B—1z}) (147)
= (= an)(B—a) = 5, TS ) (148)
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Then, we study z,4+1 — A. As Ax,11 || Bzp+1 we have by Thales theorem

e — Al _ enr — o]
lonss = B~ Ilznss — ot

=1—anp (149)

Last equality because z,4+1 — ;7 = (1 — apt1)(2n+1 — 7). We then have
Tnp1 — A= (1= apt1)(2nt1 — B) = (1 — ant1)((zn41 — vn) — (B — ) (150)
Where we recall v,, = 8,2, + (1 — 8)z,. We have:

Zni1 — U = (2} — xn)n—n (151)
s

Then we use z,,x,} || v,B to us Thales theorem once again:

1B =vall _ llon =i ol _

= = (%% 152
ok =zl Nl — a2 bt 192

We have v,, — :rfhl = Bnzn + (1 = Bn)zn —x_|. We have also

n—1-
Tp = w4+ (1—ap)z, (
=Bnzn — Bnn = nfn(zn — zj{fl) (154
=Bnzn + (1= Ba)n — 1 = anBulzn — 1) + 2n — x4 (
Vo= = (20 1) (e — ) (

1—a, "

This induces that (%x) = (% + 1) and then

B—u, = (f‘"ﬂ" + 1) (z} — ) (157)

— oy

Finally, injecting (151)) and (157]) in , we get

b= A= (1= ) (2 = ) = (222 4 ) - ) (158)
— (1 - ant1) (”S” - % + 1) (xF — ap) (159)

We can conclude by combining (147) and (158]) that

~

1—
pvin =+ B I e t ) (- e (2 - 22 ) @ ) (00

1—a, 1— o,
O
Corollary 2. The algorithm 1 with parameters s < %, an = ﬁ, Bn =1—vy/ps and n,, = %
can be written as the following 2 points scheme
1—
Tyl = Yn — SVF(yn)
Proof. We just apply previous result with «,, = ﬁ, Bn =1—~/us et n, = % O
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C.1.3 Proof of theorem

In this section, we detail the proof of Theorem [3| whose statement is recalled here: let FF = f + g
where f : R — R is a L-smooth function for some L > 0 and g : R? — R is convex, proper, lower
semi-continuous. Assume that F' has a non empty set of minimizers and that f is (1, u)-strongly
quasar convex with respect to 3. € argmin F' and (p, L)-curvatured for some p < L. Let (x,)nen be
generated by Algorithm

Yn = OnTn+ (1 — )z,
Tnt1 = Proxgy(yn — sV F(yn)) = Ta(yn)
Znt1 = Brzn+ (1= Bnlyn — %"(yn — Ts(yn))
with parameters
S<%, an=1+1\/m:=oz7 Bn=1— /s := B, nn=£:=n-
Assuming that p > f\/g we want to prove that:
Vn eN, F(z,) — F* <2(1—/us)" (F(zo) — F*) (162)

where F* = min F. Let z* be the unique minimizer of F. As for the proof of Theorem 2] we introduce
the following Lyapunov energy:

Bn = Flan) = F* + £z0 — 2| (163)
and we seek the parameters et conditions for which the following inequality holds:
E,i1—E,<cE, (164)
with ¢ < 0 being as small as possible. We will then deduce the convergence rate by induction.

Proof. The proof is very similar to Theorem [2| Let us consider the same Lyapunov energy:

E, = F(z,) — F* + %Hzn — 22 (165)

Step 1. We start by calculating E, 11 — E,, and the exact same computations as in Step 1 for
Theorem [2 leads to:

E7L+1 - En = _(1 - B)En +F(xn+1) - F* - ,B(F(.I‘n) - F*> + H(l - 6)”3/71 - $}~H2

2
2
P2, — 2_Hpq_ e a2
+ Pl =TI = 560 =) (£25) lw =l
i . aBnp
7H7TS mnj)s - In 771*,1_'5 n)ytn — Yn/- 1
+ (Yn), 2F y>+(1_a>8<y (Yn), Tn — Yn) (166)

just replacing the gradient V f(y,,) by the composite gradient < (y,—T5(yy)), where T;(y,,) := prox, o Yn—
sV f(yn))-

Step 2. Let us now prove that for any n € N, we have: E, 11 —E, < —(1—3)E,, for some well-chosen
values of the parameters 3, n and «.
To control the scalar products, first note that:

2(yn — Ts(yYn), p — Yn) = | T5(yn) — x}HQ — lyn — Ts(yn)||2 —lyn — x}||2 (167)
Combining the prox-grad inequality (|7, Theorem 10.16]): for all (z,y) € R? x R4,
1 1
F(z) = F(Ti(y) = 5 _lle — Ty()|* - 2alle = yll> + f(z) = f(y) = (Vf(y),z —y), (Prox-Grad)
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applied at ¢ = 2% and y = y,, and the definition of strong quasar convexity in the sense of Deﬁnition@

Vi €N, f(@h) = Fgn) = (V£ ()o@ = va) > ek — vul®
we prove that for any n € N,

25 = Ts(ya)lI” = llek — ynll® + 25 (f(2F) = f(yn) = (V. (yn) 25 — yn))

25 (F* = F(Ts(yn))) >
> ok = Tolya)1? = 2% = yall® + psllat — ynll.

Hence, reinjecting into (167)) and remembering x,1 = Ts(yn), we get:

* * Hs * 1
Vn €N, <yn - TS(yn)vxF —Yn) < =S5 (F(xn-l-l) - F ) - 7”yn - xFHQ - §||yn - xn+1H2' (168)

Similarly, consider then the second scalar product:

2(tn — Yo Yn — Ts(yn)) = NTs(n) = 2all® = llyn — Ts(wa) I = lyn — zal? (169)
< 25 (F(wn) — F(Ts(yn))) +25(f(yn) — f(@n) + (VF(Yn): Tn — yn))
~llym = Teyn)II? (170)
< 28 (F(xn) — F(znt1)) +25(f(yn) — f(@n) + (VW) Tn — Yn))
~llyn = znia|? (171)

using again (Prox-Grad) evaluated at x = z,, and y = y,, and z,+1 = Ts(yn)-

Reinjecting (168)) and (171)) into the expression of E, 11 — F, obtained at the end of Step 1, we get:

Eni1—Ea < —<1—ﬂ>En+(1—un—wlfan) <F<xn+1>—F*>+5(“”“ —1) (F(ra) = F)

l1-a
+ 5= B = ) g — 5| + 51 (Z —1- f_a) Iy = s
2
850 (25 ) o=l = 2 (7) = £l0n) — (V)3 — 20

As for Theorem choose: n = %, f=1-nu=1-/psand a = —1— = to cancel out the

1
Thon — T+yms
terms in F(z,11) — F*, ||lyn — 25]1%, F(z,) — F* and |Jy, — 2p41]|?. We then get:

Eni1 — By < _(1 - ﬁ)En + 3 (f(yn) + (Vf(yn),xn - yn> - f(xn)) - B;f/ﬁglxn - yn||2 (172)

Finally, assuming additionally that f is (p, L)-curvatured for some p < L, observe that:

Vi € N, £(yn) + (VS (Un),0 = ) = F(n) < =l = vl

which induces:
W0 €N, B = By < == 9B, ~ 5 (04 XL ) on - ml?

2 \" T s
Provided that p > f\/g , we finally obtain the expected inequality, namely: E, 1 — E, < —/usE,
for all n € N, and we can conclude the proof exactly the same way as for Theorem [2 Step 3. O

D Continuous analysis through High resolution ODEs

Derivation of ODE Recall that the algorithm we prove convergence in Theorem [2] can be written

14+/ps 14+/ps

(173)
Tnt1l = Yn — SVF(yn)

{ Yn = Tpn + 1_7\/@(.’5" — xnfl) + VR (’Y - 1)(1'71 - ynfl)
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Writting only with respect to y,,, we get

s = et T )= (14 0= 1)) TF )= (V) =T F ()

(174)
The following development will be very close to the one introduced in [36]. We assume there exists a
smooth curve X such that X (¢,) = y, where t,, = n/s. By Taylor development, we have

3

Yn1 = X(tng1) = X(tn) + Vs X (tn) + %X’(tn) + %X(tn) + O(s%) (175)
3

s = X(taa) = X(t) ~ VAX (1) + 5K (1) — YK (0) + 0) (176)

Another Taylor development gives

VE(yn) = VE(ya-1) = VZF(X (t0)) X (ta)v/5 + O(s) (177)

Multiplying both sides of 1) by f_t{%%, we get

Ynt1 +Yn—1 =2y | (L+Y)VES Yns1 — Yn 1+yy/ps
F(yn) — VF(yn— —VF(yp_1) =
S +1—7\/ﬁ o tVE) - VE(y 1)+1—v\/ﬁv (Yn-1) =0
(178)
Using Taylor developments above, we have
.. (1 +'y)\/ﬁ . 1 .
. 1+y/ps

+V2Fthth\/§+Os+( )VFth =0 180
(X (tn)) X (tn) (s) = iis (X(tn)) (180)

Multiplying both sides by 1 — v,/us and ignoring O(s) terms, we get that (174) is a discretization of
the following ODE

(1+ Vis) X () +(1+7)VaX (1) +vsVEF(X (1) X +(14+7/ms)VF(X(t)) = 0 (NAG-SQC-ODE)

Proposition. Let I be (v, ) —strongly quasar conver and L-smooth. Assume X is solution of
SQC-ODH) with 0 < s < +, X(0) = Xo and X(0) = 0. Then:

T
FX() — F* < Ko(v, , L, s)%(F(XO) _ e (181)
where Ko(vy,p, L,s) < 7.
Proof. We rewrite the ODE (NAG-SQC-ODE) the following way.
VX () + (147X () + VsVEE(X ()X () + (1 +~v/us) VF(X(t) = 0 (182)
Where v =1+ 5%, /1is. Set the following Lyapunov function:
E(t) =0(F(X (1) — F7) + %HUX(t) FAX () = 2") +VsVF(X ()] (183)

To lighten the following computations, we write X (¢) as X, and we do the same for the first and second
derivatives of X. We have

E(t) = 6(X,VF(X)) + (uX(t) + MX(t) — 2%) + V/sVF(X(1),vX + A\X +VsVZF(X)X) (184)
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Injecting (NAG-SQC-ODE])), we get

E(t) =6(X,VF(X)) + (uX(t) + \(X(t) — z*) (185)
+VEVE(X (), (A = (L+7)Vu)ViX — (1+7/is) VE(X)) (186)
= (X, VF(X)) +v(A = (L + )V (IX]? (187)
— 0(1+9y/s) (X, VF(X)) + A = (1 + 7)) (X — 2", X) (188)
— ML+ y/Es) (X —a* VE(X)) + (A = (1L + ) V) Vs(VEF, X) = V/s(1 +%//E)||VF(X)|(I2 :
189
We set (A — (1 +7)y/i) = —vyy/fi. Then to cancel (X,VF(X)) terms, we set
5 = (v(1 + 7 fi8) + v1iS) = (1 + 29/755) (190)

Then we get

() < i (VI 4 00X = 0", X) (X~ o ) + | VPP

vz
(191)
— V5| VF(X)|? (192)
We use strong quasar convexity.
E(t) < i (v2X||2 (X —a*, X) + jﬁu /i) (F(X) - F*) (193)
SRy IX - o+ SIVFCOIR ) = VEIVFIP (194)
. . 2
—y (§v2||X|2+Av<X—x*,X> +§||X—x*||2) (195)
PO 2 ) (F(X) — F*) 4 s|[VECOI? = VEIVE(X)|?) (196)
— i () - 5 ) X - (197)
— W *(1 + /i) — o (1+ 2yy/E5) ) (F(X) — F7) - 7\/@2 X112 (198)
WE\ Vi 2 2
We have 102 X2 + Ao(X — 2%, X) + 2| X — 2% = |[uX + A(X — 2*)[|2. Then, we use:
%HUX FAX —2%) +VVE(X)|? < [oX + A(X —2")[]* + 5| VF(X)|? (199)
= X £ X — )+ VEVR(X)? > g oX + A — )2 = SIVECOI (200)

This leads to:

S(t)é—vﬂf(t)—ﬁl\w’( )||2—7f< f(1+vf) )IX z*||? (201)

i (i - S ) (00 - 1) - BRI o
We have to check that some terms are negatives. We have A = /z(1 4+ v(1 — v)), and
2R (14 i) = %y = 5 VALV = 3) = 2 (s = (1 - ) = 2 (150 5 0

(203)
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and

Sy - 1+ 2y = (1= 2 ) () - 50 S5+

JH
(204)
e a0-3)
=1+79vus — 5 (1+2y/ps) 5 Vis(L+7v/hs) (205)
—%1_?7 ws(1 4 2y,/ps) (206)
=%—— ((1+vf)+ +7W> (207)

We want to be sure that this quantity is positive. To do so, we will maximize the right term with
respect to v € [0, 1]. First, note that supposing s < %, we have:

L2 (114 avim) + 5 +avis) < 257 (3040 + 5 +7) = Jam) W +207) = 60)

(208)
We have
4g(7) = (1+ 3y = 29> = 29°) (209)
We now want to find critical points of g.
4g'(y) =3 -4y —6° (210)
We calculate the discriminant A = 42 + 4 % 6 * 3 = 88, inducing that the roots of ¢’ are
4+ 2v22 —4 4222
G E A T (211)

We clearly have x; < 0. xo however belongs to [0, 1]. We evaluate numerically g(z2) ~ 0.44 < % We
conclude that for all v € [0, 1] we have

3~ v (YD) + ) >0 (212

All the out of parenthesis terms are negative, so we conclude that:
£ < £ = £() < £(0)e (213)

Supposing tg = 0

Deducing rate on F(X(t)) — F* Using initial conditions, we have
£(0) = 6(F(Xo) ~ F*) + 3| A(Xo — #°) — VAVF(X)| (214)
< O(F(Xo) = F*) + N[ Xo — 2™ [|* + | VF(Xo) | (215)
< (6 + 2)\2{3};’” + 2L5) (F(Xo) — F™) (216)

Where the third inequality uses that F'is
Then, we have

7 'Yv -quadratic growth (Propostion and that F' is L-Smooth.

2)\2(2 — 1 m
F(X(t) - F* < (7 + A(M” + 2’yLs) S(F(X) - Frye 78t (217)
=Ko (v,u,L,s)

We need to check that Ko(v, u, L, s) is uniformly bounded. Note first that has 0 < s < %, we have

sL<1, pus<1 (218)
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We bound now v, d, A, that we already fixed in the proof.

1— 3
1§v:=1+77ms<§ (219)
9
1< :=v(l+2v/ps) < 5 (220)
B aam =1
vi1-5) sa=va (1 2w ) < va (221)
In the last inequality, we used the well known fact that 0 < p(1 — p) < i, for all p € [0, 1].
We thus can explicitly compute that
Ko(y,p, L,s) < (14+4+2)=7 (222)
O

D.1 Computation of derivation difference

We show how we can slightly modify the proof of Theorem [2]in order to exhibit the derivation difference
mentionned in section We start from equation (131) from the proof of Theorem

Ent1 = En = (1= B)En + Flon1) = F* = 8(F(ea) = F) + 5= 8)lyn — 2”2 + S V()

2
Iz a aBnu .
8505 (25 ) T = anl® = ST ).~ ) — T F ) = 7).
(223)
As in the original proof, we use (129)-(130)), the inequality given by the assumptions over the class of

functions. The only difference here will be that we use the L-smooth property to bound F'(z,1) — F*
instea d of ||V F(yn)||?, i-e. we use:

Vs < 1, Yn €N, Flrn) < F(ya) — 5 V()P (224)
We then get:
Eni1 = En < =(1=B)En + (1 = yun)(F(yn) — F*) + (gn2 - %)IIVF(yn)II2 (225)
2
= 8(P() = %) = ST P, = ) — PO (L2 - 220
+ g(l—ﬁ—vw)\\yn —a*|? (227)

Recall the choices of parameter of Theorem [2] that are:

S<%, an=1+1\/m:=oz7 Bn=1—us:= B, nn:://;5—77~
Using this choice of parameters, we get the following equation:
Ent1— —WHsEn + (1 = y/1s) (Fyn) = F(xn) + (VF(yn), Tn — yn))
v(1 = y/1s) \/>||yn — znll*. (228)

This is exactly equation .
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