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Abstract
We derive a priori and a posteriori error estimates for the discontinuous Galerkin (dG)

approximation of the time-harmonic Maxwell’s equations. Specifically, we consider an
interior penalty dG method, and establish error estimates that are valid under minimal
regularity assumptions and involving constants that do not depend on the frequency for
sufficiently fine meshes. The key result of our a priori error analysis is that the dG solution
is asymptotically optimal in an augmented energy norm that contains the dG stabilization.
Specifically, up to a constant that tends to one as the mesh is refined, the dG solution is
as accurate as the best approximation in the same norm. The main insight is that the
quantities controlling the smallness of the mesh size are essentially those already appearing
in the conforming setting. We also show that for fine meshes, the inf-sup stability constant
is as good as the continuous one up to a factor two. Concerning the a posteriori analysis,
we consider a residual-based error estimator under the assumption of piecewise constant
material properties. We derive a global upper bound and local lower bounds on the error
with constants that (i) only depend on the shape-regularity of the mesh if it is sufficiently
refined and (ii) are independent of the stabilization bilinear form.

Keywords. Time-harmonic Maxwell’s equations, discontinuous Galerkin, Interior penalty,
Duality argument, Asymptotic optimality, A posteriori error analysis

MSC. 65N30, 78M10, 65N15

1 Introduction
LetD ⊂ Rd, d = 3, be an open, bounded, Lipschitz polyhedron with boundary ∂D and outward
unit normal nD. We do not make any simplifying assumption on the topology of D. We use
boldface fonts for vectors, vector fields, and functional spaces composed of such fields. More
details on the notation are given in Section 2.

Given a positive real number ω > 0 representing a frequency and a source term J : D →
R3, and focusing for simplicity on homogeneous Dirichlet boundary conditions (a.k.a. perfect
electric conductor boundary conditions), the model problem consists in finding E : D → R3

such that

−ω2εE +∇×(µ−1∇×E) = J in D, (1.1a)
E×nD = 0 on ∂D, (1.1b)

where ε represents the electric permittivity of the materials contained inD and µ their magnetic
permeability. Both material properties can vary in D and take symmetric positive-definite
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values with eigenvalues uniformly bounded from above and from below away from zero. We
assume that ω is not a resonant frequency, so that (1.1) is uniquely solvable inH0(curl;D) for
every J in the topological dual space H0(curl;D)

′. The time-harmonic Maxwell’s equations
(1.1) are one of the central models of electrodynamics. Therefore, efficient discretizations are
a cornerstone for the computational modelling of electromagnetic wave propagation [23, 34].
In this work, we focus on the discontinuous Galerkin (dG) method.

DG methods employ approximation spaces composed of nonconforming (discontinuous,
broken) polynomials on the mesh. They are attractive since they easily allow for more flexibility
in the mesh and for local variations of the polynomial degree. [–] DG methods exist in many
flavors. One popular approach for the Poisson model problem is the interior penalty dG
method, which hinges on a consistency term involving the mean-value of the normal flux at
the mesh faces, possibly a symmetry term, and a stabilization term penalizing the jumps
across the mesh interfaces and the values at the mesh boundary faces (see, e.g., [2, 17] and
the references therein). The expression of the consistency term involving the mean-value of
the normal flux is convenient for efficient implementation, but for the analysis, it is useful
to consider an (equivalent) reformulation involving jump liftings. The approach was first
considered in [4] and analyzed in [6]. One important outcome is the notion of discrete gradient
obtained by adding the jump liftings to the broken (piecewise) gradient. Indeed, the discrete
gradient enjoys a compactness property that plays a central role in various nonlinear problems
[9, 7, 16]. Another attractive feature is that the discrete gradient admits a bounded extension
to H1, whereas the standard consistency term can only be extended to H1+s with s > 1

2 . It is
also possible to define bounded extensions of the consistency term to H1+s for s > 0 arbitrarily
small by proceeding as in [21].

In the context of the time-harmonic Maxwell’s equations, interior penalty dG methods were
devised and analyzed in [36, 25], and the notion of discrete curl, obtained by adding the liftings
of the tangential jumps to the broken curl, has been considered in the method formulation
and analysis. However, the combined use of discrete curls (allowing for minimal regularity
requirements) with Schatz’s duality argument seems to be lacking in the literature, contrary
to the case of the Helmholtz equation where such a result has been recently achieved in [10].
Our first main contribution is to fill this gap. Indeed, we show that an asymptotically optimal
error estimate holds true with an augmented energy norm including a nonconformity measure.
Asymptotic optimality means that the ratio between the approximation error and the best-
approximation error tends to one as the mesh size h is sent to zero. An important aspect in our
analysis is that the (frequency dependent) quantities controlling the smallness of the mesh size
are essentially those already appearing in the conforming setting. Our second main contribution
is to establish asymptotic optimality under minimal regularity assumptions. Specifically, we
assume that the source term sits in L2(D) (rather than in the dual space H0(curl;D)

′) with
no further assumption on ∇·J and that the material coefficients are bounded from above and
from below away from zero, with no further regularity assumption on the exact solution. The
third main contribution of the paper is an a posteriori error analysis in the present indefinite
setting and using, for the first time, a duality argument. We establish global upper bounds and
local lower bounds on the error, where the constants are independent of the frequency, again
in the limit as the mesh is refined. An important insight is, once again, that the behavior of
the constants is the same as for a conforming approximation. The a posteriori error analysis
is of residual-type and requires to tighten slightly the assumption on the source term so that
∇·J ∈ L2(D), and we assume piecewise constant material properties.

Let us put our results in perspective with the literature. Concerning the a priori error anal-
ysis, a quasi-optimal (but not asymptotically optimal) error estimate under minimal regularity
is derived in [30], but for a different interior penalty dG method, where a Lagrange multiplier
related to the divergence constraint is introduced together with the corresponding stabiliza-
tion term. Moreover, asymptotically optimal error estimates for the time-harmonic Maxwell’s
equations approximated using conforming edge elements have been derived quite recently in
[32] and in [11]. The analysis in [32] considers impedance boundary conditions (allowing for an
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explicit frequency analysis), but requires the domain boundary to be smooth and connected.
Instead, the analysis in [11] considers Dirichlet boundary conditions and allows for general
domains, material coefficients, and right-hand side. The present analysis leverages the ideas
developed in [11], but needs to address two additional, nontrivial difficulties: (i) the lack of
strong consistency under minimal regularity, leading to the appearance of new terms in the
analysis related to the consistency defect; (ii) the nonconforming nature of the approximation,
which calls for a careful handling of the stabilization. In particular, we notice that we allow
for a rather general stabilization bilinear form and provide explicit design assumptions for the
analysis to hold true.

Concerning the a posteriori error analysis, we leverage the ideas proposed in [12] for the
conforming edge finite element approximation of the time-harmonic Maxwell’s equations. Here,
the novelty is twofold. First, we additionally deal with the consistency defect and the presence
of stabilization in the discontinuous Galerkin setting, by extending ideas introduced in [10]
for the Helmholtz equation. Moreover, we tighten some arguments from [12] in the proof of
the error upper bound so that the involved constants only depend on the shape-regularity
parameter of the mesh, whereas in [12] some constants are frequency-dependent in the low-
frequency regime. Specifically, instead of invoking the regular decomposition results from [24,
Theorem 2.1] as in [12], we make use of Galerkin orthogonality on conforming test functions
to invoke the regular decomposition results from [38, Theorem 1]. Finally, we observe that
the general form of the error indicators is the same as the one derived in [26] in the positive
definite setting.

The paper is organized as follows. In Section 2, we briefly present the continuous setting,
and in Section 3, we do the same for the discrete setting. In particular, we introduce various
(nondimensional) approximation and divergence-conformity factors to be used in the analysis.
These factors are important to support our claim that the smallness condition on the mesh
size made in the error analysis essentially behaves (in terms of frequency) as the corresponding
condition for the conforming approximation. In Section 4, we introduce the dG approximation
in a rather general setting and show that the setting covers, in particular, the well-known
interior penalty approach. Moreover, we establish in Lemma 4.4 a key estimate on the weak
consistency of the dG approximation. In Section 5, we deal with the a priori error analysis
and inf-sup stability. The main results in this section are Theorem 5.5 and Theorem 5.7. In
Section 6, we perform the a posteriori residual-based error analysis. The main results in this
section are Theorem 6.4 and Theorem 6.5. Finally, in Section 7, we establish bounds on the
approximation and divergence conformity factors. These bounds prove that these factors tend
to zero with the mesh size.

2 Continuous setting
In this section, we briefly recall the functional setting for the time-harmonic Maxwell’s equa-
tions and formulate the model problem.

2.1 Functional spaces
We use standard notation for Lebesgue and Sobolev spaces. To alleviate the notation, the
inner product and associated norm in the spaces L2(D) and L2(D) are denoted by (·, ·) and
‖·‖, respectively. The material properties ε and ν := µ−1 are measurable functions that take
symmetric positive-definite values in D with eigenvalues uniformly bounded from above and
from below away from zero. It is convenient to introduce the inner product and associated
norm weighted by either ε or ν, leading to the notation (·, ·)ε, ‖·‖ε, (·, ·)ν and ‖·‖ν . Whenever
no confusion can arise, we use the symbol ⊥ to denote orthogonality with respect to the inner
product (·, ·)ε. Moreover, all the projection operators denoted using the symbol Π are meant to
be orthogonal with respect to this inner product; we say that the projections are L2

ε-orthogonal.
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We consider the Hilbert Sobolev spaces

H(curl;D) := {v ∈ L2(D) | ∇×v ∈ L2(D)}, (2.1a)
H(curl = 0;D) := {v ∈H(curl;D) | ∇×v = 0}, (2.1b)
H0(curl;D) := {v ∈H(curl;D) | γc

∂D(v) = 0}, (2.1c)
H0(curl = 0;D) := {v ∈H0(curl;D) | ∇0×v = 0}, (2.1d)

where the tangential trace operator γc
∂D : H(curl;D)→H−

1
2 (∂D) is the extension by density

of the tangent trace operator such that γc
∂D(v) = v|∂D×nD for smooth fields. The subscript 0

indicates the curl operator acting on fields respecting homogeneous Dirichlet conditions. Notice
that ∇× and ∇0× are adjoint to each other, i.e., (∇0×v,w) = (v,∇×w) for all (v,w) ∈
H0(curl;D)×H(curl;D). We equip the space H(curl;D) and its subspaces defined in (2.1)
with the following (dimensionally consistent) energy norm:

|||v|||2 := ω2‖v‖2ε + ‖∇×v‖2ν . (2.2)

We consider the subspace

Xc
0 := H0(curl;D) ∩H0(curl = 0;D)

⊥
, (2.3)

and we introduce the L2
ε-orthogonal projection

Πc
0 : L2(D)→H0(curl = 0;D). (2.4)

Since ∇H1
0 (D) ⊂ H0(curl = 0;D), any field ξ ∈ Xc

0 is such that ∇·(εξ) = 0 in D. Hence,
Xc

0 compactly embeds into L2(D) [39].

Remark 2.1 (Topology of D). We have H0(curl = 0;D)
⊥ ⊂ {v ∈ L2(D), ∇·(εv) = 0} with

equality if only if ∂D is connected (see, e.g., [1]).

2.2 Model problem
Given a positive real number ω > 0 and a source term J ∈ (H0(curl;D))′ (the topological
dual space of H0(curl;D)), the model problem amounts to finding E ∈ H0(curl;D) such
that

b(E,w) = 〈J ,w〉 ∀w ∈H0(curl;D), (2.5)

with the bilinear form defined on H0(curl;D)×H0(curl;D) such that

b(v,w) := −ω2(v,w)ε + (∇0×v,∇0×w)ν , (2.6)

and where the brackets on the right-hand side of (2.5) denote the duality product between
(H0(curl;D))′ and H0(curl;D). In what follows, we assume that ω2 is not an eigenvalue of
the ε−1∇×(ν∇0×·) operator in D. As a result, the model problem (2.5) is well-posed. We
observe that the bilinear form b satisfies |b(v,w)| ≤ |||v||||||w|||. The following inf-sup stability
result is established in [11, Lemma 2].

Lemma 2.2 (Inf-sup stability). The following holds:

1

1 + 2βst
≤ inf
v∈H0(curl;D)
|||v|||=1

sup
w∈H0(curl;D)
|||w|||=1

|b(v,w)| ≤ 1

βst
, (2.7)

with the (nondimensional) stability constant

βst := sup
g∈H0(curl=0;D)⊥

‖g‖ε=1

ω|||vg|||. (2.8)

Here, for all g ∈ L2(D), vg ∈H0(curl;D) denotes the unique solution to (2.5) with right-hand
side (g,w)ε, i.e., b(vg,w) = (g,w)ε for all w ∈H0(curl;D).
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3 Discrete setting
In this section, we introduce the discrete setting and various important tools, such as the
discrete curl operator, two approximation norms and a nonconformity measure, and some
important approximation and divergence conformity factors. All these tools are of broader
interest than the dG method presented in the next section; they can indeed be applied to
analyze other nonconforming approximation methods.

3.1 Mesh and polynomial spaces
Let Th be an affine simplicial mesh covering D exactly. A generic mesh cell is denoted K, its
diameter hK and its outward unit normal nK . We define the piecewise constant functions h̃
and ν̃ such that

h̃|K := hK , ν̃|K := min
u∈Rd

|u|=1

ν|Ku · u, ∀K ∈ Th. (3.1)

We write Fh for the set of mesh faces, F◦h for the subset of mesh interfaces (shared by two
distinct mesh cells, Kl, Kr), and F∂h for the subset of mesh boundary faces (shared by one
mesh cell, Kl, and the boundary, ∂D). Every mesh interface F ∈ F◦h is oriented by the unit
normal, nF , pointing from Kl to Kr (the orientation is arbitrary, but fixed). Every boundary
face F ∈ F∂h is oriented by the unit normal nF := nD|F . For all K ∈ Th, FK is the collection
of the mesh faces composing ∂K.

Let k ≥ 1 be the polynomial degree. Let Pk,d be the space composed of d-variate polyno-
mials of total degree at most k and set PPPk,d := [Pk,d]d. The dG approximation hinges on the
following broken polynomial space:

P b
k(Th) := {vh ∈ L2(D) | vh|K ∈ PPPk,d, ∀K ∈ Th}. (3.2)

Moreover, the error analysis makes use of the following subspaces:

P c
k(Th) := P b

k(Th) ∩H(curl;D), (3.3a)

P c
k,0(Th) := P b

k(Th) ∩H0(curl;D), (3.3b)

P c
k,0(curl = 0; Th) := P b

k(Th) ∩H0(curl = 0;D). (3.3c)

The superscript c in the above subspaces is meant to remind us that all these subspaces are
H(curl;D)-conforming. The L2

ε-orthogonal projection

Πc
h0 : L2(D)→ P c

k,0(curl = 0; Th), (3.4)

plays a key role in what follows. In particular, we introduce the subspace

Xb
h := P b

k(Th) ∩ P c
k,0(curl = 0; Th)⊥, (3.5)

which is composed of fields vh ∈ P b
k(Th) such that Πc

h0(vh) = 0.

3.2 Jumps and discrete curl operator
For all K ∈ Th, all F ∈ FK , and all vh ∈ P b

k(Th), we define the local trace operators such that
γg
K,F (vh)(x) := vh|K(x), γc

K,F (vh)(x) := vh|K(x)×nF , for a.e. x ∈ F . Then, for all F ∈ F◦h
and x ∈ {g, c}, we define the jump and average operators such that

[[vh]]xF := γx
Kl,F

(vh)− γx
Kr,F (vh), {{vh}}xF :=

1

2

(
γx
Kl,F

(vh) + γx
Kr,F (vh)

)
. (3.6)

We also set [[vh]]xF := {{vh}}xF := γx
Kl,F

(vh) for all F ∈ F∂h .
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For every field vh ∈ P b
k(Th), ∇h×vh denotes the broken curl of vh (evaluated cellwise).

Let ` ≥ k − 1 ≥ 0. We define the discrete curl operator Ck,`
h,0 : P b

k(Th) → P b
` (Th) such that,

for all vh ∈ P b
k(Th),

Ck,`
h,0(vh) := ∇h×vh +L`h,0(vh), (3.7)

where the jump lifting operator L`h,0(vh) ∈ P b
` (Th) is defined by requiring that

(L`h,0(vh),φh) :=
∑
F∈Fh

([[vh]]cF , {{φh}}
g
F )L2(F ) (3.8)

for all φh ∈ P
b
` (Th). Taking the polynomial degree ` larger than k− 1 is useful to improve the

consistency property of the discrete curl operator; see Lemma 4.4 below.
It is convenient to introduce the infinite-dimensional space

V ] := H0(curl;D) + P b
k(Th), (3.9)

where the error (E − Eh) lives. Although the sum in (3.9) is not direct, any field vh ∈
H0(curl;D) ∩ P b

k(Th) satisfies [[vh]]cF = 0 for all F ∈ Fh, as well as Ck,`
h,0(vh) = ∇0×vh.

It is therefore legitimate to extend the curl and jump operators to V ] by setting, for all
v = ṽ + vh ∈ V ] with ṽ ∈H0(curl;D) and vh ∈ P b

k(Th),

Ck,`
h,0(v) := ∇0×ṽ +∇h×vh +L`h,0(vh), [[v]]cF := [[vh]]cF . (3.10)

3.3 Approximation norms and nonconformity measure
We consider the following two norms:

|||vh|||2ap := ‖ν̃ 1
2 h̃−1vh‖2 + ‖Ck,`

h,0(vh)‖2ν ∀vh ∈ P b
k(Th), (3.11a)

|||v|||2ap∗ := ‖v‖2ν−1 + ‖ν̃− 1
2 h̃∇×v‖2 ∀v ∈H(curl;D). (3.11b)

(Recall that h̃ and ν̃ are defined in (3.1).) We introduce the following nonconformity measure:

|v|nc := min
vc
h∈P

c
k,0(Th)

|||vh − vc
h|||ap ∀v := ṽ + vh ∈ V ]. (3.12)

Notice that the definition (3.12) is independent of the decomposition v := ṽ + vh. The |||·|||ap-
norm is used to measure the nonconformity in (3.12), whereas the |||·|||ap∗-norm is used in the
next section to estimate the approximability properties of some dual solution.

3.4 Approximation and divergence conformity factors
Here, we introduce three factors to be used in the error analysis. We prove in Section 7 that
these factors tend to zero (possibly with a certain rate) as the mesh size tends to zero.

For all θ ∈ H0(curl = 0;D)
⊥, we consider the adjoint problem consisting of finding ζθ ∈

H0(curl;D) such that

b(w, ζθ) = (w,θ)ε ∀w ∈H0(curl;D). (3.13)

Taking any test function w ∈H0(curl = 0;D) ⊂H0(curl;D) shows that

ω2(w, ζθ)ε = b(w, ζθ) = (w,θ)ε = 0, (3.14)

where the first equality follows from ∇0×w = 0, the second from the definition of the adjoint
solution, and the third from the assumption θ ∈ H0(curl = 0;D)

⊥. Since w is arbitrary in
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H0(curl = 0;D), this proves that ζθ ∈H0(curl = 0;D)
⊥. Thus, ζθ ∈X

c
0. We introduce the

(nondimensional) approximation factors

γap := sup
θ∈H0(curl=0;D)⊥

‖θ‖ε=1

min
vc
h∈P

c
k,0(Th)

ω|||ζθ − vc
h|||, (3.15a)

γap∗ := sup
θ∈H0(curl=0;D)⊥

‖θ‖ε=1

min
Φc

h∈P
c
`(Th)

ω|||ν∇0×ζθ −Φc
h|||ap∗. (3.15b)

The approximation factor γap uses the triple norm |||·||| defined in (2.2), whereas γap∗ uses
the norm |||·|||ap∗ defined in (3.11b). Finally, we introduce the (nondimensional) divergence
conformity factor

γdv := sup
vh∈Xb

h

‖Ck,`
h,0(vh)‖2ν+|vh|2nc

=1

ω‖Πc
0(vh)‖ε. (3.16)

Loosely speaking, γdv measures how much discretely divergence-free fields depart from being
exactly divergence-free.

4 Discontinuous Galerkin approximation
In this section, we formulate the dG approximation of the model problem (2.5) in a rather
general setting and show that the interior penalty dG method fits the proposed framework.
We then examine the Galerkin orthogonality and weak consistency property of the proposed
dG method. We assume from now on that J ∈ L2(D); notice though that we do not make any
further assumption on ∇·J for the a priori error analysis. Moreover, the sole assumption on
the material properties is uniform boundedness from above and from below away from zero.
The main novel result in this section is Lemma 4.4 which leads to a weak consistency property
of the dG method without requiring any additional regularity property on the exact solution.

4.1 Stabilization and extended bilinear form
We consider a stabilization bilinear form s] defined on V ]×V ] for which we make the following
assumptions:

(i) s] is symmetric positive semidefinite, (4.1a)
(ii) s](v, ·) = s](·,v) = 0 ∀v ∈H0(curl;D). (4.1b)

(Notice that the first equality in (4.1b) follows from (4.1a).) We also assume that

∃ρ > 0 s.t. ρ|vh|nc ≤ s](vh,vh)
1
2 ∀vh ∈ V h, (4.2)

where the constant ρ is independent of the mesh size and the frequency. The value of ρ can
depend on the mesh shape-regularity and the polynomial degree. This assumption is needed
only for the a priori error analysis, but not for the a posteriori analysis. Furthermore, we notice
that although the converse bound ρ̃|vh|s ≤ |vh|nc for some ρ̃ > 0 is not required anywhere
in the analysis, it is reasonably to assume it to avoid ill-conditioned linear systems. Finally,
we notice that, as usual in dG methods, the stabilization bilinear form s] is not bounded in
the H(curl;D)-norm uniformly with respect to the mesh size. Its role is to deal with the
nonconformity of the discretization when handling the curl operator by enforcing some penalty
on the tangential jumps of discrete fields.

We define the bilinear forms b] and b]s on V ] × V ] such that

b](v,w) := −ω2(v,w)ε + (Ck,`
h,0(v),Ck,`

h,0(w))ν , (4.3a)

b]s(v,w) := b](v,w) + s](v,w). (4.3b)

7



The bilinear form b]s is used to define the discrete problem and perform the a priori error
analysis; the bilinear form b] is useful in the a posteriori error analysis. Owing to (3.10)
and (4.1b), we have the following (minimal) consistency property:

b]s(v,w) = b](v,w) = b(v,w) ∀v,w ∈H0(curl;D). (4.4)

We extend the |||·|||-norm defined in (2.2) to V ] by setting, for all v ∈ V ],

|||v|||2] := ω2‖v‖2ε + ‖Ck,`
h,0(v)‖2ν , (4.5a)

|||v|||2]s := |||v|||2] + |v|2s , |v|2s := s](v,v). (4.5b)

(The definition of |v|s is legitimate owing to (4.1a).) This leads to the following boundedness
properties on the bilinear form b]s:

|b]s(v,w)| ≤ |||v|||]s |||w|||]s ∀(v,w) ∈ V ] × V ], (4.6a)
|b]s(v,w)| ≤ |||v|||] |||w||| ∀(v,w) ∈ V ] ×H0(curl;D). (4.6b)

4.2 Discrete problem
The discrete problem reads as follows: Find Eh ∈ P b

k(Th) such that

b]s(Eh,wh) = (J ,wh)L2(D) ∀wh ∈ P b
k(Th). (4.7)

Notice that we use here the assumption that J ∈ L2(D).
One simple, yet important, observation is that Galerkin orthogonality holds true whenever

the discrete test functions are required to be H0(curl;D)-conforming.

Lemma 4.1 (Galerkin orthogonality on conforming test functions). If Eh solves (4.7), the
following holds true:

b]s(E −Eh,v
c
h) = 0 ∀vc

h ∈ P
c
k,0(Th). (4.8)

In particular, we have
Πc
h0(E −Eh) = 0. (4.9)

Proof. The property (4.8) follows from the definition of b]s which implies that b]s(E,vc
h) =

b(E,vc
h) = (J ,vc

h) for all vc
h ∈ P

c
k,0(Th). Moreover, since P c

k,0(curl = 0; Th) ⊂ P c
k,0(Th), (4.8)

implies that (E −Eh,wh)ε = 0 for all wh ∈ P c
k,0(curl = 0; Th), which proves (4.9).

4.3 Example: interior penalty discontinuous Galerkin method
The classical interior penalty dG formulation for the model problem (2.5) is based upon the
following discrete bilinear form [36]: For all vh,wh ∈ P b

k(Th),

bh(vh,wh) := − ω2(vh,wh)ε + (∇h×vh,∇h×wh)ν + η∗sh(vh,wh)

+
∑
F∈Fh

{
({{ν∇h×vh}}gF , [[wh]]cF )L2(F ) + ([[vh]]cF , {{ν∇h×wh}}gF )L2(F )

}
, (4.10)

with the stabilization bilinear form

sh(vh,wh) :=
∑
F∈Fh

ν̃F
hF

([[vh]]cF , [[wh]]cF )L2(F ), (4.11)

and the user-dependent parameter η∗ > 0 is to be taken large enough. In (4.11), hF denotes
the diameter of F ∈ Fh and ν̃F := maxK∈TF ν̃K with TF := {K ∈ Th |F ∈ FK}. Notice that
the extension of sh to V ] × V ] readily follows from (3.10).
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The discrete bilinear form bh defined in (4.10) can be extended to V ] × V ] using the
bilinear form b]s defined in (4.3b) provided the polynomial degree for the jump lifting satisfies
` ≥ k− 1 ≥ 0 and provided the material property ν is piecewise constant on the mesh. In this
situation, b]s is indeed an extension of bh, i.e., b]s|P b

k(Th)×P b
k(Th) = bh, provided the stabilization

bilinear form s] is defined as follows:

s](v,w) := η∗sh(v,w)− (L`h,0(v),L`h,0(w))ν ∀(v,w) ∈ V ] × V ]. (4.12)

(Notice that s] is not an extension of sh.) The bilinear form s] defined in (4.12) trivially
satisfies (4.1b) and is symmetric. It is positive semidefinite, i.e., (4.1a) also holds true, if the
factor η∗ is chosen large enough [35]. The minimal threshold classically depends on the mesh
shape-regularity and the polynomial degree `. Finally, it is possible to choose the parameter
η∗ > 0 large enough so that (4.2) holds true. To this purpose, one can, for instance, bound
|vh|nc by taking vc

h := Ic,av
h0 (vh) defined using theH0(curl;D)-conforming averaging operator

analyzed in [19]. We observe in passing that the value of the parameter η∗ is independent of the
frequency, as it is only related to the nonconformity in the discretization of the curl operator.

Remark 4.2 (Weighted averages). Whenever the jumps of (the eigenvalues of) ν are large
across the mesh interfaces, it can be useful to consider weighted ν-dependent averages to eval-
uate the last two terms on the right-hand side of (4.10). We refer the reader, e.g., to [22] for
an example in the context of scalar diffusion problems. Such weighted averages can be handled
in our framework by modifying the definition of the lifting operator accordingly.

4.4 Weak consistency
We now consider the consistency error produced by the discrete curl operator when tested
against general fields. For all Ψ ∈ H0(curl;D) such that ν∇0×Ψ ∈ H(curl;D) and for all
vh ∈ P b

k(Th), we define the weak consistency error on the discrete curl as

δwkc(vh,Ψ) := (vh,∇×(ν∇0×Ψ))− (Ck,`
h,0(vh),∇0×Ψ)ν . (4.13)

The weak consistency error δwkc allows us to measure the consistency defect of the discrete
primal problem (4.7) and the adjoint problem (3.13). (Compare with Lemma 4.1 for the
consistency of the discrete primal problem restricted to conforming test functions).

Lemma 4.3 (Weak consistency of primal and dual problems). If Eh solves the discrete primal
problem (4.7), the following holds true:

b]s(E −Eh,wh) = −δwkc(wh,E) ∀wh ∈ P b
k(Th). (4.14a)

If ζθ ∈ H0(curl;D) solve the adjoint problem (3.13) with data θ ∈ H0(curl = 0;D)
⊥, the

following holds true:

b]s(wh, ζθ)− (wh,θ)ε = −δwkc(wh, ζθ) ∀wh ∈ P b
k(Th). (4.14b)

Proof. Recall the definition (4.3b) of b]s and the assumption (4.1b) on s]. To prove (4.14a),
we observe that

b]s(E −Eh,wh)− b]s(Eh,wh) = b]s(E,wh)− (J ,wh)

= b](E,wh)− (J ,wh)

= (∇0×E,Ck,`
h,0(wh))ν − (∇×(ν∇0×E),wh)

= −δwkc(wh,E).
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To prove (4.14b), we observe that

b]s(wh, ζθ) = b](wh, ζθ) = −ω2(wh, ζθ)ε + (Ck,`
h,0(wh),∇0×ζθ)ν

= (wh,−ω2εζθ +∇×(ν∇0×ζθ))− δwkc(wh, ζθ)

= (wh,θ)ε − δwkc(wh, ζθ).

This completes the proof.

The above result motivates the need to bound the weak consistency error on the discrete
curl.

Lemma 4.4 (Weak consistency). For all Ψ ∈ H0(curl;D) such that ν∇0×Ψ ∈ H(curl;D)
and for all vh ∈ P b

k(Th), the following holds true:

|δwkc(vh,Ψ)| ≤ |vh|nc min
Φc

h∈P
c
`(Th)

|||ν∇0×Ψ−Φc
h|||ap∗, (4.15)

with P c
`(Th) := P b

` (Th) ∩H(curl;D).

Proof. We follow the idea of [10] for the Helmholtz problem. For any field Φc
h ∈ P

c
`(Th),

integration by parts gives
(vh,∇×Φc

h) = (Ck,`
h,0(vh),Φc

h).

We infer that

δwkc(vh,Ψ) = (vh,∇×(ν∇0×Ψ−Φc
h))− (Ck,`

h,0(vh),ν∇0×Ψ−Φc
h).

Let vc
h ∈ P

c
k,0(Th) and observe that Ck,`

h,0(vc
h) = ∇0×vc

h. Integration by parts using ζ :=
ν∇0×Ψ−Φc

h ∈H(curl;D) gives

(vc
h,∇×ζ) = (∇0×vc

h, ζ) = (Ck,`
h,0(vc

h), ζ).

Putting everything together yields

δwkc(vh,Ψ) = (vh − vc
h,∇×(ν∇0×Ψ−Φc

h))− (Ck,`
h,0(vh − vc

h),ν∇0×Ψ−Φc
h)

≤ |||vh − vc
h|||ap|||ν∇0×Ψ−Φc

h|||ap∗,

where we used the Cauchy–Schwarz inequality and the definitions (3.11a) and (3.11b) of the
norms |||·|||ap and |||·|||ap∗, respectively. Taking the infimum over vc

h ∈ P
c
k,0(Th) and over Φc

h ∈
P c
`(Th) completes the proof.

5 A priori error analysis and inf-sup stability
This section is devoted to the error analysis of the dG approximation. As usual with Schatz-like
arguments, we first establish an error estimate by assuming that the discrete solution Eh exists
and then we prove that the discrete problem (4.7) is indeed well-posed if h is small enough.

5.1 Error decomposition and best approximation
We define the approximation error e := E −Eh and consider the error decomposition

e = θ0 + θΠ, (5.1)

with

θ0 := (I −Πc
0)(e) ∈H0(curl = 0;D)

⊥
, θΠ := Πc

0(e) ∈H0(curl = 0;D). (5.2)
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Let us define the bilinear forms b+] and b+]s on V ] × V ] such that

b+] (v,w) := ω2(v,w)ε + (Ck,`
h,0(v),Ck,`

h,0(w))ν , (5.3a)

b+]s(v,w) := b+] (v,w) + s](v,w). (5.3b)

The difference with b] and b]s lies in the sign of the zero-order term. We define the best-
approximation operator Bb

h : V ] → P b
k(Th) as follows: For all v ∈ V ], Bb

h(v) ∈ P b
k(Th) is such

that
b+]s(v − B

b
h(v),wh) = 0 ∀wh ∈ P b

k(Th). (5.4)

The best-approximation error is defined to be

η := E − Bb
h(E). (5.5)

Lemma 5.1 (Properties of Bb
h). The best-approximation operator Bb

h defined in (5.4) enjoys
the following two properties:

|||Bb
h(v)|||]s ≤ |||v|||]s, ∀v ∈ V ], (5.6a)

Bb
h(v) ∈Xb

h, ∀v ∈ P c
k,0(curl = 0; Th)⊥. (5.6b)

In particular, the error e = E −Eh satisfies

Bb
h(e) ∈Xb

h. (5.6c)

Proof. (5.6a) follows from the fact that the bilinear form b+]s is the inner product associated
with the |||·|||]s-norm. To prove (5.6b), consider any v ∈ P c

k,0(curl = 0; Th)⊥. Take any
wh ∈ P c

k,0(curl = 0; Th) in (5.4) and observe that Ck,`
h,0(wh) = 0 and s](·,wh) = 0. Since

ω2(Bb
h(v),wh)ε = ω2(Bb

h(v)− v,wh)ε = b+]s(B
b
h(v)− v,wh) = 0,

we infer that Bb
h(v) ∈ P c

k,0(curl = 0; Th)⊥. Moreover, Bb
h(v) ∈ P b

k(Th) by construction. This
proves (5.6b). Finally, (5.6c) follows from (4.9) and (5.6b).

5.2 Preliminary bounds
Lemma 5.2 (Bound on θ0). We have

ω‖θ0‖ε ≤ γap |||e|||] + γap∗ |e|nc, (5.7)

with the approximation factors γap and γap∗ defined in (3.15a) and (3.15b), respectively.

Proof. Let ζθ ∈ H0(curl;D) solve the adjoint problem (3.13) with data θ := θ0. Since
E, ζθ ∈H0(curl;D), we infer from (4.4) and the definition of the adjoint solution that

b]s(E, ζθ) = b(E, ζθ) = (E,θ0)ε.

Owing to (4.14b), we infer that

b]s(Eh, ζθ) = (Eh,θ0)ε − δwkc(Eh, ζθ).

Combining the above two identities and using (θ0,θΠ)ε = 0 gives

ω‖θ0‖2ε = ω(e,θ0)ε = ωb]s(e, ζθ)− ωδwkc(Eh, ζθ). (5.8)

Owing to Galerkin orthogonality on conforming test functions (see (4.8)), we infer that, for all
vc
h ∈ P

c
k,0(Th),

ω‖θ0‖2ε = ωb]s(e, ζθ − vc
h)− ωδwkc(Eh, ζθ). (5.9)

11



Invoking the boundedness property (4.6b) on b]s, and using the definition of the approximation
factor γap gives

ω|b]s(e, ζθ − vc
h)| ≤ |||e|||] ω|||ζθ − vc

h||| ≤ |||e|||] γap‖θ0‖ε.

Moreover, invoking Lemma 4.4 to bound the weak consistency error and recalling the definition
of the approximation factor γap∗ gives

ω|δwkc(Eh, ζθ)| ≤ |Eh|nc γap∗‖θ0‖ε = |e|nc γap∗‖θ0‖ε.

Putting the above two bounds together proves (5.7).

Lemma 5.3 (Bound on θΠ). We have

ω‖θΠ‖ε ≤ ω‖Πc
0(η)‖ε + γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2 . (5.10)

Proof. We observe that

θΠ + θ0 = e = Bb
h(e) + (I − Bb

h)(e) = Bb
h(e) + η,

since (I − Bb
h)(Eh) = 0. This gives θΠ = Bb

h(e) + η − θ0. Since (θΠ,θ0)ε = 0, we infer that

‖θΠ‖2ε = (θΠ,Bb
h(e))ε + (θΠ,η)ε

= (θΠ,Π
c
0(Bb

h(e)))ε + (θΠ,Π
c
0(η))ε =: Θ1 + Θ2,

where we used that θΠ = Πc
0(θΠ) and that Πc

0 is self-adjoint for the inner product (·, ·)ε. We
bound Θ1 as follows:

|Θ1| ≤ ‖θΠ‖ε ‖Πc
0(Bb

h(e))‖ε

≤ ‖θΠ‖ε γdvω
−1
{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2 ,

where we used the divergence conformity factor defined in (3.16) (this is legitimate since
Bb
h(e) ∈Xb

h owing to (5.6c)). Moreover, the Cauchy–Schwarz inequality gives

|Θ2| ≤ ‖θΠ‖ε ‖Πc
0(η)‖ε.

Putting the above two bounds together proves the assertion.

Lemma 5.4 (Bound on |||θ0|||]s). We have

|||θ0|||2]s ≤ |||(I −Πc
0)(η)|||2]s + 2ω‖θΠ‖ε γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2

+ 2|Bb
h(e)|nc min

Φc
h∈P

c
`(Th)

|||ν∇0×E −Φc
h|||ap∗ + 4ω2‖θ0‖2ε. (5.11)

Proof. Since e = η + Bb
h(e) as shown in the above proof, we have θ0 = (I − Πc

0)(e) =
(I −Πc

0)(η) + (I −Πc
0)(Bb

h(e)). This gives

b]s(θ0,θ0) = b]s(θ0, (I −Πc
0)(η)) + b]s(θ0, (I −Πc

0)(Bb
h(e)))

= b]s(θ0, (I −Πc
0)(η)) + b]s(e, (I −Πc

0)(Bb
h(e))),

where the second equality follows from b]s(θΠ, (I −Πc
0)(·)) = 0. The first term on the right-

hand side is bounded by invoking the continuity property (4.6a), giving

|b]s(θ0, (I −Πc
0)(η))| ≤ |||θ0|||]s |||(I −Πc

0)(η)|||]s.

The second term is decomposed as b]s(e, (I −Πc
0)(Bb

h(e))) = β1 + β2 with

β1 := b]s(e,Bb
h(e)), β2 := −b]s(e,Πc

0(Bb
h(e))) = ω2(θΠ,Π

c
0(Bb

h(e)))ε.
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Recalling (4.14a), i.e., the weak consistency of the discrete primal problem for all test functions
in P b

k(Th), we have β1 = −δwkc(Bb
h(e),E). Hence, invoking Lemma 4.4 gives

|β1| ≤ |Bb
h(e)|nc min

Φc
h∈P

c
`(Th)

|||ν∇0×E −Φc
h|||ap∗.

Moreover, using the Cauchy–Schwarz inequality and since Bb
h(e) ∈Xb

h (see (5.6c)), we have

|β2| ≤ ω‖θΠ‖ε γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2 .

Altogether, this gives

b]s(θ0,θ0) ≤ |||θ0|||]s |||(I −Πc
0)(η)|||]s + ω‖θΠ‖ε γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2

+ |Bb
h(e)|nc min

Φc
h∈P

c
`(Th)

|||ν∇0×E −Φc
h|||ap∗.

Since |||θ0|||2]s = b]s(θ0,θ0) + 2ω2‖θ0‖2ε, we infer that

|||θ0|||2]s ≤ |||θ0|||]s |||(I −Πc
0)(η)|||]s + ω‖θΠ‖ε γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2

+ |Bb
h(e)|nc min

Φc
h∈P

c
`(Th)

|||ν∇0×E −Φc
h|||ap∗ + 2ω2‖θ0‖2ε.

Dealing with the first term on the right-hand side by Young’s inequality gives (5.11).

5.3 A priori error estimate
We are now ready to establish our main result on the a priori error analysis which estab-
lishes asymptotic optimality. Importantly, the (frequency dependent) constants controlling the
smallness of the mesh size are essentially those appearing in a conforming approximation.

Theorem 5.5 (Asymptotically optimal error estimate and discrete well-posedness). Assume (4.2).
The following holds:

(1− cγ)|||e|||2]s ≤ (1 + 4γdv)|||η|||2]s + 2ρ−1|||e|||]s min
Φc

h∈P
c
`(Th)

|||ν∇0×E −Φc
h|||ap∗. (5.12)

with cγ := 8 max(γ2
ap, ρ

−2γ2
ap∗) + max(1, ρ−2)(γdv + 3γ2

dv). Consequently, if the mesh size is
small enough so that cγ < 1, the discrete problem (4.7) is well-posed.

Proof. We use (5.10) in (5.11) to infer that

|||θ0|||2]s ≤ |||(I −Πc
0)(η)|||2]s + 2ω‖Πc

0(η)‖ε γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2

+ 2γ2
dv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

}
+ 2|Bb

h(e)|nc min
Φc

h∈P
c
`(Th)

|||ν∇0×E −Φc
h|||ap∗ + 4ω2‖θ0‖2ε.

We now square (5.10) and add the result to the above estimate. Since

|||e|||2]s = |||θ0|||2]s + ω2‖θΠ‖2ε, |||η|||2]s = |||(I −Πc
0)(η)|||2]s + ω2‖Πc

0(η)‖2ε,

we obtain

|||e|||2]s ≤ |||η|||2]s + 4ω‖Πc
0(η)‖ε γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2

+ 3γ2
dv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

}
+ 2|Bb

h(e)|nc min
Φc

h∈P
c
`(Th)

|||ν∇0×E −Φc
h|||ap∗ + 4ω2‖θ0‖2ε.
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We deal with the second term on the right-hand side by Young’s inequality. Since ω‖Πc
0(η)‖ε ≤

ω‖η‖ε ≤ |||η|||]s, this gives

|||e|||2]s ≤ (1 + 4γdv)|||η|||2]s + (γdv + 3γ2
dv)
{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

}
+ 2|Bb

h(e)|nc min
Φc

h∈P
c
`(Th)

|||ν∇0×E −Φc
h|||ap∗ + 4ω2‖θ0‖2ε.

We invoke (5.7) to bound the last term on the right-hand side. This yields

|||e|||2]s ≤ (1 + 4γdv)|||η|||2]s + (γdv + 3γ2
dv)
{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

}
+ 2|Bb

h(e)|nc min
Φc

h∈P
c
`(Th)

|||ν∇0×E −Φc
h|||ap∗ + 8

(
γ2

ap|||e|||2] + γ2
ap∗|e|2nc

)
.

We observe that

‖Ck,`
h,0(Bb

h(e))‖2ν + |Bb
h(e)|2nc ≤ max(1, ρ−2)

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2s
}

≤ max(1, ρ−2)|||Bb
h(e)|||2]s ≤ max(1, ρ−2)|||e|||2]s,

where the last bound follows from (5.6a). Moreover, we have

γ2
ap|||e|||2] + γ2

ap∗|e|2nc ≤ max(γ2
ap, ρ

−2γ2
ap∗)(|||e|||2] + |e|2s) = max(γ2

ap, ρ
−2γ2

ap∗)|||e|||2]s.

Combining the above bounds shows that

(1− cγ)|||e|||2]s ≤ (1 + 4γdv)|||η|||2]s + 2|Bb
h(e)|nc min

Φc
h∈P

c
`(Th)

|||ν∇0×E −Φc
h|||ap∗.

Since ρ|Bb
h(e)|nc ≤ |Bb

h(e)|s ≤ |||Bb
h(e)|||]s ≤ |||e|||]s, this readily gives (5.12).

Remark 5.6 (Error estimate (5.12)). The last term on the right-hand side of (5.12) stems
from the weak consistency of the discrete formulation and somewhat pollutes the asymptotic
optimality of the a priori error estimate. We notice that this term can be made superconvergent
already with the choice ` = k (provided ν∇0×E is smooth enough). The (slight) price to pay is
to choose the stabilization factor η∗ large enough so that s] is indeed positive semidefinite for
` = k (see (4.12)).

5.4 Inf-sup stability
Here, we establish the discrete inf-sup stability of the bilinear form b]s on P b

k(Th) × P b
k(Th).

As for the error estimate from Theorem 5.5, the main insight is that the (frequency dependent)
constants controlling the smallness of the mesh size are essentially those appearing in a con-
forming approximation. The inf-sup stability constant of the discrete problem also depends on
the frequency through the stability constant βst of the exact problem; again, this is the same
situation as for a conforming approximation.

Theorem 5.7 (Inf-sup stability). Under assumption (4.2), we have

min
vh∈P b

k(Th)
|||vh|||]s=1

max
wh∈P b

k(Th)
|||wh|||]s=1

|b]s(vh,wh)| ≥
1− c′γ

1 + 2βst
, (5.13)

with c′γ := 2
(
γap + 1

2ρ
−1γap∗ + max(1, ρ−2)γ2

dv

)
.

Proof. Let vh ∈ P b
k(Th). We build a suitable wh ∈ P b

k(Th) so that |||wh|||]s ≤ (1 + 2βst)|||vh|||]s
and b]s(vh,wh) ≥ (1− c′γ)|||vh|||2]s.

(1) Set vh0 := (I −Πc
h0)(vh) ∈ Xb

h and vhΠ := Πc
h0(vh) ∈ P c

k,0(curl = 0; Th), so that
vh = vh0 + vhΠ. We further decompose vh0 as vh0 = φ0 + φΠ with φ0 := (I −Πc

0)(vh0) and
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φΠ := Πc
0(vh0). Let ξ0 ∈ H0(curl;D) be the unique adjoint solution such that b(w, ξ0) =

ω2(w,φ0)ε for all w ∈ H0(curl;D). We set ξh0 := Bc
h0(ξ0), where Bc

h0 : H0(curl;D) →
P c
k,0(Th) is uniquely defined by requiring that b+] (v−Bc

h0(v),wh) = 0, for all v ∈H0(curl;D)
and all wh ∈ P c

k,0(Th). Finally, we set

wh := vh0 + 2ξh0 − vhΠ ∈ P b
k(Th).

(2) Upper bound on |||wh|||]s. The same argument as in the proof of Lemma 5.1 shows that
|||ξh0||| ≤ |||ξ0|||. Moreover, since φ0 ∈H0(curl = 0;D)

⊥, we have

β−1
st |||ξ0||| ≤ ω‖φ0‖ε ≤ ω‖vh0‖ε ≤ ω‖vh‖ε ≤ |||vh|||] ≤ |||vh|||]s.

This gives

|||wh|||2]s = |||vh0 + 2ξh0|||2]s + ω2‖vhΠ‖2ε ≤
(
|||vh0|||]s + 2|||ξh0|||

)2
+ ω2‖vhΠ‖2ε

≤ (1 + 2βst)
2|||vh0|||2]s + ω2‖vhΠ‖2ε ≤ (1 + 2βst)

2|||vh|||2]s.

(3) Lower bound on b]s(vh,wh). We first observe that

b]s(vh, ξh0) = b]s(vh0, ξh0) + b]s(vhΠ, ξh0) = b]s(vh0, ξh0) = b]s(vh0, ξ0) + b]s(vh0, ξh0 − ξ0).

Owing to (4.14b), we have

b]s(vh0, ξ0) = ω2(vh0,φ0)ε − δwkc(vh0, ξ0) = ω2‖φ0‖2ε − δwkc(vh0, ξ0).

Invoking Lemma 4.4 and the definition (3.15b) of the approximation factor γap∗ gives

b]s(vh0, ξ0) ≥ ω2‖φ0‖2ε − |vh0|ncγap∗ω‖φ0‖ε.

Using the above bound on ‖φ0‖ε together with |vh0|nc = |vh|nc and assumption (4.2), we infer
that

b]s(vh0, ξ0) ≥ ω2‖φ0‖2ε − ρ−1γap∗|vh|s|||vh|||] ≥ ω2‖φ0‖2ε − 1
2ρ
−1γap∗|||vh|||2]s, (5.14)

where the last bound follows from Young’s inequality. Furthermore, using the definition (3.15a)
of the approximation factor γap together with the boundedness property (4.6b) gives

b]s(vh0, ξh0 − ξ0) ≥ −|||vh|||]sγapω‖φ0‖ε ≥ −γap|||vh|||2]s.

Combining this lower bound with (5.14), we infer that

b]s(vh0, ξh0) ≥ ω2‖φ0‖2ε −
(
γap + 1

2ρ
−1γap∗

)
|||vh|||2]s. (5.15)

Furthermore, using the divergence conformity factor γdv yields

ω2‖φΠ‖2ε = ω2‖Πc
0(vh0)‖2ε ≤ γ2

dv

{
‖Ck,`

h,0(vh0)‖2ν + |vh0|2nc

}
≤ max(1, ρ−2)γ2

dv|||vh0|||2]s ≤ max(1, ρ−2)γ2
dv|||vh|||2]s.

Since ‖vh0‖2ε = ‖φ0‖2ε + ‖φΠ‖2ε, combining this bound with (5.15) gives

b]s(vh0, ξh0) ≥ ω2‖vh0‖2ε − 1
2c
′
γ |||vh|||2]s.

Finally, since b]s(vh,vh0 − vhΠ) = |||vh|||2]s − 2ω2‖vh0‖2ε, we infer that

b]s(vh,wh) = b]s(vh,vh0 + 2ξh0 − vhΠ) ≥ (1− c′γ)|||vh|||2]s.

This completes the proof.

Remark 5.8 (Discrete inf-sup constant). The discrete inf-sup constant appearing on the left-
hand side of (5.13) tends to (1 + 2βst)

−1 as the mesh is refined, thus approaching, by up to a
factor of two at most, the inf-sup constant from the continuous setting.
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6 A posteriori residual-based error analysis
In this section, we estimate the error e := E −Eh by means of local residual-based quantities
called error indicators. We derive both a global upper error bound (reliability) and local lower
error bounds (local efficiency). The only property required for the discrete object Eh in the
a posteriori error analysis is to satisfy the Galerkin orthogonality (4.8) on conforming test
functions, i.e., b]s(E −Eh,v

c
h) = b](E −Eh,v

c
h) = 0 for all vc

h ∈ P
c
k,0(Th). Lemma 4.1 shows

that the dG solution solving (4.7) satisfies this property. For simplicity, we keep the notation
Eh in this section. For the a posteriori error analysis, we assume that ∇·J ∈ L2(D) and that
the material properties are piecewise constant on the mesh.

6.1 Notation and interpolation operators
For all K ∈ Th, the element patch Kv (resp., Ke, Kf) denotes the domain covered by all the
cells K ′ ∈ Th sharing at least one vertex (resp., edge, face) with K. Similarly, the extended
patch Kvv (resp., Kvvv) is the domain covered by all the cells K ′′ ∈ Th sharing at least one
vertex with a cell K ′ ⊂ Kv (resp., K ′ ⊂ Kvv). For a face F ∈ Fh, F̃ is the domain covered by
the one or two cells sharing F . Whenever no confusion can arise, we also employ the symbols
Kv, Ke, Kvv, Kvvv, F̃ for the set of cells covering the domains. We employ the symbol κTh for
the shape-regularity parameter of the mesh Th, and C(κTh) denotes any generic constant solely
depending on κTh and whose value can change at each occurrence. For any subset T ⊂ Th, we
introduce the notation

εmax,T := max
K∈T

max
x∈K

max
u∈Rd

|u|=1

max
v∈Rd

|v|=1

ε(x)u · v,

εmin,T := min
T∈T

min
x∈K

min
u∈Rd

|u|=1

ε(x)u · u,
(6.1)

and define νmax,T and νmin,T similarly. Then, ϑT := (νmin,T /εmax,T )
1
2 stands for the minimum

velocity in the subdomain covered by the cells in T . We write ‖v‖2T :=
∑
K∈T ‖v‖2L2(K) and

employ a similar notation if v is vector-valued. We also write ‖v‖2F :=
∑
F∈F ‖v‖2L2(F ) for every

subset F ⊂ Fh. For simplicity, we assume that ` ∈ {k− 1, k} in the discrete curl operator and
do not track the dependency on ` of the constants.

We employ the quasi-interpolation operators from [29] (see also [31] and see [18, Corol-
lary 2.5] for using the seminorm in the extended patch Kvv). Specifically, there exists an
operator Ig

h0 : H1
0 (D)→ Pb

k+1(Th) ∩H1
0 (D) such that, for all q ∈ H1

0 (D) and all K ∈ Th,

k2

h2
K

‖q − Ig
h0(q)‖2K +

k

hK
‖q − Ig

h0(q)‖2∂K ≤ C(κTh)‖∇q‖2Kvv . (6.2)

Similarly, there exists an operator Ic
h0 : H1

0(D)→ P c
k,0(Th) such that, for all w ∈H1

0(D) and
all K ∈ Th,

k2

h2
K

‖w − Ic
h0(w)‖2K +

k

hK
‖(w − Ic

h0(w))×nK‖2∂K ≤ C(κTh)‖∇w‖2Kvv . (6.3)

We will also need the quasi-interpolation averaging operator Ic,av
h0 : P b

k(Th) → P c
k,0(Th)

from [19] which is such that there is cav
k ≥ 1 so that, for all vh ∈ P b

k(Th) and all K ∈ Th,

k

hK
‖vh − Ic,av

h0 (vh)‖K + ‖∇×(vh − Ic,av
h0 (vh))‖K ≤

C(κTh)cav
k

(
k2

hK

) 1
2
{ ∑
K′∈Ke

‖[[vh]]c∂K′‖2∂K′
} 1

2

. (6.4)
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The dependency of cav
k on k has been explored in some specific cases for d = 2. [8, 27]. We

keep this factor here as the analysis of the behavior of cav
k in k goes beyond the present scope.

Invoking a discrete trace inequality (see, e.g., [20, Lem. 12.10]) yields

‖∇×vh −Ck,`
h,0(vh)‖K = ‖L`h,0(vh)‖K ≤ C(κTh)

(
k2

hK

) 1
2

‖[[vh]]c∂K‖∂K . (6.5)

Combining (6.4) and (6.5) gives

k

hK
‖vh − Ic,av

h0 (vh)‖K + ‖Ck,`
h,0(vh − Ic,av

h0 (vh))‖K ≤

C(κTh)cav
k

(
k2

hK

) 1
2
{ ∑
K′∈Ke

‖[[vh]]c∂K′‖2∂K′
} 1

2

, (6.6)

and

|||vh − Ic,av
h0 (vh)|||] ≤

C(κTh)cav
k

(
1 + max

K∈Th

ωhK
kϑmin,Ke

){ ∑
K∈Th

νmax,Ke

k2

hK
‖[[vh]]c∂K‖2∂K

} 1
2

. (6.7)

Remark 6.1 (Broken curl). In view of (6.5), we can freely replace the discrete curl Ck,`
h,0 by

the broken curl in the definition of the estimator η and the error measure |||·|||†.

6.2 Estimator and error measure
The a posteriori error estimator is written as the sum over the mesh cells of local error indicators
ηK for all K ∈ Th. The local error indicator consists of three pieces. The first two respectively
measure the residuals of the divergence constraint and of Maxwell’s equations:

η2
K,div := ε−1

min,Kvvv

{ h2
K

ω2k2
‖∇·(J + ω2εEh)‖2K +

ω2hK
k
‖[[εEh]]d∂K‖2∂K\∂Ω

}
, (6.8a)

and

η2
K,curl := ν−1

min,Kvvv

{h2
K

k2
‖J + ω2εEh −∇×(νCk,`

h,0(Eh))‖2K

+
hK
k
‖[[νCk,`

h,0(Eh)]]c∂K‖2∂K\∂Ω

}
, (6.8b)

where [[εEh]]d∂K |F := [[εEh]]gF ·nF and [[νCk
h,0(Eh)]]c∂K |F := [[νCk

h,0(Eh)]]gF×nF for all F ∈ FK .
The last part of the estimator controls the nonconformity of the discrete field Eh as follows:

η2
K,nc := cav

k

νmax,Kek2

hK
‖[[Eh]]c∂K‖2∂K , (6.8c)

where [[Eh]]c∂K |F := [[Eh]]gF×nF for all F ∈ FK . For shortness, we also introduce the following
notation:

η2
K := η2

K,div + η2
K,curl + η2

K,nc, η2
• :=

∑
K∈Th

η2
•,K , η2 :=

∑
K∈Th

η2
K , (6.9)

with • ∈ {div, curl,nc}.
For all T ⊂ Th, we define the error measure

|||e|||2†,T :=
∑
K∈T

{
ω2‖e‖2ε,K + ‖Ck,`

h,0(e)‖2ν,K + cav
k

νmax,Kek2

hK
‖[[e]]c∂K‖2∂K

}
, (6.10)

and we omit the subscript T whenever T = Th. A crucial observation is that the last term in
the norm measuring the nonconformity can be chosen independently of the stabilization in the
dG scheme. In particular, it does not have to be large enough.
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6.3 Error upper bound (reliability)
We start by controlling the PDE residual in Lemma 6.2. Lemma 6.2 is similar to [12, Lemma
3.2], but the result proposed here is sharper. In particular, the constant only depends on the
shape-regularity of the mesh. Notice also that we consider here only conforming test functions
so that we can work with the bilinear form b] rather than b]s.

Lemma 6.2 (Residual). For all v ∈H0(curl;D), we have

|b](e,v)| ≤ C(κTh)ηdc|||v|||, (6.11)

with η2
dc := η2

div + η2
curl.

Proof. Here, we invoke [38, Theorem 1], which states that, given any w ∈H0(curl;D), there
exists Sc

h0(w) ∈ P c
k,0(Th), such that

w − Sc
h0(w) = ∇q + φ, (6.12)

with q ∈ H1
0 (D), φ ∈H1

0(D) such that, for all K ∈ Th,

h−1
K ‖q‖K + ‖∇q‖K ≤ C(κTh)‖w‖Kv ,

h−1
K ‖φ‖K + ‖∇φ‖K ≤ C(κTh)‖∇0×w‖Kv .

(6.13)

We now pick an arbitrary test function v ∈H0(curl;D). We have

b](e,v) = b](e,v − Sc
h0(v)) = b](e,∇q + φ),

where q and φ are the components of the decomposition in (6.12). We then estimate separately
the two parts of the residual associated with the decomposition.

For the gradient part, we write

b](e,∇q) = b](e,∇(q − Ig
h0(q)))

= −ω2(εe,∇(q − Ig
h0(q)))

=
∑
K∈Th

ω2(∇·(εe), q − Ig
h0(q))K −

∑
F∈F int

h

ω2([[ε(e)]]dF , q − I
g
h0(q))F

=
∑
K∈Th

−(∇·(J + ω2εEh), q − Ig
h0(q))K +

∑
F∈F int

h

ω2([[εEh]]dF , q − I
g
h0(q))F

≤
∑
K∈Th

{
‖∇·(J + ω2εEh)‖K‖q − Ig

h0(q)‖K + ω2‖[[εEh]]d∂K‖∂K\∂Ω‖q − Ig
h0(q)‖∂K\∂Ω

}
≤
∑
K∈Th

ηK,divε
1
2

min,Kvvvω

{
k

hK
‖q − Ig

h0(q)‖K +

(
k2

hK

) 1
2

‖q − Ig
h0(q)‖∂K

}
.

For all K ∈ Th, invoking (6.2) and (6.13), we have

k

hK
‖q − Ig

h0(q)‖K +

√
k

hK
‖q − Ig

h0(q)‖∂K ≤ C(κTh)‖∇q‖Kvv

≤ C(κTh)‖v‖Kvvv ≤ C(κTh)ε
− 1

2

min,Kvvv‖v‖ε,Kvvv .

Summing over K ∈ Th and since the number of overlaps is uniformly controlled by κTh , we
obtain

|b](e,∇q)| ≤ C(κTh)ηdivω‖v‖ε. (6.14)
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For the H1
0(D)-part, proceeding similarly gives

b](e,φ) = b](e,φ− Ic
h0(φ))

= (J + ω2εEh,φ− Ic
h0(φ))− (Ck,`

h,0(Eh),∇0×(φ− Ic
h0(φ)))ν

=
∑
K∈Th

(J + ω2εEh −∇×(νCk,`
h,0(Eh)),φ− Ic

h0(φ))K

−
∑

F∈F int
h

([[νCk,`
h,0(Eh)]]cF ,φ− Ic

h0(φ))F

≤
∑
K∈Th

ηK,curlν
1
2

min,Kvvv

{
k

hK
‖φ− Ic

h0(φ)‖K +

(
k2

hK

) 1
2

‖(φ− Ic
h0(φ))×n‖∂K\∂Ω

}

≤ C(κTh)
∑
K∈Th

ηK,curlν
1
2

min,Kvvv‖∇φ‖Kvv

≤ C(κTh)
∑
K∈Th

ηK,curlν
1
2

min,Kvvv‖∇0×v‖Kvvv

≤ C(κTh)
∑
K∈Th

ηK,curl‖∇0×v‖ν,Kvvv ,

so that
|b](e,φ)| ≤ C(κTh)ηcurl‖∇0×v‖ν . (6.15)

Combining (6.14) and (6.15) concludes the proof.

The next step is an Aubin–Nitsche-type duality argument to estimate the L2
ε-norm of the

error. Here, the weak consistency estimate from Lemma 4.4 is crucial to treat the nonconfor-
mity of the dG solution.

Lemma 6.3 (L2
ε-norm reliability estimate). We have

ω‖e‖ε ≤ C(κTh)(1 + γap + γap∗)η. (6.16)

Proof. Recall the L2
ε-orthogonal decomposition e = θ0 +θΠ with θ0 ∈H0(curl = 0;D)

⊥ and
θΠ ∈H0(curl = 0;D) (see (5.1)).

For the first component, recalling (5.8) and using (4.14b), we have

ω‖θ0‖2ε = ω(e,θ0)ε = ωb](e, ζθ)− ωδwkc(Eh, ζθ). (6.17)

Since Eh satisfies the Galerkin orthogonality for conforming test functions and invoking the
bound (6.11) established in Lemma 6.2, we have, for all vc

h ∈ P
c
k,0(Th),

ωb](e, ζθ) = ωb](e, ζθ − vc
h) ≤ C(κTh)ηdcω|||ζθ − vc

h||| ≤ C(κTh)γapηdc‖θ0‖ε, (6.18)

where we used the definition (3.15a) of γap in the last inequality (since vc
h is arbitrary in

P c
k,0(Th)). Moreover, owing to the estimate (4.15) from Lemma 4.4, we have

ω|δwkc(Eh, ζθ)| ≤ |Eh|ncγap∗‖θ0‖ε.

Recalling the definition (3.12) of the |·|nc-seminorm and using (6.6), we infer that

|Eh|nc ≤ |||Eh − Ic,av
h0 (Eh)|||ap ≤ C(κTh)ηnc.

This gives
ω|δwkc(Eh, ζθ)| ≤ C(κTh)ηncγap∗‖θ0‖ε. (6.19)
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Combining (6.17), (6.18) and (6.19), we arrive at

ω‖θ0‖ε ≤ C(κTh)(γap + γap∗)η. (6.20)

For the other part of the error, since θΠ ∈H0(curl = 0;D), we can use (6.11) to write

ω2‖θΠ‖2ε = −b](e,θΠ) ≤ C(κTh)ηdc|||θΠ||| = C(κTh)ηdcω‖θΠ‖ε. (6.21)

Combining (6.20) and (6.21) proves (6.16).

We are now ready to establish a reliability estimate with an argument similar to the one
used in [10] for the scalar Helmholtz problem.

Theorem 6.4 (Reliability). We have

|||e|||† ≤ C(κTh)

(
1 + max

K∈Th

ωhK
kϑmin,Ke

+ γap + γap∗

)
η. (6.22)

Proof. Since |||e|||2† = |||e|||2] + η2
nc, we only need to estimate |||e|||2] . To this purpose, recall

that the bilinear form b+] defined in (5.3b) is the inner product associated with the |||·|||]-
norm. We introduce the H0(curl;D)-conforming projection Bc

0 : V ] → H0(curl;D) such
that b+] (v − Bc

0(v),w) = for all v ∈ V ] and all w ∈ H0(curl;D). Reasoning as in the proof
of Lemma 5.1 proves the following Pythagorean identity:

|||e|||2] = |||E − Bc
0(Eh)|||2] + |||Eh − Bc

0(Eh)|||2] . (6.23)

We estimate separately the two terms on the right-hand side.
For the first term, we observe that Bc

0(E) = E and E −Bc
0(Eh) ∈H0(curl;D), and write

that

|||E − Bc
0(Eh)|||2] = b+] (E − Bc

0(Eh),E − Bc
0(Eh))

= b+] (Bc
0(e),E − Bc

0(Eh))

= b+] (e,E − Bc
0(Eh))

= b](e,E − Bc
0(Eh)) + 2ω2(e,E − Bc

0(Eh))ε.

Since the second argument in the first term on the right-hand side is conforming, this term
can be estimated by means of the estimate (6.11) from Lemma 6.2. This gives

|b](e,E − Bc
0(Eh))| ≤ C(κTh)ηdc|||E − Bc

0(Eh)|||.

We apply the Cauchy–Schwarz inequality to bound the second term, leading to

ω2|(e,E − Bc
0(Eh))ε| ≤ ω‖e‖εω‖E − Bc

0(Eh)‖ε ≤ ω‖e‖ε|||E − Bc
0(Eh)|||.

This yields the following estimate:

|||E − Bc
0(Eh)|||] ≤ C(κTh)ηdc + ω‖e‖ε ≤ C(κTh)(1 + γap + γap∗)η,

where we employed the L2
ε-estimate (6.16) from Lemma 6.3.

For the second term on the right-hand side of (6.23), invoking (6.7) gives

|||Eh − Bc
0(Eh)|||] ≤ |||Eh − Ic,av

h0 (Eh)|||] ≤ C(κTh)

(
1 + max

K∈Th

ωhK
kϑmin,Ke

)
ηnc.

Putting everything together yields the assertion.
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6.4 Local error lower bound (local efficiency)
We now derive efficiency estimates. To do so, we will need bubble functions (see [33] and [12,
Section 2.7]). Specifically, for all K ∈ Th, there exists a function bK ∈ H1

0 (K) with bK ≤ 1
such that, for all wK ∈ PPPk,d (recall that k ≥ 1 by assumption),

‖wK‖K ≤ C(κTh)k‖b
1
2

KwK‖K , (6.24)

and
‖∇(bKwK)‖K ≤ C(κTh)

k

hK
‖b

1
2

KwK‖K . (6.25)

Similarly, for all F ∈ Fh, there exists a function bF ∈ H1
0 (F ) such that, for all wF ∈ PPPk,d−1,

‖wF ‖F ≤ C(κTh)k‖b
1
2

FwF ‖F , (6.26)

and an extension operator EF : PPPk,d−1 →H1
0(F̃ ) such that, for allwF ∈ PPPk,d−1, EF (bFwF )|F =

bFwF and

kh
− 1

2

F ‖EF (bFwF )‖F̃ + k−1h
1
2

F ‖∇EF (bFwF )‖F̃ ≤ C(κTh)‖b
1
2

FwF ‖F . (6.27)

Theorem 6.5 (Local efficiency). For all K ∈ Th, we have

ηK ≤ C(κTh)K
1
2

Kk
3
2

{(
1 +

ωhK
kϑmin,Kf

)
|||E −Eh|||†,Kf + oscKf

}
, (6.28)

with the data oscillation term

osc2
Kf :=

1

ω2
ε−1

min,Kf×∑
K′∈Kf

min
Jh∈P b

k(Th)

{
ω2h2

K′

k2ϑ2
min,Kf

‖J − Jh‖2K′ +
h2
K′

k2
‖∇·(J − Jh)‖2K′

}
, (6.29)

and the contrast coefficient KK := max
{

ε
max,Kf

εmin,Kvvv
,
ν
max,Kf

νmin,Kvvv

}
.

Proof. Fix K ∈ Th. The proof contains three parts, respectively dedicated to providing upper
bounds for ηK,div, ηK,curl and ηK,nc.

(i) The proof that ηK,div ≤ C(κTh)k
3
2

(
ω‖E −Eh‖ε,Kv + oscKv

)
can be found in [12, Lemma

3.5]. This proof is established for conforming edge finite elements, but it holds verbatim in the
discontinuous Galerkin setting.

(ii) For ηK,curl, we need to slightly adapt the proof from [12, Lemma 3.6]. The volumic residual
and jump term in ηK,curl are estimated separately.

(iia) For the volume term, we introduce rK := JK + ω2εEh −∇×(νCk,`
h,0(Eh))|K and vK =

bKrK , with JK arbitrary in PPPk,d. We observe that vK vanishes on ∂K, so that, letting vh be
the zero-extension of vK to D, we infer that

‖b
1
2

KrK‖
2
K = (rK ,vK)K = (JK ,vK)K − b]s(Eh,vh) = b]s(E −Eh,vh)− (J − JK ,vK)K .

For the first term, we employ bK ≤ 1 and (6.25) to show that

|b]s(E −Eh,vh)|

≤ ω‖E −Eh‖ε,Kωε
1
2

max,K‖vK‖K + ‖Ck,`
h,0(E −Eh)‖ν,Kν

1
2

max,K‖∇×vK‖K

≤ C(κTh)

(
(ωε

1
2

max,K)ω‖E −Eh‖ε,K + ν
1
2

max,K

k

hK
‖Ck,`

h,0(E −Eh)‖ν,K
)
‖b

1
2

KrK‖K

≤ C(κTh)ν
1
2

max,K

k

hK

(
ωhK
kϑK

ω‖E −Eh‖ε,K + ‖Ck,`
h,0(E −Eh)‖ν,K

)
‖b

1
2

KrK‖K .
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The second term is simply estimated as follows

|(J − JK ,vK)K | ≤ ‖J − JK‖K‖vK‖K ≤ C(κTh)

(
ν

1
2

max,K

k

hK

)
ν
− 1

2

max,K

hK
k
‖J − JK‖K‖b

1
2

KrK‖K .

Combining these two bounds leads to

ν
− 1

2

max,K

hK
k
‖b

1
2

KrK‖K ≤ C(κTh)

{(
1 +

ωhK
kϑK

)
|||E −Eh|||],K + ν

− 1
2

max,K

hK
k
‖J − JK‖K

}
,

and therefore

ν
− 1

2

max,K

hK
k
‖rK‖K ≤ C(κTh)kν

− 1
2

max,K

hK
k
‖b

1
2

KrK‖K

≤ C(κTh)k

{(
1 +

ωhK
kϑK

)
|||E −Eh|||],K + ν

− 1
2

max,K

hK
k
‖J − JK‖K

}
.

Invoking the triangle inequality leads to

ν
− 1

2

max,K

hK
k
‖J + ω2εEh −∇×(νCk,`

h,0(Eh))‖K

≤ C(κTh)k

{(
1 +

ωhK
kϑK

)
|||E −Eh|||],K + ν

− 1
2

max,K

hK
k
‖J − JK‖K

}
. (6.30)

(iib) For the jump term, we introduce rF := [[νCk,`
h,0(Eh)]]cF and vF := EF (bFrF ) ∈ H1

0(F̃ ).
Since vF ∈H1

0(F̃ ) and vF |F = bFrF , we have

‖b
1
2

FrF ‖
2
F = (rF ,vF )F (6.31)

= (∇h×(νCk,`
h,0(Eh)),vF )F̃ − (νCk,`

h,0(Eh),∇h×vF )F̃

= (νCk,`
h,0(E −Eh),∇×vF )F̃ − (∇h×(νCk,`

h,0(E −Eh)),vF )F̃ .

For the first term, we can immediately write that

|(νCk,`
h,0(E −Eh),∇×vF )F̃ | ≤ ν

1
2

max,F̃
‖Ck,`

h,0(E −Eh)‖ν,F̃ ‖∇×vF ‖F̃

≤ C(κTh)kh
− 1

2

F ν
1
2

max,F̃
‖Ck,`

h,0(E −Eh)‖ν,F̃ ‖b
1
2

FrF ‖F ,

where we employed (6.27). We infer that

ν
− 1

2

max,F̃

(
hF
k

) 1
2

|(νCk,`
h,0(E−Eh),∇×vF )F̃ | ≤ C(κTh)k

1
2 ‖Ck,`

h,0(E−Eh)‖ν,F̃ ‖b
1
2

FrF ‖F . (6.32)

For the second term, we first observe that

∇h×(νCk,`
h,0(E −Eh)) = J + ω2εE −∇h×(νCk,`

h,0(Eh))

= ω2ε(E −Eh) + J + ω2εEh −∇h×(νCk,`
h,0(Eh)),

and therefore,

‖∇h×(νCk,`
h,0(E −Eh)‖F̃

≤ ωε
1
2

max,F̃
ω‖E −Eh‖ε,F̃ + ‖J + ω2εEh −∇h×(νCk,`

h,0(Eh))‖F̃

≤ ν
1
2

max,F̃

k

hF

(
ωhF
kϑF̃

ω‖E −Eh‖ε,F̃ + ν
− 1

2

max,F̃

hF
k
‖J + ω2εEh −∇h×(νCk,`

h,0(Eh))‖F̃

)
.
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Combining this last estimate with (6.27) and invoking the Cauchy–Schwarz inequality gives

ν
− 1

2

max,F̃

(
hF
k

) 1
2

|(∇×(νCk,`
h,0(E −Eh)),vF )F̃ | ≤ C(κTh)×(

ωhF
kϑF̃

ω‖E −Eh‖ε,F̃ + ν
− 1

2

max,F̃

hF
k
‖J + ω2εEh −∇h×(νCk,`

h,0(Eh))‖F̃

)
k

1
2 ‖b

1
2

FrF ‖F . (6.33)

We can now plug (6.32) and (6.33) in (6.31), leading to

ν
− 1

2

max,F̃

(
hF
k

) 1
2

‖b
1
2

FrF ‖F

≤ C(κTh)k
1
2

(
ωhF
kϑF̃

ω‖E −Eh‖ε,F̃ + ν
− 1

2

max,F̃

hF
k
‖J + ω2εEh −∇h×(νCk,`

h,0(Eh))‖F̃

)
+ C(κTh)k

1
2 ‖Ck,`

h,0(E −Eh)‖ν,F̃

≤ C(κTh)k
1
2

(
1 +

ωhF
kϑF̃

)
|||E −Eh|||],F̃

+ C(κTh)k
1
2 ν
− 1

2

max,F̃

hF
k
‖J + ω2εEh −∇h×(νCk,`

h,0(Eh))‖F̃

≤ C(κTh)k
1
2

((
1 +

ωhF
kϑF̃

)
|||E −Eh|||],F̃ + ν

− 1
2

max,F̃

hF
k
‖J − Jh‖F̃

)
,

owing to (6.30) and the shape-regularity of the mesh. Recalling the definition of Kf , it follows
from (6.26) that

ηK,curl ≤ C(κTh)k
3
2

((
1 +

ωhK
kϑKf

)
|||E −Eh|||],Ke + ν

− 1
2

max,Kf

hK
k
‖J − Jh‖Kf

)
.

(iii) For the last part of the estimator, we simply use that η2
K,nc ≤ |||E − Eh|||2],K + η2

K,nc =

|||E −Eh|||2†,K .

7 Bound on approximation and divergence conformity fac-
tors

In this section, we show that the factors introduced in Section 3.4 tend to zero as the mesh is
refined. For positive real numbers A and B, we abbreviate as A . B the inequality A ≤ CB
with a generic (nondimensional) constant C whose value can change at each occurrence as long
as it is independent of the mesh size, the frequency parameter ω, and, whenever relevant, any
function involved in the bound. The constant C can depend on the shape-regularity of the
mesh, the polynomial degree k, the (global) contrast in the coefficients (i.e. εmax/εmin and
νmax/νmin), and the shape of the domain D (but not on its size).

For simplicity, we focus on the case where the parameters ε and ν are piecewise constant
on a polyhedral partition of D, and refer the reader to Remark 7.4 for the more general case
where the material coefficients are just bounded from above and from below away from zero.
Under the assumption of piecewise constant coefficients (see [15, 28, 5]), there exists s ∈ (0, 1

2 )
such that, for all v ∈H0(curl;D) with εv ∈H(div = 0;D), and for all w ∈H(curl;D) with
ν−1w ∈H0(div = 0;D), we have v,w ∈Hs(D) with

|v|Hs(D) . `1−sD ν
− 1

2

min‖∇0×v‖ν , |w|Hs(D) . `1−sD ε
1
2
max‖∇×w‖ε−1 . (7.1)
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The length scale `D, e.g., the diameter of D, is introduced for dimensional consistency. We
will also need commuting (quasi-)interpolation operators, J c

h : H(curl;D) → P c
k(Th) and

J d
h : H(div;D) → P d

k(Th) := P b
k(Th) ∩H(div;D) such that ∇×(J c

h (v)) = J d
h (∇×v) for all

v ∈H(curl;D) and

‖v − J c
h (v)‖ . hs|v|Hs(D), ‖w − J d

h (w)‖ . ‖w‖, (7.2)

for all v ∈ H(curl;D) ∩Hs(D) and all w ∈ H(div;D). Since we are working on simplicial
meshes, we can invoke the operators devised in [20, Section 20] (see also [37, 3, 13, 14]) using
edge (Nédélec) and Raviart–Thomas finite elements.

Proposition 7.1 (Primal approximation factor). Let γap be defined in (3.15a). We have

γap . (1 + βst)

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s
,

where βst is the stability constant introduced in (2.8).

Proof. See [11, Lemma 5.1].

Lemma 7.2 (Dual approximation factor). Let γap∗ be defined in (3.15b). We have

γap∗ . (1 + βst)

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s
. (7.3)

Proof. Consider a right-hand side θ ∈ H0(curl = 0;D)
⊥ and the associated adjoint solution

ζθ ∈ H0(curl;D) defined in (3.13). Set φθ := ν∇0×ζθ. The strong form of Maxwell’s
equations ensures that

∇×φθ = εθ + ω2εζθ,

so that φθ ∈H(curl;D) with

‖∇×φθ‖ε−1 ≤ ‖θ‖ε + ω2‖ζθ‖ε ≤ (1 + βst)‖θ‖ε. (7.4)

Besides, since ν−1φθ ∈H0(div = 0;D), we infer that φθ ∈H
s(D) with

|φθ|Hs(D) . `1−sD ε
1
2
max‖∇×φθ‖ε−1 . (7.5)

We are now ready to bound γap∗. We notice that

γ2
ap∗ ≤ ω2|||φθ − J c

h (φθ)|||2ap∗

= ω2‖φθ − J c
h (φθ)‖2ν−1 + ω2‖ν̃− 1

2 h̃(∇×φθ − J d
h (∇×φθ))‖2,

where we employed the commuting property satisfied by J c
h and J d

h . We bound the two terms
on the right-hand side. For the first term, invoking (7.2) and (7.5), we have

ω‖φθ − J c
h (φθ)‖ν−1 . ων

− 1
2

minh
s|φθ|Hs(D)

. ω`1−sD

hs

ϑmin
‖∇×φθ‖ε−1 =

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s
‖∇×φθ‖ε−1 . (7.6)

For the second term, using (7.2), we can write

ω‖ν̃− 1
2 h̃(∇×φθ − J d

h (∇×φθ))‖ ≤ ωhν−
1
2

min‖∇×φθ − J
d
h (∇×φθ)‖

. ωhν
− 1

2

min‖∇×φθ‖ .
ωh

ϑmin
‖∇×φθ‖ε−1 . (7.7)

Combining (7.4), (7.6) and (7.7) and observing that h ≤ `D proves the assertion.
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Lemma 7.3 (Divergence conformity factor). Let γdv be defined in (3.16). We have

γdv .

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s
. (7.8)

Proof. Let vh ∈Xb
h and consider an arbitrary vc

h ∈ P
c
k,0(Th). Since Πc

h0(vh) = 0 by assump-
tion, we have

Πc
0(vh) = Πc

0(vh − vc
h) + Πc

0(vc
h)

= Πc
0((I −Πc

h0)(vh − vc
h)) + Πc

0(vc
h −Πc

h0(vc
h)).

Multiplying by ω, and invoking the triangle inequality and the L2
ε-stability of the projection

operators, we infer that

ω‖Πc
0(vh)‖ε ≤ ω‖vh − vc

h‖ε + ω‖Πc
0(vc

h −Πc
h0(vc

h))‖ε. (7.9)

For the second term on the right-hand side of (7.9), we invoke [11, Lemma 5.2] which gives

ω‖Πc
0(vc

h −Πc
h0(vc

h))‖ε .
(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s
‖∇0×(vc

h −Πc
h0(vc

h))‖ν

.

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s (
‖Ck,`

h,0(vh)‖ν + ‖Ck,`
h,0(vh − vc

h)‖ν
)
,

where we used that ∇0×Πc
h0(vc

h) = 0 and the triangle inequality. For the first term on the
right-hand side of (7.9), we observe that

ω‖vh − vc
h‖ε ≤

ωh

ϑmin
‖ν̃ 1

2 h̃−1(vh − vc
h)‖ ≤ ωh

ϑmin
|||vh − vc

h|||ap.

Combining this bound with the above two bounds and since h ≤ `D, this gives

ω‖Πc
0(vh)‖ε .

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s (
‖Ck,`

h,0(vh)‖2ν + |||vh − vc
h|||2ap

) 1
2 .

The bound (7.8) follows by taking the minimum over vc
h ∈ P

c
k,0(Th) and recalling the defini-

tion (3.12) of the |·|nc-seminorm.

Remark 7.4 (Rough coefficients). It is possible to show that the above factors tend to zero
(without a specific algebraic rate) when the material coefficients are just bounded from above
and from below away from zero. The proof hinges on a compactness result from [39]. We refer
the reader to the discussions in [11, Section 5.2] which can be readily extended to the present
nonconforming setting. Details are skipped for brevity.

Remark 7.5 (Improved decay rates). One can show improved convergence rates for the ap-
proximation factors by assuming extra regularity on the material coefficients and the domain.
We refer the reader to the discussion in [11, Remark 5.5] for more details.
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