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Abstract

We derive a priori and a posteriori error estimates for the discontinuous Galerkin (dG)
approximation of the time-harmonic Maxwell’s equations. Specifically, we consider an
interior penalty dG method, and establish error estimates that are valid under minimal
regularity assumptions and involving constants that do not depend on the frequency for
sufficiently fine meshes. The key result of our a priori error analysis is that the dG solution
is asymptotically optimal in an augmented energy norm that contains the dG stabilization.
Specifically, up to a constant that tends to one as the mesh is refined, the dG solution
is as accurate as the best-approximation in the same norm. We also show that for fine
meshes, the inf-sup stability constant is as good as the continuous one up to a factor
two. Concerning the a posteriori analysis, we consider a residual-based error estimator
under the assumption of piecewise constant material properties. We derive a global upper
bound and local lower bounds on the error with constants that (i) only depend on the
shape-regularity of the mesh if it is sufficiently refined and (ii) are independent of the
stabilization bilinear form.

Keywords. Time-harmonic Maxwell’s equations, discontinuous Galerkin, Interior penalty,
Duality argument, Asymptotic optimality, A posteriori error analysis

MSC. 65N30, 78M10, 65N15

1 Introduction
LetD ⊂ Rd, d = 3, be an open, bounded, Lipschitz polyhedron with boundary ∂D and outward
unit normal nD. We do not make any simplifying assumption on the topology of D. We use
boldface fonts for vectors, vector fields, and functional spaces composed of such fields. More
details on the notation are given in Section 2.

Given a positive real number ω > 0 representing a frequency and a source term J : D →
R3, and focusing for simplicity on homogeneous Dirichlet boundary conditions (a.k.a. perfect
electric conductor boundary conditions), the model problem consists in finding E : D → R3

such that

−ω2εE +∇×(µ−1∇×E) = J in D, (1.1a)
E×nD = 0 on ∂D, (1.1b)

where ε represents the electric permittivity of the materials contained inD and µ their magnetic
permeability. Both material properties can vary in D and take symmetric positive-definite
values with eigenvalues uniformly bounded from above and from below away from zero. We
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assume that ω is not a resonant frequency, so that (1.1) is uniquely solvable inH0(curl;D) for
every J in the topological dual space H0(curl;D)

′. The time-harmonic Maxwell’s equations
(1.1) are one of the central models of electrodynamics. Therefore, efficient discretizations are
a cornerstone for the computational modelling of electromagnetic wave propagation [26, 36].
In this work, we focus on the discontinuous Galerkin (dG) method.

The dG method employs approximation spaces composed of nonconforming (discontinuous,
broken) polynomials on the mesh. DG schemes are attractive since they easily allow for more
flexibility in the mesh and for local variations of the polynomial degree. Besides, dG schemes
are of special interest in time-dependent wave propagation problems as they lead to block-
diagonal mass matrices [25]. Notice that time-dependent wave propagation problems are also
relevant here since (1.1) can arise for instance if a Laplace transform is (abstractly) employed
to analyze a numerical scheme for the time-dependent Maxwell’s equations as in [10, 17], or if
a controllability method is ued to solve (1.1) with a time-dependent discretization scheme as
in [13, 37].

DG methods exist in many flavors. One popular approach for the Poisson model problem
is the interior penalty dG method, which hinges on a consistency term involving the mean-
value of the normal flux at the mesh faces, possibly a symmetry term, and a stabilization term
penalizing the jumps across the mesh interfaces and the values at the mesh boundary faces (see,
e.g., [2, 20] and the references therein). The expression of the consistency term involving the
mean-value of the normal flux is convenient for efficient implementation, but for the analysis,
it is useful to consider an (equivalent) reformulation involving jump liftings. The approach was
first considered in [4] and analyzed in [6]. One important outcome is the notion of discrete
gradient obtained by adding the jump liftings to the broken (piecewise) gradient. Indeed, the
discrete gradient enjoys a compactness property that plays a central role in various nonlinear
problems [9, 7, 19]. Another attractive feature is that the discrete gradient admits a bounded
extension to H1, whereas the standard consistency term can only be extended to H1+s with
s > 1

2 . It is also possible to define bounded extensions of the consistency term to H1+s for
s > 0 arbitrarily small by proceeding as in [23].

In the context of the time-harmonic Maxwell’s equations, interior penalty dG methods
were devised and analyzed in [39, 28], and the notion of discrete curl, obtained by adding
the liftings of the tangential jumps to the broken curl, has been considered in the method
formulation and analysis. However, the combined use of discrete curls (allowing for minimal
regularity requirements) with Schatz’s duality argument seems to be lacking in the literature,
contrary to the case of the Helmholtz equation where such a result has been recently achieved
in [11]. Our main contribution to interior penalty dG methods is to show that an asymptotically
optimal error estimate holds true with an augmented energy norm including a nonconformity
measure. Asymptotic optimality means that the ratio between the approximation error and
the best-approximation error tends to one as the mesh size h is sent to zero. Quite importantly,
we establish such asymptotically optimal result under minimal regularity assumptions on the
exact solution, thereby allowing for a general setting regarding the domain and the material
coefficients. Concerning the source term, we assume that it sits in L2(D) (rather than in the
dual spaceH0(curl;D)

′) with no further assumption on ∇·J . The second salient contribution
of the paper is an a posteriori error analysis leading to global upper bounds and local lower
bounds on the error, where the constants are independent of the frequency, again in the limit
as the mesh is refined. The a posteriori error analysis is of residual-type and requires to
tighten slightly the assumption on the source term so that ∇·J ∈ L2(D). Moreover, to avoid
technicalities, we assume that the material properties are piecewise constant.

Let us put our results in perspective with the literature. Concerning the a priori error
analysis, a quasi-optimal (but not asymptotically optimal) error estimate under minimal reg-
ularity is derived in [32], but for a different interior penalty dG method, where a Lagrange
multiplier related to the divergence constraint is introduced together with the corresponding
stabilization term. Moreover, asymptotically optimal error estimates for the time-harmonic
Maxwell’s equations approximated using conforming edge elements have been derived quite
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recently in [34] and in [12]. The analysis in [34] considers impedance boundary conditions,
is explicit in the frequency, but requires the domain boundary to be smooth and connected.
Instead, the analysis in [12] considers Dirichlet boundary conditions and allows for general
domains, material coefficients, and right-hand side, but, for brevity, is not made explicit in the
frequency. The present analysis leverages the ideas developed in [12], but needs to address two
additional, nontrivial difficulties: (i) the lack of strong consistency under minimal regularity,
leading to the appearance of new terms in the analysis related to the consistency defect; (ii)
the nonconforming nature of the approximation, which calls for a careful handling of the stabi-
lization. In particular, we notice that we allow for a rather general stabilization bilinear form
and provide explicit design assumptions for the analysis to hold true.

Concerning the a posteriori error analysis, we leverage the ideas proposed in [14] for the
conforming edge finite element approximation of the time-harmonic Maxwell’s equations. Here,
the novelty is twofold. First, we additionally deal with the consistency defect and the presence
of stabilization in the discontinuous Galerkin setting, by extending ideas introduced in [11]
for the Helmholtz equation. Moreover, we tighten some arguments from [14] in the proof of
the error upper bound so that the involved constants only depend on the shape-regularity
parameter of the mesh, whereas in [14] some constants are frequency-dependent in the low-
frequency regime. Specifically, instead of invoking the regular decomposition results from [27,
Theorem 2.1] as in [14], we make use of Galerkin orthogonality on conforming test functions
to invoke the regular decomposition results from [41, Theorem 1].

The paper is organized as follows. In Section 2, we briefly present the continuous set-
ting, and in Section 3, we do the same for the discrete setting. In Section 4, we establish
a key estimate on the weak consistency of the dG approximation and also introduce various
(nondimensional) approximation and divergence-conformity factors to be used in the analy-
sis. In Section 5, we deal with the a priori error analysis and inf-sup stability. The main
results in this section are Theorem 5.5 and Theorem 5.8. In Section 6, we perform the a
posteriori residual-based error analysis. The main results in this section are Theorem 6.4 and
Theorem 6.5. Finally, in Section 7, we establish bounds on the approximation and divergence
conformity factors introduced in Section 4. These bounds prove that these factors tend to zero
with the mesh size.

2 Continuous setting
In this section, we briefly recall the functional setting for the time-harmonic Maxwell’s equa-
tions and formulate the model problem.

2.1 Functional spaces
We use standard notation for Lebesgue and Sobolev spaces. To alleviate the notation, the
inner product and associated norm in the spaces L2(D) and L2(D) are denoted by (·, ·) and
‖·‖, respectively. The material properties ε and ν := µ−1 are measurable functions that take
symmetric positive-definite values in D with eigenvalues uniformly bounded from above and
from below away from zero. It is convenient to introduce the inner product and associated
norm weighted by either ε or ν, leading to the notation (·, ·)ε, ‖·‖ε, (·, ·)ν and ‖·‖ν . Whenever
no confusion can arise, we use the symbol ⊥ to denote orthogonality with respect to the inner
product (·, ·)ε. Moreover, all the projection operators denoted using the symbol Π are meant to
be orthogonal with respect to this inner product; we say that the projections are L2

ε-orthogonal.
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We consider the Hilbert Sobolev spaces

H(curl;D) := {v ∈ L2(D) | ∇×v ∈ L2(D)}, (2.1a)
H(curl = 0;D) := {v ∈H(curl;D) | ∇×v = 0}, (2.1b)
H0(curl;D) := {v ∈H(curl;D) | γc

∂D(v) = 0}, (2.1c)
H0(curl = 0;D) := {v ∈H0(curl;D) | ∇0×v = 0}, (2.1d)

where the tangential trace operator γc
∂D : H(curl;D)→H−

1
2 (∂D) is the extension by density

of the tangent trace operator such that γc
∂D(v) = v|∂D×nD for smooth fields. The subscript 0

indicates the curl operator acting on fields respecting homogeneous Dirichlet conditions. Notice
that ∇× and ∇0× are adjoint to each other, i.e., (∇0×v,w) = (v,∇×w) for all (v,w) ∈
H0(curl;D)×H(curl;D). We equip the space H(curl;D) and its subspaces defined in (2.1)
with the following (dimensionally consistent) energy norm:

|||v|||2 := ω2‖v‖2ε + ‖∇×v‖2ν . (2.2)

We consider the subspace

Xc
0 := H0(curl;D) ∩H0(curl = 0;D)

⊥
, (2.3)

and we introduce the L2
ε-orthogonal projection

Πc
0 : L2(D)→H0(curl = 0;D). (2.4)

Since ∇H1
0 (D) ⊂ H0(curl = 0;D), any field ξ ∈ Xc

0 is such that ∇·(εξ) = 0 in D. Hence,
Xc

0 compactly embeds into L2(D) [42].

Remark 2.1 (Topology of D). We have H0(curl = 0;D)
⊥ ⊂ {v ∈ L2(D), ∇·(εv) = 0} with

equality if only if ∂D is connected (see, e.g., [1]).

2.2 Model problem
Given a positive real number ω > 0 and a source term J ∈ (H0(curl;D))′ (the topological
dual space of H0(curl;D)), the model problem amounts to finding E ∈ H0(curl;D) such
that

b(E,w) = 〈J ,w〉 ∀w ∈H0(curl;D), (2.5)

with the bilinear form defined on H0(curl;D)×H0(curl;D) such that

b(v,w) := −ω2(v,w)ε + (∇0×v,∇0×w)ν , (2.6)

and where the brackets on the right-hand side of (2.5) denote the duality product between
(H0(curl;D))′ and H0(curl;D). In what follows, we assume that ω2 is not an eigenvalue of
the ε−1∇×(ν∇0×·) operator in D. As a result, the model problem (2.5) is well-posed. We
observe that the bilinear form b satisfies |b(v,w)| ≤ |||v||||||w|||. The following inf-sup stability
result is established in [12, Lemma 2].

Lemma 2.2 (Inf-sup stability). The following holds:

1

1 + 2βst
≤ inf
v∈H0(curl;D)
|||v|||=1

sup
w∈H0(curl;D)
|||w|||=1

|b(v,w)| ≤ 1

βst
, (2.7)

with the (nondimensional) stability constant

βst := sup
g∈H0(curl=0;D)⊥

‖g‖ε=1

ω|||vg|||. (2.8)

Here, for all g ∈ L2(D), vg ∈H0(curl;D) denotes the unique solution to (2.5) with right-hand
side (g,w)ε, i.e., b(vg,w) = (g,w)ε for all w ∈H0(curl;D).
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3 Discontinuous Galerkin approximation
In this section, we introduce the discrete setting and formulate the interior penalty dG ap-
proximation of the model problem (2.5). To avoid technicalities, we assume from now on that
J ∈ L2(D); notice though that we do not make any further assumption on ∇·J for the a priori
error analysis and that the sole assumption on the material properties is uniform boundedness
from above and from below away from zero.

3.1 Discrete setting
Let Th be an affine simplicial mesh covering D exactly. A generic mesh cell is denoted K, its
diameter hK and its outward unit normal nK . We define the piecewise constant functions h̃
and ν̃ such that

h̃|K := hK , ν̃|K := min
u∈Rd

|u|=1

ν|Ku · u, ∀K ∈ Th. (3.1)

We write Fh for the set of mesh faces, F◦h for the subset of mesh interfaces (shared by two
distinct mesh cells, Kl, Kr), and F∂h for the subset of mesh boundary faces (shared by one
mesh cell, Kl, and the boundary, ∂D). Every mesh interface F ∈ F◦h is oriented by the unit
normal, nF , pointing from Kl to Kr (the orientation is arbitrary, but fixed). Every boundary
face F ∈ F∂h is oriented by the unit normal nF := nD|F . For all K ∈ Th, FK is the collection
of the mesh faces composing ∂K.

Let k ≥ 1 be the polynomial degree. Let Pk,d be the space composed of d-variate polyno-
mials of total degree at most k and set PPPk,d := [Pk,d]d. The dG approximation hinges on the
following broken polynomial space:

P b
k(Th) := {vh ∈ L2(D) | vh|K ∈ PPPk,d, ∀K ∈ Th}. (3.2)

Moreover, the error analysis makes use of the following subspaces:

P c
k(Th) := P b

k(Th) ∩H(curl;D), (3.3a)

P c
k,0(Th) := P b

k(Th) ∩H0(curl;D), (3.3b)

P c
k,0(curl = 0; Th) := P b

k(Th) ∩H0(curl = 0;D). (3.3c)

The superscript c in the above subspaces is meant to remind us that all these subspaces are
H(curl;D)-conforming. The L2

ε-orthogonal projection

Πc
h0 : L2(D)→ P c

k,0(curl = 0; Th), (3.4)

plays a key role in what follows. In particular, we introduce the subspace

Xb
h := P b

k(Th) ∩ P c
k,0(curl = 0; Th)⊥, (3.5)

which is composed of fields vh ∈ P b
k(Th) such that Πc

h0(vh) = 0.

3.2 Jumps and discrete curl operator
For all K ∈ Th, all F ∈ FK , and all vh ∈ P b

k(Th), we define the local trace operators such that
γg
K,F (vh)(x) := vh|K(x), γc

K,F (vh)(x) := vh|K(x)×nF , for a.e. x ∈ F . Then, for all F ∈ F◦h
and x ∈ {g, c}, we define the jump and average operators such that

[[vh]]xF := γx
Kl,F

(vh)− γx
Kr,F (vh), {{vh}}xF :=

1

2

(
γx
Kl,F

(vh) + γx
Kr,F (vh)

)
. (3.6)

We also set [[vh]]xF := {{vh}}xF := γx
Kl,F

(vh) for all F ∈ F∂h .
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For every field vh ∈ P b
k(Th), ∇h×vh denotes the broken curl of vh (evaluated cellwise).

Let ` ≥ k − 1 ≥ 0. We define the discrete curl operator Ck,`
h,0 : P b

k(Th) → P b
` (Th) such that,

for all vh ∈ P b
k(Th),

Ck,`
h,0(vh) := ∇h×vh +L`h,0(vh), (3.7)

where the jump lifting operator L`h,0(vh) ∈ P b
` (Th) is defined by requiring that

(L`h,0(vh),φh) :=
∑
F∈Fh

([[vh]]cF , {{φh}}
g
F )L2(F ) (3.8)

for all φh ∈ P
b
` (Th). Taking the polynomial degree ` larger than k− 1 is useful to improve the

consistency property of the discrete curl operator; see Lemma 4.2 below.
It is convenient to introduce the infinite-dimensional space

V ] := H0(curl;D) + P b
k(Th), (3.9)

where the error (E − Eh) lives. Although the sum in (3.9) is not direct, any field vh ∈
H0(curl;D) ∩ P b

k(Th) satisfies [[vh]]cF = 0 for all F ∈ Fh, as well as Ck,`
h,0(vh) = ∇0×vh.

It is therefore legitimate to extend the curl and jump operators to V ] by setting, for all
v = ṽ + vh ∈ V ] with ṽ ∈H0(curl;D) and vh ∈ P b

k(Th),

Ck,`
h,0(v) := ∇0×ṽ +∇h×vh +L`h,0(vh), [[v]]cF := [[vh]]cF . (3.10)

3.3 Discrete bilinear forms and discrete problem
We consider a stabilization bilinear form s] defined on V ]×V ] and which satisfies the following
assumptions:

(i) s] is symmetric positive semidefinite, (3.11a)
(ii) s](v, ·) = s](·,v) = 0 ∀v ∈H0(curl;D). (3.11b)

We define the bilinear forms b] and b]s on V ] × V ] such that

b](v,w) := −ω2(v,w)ε + (Ck,`
h,0(v),Ck,`

h,0(w))ν , (3.12a)

b]s(v,w) := b](v,w) + s](v,w). (3.12b)

The bilinear form b]s is used to define the discrete problem and perform the a priori error
analysis; the bilinear form b] is useful in the a posteriori error analysis. Owing to (3.10)
and (3.11b), we have the following (minimal) consistency property:

b]s(v,w) = b](v,w) = b(v,w) ∀v,w ∈H0(curl;D). (3.13)

We extend the |||·|||-norm defined in (2.2) to V ] by setting, for all v ∈ V ],

|||v|||2] := ω2‖v‖2ε + ‖Ck,`
h,0(v)‖2ν , (3.14a)

|||v|||2]s := |||v|||2] + |v|2s , |v|2s := s](v,v). (3.14b)

(The definition of |v|s is legitimate owing to (3.11a).) This leads to the following boundedness
properties on the bilinear form b]s:

|b]s(v,w)| ≤ |||v|||]s |||w|||]s ∀(v,w) ∈ V ] × V ], (3.15a)
|b]s(v,w)| ≤ |||v|||] |||w||| ∀(v,w) ∈ V ] ×H0(curl;D). (3.15b)

The discrete problem reads as follows: Find Eh ∈ P b
k(Th) such that

b]s(Eh,wh) = (J ,wh)L2(D) ∀wh ∈ P b
k(Th). (3.16)

Notice that we use here the assumption that J ∈ L2(D).
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3.4 Example: interior penalty discontinuous Galerkin method
The classical interior penalty dG formulation for the model problem (2.5) is based upon the
following discrete bilinear form [39]: For all vh,wh ∈ P b

k(Th),

bh(vh,wh) := − ω2(vh,wh)ε + (∇h×vh,∇h×wh)ν + η∗sh(vh,wh)

+
∑
F∈Fh

{
({{ν∇h×vh}}gF , [[wh]]cF )L2(F ) + ([[vh]]cF , {{ν∇h×wh}}gF )L2(F )

}
, (3.17)

with the stabilization bilinear form

sh(vh,wh) :=
∑
F∈Fh

ν̃F
hF

([[vh]]cF , [[wh]]cF )L2(F ), (3.18)

and the user-dependent parameter η∗ > 0 is to be taken large enough. In (3.18), hF denotes
the diameter of F ∈ Fh and ν̃F := maxK∈TF ν̃K with TF := {K ∈ Th |F ∈ FK}.

The discrete bilinear form bh defined in (3.17) can be extended to V ] × V ] using the
bilinear form b]s defined in (3.12b) provided the polynomial degree for the jump lifting satisfies
` ≥ k− 1 ≥ 0 and provided the material property ν is piecewise constant on the mesh. In this
situation, b]s is indeed an extension of bh, i.e., b]s|P b

k(Th)×P b
k(Th) = bh, provided the stabilization

bilinear form s] is defined as follows:

s](v,w) := η∗sh(v,w)− (L`h,0(v),L`h,0(w))ν ∀(v,w) ∈ V ] × V ]. (3.19)

(Notice that s] is not an extension of sh.) The bilinear form s] defined in (3.19) trivially
satisfies (3.11b) and is symmetric. It is positive semidefinite, i.e., (3.11a) also holds true, if the
factor η∗ is chosen large enough [38]. The minimal threshold classically depends on the mesh
shape-regularity and the polynomial degree `.

Remark 3.1 (Weighted averages). Whenever the jumps of (the eigenvalues of) ν are large
across the mesh interfaces, it can be useful to consider weighted ν-dependent averages to eval-
uate the last two terms on the right-hand side of (3.17). We refer the reader, e.g., to [24] for
an example in the context of scalar diffusion problems. Such weighted averages can be handled
in our framework by modifying the definition of the lifting operator accordingly.

4 Weak consistency and approximation factors
In this section, we introduce two important notions for the analysis of the dG approximation:
a suitable consistency measure and various approximation factors.

4.1 Galerkin orthogonality on conforming test functions
Our first observation is that Galerkin orthogonality holds true whenever the discrete test
functions are required to be H0(curl;D)-conforming.

Lemma 4.1 (Galerkin orthogonality). If Eh solves (3.16), the following holds true:

b]s(E −Eh,v
c
h) = 0 ∀vc

h ∈ P
c
k,0(Th). (4.1)

In particular, we have
Πc
h0(E −Eh) = 0. (4.2)

Proof. The property (4.1) follows from the definition of b]s which implies that b]s(E,vc
h) =

b(E,vc
h) = (J ,vc

h) for all vc
h ∈ P

c
k,0(Th). Moreover, since P c

k,0(curl = 0; Th) ⊂ P c
k,0(Th), (4.1)

implies that (E −Eh,wh)ε = 0 for all wh ∈ P c
k,0(curl = 0; Th), which proves (4.2).
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4.2 Weak consistency
We now consider the consistency error produced by the discrete curl operator when tested
against smooth fields. For all Ψ ∈ H0(curl;D) such that ν∇0×Ψ ∈ H(curl;D) and for all
vh ∈ P b

k(Th), we define the weak consistency error as

δwkc(vh,Ψ) := (vh,∇×(ν∇0×Ψ))− (Ck,`
h,0(vh),∇0×Ψ)ν . (4.3)

We consider the following two norms:

|||vh|||2ap := ‖ν̃ 1
2 h̃−1vh‖2 + ‖Ck,`

h,0(vh)‖2ν ∀vh ∈ P b
k(Th), (4.4a)

|||v|||2ap∗ := ‖v‖2ν−1 + ‖ν̃− 1
2 h̃∇×v‖2 ∀v ∈H(curl;D). (4.4b)

(Recall that h̃ and ν̃ are defined in (3.1).) We introduce the following nonconformity measure:

|v|nc := min
vc
h∈P

c
k,0(Th)

|||vh − vc
h|||ap ∀v := ṽ + vh ∈ V ]. (4.5)

Notice that the definition (4.5) is independent of the decomposition v := ṽ + vh.

Lemma 4.2 (Weak consistency). For all Ψ ∈ H0(curl;D) such that ν∇0×Ψ ∈ H(curl;D)
and for all vh ∈ P b

k(Th), the following holds true:

|δwkc(vh,Ψ)| ≤ |vh|nc min
Φc

h∈P
c
`(Th)

|||ν∇0×Ψ−Φc
h|||ap∗, (4.6)

with P c
`(Th) := P b

` (Th) ∩H(curl;D).

Proof. We follow the idea of [11] for the Helmholtz problem. For any field Φc
h ∈ P

c
`(Th),

integration by parts gives
(vh,∇×Φc

h) = (Ck,`
h,0(vh),Φc

h).

We infer that

δwkc(vh,Ψ) = (vh,∇×(ν∇0×Ψ−Φc
h))− (Ck,`

h,0(vh),ν∇0×Ψ−Φc
h).

Let vc
h ∈ P

c
k,0(Th) and observe that Ck,`

h,0(vc
h) = ∇0×vc

h. Integration by parts using ζ :=
ν∇0×Ψ−Φc

h ∈H(curl;D) gives

(vc
h,∇×ζ) = (∇0×vc

h, ζ) = (Ck,`
h,0(vc

h), ζ).

Putting everything together yields

δwkc(vh,Ψ) = (vh − vc
h,∇×(ν∇0×Ψ−Φc

h))− (Ck,`
h,0(vh − vc

h),ν∇0×Ψ−Φc
h)

≤ |||vh − vc
h|||ap|||ν∇0×Ψ−Φc

h|||ap∗,

where we used the Cauchy–Schwarz inequality and the definitions (4.4a) and (4.4b) of the norms
|||·|||ap and |||·|||ap∗, respectively. Taking the infimum over vc

h ∈ P
c
k,0(Th) and over Φc

h ∈ P
c
`(Th)

completes the proof.

4.3 Approximation and divergence conformity factors
Here, we introduce three factors to be used in the error analysis. We prove in Section 7 that
these factors tend to zero (with a certain rate) as the mesh size tends to zero.

For all θ ∈ H0(curl = 0;D)
⊥, we consider the adjoint problem consisting of finding ζθ ∈

H0(curl;D) such that

b(w, ζθ) = (w,θ)ε ∀w ∈H0(curl;D). (4.7)
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Taking any test function w ∈H0(curl = 0;D) ⊂H0(curl;D) shows that

ω2(w, ζθ)ε = b(w, ζθ) = (w,θ)ε = 0, (4.8)

where the first equality follows from ∇0×w = 0, the second from the definition of the adjoint
solution, and the third from the assumption θ ∈ H0(curl = 0;D)

⊥. Since w is arbitrary in
H0(curl = 0;D), this proves that ζθ ∈H0(curl = 0;D)

⊥. Thus, ζθ ∈X
c
0. We introduce the

(nondimensional) approximation factors

γap := sup
θ∈H0(curl=0;D)⊥

‖θ‖ε=1

min
vc
h∈P

c
k,0(Th)

ω|||ζθ − vc
h|||, (4.9a)

γap∗ := sup
θ∈H0(curl=0;D)⊥

‖θ‖ε=1

min
Φc

h∈P
c
`(Th)

ω|||ν∇0×ζθ −Φc
h|||ap∗. (4.9b)

Notice that γap uses the triple norm |||·||| related to the boundedness property (3.15b) on b]s.
Moreover, we introduce the (nondimensional) divergence conformity factor

γdv := sup
vh∈Xb

h

‖Ck,`
h,0(vh)‖2ν+|vh|2nc

=1

ω‖Πc
0(vh)‖ε. (4.10)

Loosely speaking, γdv measures how much discretely divergence-free fields depart from being
exactly divergence-free.

5 A priori error analysis and inf-sup stability
This section is devoted to the error analysis of the dG approximation. As usual with Schatz-
like arguments, we first establish an error estimate by assuming that the discrete solution Eh

exists and then we prove that the discrete problem (3.16) is indeed well-posed.

5.1 Error decomposition and best-approximation
We define the approximation error e := E −Eh and consider the error decomposition

e = θ0 + θΠ, (5.1)

with

θ0 := (I −Πc
0)(e) ∈H0(curl = 0;D)

⊥
, θΠ := Πc

0(e) ∈H0(curl = 0;D). (5.2)

Let us define the bilinear forms b+] and b+]s on V ] × V ] such that

b+] (v,w) := ω2(v,w)ε + (Ck,`
h,0(v),Ck,`

h,0(w))ν , (5.3a)

b+]s(v,w) := b+] (v,w) + s](v,w). (5.3b)

The difference with b] and b]s lies in the sign of the zero-order term. We define the best-
approximation operator Bb

h : V ] → P b
k(Th) as follows: For all v ∈ V ], Bb

h(v) ∈ P b
k(Th) is such

that
b+]s(v − B

b
h(v),wh) = 0 ∀wh ∈ P b

k(Th). (5.4)

The best-approximation error is defined to be

η := E − Bb
h(E). (5.5)

9



Lemma 5.1 (Properties of Bb
h). The best-approximation operator Bb

h defined in (5.4) enjoys
the following two properties:

|||Bb
h(v)|||]s ≤ |||v|||]s, ∀v ∈ V ], (5.6a)

Bb
h(v) ∈Xb

h, ∀v ∈ P c
k,0(curl = 0; Th)⊥. (5.6b)

In particular, the error e = E −Eh satisfies

Bb
h(e) ∈Xb

h. (5.6c)

Proof. (5.6a) follows from the fact that the bilinear form b+]s is the inner product associated
with the |||·|||]s-norm. To prove (5.6b), consider any v ∈ P c

k,0(curl = 0; Th)⊥. Take any
wh ∈ P c

k,0(curl = 0; Th) in (5.4) and observe that Ck,`
h,0(wh) = 0 and s](·,wh) = 0. Since

ω2(Bb
h(v),wh)ε = ω2(Bb

h(v)− v,wh)ε = b+]s(B
b
h(v)− v,wh) = 0,

we infer that Bb
h(v) ∈ P c

k,0(curl = 0; Th)⊥. Moreover, Bb
h(v) ∈ P b

k(Th) by construction. This
proves (5.6b). Finally, (5.6c) follows from (4.2) and (5.6b).

5.2 Preliminary bounds
Lemma 5.2 (Bound on θ0). We have

ω‖θ0‖ε ≤ γap |||e|||] + γap∗ |e|nc, (5.7)

with the approximation factors γap and γap∗ defined in (4.9a) and (4.9b), respectively.

Proof. Let ζθ ∈H0(curl;D) solve the adjoint problem (4.7) with data θ := θ0. Since E, ζθ ∈
H0(curl;D), we infer from (3.13) and the definition of the adjoint solution that

b]s(E, ζθ) = b(E, ζθ) = (E,θ0)ε.

Moreover, recalling the definition (3.12b) of b]s, the assumption (3.11b) on s], and the defini-
tion (4.3) of the weak consistency error, we infer that

b]s(Eh, ζθ) = −ω2(Eh, ζθ)ε + (Ck,`
h,0(Eh),∇0×ζθ)ν

= (Eh,−ω2εζθ +∇×(ν∇0×ζθ))− δwkc(Eh, ζθ)

= (Eh,θ0)ε − δwkc(Eh, ζθ).

Combining the above two identities and using (θ0,θΠ)ε = 0 gives

ω‖θ0‖2ε = ω(e,θ0)ε = ωb]s(e, ζθ)− ωδwkc(Eh, ζθ).

Owing to Galerkin orthogonality (see (4.1)), we infer that, for all vc
h ∈ P

c
k,0(Th),

ω‖θ0‖2ε = ωb]s(e, ζθ − vc
h)− ωδwkc(Eh, ζθ). (5.8)

Invoking the boundedness property (3.15b) on b]s, and using the definition of the approximation
factor γap gives

ω|b]s(e, ζθ − vc
h)| ≤ |||e|||] ω|||ζθ − vc

h||| ≤ |||e|||] γap‖θ0‖ε.

Moreover, invoking Lemma 4.2 to bound the weak consistency error and recalling the definition
of the approximation factor γap∗ gives

ω|δwkc(Eh, ζθ)| ≤ |Eh|nc γap∗‖θ0‖ε = |e|nc γap∗‖θ0‖ε.

Putting the above two bounds together proves (5.7).
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Lemma 5.3 (Bound on θΠ). We have

ω‖θΠ‖ε ≤ ω‖Πc
0(η)‖ε + γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2 . (5.9)

Proof. We observe that

θΠ + θ0 = e = Bb
h(e) + (I − Bb

h)(e) = Bb
h(e) + η,

since (I − Bb
h)(Eh) = 0. This gives θΠ = Bb

h(e) + η − θ0. Since (θΠ,θ0)ε = 0, we infer that

‖θΠ‖2ε = (θΠ,Bb
h(e))ε + (θΠ,η)ε

= (θΠ,Π
c
0(Bb

h(e)))ε + (θΠ,Π
c
0(η))ε =: Θ1 + Θ2,

where we used that θΠ = Πc
0(θΠ) and that Πc

0 is self-adjoint for the inner product (·, ·)ε. We
bound Θ1 as follows:

|Θ1| ≤ ‖θΠ‖ε ‖Πc
0(Bb

h(e))‖ε

≤ ‖θΠ‖ε γdvω
−1
{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2 ,

where we used the divergence conformity factor defined in (4.10) (this is legitimate since
Bb
h(e) ∈Xb

h owing to (5.6c)). Moreover, the Cauchy–Schwarz inequality gives

|Θ2| ≤ ‖θΠ‖ε ‖Πc
0(η)‖ε.

Putting the above two bounds together proves the assertion.

Lemma 5.4 (Bound on |||θ0|||]s). We have

|||θ0|||2]s ≤ |||(I −Πc
0)(η)|||2]s + 2ω‖θΠ‖ε γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2

+ 2|Bb
h(e)|nc min

Φc
h∈P

c
`(Th)

|||ν∇0×E −Φc
h|||ap∗ + 4ω2‖θ0‖2ε. (5.10)

Proof. Since e = η + Bb
h(e) as shown in the above proof, we have θ0 = (I − Πc

0)(e) =
(I −Πc

0)(η) + (I −Πc
0)(Bb

h(e)). This gives

b]s(θ0,θ0) = b]s(θ0, (I −Πc
0)(η)) + b]s(θ0, (I −Πc

0)(Bb
h(e)))

= b]s(θ0, (I −Πc
0)(η)) + b]s(e, (I −Πc

0)(Bb
h(e))),

where the second equality follows from b]s(θΠ, (I −Πc
0(·))) = 0. The first term on the right-

hand side is bounded by invoking the continuity property (3.15a), giving

|b]s(θ0, (I −Πc
0)(η))| ≤ |||θ0|||]s |||(I −Πc

0)(η)|||]s.

The second term is decomposed as b]s(e, (I −Πc
0)(Bb

h(e))) = β1 + β2 with

β1 := b]s(e,Bb
h(e)), β2 := −b]s(e,Πc

0(Bb
h(e))) = ω2(θΠ,Π

c
0(Bb

h(e)))ε.

A straightforward calculation shows that

β1 = b]s(E,Bb
h(e))− b]s(Eh,Bb

h(e)) = b]s(E,Bb
h(e))− (J ,Bb

h(e))

= (∇0×E,Ck,`
h,0(Bb

h(e)))ν − (∇×(ν∇0×E),Bb
h(e)) = −δwkc(Bb

h(e),E).

(Notice that we need to consider here all possible test functions in P b
k(Th) in the discrete

problem (3.16).) Hence, invoking Lemma 4.2 gives

|β1| ≤ |Bb
h(e)|nc min

Φc
h∈P

c
`(Th)

|||ν∇0×E −Φc
h|||ap∗.
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Moreover, using the Cauchy–Schwarz inequality and since Bb
h(e) ∈Xb

h (see (5.6c)), we have

|β2| ≤ ω‖θΠ‖ε γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2 .

Altogether, this gives

b]s(θ0,θ0) ≤ |||θ0|||]s |||(I −Πc
0)(η)|||]s + ω‖θΠ‖ε γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2

+ |Bb
h(e)|nc min

Φc
h∈P

c
`(Th)

|||ν∇0×E −Φc
h|||ap∗.

Since |||θ0|||2]s = b]s(θ0,θ0) + 2ω2‖θ0‖2ε, we infer that

|||θ0|||2]s ≤ |||θ0|||]s |||(I −Πc
0)(η)|||]s + ω‖θΠ‖ε γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2

+ |Bb
h(e)|nc min

Φc
h∈P

c
`(Th)

|||ν∇0×E −Φc
h|||ap∗ + 2ω2‖θ0‖2ε.

Dealing with the first term on the right-hand side by Young’s inequality gives (5.10).

5.3 A priori error estimate
To derive our a priori error estimate, we make the following assumption on the stabilization
bilinear form:

∃ρ > 0 s.t. ρ|v|nc ≤ |v|s, ∀v ∈ V ]. (5.11)

In (5.11), the positive constant ρ is independent of the mesh size. The value of ρ can depend
on the mesh shape-regularity and the polynomial degree; see Remark 5.11 below for further
insight.

Theorem 5.5 (A priori error estimate and discrete well-posedness). Assume (5.11). The
following holds:

(1− cγ)|||e|||2]s ≤ (1 + 4γdv)|||η|||2]s + 2ρ−1|||e|||]s min
Φc

h∈P
c
`(Th)

|||ν∇0×E −Φc
h|||ap∗. (5.12)

with cγ := 8 max(γ2
ap, ρ

−2γ2
ap∗) + max(1, ρ−2)(γdv + 3γ2

dv). Consequently, if the mesh size is
small enough so that cγ < 1, the discrete problem (3.16) is well-posed.

Proof. We square (5.9) and add the result to (5.10). Since

|||e|||2]s = |||θ0|||2]s + ω2‖θΠ‖2ε, |||η|||2]s = |||(I −Πc
0)(η)|||2]s + ω2‖Πc

0(η)‖2ε,

we obtain

|||e|||2]s ≤ |||η|||2]s + 4ω‖Πc
0(η)‖ε γdv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

} 1
2

+ 3γ2
dv

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

}
+ 2|Bb

h(e)|nc min
Φc

h∈P
c
`(Th)

|||ν∇0×E −Φc
h|||ap∗ + 4ω2‖θ0‖2ε.

We deal with the second term on the right-hand side by Young’s inequality. Since ω‖Πc
0(η)‖ε ≤

ω‖η‖ε ≤ |||η|||]s, this gives

|||e|||2]s ≤ (1 + 4γdv)|||η|||2]s + (γdv + 3γ2
dv)
{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

}
+ 2|Bb

h(e)|nc min
Φc

h∈P
c
`(Th)

|||ν∇0×E −Φc
h|||ap∗ + 4ω2‖θ0‖2ε.
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We invoke (5.7) to bound the last term on the right-hand side. This yields

|||e|||2]s ≤ (1 + 4γdv)|||η|||2]s + (γdv + 3γ2
dv)
{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2nc

}
+ 2|Bb

h(e)|nc min
Φc

h∈P
c
`(Th)

|||ν∇0×E −Φc
h|||ap∗ + 8

(
γ2

ap|||e|||2] + γ2
ap∗|e|2nc

)
.

We observe that

‖Ck,`
h,0(Bb

h(e))‖2ν + |Bb
h(e)|2nc ≤ max(1, ρ−2)

{
‖Ck,`

h,0(Bb
h(e))‖2ν + |Bb

h(e)|2s
}

≤ max(1, ρ−2)|||Bb
h(e)|||2]s ≤ max(1, ρ−2)|||e|||2]s,

where the last bound follows from (5.6a). Moreover, we have

γ2
ap|||e|||2] + γ2

ap∗|e|2nc ≤ max(γ2
ap, ρ

−2γ2
ap∗)(|||e|||2] + |e|2s) = max(γ2

ap, ρ
−2γ2

ap∗)|||e|||2]s.

Combining the above bounds shows that

(1− cγ)|||e|||2]s ≤ (1 + 4γdv)|||η|||2]s + 2|Bb
h(e)|nc min

Φc
h∈P

c
`(Th)

|||ν∇0×E −Φc
h|||ap∗.

Since ρ|Bb
h(e)|nc ≤ |Bb

h(e)|s ≤ |||Bb
h(e)|||]s ≤ |||e|||]s, this readily gives (5.12).

Remark 5.6 (Assumption (5.11)). In the context of the interior penalty dG method, where
the stabilization bilinear form s] is defined in (3.19), it is possible to choose the parameter
η∗ > 0 large enough so that (5.11) holds true. To this purpose, one can, for instance, bound
|vh|nc by taking vc

h := Ic,av
h0 (vh) defined using the H0(curl;D)-conforming averaging operator

analyzed in [21]. Furthermore, we notice that the converse bound to (5.11) is not required in
the analysis. It is, however, reasonable to assume that the converse bound ρ̃|vh|s ≤ |vh|nc holds
for some ρ̃ > 0, in order to avoid ill-conditioned linear systems.

Remark 5.7 (Error estimate (5.12)). The last term on the right-hand side of (5.12) stems
from the weak consistency of the discrete formulation and somewhat pollutes the asymptotic
optimality of the a priori error estimate. We notice that this term can be made superconvergent
already with the choice ` = k (provided ν∇0×E is smooth enough). The (slight) price to pay is
to choose the stabilization factor η∗ large enough so that s] is indeed positive semidefinite for
` = k (see (3.19)).

5.4 Inf-sup stability
Here, we establish the discrete inf-sup stability of the bilinear form b]s on P b

k(Th)× P b
k(Th).

Theorem 5.8 (Inf-sup stability). Under assumption (5.11), we have

min
vh∈P b

k(Th)
|||vh|||]s=1

max
wh∈P b

k(Th)
|||wh|||]s=1

|b]s(vh,wh)| ≥
1− c′γ

1 + 2βst
, (5.13)

with c′γ := 2
(
γap + 1

2ρ
−1γap∗ + max(1, ρ−2)γ2

dv

)
.

Proof. Let vh ∈ P b
k(Th). We build a suitable wh ∈ P b

k(Th) so that |||wh|||]s ≤ (1 + 2βst)|||vh|||]s
and b]s(vh,wh) ≥ (1− c′γ)|||vh|||2]s.

(1) Set vh0 := (I −Πc
h0)(vh) ∈ Xb

h and vhΠ := Πc
h0(vh) ∈ P c

k,0(curl = 0; Th), so that
vh = vh0 + vhΠ. We further decompose vh0 as vh0 = φ0 + φΠ with φ0 := (I −Πc

0)(vh0) and
φΠ := Πc

0(vh0). Let ξ0 ∈ H0(curl;D) be the unique adjoint solution such that b(w, ξ0) =
ω2(w,φ0)ε for all w ∈ H0(curl;D). We set ξh0 := Bc

h0(ξ0), where Bc
h0 : H0(curl;D) →
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P c
k,0(Th) is uniquely defined by requiring that b+] (v−Bc

h0(v),wh) = 0, for all v ∈H0(curl;D)
and all wh ∈ P c

k,0(Th). Finally, we set

wh := vh0 + 2ξh0 − vhΠ ∈ P b
k(Th).

(2) Upper bound on |||wh|||]s. The same argument as in the proof of Lemma 5.1 shows that
|||ξh0||| ≤ |||ξ0|||. Moreover, since φ0 ∈H0(curl = 0;D)

⊥, we have

β−1
st |||ξ0||| ≤ ω‖φ0‖ε ≤ ω‖vh0‖ε ≤ ω‖vh‖ε ≤ |||vh|||] ≤ |||vh|||]s.

This gives

|||wh|||2]s = |||vh0 + 2ξh0|||2]s + ω2‖vhΠ‖2ε ≤
(
|||vh0|||]s + 2|||ξh0|||

)2
+ ω2‖vhΠ‖2ε

≤ (1 + 2βst)
2|||vh0|||2]s + ω2‖vhΠ‖2ε ≤ (1 + 2βst)

2|||vh|||2]s.

(3) Lower bound on b]s(vh,wh). We first observe that

b]s(vh, ξh0) = b]s(vh0, ξh0) + b]s(vhΠ, ξh0) = b]s(vh0, ξh0) = b]s(vh0, ξ0) + b]s(vh0, ξh0 − ξ0).

We have

b]s(vh0, ξ0) = ω2(vh0,φ0)ε − δwkc(vh0, ξ0) = ω2‖φ0‖2ε − δwkc(vh0, ξ0).

Invoking Lemma 4.2 and the definition (4.9b) of the approximation factor γap∗ gives

b]s(vh0, ξ0) ≥ ω2‖φ0‖2ε − |vh0|ncγap∗ω‖φ0‖ε.

Using the above bound on ‖φ0‖ε together with |vh0|nc = |vh|nc and assumption (5.11), we
infer that

b]s(vh0, ξ0) ≥ ω2‖φ0‖2ε − ρ−1γap∗|vh|s|||vh|||] ≥ ω2‖φ0‖2ε − 1
2ρ
−1γap∗|||vh|||2]s, (5.14)

where the last bound follows from Young’s inequality. Furthermore, using the definition (4.9a)
of the approximation factor γap together with the boundedness property (3.15b) gives

b]s(vh0, ξh0 − ξ0) ≥ −|||vh|||]sγapω‖φ0‖ε ≥ −γap|||vh|||2]s.

Combining this lower bound with (5.14), we infer that

b]s(vh0, ξ0) ≥ ω2‖φ0‖2ε −
(
γap + 1

2ρ
−1γap∗

)
|||vh|||2]s. (5.15)

Furthermore, using the divergence conformity factor γdv yields

ω2‖φΠ‖2ε = ω2‖Πc
0(vh0)‖2ε ≤ γ2

dv

{
‖Ck,`

h,0(vh0)‖2ν + |vh0|2nc

}
≤ max(1, ρ−2)γ2

dv|||vh0|||2]s ≤ max(1, ρ−2)γ2
dv|||vh|||2]s.

Since ‖vh0‖2ε = ‖φ0‖2ε + ‖φΠ‖2ε, combining this bound with (5.15) gives

b]s(vh0, ξh0) ≥ ω2‖vh0‖2ε − 1
2c
′
γ |||vh|||2]s.

Finally, b]s(vh,vh0 − vhΠ) = |||vh|||2]s − 2ω2‖vh0‖2ε, we infer that

b]s(vh,wh) = b]s(vh,vh0 + 2ξh0 − vhΠ) ≥ (1− c′γ)|||vh|||2]s.

This completes the proof.

Remark 5.9 (Discrete inf-sup constant). The discrete inf-sup constant appearing on the left-
hand side of (5.13) tends to (1 + 2βst)

−1 as the mesh is refined, thus approaching, by up to a
factor of two at most, the inf-sup constant from the continuous setting.
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6 A posteriori residual-based error analysis
In this section, we estimate the error e := E −Eh by means of local residual-based quantities
called error indicators. We derive both a global upper error bound (reliability) and local lower
error bounds (local efficiency). The only property required for the discrete object Eh in the
a posteriori error analysis is to satisfy the Galerkin orthogonality (4.1) on conforming test
functions, i.e., b]s(E −Eh,v

c
h) = b](E −Eh,v

c
h) = 0 for all vc

h ∈ P
c
k,0(Th). Lemma 4.1 shows

that the dG solution solving (3.16) satisfies this property. For simplicity, we keep the notation
Eh in this section. For the a posteriori error analysis, we assume that ∇·J ∈ L2(D) and that
the material properties are piecewise constant on the mesh.

6.1 Notation
For all K ∈ Th, the element patch K̃ (resp., K̂) denotes the domain covered by all the cells

K ′ ∈ Th sharing at least one vertex (resp., one edge) with K. Similarly, the extended patch ˜̃K
is the domain covered by all the cells K ′′ ∈ Th sharing at least one vertex with a cell K ′ ∈ K̃.
For a face F ∈ Fh, F̃ is the domain covered by the one or two cells sharing F . Whenever no
confusion can arise, we also employ the symbols K̃, K̂, ˜̃K and F̃ for the set of cells covering
the domains. We employ the symbol κTh for the shape-regularity parameter of the mesh Th,
and C(κTh) denotes any generic constant solely depending on κTh and whose value can change
at each occurrence. For all T ⊂ Th, we introduce the notation

εmax,T := max
K∈T

max
x∈K

max
u∈Rd

|u|=1

max
v∈Rd

|v|=1

ε(x)u · v, εmin,T := min
T∈T

min
x∈K

min
u∈Rd

|u|=1

ε(x)u · u, (6.1)

and define νmax,T and νmin,T similarly. Then, ϑT := (νmin,T /εmax,T )
1
2 stands for the minimum

velocity in the subdomain covered by the cells in T . Finally, we write ‖v‖2T :=
∑
K∈T ‖v‖2L2(K)

and employ a similar notation if v is vector-valued. We also write ‖v‖2F :=
∑
F∈F ‖v‖2L2(F ) for

every subset F ⊂ Fh.

6.2 Estimator and error measure
The a posteriori error estimator is written as the sum over the mesh cells of local error indicators
ηK for all K ∈ Th. The local error indicator consists of three pieces. The first two respectively
measure the residuals of the divergence constraint and of Maxwell’s equations:

η2
K,div := ε−1

min,
˜̃
K

{
h2
K

ω2k2
‖∇·(J + ω2εEh)‖2K +

ω2hK
k
‖[[εEh]]d∂K‖2∂K\∂Ω

}
, (6.2a)

η2
K,curl := ν−1

min,
˜̃
K

{
h2
K

k2
‖J + ω2εEh −∇×(νCk,`

h,0(Eh))‖2K +
hK
k
‖[[νCk,`

h,0(Eh)]]c∂K‖2∂K\∂Ω

}
,

(6.2b)

where [[εEh]]d∂K |F := [[εEh]]gF ·nF and [[ν∇×Eh]]c∂K |F := [[ν∇×Eh]]gF×nF for all F ∈ FK . The
last part of the estimator controls the nonconformity of the discrete field Eh as follows:

η2
K,nc :=

ψK(ν, k)

hK
‖[[Eh]]c∂K‖2∂K , ψK(ν, k) := max(νmax,Kk

2, νmin,K̂k
4), (6.2c)

where [[Eh]]c∂K |F := [[Eh]]gF×nF for all F ∈ FK . For shortness, we also introduce the following
notation:

η2
K := η2

K,div + η2
K,curl + η2

K,nc, η2
• :=

∑
K∈Th

η2
•,K , η2 :=

∑
K∈Th

η2
K , (6.3)
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with • ∈ {div, curl,nc}.
For all T ⊂ Th, we define the error measure

|||e|||2†,T :=
∑
K∈T

{
ω2‖e‖2ε,K + ‖Ck,`

h,0(e)‖2ν,K +
ψK(ν, k)

hK
‖[[e]]c∂K‖2∂K

}
, (6.4)

and we omit the subscript T whenever T = Th. A crucial observation is that the last term in
the norm measuring the nonconformity can be chosen independently of the stabilization in the
dG scheme. In particular, it does not have do be large enough.

6.3 Error upper bound (reliability)
We employ the quasi-interpolation operators from [31] (see also [33]). Specifically, there exists
an operator Ig

h0 : H1
0 (D)→ Pb

k+1(Th) ∩H1
0 (D) such that, for all q ∈ H1

0 (D) and all K ∈ Th,

k2

h2
K

‖q − Ig
h0(q)‖2K +

k

hK
‖q − Ig

h0(q)‖2∂K ≤ C(κTh)`−2
D ‖q‖

2
H1(K̃)

, (6.5)

where ‖q‖2
H1(K̃)

:=
∑
K′∈K̃{‖q‖

2
K′ + `2D‖∇q‖2K′} and `D is a global length scale (e.g., the

diameter of D) which is introduced here for dimensional consistency. Similarly, there exists an
operator Ic

h0 : H1
0(D)→ P c

k,0(Th) such that, for all w ∈H1
0(D) and all K ∈ Th,

k2

h2
K

‖w − Ic
h0(w)‖2K +

k

hK
‖(w − Ic

h0(w))×nK‖2∂K ≤ C(κTh)`−2
D ‖w‖

2
H1(K̃)

. (6.6)

We will also need the quasi-interpolation averaging operator Ic,av
h0 : P b

k(Th) → P c
k,0(Th)

from [21] which is such that there is cav
k ≥ 1 so that, for all vh ∈ P b

k(Th) and all K ∈ Th,

h−1
K ‖vh − I

c,av
h0 (vh)‖K + ‖∇×(vh − Ic,av

h0 (vh))‖K ≤ C(κTh)cav
k

√
k2

hK
‖[[vh]]c∂K‖∂K . (6.7)

Previous work on averaging operators for scalar-valued functions [8, 29] indicates that one could
expect, at least for d = 2, that cav

k is bounded uniformly in k, but we keep here the dependency
on k as the question remains, to our knowledge, open for d = 3. Invoking a discrete trace
inequality (see, e.g., [22, Lem. 12.10]) yields

‖∇×vh −Ck,`
h,0(vh)‖K = ‖L`h,0(vh)‖K ≤ C(κTh)

√
k2

hK
‖[[vh]]c∂K‖∂K . (6.8)

Combining (6.7) and (6.8) gives

h−1
K ‖vh − I

c,av
h0 (vh)‖K + ‖Ck,`

h,0(vh − Ic,av
h0 (vh))‖K ≤ C(κTh)cav

k

√
k2

hK
‖[[vh]]c∂K‖∂K , (6.9)

and

|||vh − Ic,av
h0 (vh)|||2] ≤ C(κTh)(cav

k )2

(
1 + max

K∈Th

ωhK
kϑmin,K̂

)2 ∑
K∈Th

νmin,K̂

k4

h2
K

‖[[vh]]c∂K‖2∂K . (6.10)

Remark 6.1 (Broken curl). In view of (6.8), we can freely replace the discrete curl Ck,`
h,0 by

the broken curl in the definition of the estimator η and the error measure |||·|||†.
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We start by controlling the PDE residual in Lemma 6.2. Lemma 6.2 is similar to [14,
Lemma 3.2], but the result proposed here is sharper. In particular, the constant only depends
on the shape-regularity of the mesh. Notice also that we consider here only conforming test
functions so that we can work with the bilinear form b] rather than b]s.

Lemma 6.2 (Residual). For all v ∈H0(curl;D), we have

|b](e,v)| ≤ C(κTh)ηdc|||v|||, (6.11)

with η2
dc := η2

div + η2
curl.

Proof. Here, we invoke [41, Theorem 1], which states that, given any w ∈H0(curl;D), there
exists Sc

h0(w) ∈ P c
k,0(Th), such that

w − Sc
h0(w) = ∇q + φ, (6.12)

with q ∈ H1
0 (D), φ ∈H1

0(D) such that, for all K ∈ Th,

h−1
K ‖q‖K + ‖∇q‖K ≤ C(κTh)‖w‖K̃ , h−1

K ‖φ‖K + ‖∇φ‖K ≤ C(κTh)‖∇0×w‖K̃ . (6.13)

We now pick an arbitrary test function v ∈H0(curl;D). We have

b](e,v) = b](e,v − Sc
h0(v)) = b](e,∇q + φ),

where q and φ are the components of the decomposition in (6.12). We then estimate the two
parts of the residual associated with the decomposition separately.

For the gradient part, we write

b](e,∇q) = b](e,∇(q − Ig
h0(q)))

= −ω2(ε(e),∇(q − Ig
h0(q)))

=
∑
K∈Th

ω2(∇·(ε(e)), q − Ig
h0(q))K −

∑
F∈F int

h

ω2([[ε(e)]]dF , q − I
g
h0(q))F

=
∑
K∈Th

−(∇·(J + ω2εEh), q − Ig
h0(q))K +

∑
F∈F int

h

ω2([[εEh]]dF , q − I
g
h0(q))F

≤
∑
K∈Th

{
‖∇·(J + ω2εEh)‖K‖q − Ig

h0(q)‖K + ω2‖[[εEh]]d∂K‖∂K\∂Ω‖q − Ig
h0(q)‖∂K

}
≤
∑
K∈Th

ηK,divε
1
2

min,
˜̃
K
ω

{
k

hK
‖q − Ig

h0(q)‖K +

√
k

hK
‖q − Ig

h0(q)‖∂K

}
.

For all K ∈ Th, invoking (6.5) and (6.13) and since hK ≤ `D, we have

k

hK
‖q − Ig

h0(q)‖K +

√
k

hK
‖q − Ig

h0(q)‖∂K ≤ C(κTh)`−1
D ‖q‖H1(K̃)

≤ C(κTh)‖v‖ ˜̃
K
≤ C(κTh)ε

− 1
2

min,
˜̃
K
‖v‖

ε,
˜̃
K
.

Summing over K ∈ Th and since the number of overlaps is uniformly controlled by κTh , we
obtain

|b](e,∇q)| ≤ C(κTh)ηdivω‖v‖ε. (6.14)
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For the H1
0(D)-part, proceeding similarly gives

b](e,φ) = b](e,φ− Ic
h0(φ))

= (J + ω2εEh,φ− Ic
h0(φ))− (Ck,`

h,0(Eh),∇0×(φ− Ic
h0(φ)))ν

=
∑
K∈Th

(J + ω2εEh −∇×(νCk,`
h,0(Eh)),φ− Ic

h0(φ))K

−
∑
F∈Fh

([[νCk,`
h,0(Eh)]]cF ,φ− Ic

h0(φ))F

≤
∑
K∈Th

ηK,curlν
1
2

min,
˜̃
K

{
k

hK
‖φ− Ic

h0(φ)‖K +

√
k

hK
‖(φ− Ic

h0(φ))×n‖∂K

}

≤ C(κTh)
∑
K∈Th

ηK,curlν
1
2

min,
˜̃
K
`−1
D ‖φ‖H1(K̃)

≤ C(κTh)
∑
K∈Th

ηK,curlν
1
2

min,
˜̃
K
‖∇0×v‖ ˜̃

K

≤ C(κTh)
∑
K∈Th

ηK,curl‖∇0×v‖
ν,

˜̃
K
,

so that
|b](e,φ)| ≤ C(κTh)ηcurl‖∇0×v‖ν . (6.15)

Combining (6.14) and (6.15) concludes the proof.

The next step is an Aubin–Nitsche-type duality argument to estimate the L2
ε-norm of the

error. Here, the weak consistency estimate from Lemma 4.2 is crucial to treat the nonconfor-
mity of the dG solution.

Lemma 6.3 (L2
ε-norm reliability estimate). We have

ω‖e‖ε ≤ C(κTh)(1 + γap + cav
k γap∗)η. (6.16)

Proof. Recall the L2
ε-orthogonal decomposition e = θ0 +θΠ with θ0 ∈H0(curl = 0;D)

⊥ and
θΠ ∈H0(curl = 0;D) (see (5.1)).

For the first component, we have

ω‖θ0‖2ε = ω(e,θ0)ε = ωb](e, ζθ)− ωδwkc(Eh, ζθ). (6.17)

Since Eh satisfies the Galerkin orthogonality for conforming test functions and invoking the
bound (6.11) established in Lemma 6.2, we have, for all vc

h ∈ P
c
k,0(Th),

ωb](e, ζθ) = ωb](e, ζθ − vc
h) ≤ C(κTh)ηω|||ζθ − vc

h||| ≤ C(κTh)γapηdc‖θ0‖ε, (6.18)

where we used the definition (4.9a) of γap in the last inequality (recall that vc
h is arbitrary in

P c
k,0(Th)). Moreover, owing to the estimate (4.6) from Lemma 4.2, we have

ω|δwkc(Eh, ζθ)| ≤ |Eh|ncγap∗‖θ0‖ε.

Recalling the definition (4.5) of the |·|nc-seminorm and using (6.9), we infer that

|Eh|nc ≤ |||Eh − Ic,av
h0 (Eh)|||ap ≤ C(κTh)cav

k ηnc,

where we used that νmax,Kk
2 ≤ ψK(ν, k) (see (6.2c)). This gives

ω|δwkc(Eh, ζθ)| ≤ C(κTh)cav
k ηncγap∗‖θ0‖ε. (6.19)
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Combining (6.17), (6.18) and (6.19), we arrive at

ω‖θ0‖ε ≤ C(κTh)(γap + cav
k γap∗)η. (6.20)

For the other part of the error, since θΠ ∈H0(curl = 0;D), we can use (6.11) to write

ω2‖θΠ‖2ε = −b](e,θΠ) ≤ C(κTh)ηdc|||θΠ||| = C(κTh)ηdcω‖θΠ‖ε. (6.21)

Combining (6.20) and (6.21) proves (6.16).

We are now ready to establish a reliability estimate with an argument similar to the one
used in [11] for the scalar Helmholtz problem.

Theorem 6.4 (Reliability). We have

|||e|||† ≤ C(κTh)cav
k

(
1 + max

K∈Th

ωhK
kϑmin,K̂

+ γap + γap∗

)
η. (6.22)

Proof. Since |||e|||2† = |||e|||2] + η2
nc, we only need to estimate |||e|||2] . To this purpose, recall that

the bilinear form b+] defined in (5.3b) is the inner product associated with the |||·|||]-norm. We
introduce the conforming H0(curl;D)-conforming projection Bc

0 : V ] → H0(curl;D) such
that b+] (v − Bc

0(v),w) = for all v ∈ V ] and all w ∈ H0(curl;D). Reasoning as in the proof
of Lemma 5.1 proves the following Pythagorean identity:

|||e|||2] = |||E − Bc
0(Eh)|||2] + |||Eh − Bc

0(Eh)|||2] .

We estimate separately the two terms on the right-hand side.
For the first term, we observe that E − Bc

0(Eh) ∈H0(curl;D), and write that

|||E − Bc
0(Eh)|||2] = b+] (E − Bc

0(Eh),E − Bc
0(Eh))

= b+] (e,E − Bc
0(Eh))

= b](e,E − Bc
0(Eh)) + 2ω2(e,E − Bc

0(Eh))ε.

Since the second argument in the first term on the right-hand side is conforming, this term
can be estimated by means of the estimate (6.11) from Lemma 6.2. This gives

|b](e,E − Bc
0(Eh))| ≤ C(κTh)ηdc|||E − Bc

0(Eh)|||.

We apply the Cauchy–Schwarz inequality to bound the second term, leading to

ω2|(e,E − Bc
0(Eh))ε| ≤ ω‖e‖εω‖E − Bc

0(Eh)‖ε ≤ ω‖e‖ε|||E − Bc
0(Eh)|||.

This yields the following estimate:

|||E − Bc
0(Eh)|||] ≤ C(κTh)ηdc + ω‖e‖ε ≤ C(κTh)cav

k (1 + γap + γap∗)η,

where we employed the L2
ε-estimate (6.16) from Lemma 6.3.

For the second term, invoking (6.10) gives

|||Eh − Bc
0(Eh)|||] ≤ |||Eh − Ic,av

h0 (Eh)|||] ≤ C(κTh)cav
k

(
1 + max

K∈Th

ωhK
kϑmin,K̂

)
ηnc,

where we used that νmin,K̂k
4 ≤ ψK(ν, k) (see (6.2c)). Putting everything together yields the

assertion.
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6.4 Local error lower bound (local efficiency)
We now derive efficiency estimates. To do so, we will need bubble functions (see [35] and
[14, Section 2.7]). Specifically, for all K ∈ Th, there exists a function bK ∈ H1

0 (K) with
bK ≤ C(κTh) such that, for all vK ∈ PPPk,d,

‖vK‖K ≤ C(κTh)k‖b
1
2

KvK‖K , (6.23)

and
‖∇(bKvK)‖K ≤ C(κTh)

k

hK
‖b

1
2

KvK‖K . (6.24)

Similarly, for all F ∈ Fh, there exists a function bF ∈ H1
0 (F ) such that, for all vF ∈ PPPk,d−1,

‖vF ‖F ≤ C(κTh)k‖b
1
2

FvF ‖F , (6.25)

and an extension operator EF : PPPk,d−1 → H1
0(F̃ ) such that, for all vF ∈ PPPk,d−1, EF (vF )|F =

bFvF and
kh
− 1

2

F ‖EF (vh)‖F̃ + k−1h
1
2

F ‖∇EF (vh)‖F̃ ≤ C(κTh)‖b
1
2

Fvh‖F . (6.26)

Theorem 6.5 (Local efficiency). For all K ∈ Th, we have

ηK ≤ C(κTh)K
1
2

Kk
3
2

{(
1 +

ωhK
kϑmin,K̃

)
|||E −Eh|||†,K̃ + oscK̃

}
, (6.27)

with the data oscillation term

osc2
K̃

:=
1

ω2
ε−1

min,K̃

∑
K′∈K̃

min
Jh∈P b

k(Th)

{
ω2h2

K′

k2ϑ2
min,K̃

‖J − Jh‖2K′ +
h2
K′

k2
‖∇·(J − Jh)‖2K′

}
, (6.28)

and the contrast coefficient KK := max

{
ε
max,

˜̃
K

ε
min,

˜̃
K

,
ν
max,

˜̃
K

ν
min,

˜̃
K

}
.

Proof. Fix K ∈ Th. The proof contains three parts, respectively dedicated to providing upper
bounds for ηK,div, ηK,curl and ηK,nc.

(i) The proof that ηK,div ≤ C(κTh)k
3
2

(
ω‖E − Eh‖ε,K̃ + oscK̃

)
can be found in [14, Lemma

3.5]. This proof is established for conforming edge finite elements, but it holds verbatim in the
discontinuous Galerkin setting.

(ii) For ηK,curl, we need to slightly adapt the proof from [14, Lemma 3.6]. The volumic residual
and jump term in ηK,curl are estimated separately.

(iia) For the volume term, we introduce rK := JK + ω2εEh −∇×(νCk,`
h,0(Eh))|K and vK =

bKrK , with JK arbitrary in PPPk,d. We observe that vK vanishes on ∂K, so that, letting vh be
the zero-extension of vK to D, we infer that

‖b
1
2

KrK‖
2
K = (rh,vK)K = (JK ,vK)K − b]s(Eh,vh) = b]s(E −Eh,vh)− (J − JK ,vK)K .

For the first term, we employ (6.24) to show that

|b]s(E −Eh,vh)|

≤ ω‖E −Eh‖ε,Kωε
1
2

max,K‖vK‖K + ‖Ck,`
h,0(E −Eh)‖ν,Kν

1
2

max,K‖∇×vK‖K

≤ C(κTh)

(
(ωε

1
2

max,K)ω‖E −Eh‖ε,K + ν
1
2

max,K

k

hK
‖Ck,`

h,0(E −Eh)‖ν,K
)
‖b

1
2

KrK‖K

≤ C(κTh)ν
1
2

max,K

k

hK

(
ωhK
kϑK

ω‖E −Eh‖ε,K + ‖Ck,`
h,0(E −Eh)‖ν,K

)
‖b

1
2

KrK‖K .
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The second term is simply estimated as follows

|(J − JK ,vK)K | ≤ ‖J − JK‖K‖vK‖K ≤ C(κTh)

(
ν

1
2

max,K

k

hK

)
ν
− 1

2

max,K

hK
k
‖J − JK‖K‖b

1
2

KrK‖K .

Combining these two bounds leads to

ν
− 1

2

max,K

hK
k
‖b

1
2

KrK‖K ≤ C(κTh)

{(
1 +

ωhK
kϑK

)
|||E −Eh|||],K + ν

− 1
2

max,K

hK
k
‖J − JK‖K

}
,

and therefore

ν
− 1

2

max,K

hK
k
‖rK‖K ≤ kν

− 1
2

max,K

hK
k
‖b

1
2

KrK‖K

≤ C(κTh)k

{(
1 +

ωhK
kϑK

)
|||E −Eh|||],K + ν

− 1
2

max,K

hK
k
‖J − JK‖K

}
.

Invoking the triangle inequality leads to

ν
− 1

2

max,K

hK
k
‖J + ω2εEh −∇×(νCk,`

h,0(Eh))‖K

≤ C(κTh)k

{(
1 +

ωhK
kϑK

)
|||E −Eh|||],K + ν

− 1
2

max,K

hK
k
‖J − JK‖K .

}
. (6.29)

(iib) For the jump term, we introduce rF := [[νCk,`
h,0(Eh)]]cF and vF := EF (rF ) ∈ H1

0(F̃ ).
Since vF ∈H1

0(F̃ ), we have

‖b
1
2

FrF ‖
2
F = (rF ,vF )F

= (∇×(νCk,`
h,0(Eh)),vF )F̃ − (νCk,`

h,0(Eh),∇×vF )F̃

= (νCk,`
h,0(E −Eh),∇×vF )F̃ − (∇×(νCk,`

h,0(E −Eh)),vF )F̃ . (6.30)

For the first term, we can immediately write that

|(νCk,`
h,0(E −Eh),∇×vF )F̃ | ≤ ν

1
2

max,F̃
‖Ck,`

h,0(E −Eh)‖ν,F̃ ‖∇×vF ‖F̃

≤ C(κTh)kh
− 1

2

F ν
1
2

max,F̃
‖Ck,`

h,0(E −Eh)‖ν,F̃ ‖b
1
2

FrF ‖F̃ ,

where we employed (6.26). We infer that

ν
− 1

2

max,F̃

√
hF
k
|(νCk,`

h,0(E −Eh),∇×vF )F̃ | ≤ C(κTh)k
1
2 ‖Ck,`

h,0(E −Eh)‖ν,F̃ ‖b
1
2

FrF ‖F̃ . (6.31)

For the second term, we first observe that

∇×(νCk,`
h,0(E −Eh)) = J + ω2εE −∇×(ν(Ck,`

h,0Eh))

= ω2ε(E −Eh) + J + ω2εEh −∇×(ν(Ck,`
h,0Eh)),

and therefore,

‖∇×(νCk,`
h,0(E −Eh)‖F̃

≤ ωε
1
2

max,F̃
ω‖E −Eh‖ε,F̃ + ‖J + ω2εEh −∇×(ν(Ck,`

h,0Eh))‖F̃

≤ ν
1
2

max,F̃

k

hK

(
ωhK
kϑF̃

ω‖E −Eh‖ε,F̃ + ν
− 1

2

max,F̃

hK
k
‖J + ω2εEh −∇×(ν(Ck,`

h,0Eh))‖F̃

)
.
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Combining this last estimate with (6.26) and invoking the Cauchy–Schwarz inequality gives

ν
− 1

2

max,F̃

√
hK
k
|(∇×(νCk,`

h,0(E −Eh)),vF )F̃ | ≤ C(κTh)×(
ωhK
ϑF̃ k

ω‖E −Eh‖ε,F̃ + ν
− 1

2

max,F̃

hK
k
‖J + ω2εEh −∇×(ν(Ck,`

h,0Eh))‖F̃

)
k

1
2 ‖b

1
2

FrF ‖F . (6.32)

We can now plug (6.31) and (6.32) in (6.30), leading to

ν
− 1

2

max,F̃

√
hK
k
‖b

1
2

FrF ‖F

≤ C(κTh)k
1
2

(
ωhK
ϑF̃ k

ω‖E −Eh‖ε,F̃ + ν
− 1

2

max,F̃

hK
k
‖J + ω2εEh −∇×(ν(Ck,`

h,0Eh))‖F̃

)
+ C(κTh)k

1
2 ‖Ck,`

h,0(E −Eh)‖ν,F̃

≤ C(κTh)k
1
2

(
1 +

ωhK
ϑF̃ k

)
|||E −Eh|||],F̃

+ C(κTh)k−
1
2 ν
− 1

2

max,F̃

hK
k
‖J + ω2εEh −∇×(ν(Ck,`

h,0Eh))‖F̃

≤ C(κTh)k
1
2

((
1 +

ωhF
ϑF̃ k

)
|||E −Eh|||],F̃ + ν

− 1
2

max,F̃

hF
k
‖J − Jh‖F̃ ,

)
owing to (6.29). It follows from (6.25) that

ηK,curl ≤ C(κTh)k
3
2

((
1 +

ωhK
ϑK̂k

)
|||E −Eh|||],K̂ + ν

− 1
2

max,K̂

hK
k
‖J − Jh‖K̂

)
.

(iii) For the last part of the estimator, we simply use that η2
K,nc ≤ |||E − Eh|||2],K + η2

K,nc =

|||E −Eh|||2†,K .

7 Bound on approximation and divergence conformity fac-
tors

In this section, we show that the factors introduced in Section 4.3 tend to zero as the mesh is
refined. For positive real numbers A and B, we abbreviate as A . B the inequality A ≤ CB
with a generic (nondimensional) constant C whose value can change at each occurrence as long
as it is independent of the mesh size, the frequency parameter ω, and, whenever relevant, any
function involved in the bound. The constant C can depend on the shape-regularity of the
mesh, the polynomial degree k, the (global) contrast in the coefficients (i.e. εmax/εmin and
νmax/νmin), and the shape of the domain D (but not on its size).

For simplicity, we focus on the case where the parameters ε and ν are piecewise constant
on a polyhedral partition of D. Under this assumption (see [18, 30, 5]), there exists s ∈ (0, 1

2 )
such that, for all v ∈H0(curl;D) with εv ∈H(div = 0;D), and for all w ∈H(curl;D) with
ν−1w ∈H0(div = 0;D), we have v,w ∈Hs(D) with

|v|Hs(D) . `1−sD ν
− 1

2

min‖∇0×v‖ν , |w|Hs(D) . `1−sD ε
1
2
max‖∇×w‖ε−1 . (7.1)

Here again, the length scale `D, e.g., the diameter of D, is introduced for dimensional con-
sistency. We will also need commuting (quasi-)interpolation operators, J c

h : H(curl;D) →
P c
k(Th) and J d

h : H(div;D) → P d
k(Th) := P b

k(Th) ∩ H(div;D) such that ∇×(J c
h (v)) =

J d
h (∇×v) for all v ∈H(curl;D) and

‖v − J c
h (v)‖ . hs|v|Hs(D), ‖w − J d

h (w)‖ . ‖w‖, (7.2)
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for all v ∈ H(curl;D) ∩Hs(D) and all w ∈ H(div;D). Since we are working on simplicial
meshes, we can invoke the operators devised in [22, Section 20] (see also [40, 3, 15, 16]) using
edge (Nédélec) and Raviart–Thomas finite elements.

Proposition 7.1 (Primal approximation factor). Let γap be defined in (4.9a). We have

γap . (1 + βst)

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s
,

where βst is the stability constant introduced in (2.8).

Proof. See [12, Lemma 5.1].

Lemma 7.2 (Dual approximation factor). Let γap∗ be defined in (4.9b). We have

γap∗ . (1 + βst)

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s
. (7.3)

Proof. Consider a right-hand side θ ∈ H0(curl = 0;D)
⊥ and the associated adjoint solution

ζθ ∈H0(curl;D) defined in (4.7). Set φθ := ν∇0×ζθ. The strong form of Maxwell’s equations
ensures that

∇×φθ = εθ + ω2εζθ,

so that φθ ∈H(curl;D) with

‖∇×φθ‖ε−1 ≤ ‖θ‖ε + ω2‖ζθ‖ε ≤ (1 + βst)‖θ‖ε. (7.4)

Besides, since ν−1φθ ∈H0(div = 0;D), we infer that φθ ∈H
s(D) with

|φθ|Hs(D) . `1−sD ε
1
2
max‖∇×φθ‖ε−1 . (7.5)

We are now ready to bound γap∗. We notice that

γ2
ap∗ ≤ ω2|||φθ − J c

h (φθ)|||2ap∗

= ω2‖φθ − J c
h (φθ)‖2ν−1 + ω2‖ν̃− 1

2 h̃(∇×φθ − J d
h (∇×φθ))‖2,

where we employed the commuting property satisfied by J c
h and J d

h . We bound the two terms
on the right-hand side. For the first term, invoking (7.2) and (7.5), we have

ω‖φθ − J c
h (φθ)‖ν−1 . ων

− 1
2

minh
s|φθ|Hs(D) . ω`1−sD

hs

ϑmin
‖∇×φθ‖ε−1

=

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s
‖∇×φθ‖ε−1 . (7.6)

For the second term, using (7.2), we can write

ω‖ν̃− 1
2 h̃(∇×φθ − J d

h (∇×φθ))‖ ≤ ωhν−
1
2

min‖∇×φθ − J
d
h (∇×φθ)‖

. ωhν
− 1

2

min‖∇×φθ‖ .
ωh

ϑmin
‖∇×φθ‖ε−1 . (7.7)

Combining (7.4), (7.6) and (7.7) and observing that h ≤ `D proves the assertion.

Lemma 7.3 (Divergence conformity factor). Let γdv be defined in (4.10). We have

γdv .

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s
. (7.8)
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Proof. Let vh ∈Xb
h and consider an arbitrary vc

h ∈ P
c
k,0(Th). Since Πc

h0(vh) = 0 by assump-
tion, we have

Πc
0(vh) = Πc

0(vh − vc
h) + Πc

0(vc
h)

= Πc
0((I −Πc

h0)(vh − vc
h)) + Πc

0(vc
h −Πc

h0(vc
h)).

Multiplying by ω, and invoking the triangle inequality and the L2
ε-stability of the projection

operators, we infer that

ω‖Πc
0(vh)‖ε ≤ ω‖vh − vc

h‖ε + ω‖Πc
0(vc

h −Πc
h0(vc

h))‖ε.

For the second term on the right-hand side, we invoke [12, Lemma 5.2] which gives

ω‖Πc
0(vc

h −Πc
h0(vc

h))‖ε .
(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s
‖∇0×(vc

h −Πc
h0(vc

h))‖ν

.

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s (
‖Ck,`

h,0(vh)‖ν + ‖Ck,`
h,0(vh − vc

h)‖ν
)
,

where we used that ∇0×Πc
h0(vc

h) = 0 and the triangle inequality. For the first term, we observe
that

ω‖vh − vc
h‖ε ≤

ωh

ϑmin
‖ν̃ 1

2 h̃−1(vh − vc
h)‖ ≤ ωh

ϑmin
|||vh − vc

h|||ap.

Combining this bound with the above two bounds and since h ≤ `D, this gives

ω‖Πc
0(vh)‖ε .

(
ω`D
ϑmin

)1−s(
ωh

ϑmin

)s (
‖Ck,`

h,0(vh)‖2ν + |||vh − vc
h|||2ap

) 1
2 .

The bound (7.8) follows by taking the minimum over vc
h ∈ P

c
k,0(Th).

Remark 7.4 (Other settings). It is possible to show that the above factors tend to zero under
less restrictive assumptions on the coefficients. Similarly, one can show improved convergence
rates by assuming extra regularity. We refer the reader to the discussions in [12, Section 5] for
more details.
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