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Abstract

We are interested in the relationship between the large values of a real

random variable Y and its associated covariate X, which takes values in

a subset X of Rp, when the conditional distribution of Y given X = x

is heavy-tailed with a conditional tail-index γ(x) > 0. Estimating this

index is a critical step for inferring the conditional distribution, but the

task becomes increasingly challenging as the dimension p grows. The ob-

jective of this work is to propose a dimension reduction method to obtain

a more efficient estimator of γ(x). Specifically, we assume the existence

of a subspace S0 of dimension q < p, with basis B0 ∈ Rp×q, and a posi-

tive function g(·) such that for all x ∈ X , γ(x) = g(B>0 x). We propose a

method to estimate the matrix B0 and establish its consistency. Addition-

ally, we introduce an estimator of the conditional tail-index that leverages

this dimension reduction and prove its consistency. We demonstrate the

advantages of this dimension reduction approach for estimating the ex-

treme value index through simulations and an application to real-world

data.
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1 Introduction

Let (X,Y ) be a random couple where Y is a R-valued response variable associated

to a covariate X taking its values in the set X ⊂ Rp with p ∈ N \ {0}. The

purpose of nonparametric regression is the estimation of the regression function

X 3 x 7→ E(Y | X = x). Given a sample (X1, Y1), . . . , (Xn, Yn) of independent copies

of (X,Y ) and a point x ∈ X , two main approaches for the estimation of E(Y | X = x)

can be found in the literature: the kernel method introduced independently by [13]

and [21] and the nearest-neighbors approach (see for instance [6]). However, it

is well known that, for a given level of accuracy of one of these estimators, the

number n of observations growths exponentially with respect to the dimension p. This

phenomenon is often referred to as the curse of dimensionality (see [2]). A solution

to avoid this problem is to assume the existence of a mean dimension reduction

subspace (see [5]). Recall that a q-dimensional linear subspace S is a mean dimension

reductions subspace if E(Y | X) = E(Y | B>X) almost surely where B ∈ Rp×q is a

basis of S. Hence, if B is known (or at least can be estimated), inference on E(Y | X)

can be done by replacing X by the covariate B>X of dimension q ≤ p. When q

is much smaller than p, the kernel method and the nearest-neighbors approaches

provide more accurate estimates.

In some practical cases, there is a need to pay special attention to the right

tail of the distribution, rather than to the central part of the distribution. This is the

case in finance (see, e.g., [15]) or insurance (see for instance [4, 14]). In these fields

of application, conditional heavy-tailed distributions are often considered and will

be the focus of this paper. Recall that the conditional distribution of Y given X is

heavy-tailed if

S(y, x) := P(Y > y | X = x) = y−1/γ(x)L(y, x),

for almost all x ∈ X , where γ(·) is a positive function referred to as the conditional tail-

index and L(·, x) is a positive slowly varying function, namely L(ty, x)/L(y, x)→ 1 as

y → ∞ for all t > 0 and x ∈ X . The conditional tail-index controls the tail behavior

of the conditional distribution. The capability to estimate it accurately is therefore of

primary importance. Of course, we are still confronted to the curse of dimensionality

all the more so since only the largest observations are kept in the estimation process.

Despite its practical interest, little work has been done on dimension reduction for
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extreme values. A first attempt can be found in [7] where it is assumed that there

exists a q-dimensional subspace S for which

lim
y→∞

sup
x∈X

∣∣∣∣ S(y, x)

SB(y,B>x)
− 1

∣∣∣∣ = 0, (1)

where B ∈ Rp×q is a basis of S and SB(·, B>x) is the conditional survival function

of Y given B>X = B>x. If such a tail dimension reduction subspace S exists,

inference on the conditional tail distribution can be achieved by replacing the

covariate X by its reduced version B>X. Recently, a different way to define a tail

dimension reduction subspace was introduced in [1]. Their approach can be seen

as an adaptation of the Sliced Inverse Regression method introduced by [12] and

differs significantly from [7]. In particular, condition (1) and the specific condition

used in [1] are not equivalent. Moreover, the final objective in [7] is the estimation

of extreme quantile while the one in [1] is to predict the occurence of tail event.

Another attempt to reduce the dimension in the tail of the distribution can be

found in [3]. The authors propose a specific inverse regression model and the di-

mension reduction is achieved by using a tail version of the partial least square method.

As mentioned above, an important step in inference on conditional heavy-tailed

distributions is the estimation of the conditional tail-index, but none of the afore-

mentioned papers specifically address this issue. However, in some situations,

a more accurate dimension reduction subspace can be found for the purpose of

estimating γ(·). For instance, if for all x ∈ X there exists B ∈ Rp×q with q < p such

that S(y, x) = y−1/g(B>x)c(x), where g(·) and c(·) are positive functions then the tail

dimension reduction subspace defined in [7] is the whole set Rp while in this case, the

dimension reduction subspace of interest is obviously span(B), the linear subspace of

Rp spanned by the columns of B.

The main contribution of this work is precisely to deal with the situation where the

conditional tail-index is defined on a lower dimensional linear subspace. This subspace

is referred to as the tail-index dimension reduction (TIDR) subspace. The framework

and the main definitions, in particular the definition of the TIDR subspace S, are given

in Section 2. Section 3 is devoted to the estimation of a basis of S which is then used

to estimate the conditional tail-index. The convergences in probability of the proposed

estimators towards their target are established under certain mild conditions. Section 4
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presents the results of a simulation study, followed by an application to a real data set

in Section 5. A procedure to estimate the dimension of the TIDR subspace is also

presented and illustrated in Section 4. The proofs are provided in Section 6, except

for the proof of Theorem 3 (see Section 3.3) which can be found in the supplementary

file.

2 Tail-index dimension reduction subspace

2.1 Framework

Throughout this paper, we consider a (Rp × R)-valued random couple (X,Y ) defined

on a given probability space (Ω,A,P). For any q ≤ p, B ∈ Rp×q and y ∈ R, let

SB(y,B>X) := P(Y > y | B>X)

be the conditional survival function of Y given B>X. When B is the identity matrix

(i.e., q = p) the conditional survival function of Y given that X is denoted S(y,X).

For ω ∈ Ω such that B>X(ω) = z, we write SB(y,B>X)(ω) = SB(y, z). The couple

(X,Y ) follows the distribution described by the following model.

(M) The support X of X is compact with a non-empty interior and the support of

Y is confined to the positive half-line. Moreover, for all x ∈ X , the conditional

distribution of Y given X = x is heavy tailed with tail-index γ(x) i.e., S(y, x) =

y−1/γ(x)L(y, x), for some slowly varying function L(·, x).

In Section 2.2, we establish a result ensuring (under suitable conditions) that if the

distribution of Y given X is heavy-tailed so is the conditional distribution of Y given

B>X for any B ∈ Rp×q. The definition of the tail-index dimension reduction subspace

is given in Section 2.3

2.2 Preliminary result

For a given matrix B ∈ Rp×q with 1 ≤ q < p, we can ask ourselves what happens if

the covariate X is replaced by its projection XB := B(B>B)−1B>X onto the linear

subspace span(B). Obviously, the knowledge of the conditional distribution of Y given

XB is equivalent to the one of Y given B>X. Since SB(y,B>X) = E
[
S(y,X)|B>X

]
,

the conditional survival function of Y given B>X can be seen as a mixture of the
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conditional survival function of Y given X. Hence, for all x ∈ X , we are inclined to

think that the decay of the conditional distribution of Y given B>X = B>x is driven

by the largest tail-index involved in the mixture i.e., by

ξB(B>x) := max
z:B>z=B>x

γ(z). (2)

Note that ξB(·) is a measurable function corresponding to the right endpoint of the

conditional distribution of γ(X) given B>X = ·. Under additional assumptions on

the functions L(·, ·) and γ(·), we prove hereafter that, as soon as model (M) holds, the

conditional distribution of Y given B>X is also heavy tailed with tail-index ξB(B>X).

These additional conditions are given below. The first one is dedicated to the tail-index

in model (M).

(C.1) The distribution of the random variable γ(X) is absolutely continuous with

respect to the Lebesgue measure. Moreover,

γ := inf
x∈X

γ(x) > 0 and γ := sup
x∈X

γ(x) <∞,

The second condition is related to the function L(·, ·).

(C.2) There exists a positive measurable function c(·) for which

lim
y→∞

sup
x∈X

∣∣∣∣L(y, x)

c(x)
− 1

∣∣∣∣ = 0, with inf
x∈X

c(x) > 0 and sup
x∈X

c(x) <∞,

We are now in a position to present a result that will play a central role in defining

our dimension reduction subspace.

Proposition 1. Assume that model (M) holds with conditions (C.1) and (C.2). For

each B ∈ Bq with 1 ≤ q < p, the conditional distribution of Y given B>X is heavy

tailed with tail-index ξB(B>X).

Note that under (C.1), the tail-index of the conditional distribution of Y given B>X

belongs to the interval [γ, γ] ⊂ (0,∞).

2.3 Main definitions

We can now give the definition of the dimension reduction subspace that will be

referred hereafter to as the TIDR subspace. Roughly speaking, if the tail-index in

model (M) is such that γ(·) = g(B>·) for some matrix B ∈ Rp×q and some positive

function g(·) then S = span(B) is a TIDR subspace. More precisely,
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Definition 1. Let B ∈ Rp×q be a matrix with q linearly independent columns. The

linear subspace S = span(B) is a tail-index dimension reduction (TIDR) subspace if

ξB(B>X) = γ(X) almost surely.

The basis B ∈ Rp×q such that S = span(B) is of course not unique. In all what

follows, we use the canonical basis of S which is defined hereafter.

Definition 2. Let B̃ ∈ Rp×q be any basis of S and let B̌> be the matrix B̃> in is

reduced row echelon form. The canonical basis B of S is the orthogonal basis obtained

by applying the Gram-Schmidt process on the columns of B̌.

It is well known that the reduced row echelon form of a given matrix is unique and

thus so is the canonical basis. If B ∈ Bq then B>B = Iq, the identity matrix of

dimension q. When q = 1, the elements of the set B1 are the vectors β ∈ Rp with a

positive first nonzero entry for which β>β = 1. Note also that Bq is a compact subset

of Rp×q.

When B = Ip, it is readily seen that ξB(B>x) = γ(x) for all x ∈ X and thus that

S = Rp is always a TIDR subspace. Of course, we are interested in finding the smallest

subspace. More specifically, we are interested in finding the central tail-index subspace

define as follows.

Definition 3. A linear subspace S0 is the central tail-index (CTI) subspace if S0 is a

TIDR subspace such that S0 ⊂ S for all TIDR subspace S.

The CTI subspace is a straightforward adaptation of the central mean subspace as

defined in [5]. The CTI subspace does not necessarily exist but if it is the case, it is

unique. We assume in the remainder of this paper that the random couple (X,Y ) is

such that the CTI subspace S0 exists. We also suppose that the dimension q of the

CTI subspace is known.

In what follows, we denote by B0 ∈ Bq the canonical basis of the CTI subspace S0. As

a consequence of Proposition 1, the conditional distribution of Y given B>0 X (which

is not necessarily equals to the one of Y given X) is heavy tailed with tail-index

ξB0(B>0 X) = γ(X). Hence, assuming that B0 is known, the conditional tail-index

can be estimated using a sample of the random couple (B>0 X,Y ) ∈ Rq ×R instead of

(X,Y ) ∈ Rp×R. When q � p, this permits us to construct a more efficient estimator
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of γ(·). Of course in practice, B0 is unknown. Its estimation is investigated in the

next section.

3 Estimation of the CTI subspace and the con-

ditional tail-index

Throughout this section, we assume that the CTI subspace S0 exists and that its di-

mension, q, is known. As previously mentioned, the canonical basis of S0 is denoted

by B0. Naturally, knowing the CTI dimension is unrealistic in practice; therefore, its

estimation is addressed in the simulation study (see Section 4). Furthermore, as with

most dimension reduction methods in the literature, verifying the existence of S0 is

not straightforward. In Section 5, we present a graphical tool that can help assess

whether this condition is satisfied.

This section is organized as follows. In Section 3.1, we start by introducing an es-

timator of the CTI subspace S0. Next, given an arbitrary estimator ξ̂n,B(B>x) of

ξB(B>x), we estimate the conditional tail-index γ(x) = ξB0(B>0 x) by

γ̂n(x, B̂n) := ξ̂n,B̂n
(B̂>n x),

where B̂n is the canonical basis of the estimated CTI subspace. In Section 3.2, we

establish the consistency of the CTI subspace estimator. More specifically, we prove

that ∥∥∥B̂n −B0

∥∥∥ P→ 0,

for any norm ‖·‖ in Rp×q. Next, for a given compact subset X0 in the interior of X , we

establish the uniform consistent over the set X0 of the conditional tail-index estimator:

sup
x∈X0

∣∣∣ξ̂n,B̂n
(B̂>n x)− γ(x)

∣∣∣ P→ 0.

This last convergence is obtained under the following condition on the subspace X0.

(C.3) If there exists B ∈ Bq such that ξB(B>x) = γ(x) for all x ∈ X0 then B = B0.

This condition prevents, for instance, the pathological case where γ(·) is constant over

the set X0, a scenario that can arise even if the CTI subspace exists.
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3.1 Construction and definition of the estimators

To estimate the canonical basis B0 ∈ Bq of the CTI subspace, we start by remarking

that for all x ∈ X and B ∈ Bq, one has γ(x) = ξB0(B>0 x) ≤ ξB(B>x), since γ(x)

belongs to the support of the conditional distribution of γ(X) given B>X = B>x

with right endpoint ξB(B>x). If condition (C.3) holds for a compact subset X0 in the

interior of X then

arg min
B∈Bq

E
[
ξB(B>X)I{X ∈ X0}

]
= {B0}.

Given a sample (X1, Y1), . . . , (Xn, Yn) of independent copies of the random couple

(X,Y ), the natural idea to estimate the canonical basis of the CTI subspace is to

minimize over Bq an estimation of the expectation

Ψ(B,X0) := E
[
ξB(B>X)I{X ∈ X0}

]
.

The empirical counterpart of Ψ(B,X0) is given by

Ψ̃n(B,X0) :=
1

n

n∑
i=1

ξB(B>Xi)I{Xi ∈ X0}.

It can be shown that under model (M) where the tail-index satisfies condition (C.1)

and is such that

(C.4) for all x ∈ X , the function B 7→ ξB(B>x) is Lipschitz in B ∈ Bq, that is to say

there exists a measurable function M : X → [0,∞) such that supx∈X M(x) =

M <∞ and, for all B1 ∈ Bq, B2 ∈ Bq and x ∈ X ,∣∣∣ξB1

(
B>1 x

)
− ξB2

(
B>2 x

)∣∣∣ ≤M(x)‖B1 −B2‖,

then,

sup
B∈Bq

∣∣∣Ψ̃n(B,X0)−Ψ(B,X0)
∣∣∣ P→ 0,

see the proof of Lemma 2. Hence, given an estimator ξ̂n,B(B>x) of ξB(B>x), we

propose to estimate Ψ(B,X0) for all B ∈ Bq by the plug-in estimate

Ψ̂n(B,X0) :=
1

n

n∑
i=1

ξ̂n,B(B>Xi)I{Xi ∈ X0}. (3)

The definition of the proposed estimator of B0 is given below.

Definition 4. Under model (M), for a sample (X1, Y1), . . . , (Xn, Yn) of independent

copies of the random couple (X,Y ), the estimator B̂n of the canonical basis of CTI

subspace minimizes the function B 7→ Ψ̂n(B,X0).
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Our estimator thus belongs to the class of M-estimators. Note that, in a complete

different setting, [11] also consider an M-estimator for the estimation of the direction

of a single-index model. As mentioned in the introduction of this section, we estimate

the conditional tail-index γ(x) by

γ̂n
(
x, B̂n

)
:= ξ̂n,B̂n

(B̂>n x).

The theoretical study of B̂n and γ̂n
(
x, B̂n

)
is done in the next section.

3.2 Main results

The first main result of this section establishes that if the conditional tail-index esti-

mator is uniformly consistent i.e.,

(C.5) sup
B∈Bq

sup
x∈X0

∣∣∣ξ̂n,B(B>x)− ξB(B>x)
∣∣∣ P→ 0,

then the estimator B̂n in Definition 4 is consistent. Such an estimator is given in

Section 3.3.

Theorem 1. Assume that model (M) holds and let X0 be a compact subset in the

interior of X satisfying (C.3). Under conditions (C.1), (C.2) and (C.4), if the condi-

tional tail-index estimator appearing in Ψ̂n(·,X0) satisfies (C.5) then ‖B̂n −B0‖
P→ 0

for any norm ‖ · ‖ in Rp×q.

The uniform consistency on X0 of the conditional tail-index estimator γ̂n
(
·, B̂n

)
can

be deduced from that of B̂n.

Theorem 2. Assume that model (M) holds and let X0 be a compact subset in the inte-

rior of X satisfying (C.3). Under conditions (C.1), (C.2) and (C.4), if the conditional

tail-index estimator ξ̂n,B(B>x) satisfies (C.5) then

sup
x∈X0

∣∣∣ γ̂n (x, B̂n)− γ(x)
∣∣∣ P→ 0.

The next section is dedicated to the definition and the theoretical study of a conditional

tail-index estimator satisfying condition (C.5).

3.3 A local-Hill estimator

For B ∈ Bq and x ∈ X , let us now propose an appropriate estimator of the condi-

tional tail-index ξB(B>x) of the conditional distribution of Y given B>X = B>x (see
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Proposition 1) leading to a consistent estimator of B0. To motivate the definition of

our estimator, let us start with the unrealistic situation where we have at our disposal

a sample {Ži(B, x), i = 1, . . . ,m} of m ∈ N \ {0} independent random variables with

common distribution the conditional distribution of Y given B>X = B>x. The as-

sociated order statistics are denoted Ž(1)(B, x) < · · · < Ž(n)(B, x). The best known

estimator of the tail-index is the Hill estimator which is given by

ξ̌
(H)
B (B>x) :=

1

bαmc

bαmc∑
i=1

ln
Ž(m−i+1)(B, x)

Ž(m−bαmc)(B, x)
,

for α ∈ (1/m, 1). Of course, this is not a proper estimator since the random variables

{Ži(B, x), i = 1, . . . ,m} are not observed. We therefore propose to replace them in

the expression of ξ̌
(H)
B (B>x) by a suitable set of observed random variables. More

precisely, let us introduce the set,

T (B, x, h) := {z ∈ X | ‖B>z −B>x‖ ≤ h},

where h = hn > 0 and let

M? = M(B, x, h) :=

n∑
i=1

I{Xi ∈ T (B, x, h)},

be the random number of covariates in the set T (B, x, h). We denote by {W ?
i =

Wi(B, x, h), i = 1, . . . ,M?} the set of covariates that belong to T (B, x, h). The

associated response variables are denoted {Z?i = Zi(B, x, h), i = 1, . . . ,M?}. Note

that the presence of a star (?) recalls the dependence on B, x and h. This shortcut

will be used in the rest of that paper. Intuitively, when h is close enough to zero, the

random variable Z?i is approximatively distributed as Ži(B, x). For some sequence

(αn) = (α) ∈ (0, 1), this leads us to introduce the estimator of the conditional tail-

index defined below.

Definition 5. Under model (M), for all (B, x) ∈ Bq × X , the local-Hill estimator of

the conditional tail-index ξB(B>x) is

ξ̂
(H)
B (B>x) = ξ̂

(H)
B (B>x, α, h) :=

1

bαM?c

bαM?c∑
i=1

ln
Z?(M?−i+1)

Z?(M?−bαM?c)
,

if αM? > 1 and ξ̂
(H)
B (B>x, α, h) = 0 otherwise.

Note that this estimator is quite similar to the one introduced in [8]. Under additional

assumptions given below, we show that this estimator is uniformly consistent over the

10



set Θ := Bq × X0 where X0 is any compact subset in the interior of X . This set is

endowed with the product distance δ defined for all θ = (B, x) ∈ Θ and θ′ = (B′, x′) ∈

Θ by δ(θ, θ′) := ‖B −B′‖ + ‖x− x′‖. Below, we give the assumptions required to

establish the uniform consistency. Note that these assumptions are similar to the ones

used in [8].

(H.1) The distribution of X is absolutely continuous with respect to the Lebesgue

measure.

Note that since B ∈ Bq is a full rank matrix, condition (H.1) entails that for all

B ∈ Bq, the distribution of B>X is also absolutely continuous. Let us denote by fB(·)

the associated density function.

(H.2) For all B ∈ Bq and x ∈ X0, fB(B>x) > 0. Moreover, there exists a positive

constant Kf such that for all (B,B′) ∈ B2
q and (x, x′) ∈ X 2,

sup
B∈Bq

∣∣∣fB(B>x)− fB′([B′]>x′)
∣∣∣ ≤ Kf

(
‖B −B′‖+ ‖x− x′‖

)
.

Since Θ = Bq ×X0 is compact, this condition entails that

sup
(B,x)∈Θ

fB(B>x) < C2 <∞ and inf
(B,x)∈Θ

fB(B>x) > C1 > 0.

(H.3) The function Bq ×X 3 (B, x) 7→ ξB(B>x) is continuous.

For all B ∈ Bq and z ∈ B>X , let QB(·, z) be the inverse function of the function

y 7→ SB(y, z). From Proposition 1, we have for almost all z ∈ B>X and u ∈ (0, 1)

that

QB(u, z) = u−ξB(z)`B(u−1, z),

where for all B ∈ Bq and z ∈ B>X , `B(·, z) is a slowly varying function. The following

condition on `B(·, ·) is required. With the notation

∆B,x(y) := sup
t>1

ln

(
`B(ty|B>x)

`B(y|B>x)

)
,

we assume that

(H.4) lim
y→∞

sup
B∈Bq

sup
x∈X

∆B,x(y) = 0.

Finally, for all B ∈ Bq, we measure the oscillation of the function x 7→ QB(·, B>x) by

ω(u, v,B, x, h) = ω?(u, v) := sup
(β,x′)∈D?

u,v

∣∣∣∣ln( QB(β,B>x)

QB(β,B>x′)

)∣∣∣∣
11



where

D?u,v = Du,v(B, x, h) =
{

(b, y) ∈ (0, 1)×X ; b ∈ [u, v] and ‖B>(x− y)‖ ≤ h
}
.

The oscillation is controlled by following assumption.

(H.5) There exists κ > 0 such that

lim
n→∞

sup
B∈Bq

sup
x∈X

ω?
(
n−(1+κ), 1− n−(1+κ)

)
= 0.

We establish below the uniform consistency of the local-Hill estimator given in Defi-

nition 5.

Theorem 3. Assume that model (M) holds and let X0 be a compact subset in the

interior of X satisfying (C.3). Under conditions (C.1), (H.1)-(H.5), if the sequences

(α) and (h) are such that nhqα/ ln(n)→∞ and α ln(nhq)→ 0 as n→∞ then,

sup
B∈Bq

sup
x∈X0

∣∣∣ξ̂(H)
B (B>x)− ξB(B>x)

∣∣∣ P→ 0.

The proof of Theorem 3 is quite long and technical. It is available in the supplementary

file. The scheme of the proof is similar to the one of [8, Theorem 1] with however some

additional difficulties due to the necessity to prove uniformity on Bq. Using the local-

Hill estimator of the conditional tail-index we define the local-Hill CTI estimator of B0

and the estimator of γ(x) as follows.

Definition 6. Under model (M), for a sample (X1, Y1), . . . , (Xn, Yn) of independent

copies of the random couple (X,Y ), the local Hill estimator B̂
(H)
n of the canonical basis

of CTI subspace minimizes the function

B 7→ Ψ̂(H)
n (B,X0) :=

1

n

n∑
i=1

ξ̂
(H)
B (B>Xi)I{Xi ∈ X0}.

The associated conditional tail-index estimator is given for x ∈ X0 by

γ̂(H)
n (x, B̂(H)

n ) := ξ̂
(H)

B̂
(H)
n

([B̂(H)
n ]>x).

The consistencies of the estimators B̂
(H)
n and γ̂

(H)
n (x, B̂

(H)
n ) follow directly from The-

orems 1, 2 and 3.

Corollary 1. Assume that model (M) holds and let X0 be a compact subset in the in-

terior of X satisfying (C.3). Under conditions (C.1) and (H.1)-(H.5), if the sequences

(α) and (h) are such that nhqα/ ln(n)→∞ and α ln(nhq)→ 0 as n→∞ then,

‖B̂(H)
n −B0‖

P→ 0 and sup
x∈X0

∣∣∣ γ̂(H)
n (x, B̂(H)

n )− γ(x)
∣∣∣ P→ 0.
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4 Finite sample size behavior

Let (X1, Y1), . . . , (Xn, Yn) be independent copies of a random couple (X,Y ) for which

there exists a CTI subspace S0 with canonical basis B0. In this section, we are inter-

ested in the finite sample behavior of the estimator γ̂
(H)
n (x, B̂

(H)
n ), were B̂

(H)
n denotes

the local-Hill CTI estimator of B0, see Definition 6. We start by assuming that the

dimension q of S0 is known. Its estimation is investigated in Section 4.5. This Section

is organized as follows. A short discussion about the choice of the tuning parameters

required to compute these estimators in provided in Section 4.1. We explain in Sec-

tion 4.2 the procedure we adopted to find the solution to the optimization problem

involved in the definition of the local-Hill CTI estimator. Different models for the dis-

tribution of (X,Y ) are given in Section 4.3 and the simulation results are commented

in Section 4.4. Finally, a way to estimate the dimension q of the CTI subspace is

presented in Section 4.5. The R source codes used in the simulation study as well as

for the analysis of real data are available on a GitHub page1.

4.1 Tuning parameters

The local-Hill estimator of the conditional tail-index γ̂
(H)
n (·, B̂(H)

n ) depends on two

tuning parameters. The first one is the bandwidth h used to select the observations

closest to the point of interest. We propose to take h in such a way that the number

of points in the ball of center [B̂
(H)
n ]>x and radius h is proportional to n1−b for

some b ∈ (0, 1). In view of Lemma 3 in the supplementary file, we propose to take

h = (n−b/ϑq)
1/q where ϑq is the volume of the unit q-ball. The selection of h thus

reduces to the one of b ∈ [0, 1). In all what follows, we use the uniform norm ‖ · ‖∞

for which ϑq = 2q.

The second tuning parameter is the probability α ∈ (0, 1) controlling the number of

largest observations. We take α = n−a for some a ∈ (0, 1).

Proposing a method to select the parameters a and b is beyond the scope of this

paper and left for future work. In Section 4.4, we consider a grid of values for these

two tuning parameters and keep the couple (a, b) leading to the best estimation, see

Section 4.4 for more details.

A third tuning parameter n0 � n is considered in order to reduce the computational

1https://github.com/Alex-Podgorny/Dimension-Reduction-Tail-Index/tree/master
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burden associated with the evaluation of Ψ̂
(H)
n (B,X0). More precisely, we randomly

select n0 observations X̃1, . . . , X̃n0 in the original sample {X1, . . . , Xn} and replace

the evaluation of Ψ̂
(H)
n (B,X0) by the one of

Ψ̃(H)
n0

(B,X0) :=
1

n0

n0∑
i=1

ξ̂
(H)
B (B>X̃i)I{X̃i ∈ X0}.

This approach significantly decreases the computation time without noticeably af-

fecting the accuracy of the results, this is also used in [7]. If n0 ∼ cn for some

constant c ∈ (0, 1), the theoretical results presented above remain unchanged. We set

n0 = bn/20c, which provides a good trade-off between computational efficiency and

precision.

4.2 Finding the solution of the optimization problem

The estimator B̂
(H)
n is solution of the constrained optimization problem

(P) min
B∈Rp×q

Ψ̃
(H)
n0 (B,X0) subject to B ∈ Bq.

Searching for the solution by moving along the feasible set is rather difficult. In

particular, the solution strongly depends on the initialization of the algorithm. We

thus decided to relax the constraint by considering the problem

(P’) min
B∈Rp×q

Ψ̃
(H)
n0 (B,X0) subject to B>B = Iq.

Since Bq is the set of all canonical q-dimensional basis, each element of Bq corresponds

to a different subspace of Rp. Of course, this is no longer the case if we only impose B

to be an orthogonal matrix but (P’) is easier to solve than (P). Moreover, if B (resp.

B′) is a solution of (P) (resp. (P’)), then

Ψ̃(H)
n0

(B′,X0) ≤ Ψ̃(H)
n0

(B,X0).

To solve the constrained optimization problem (P’), we apply row by row the Simulated

Annealing (SANN) algorithm (which is available in the optim function in R). The

algorithm is described below:

1. Initialization: We generate 100 points from a Halton sequence (cf. [10]) in the

hypercube [−1, 1]pq. The function Ψ̃
(H)
n0 (B,X0) is evaluated for each p×q matrix

obtained with these points, and the matrix corresponding to the lowest value of

Ψ̃
(H)
n0 is selected as the initial matrix B(0).

2. For i ≥ 0, until convergence:

14



• Let B(i,0) = B(i).

• For j = 0, . . . , p− 1:

↪→ optimize the function B 7→ Ψ̃
(H)
n0 (B,X0) over the (j+1)th row of B(i,j)

(all the other rows are fixed). We use the SANN algorithm with 20

iterations;

↪→ apply a QR decomposition on the optimized matrix to obtain an or-

thonormalized version denoted by B(i,j+1).

• Let B(i+1) = B(i,p)

The convergence is achieved when

‖PB(i+1) − PB(i)‖2 < 10−2,

where PB = BB> is the projector on the subspace spanned by the orthogonal basis B

and ‖ · ‖2 denotes the spectral norm.

4.3 Models

Four models are considered for the distribution of the random couple (X,Y ). The

random vector X is uniformly distributed on the space X := [0, 1]p with p ∈ {4, 30}.

Let Q(·, x) be the inverse of the function y 7→ S(y, x). The random variable Y is

given by Y := U−γ(x)`(U−1, x) where U is a standard uniform random variable. Two

different slowly varying functions are used in our simulation study:

`(1)(u−1, x) := [1 + exp{B>1 x− u−1}]−1 and `(2)(u−1, x) := exp(−u/2)B>1 x,

with B1 = (0, 0, 5, 5, 0, . . . , 0)> ∈ Rp. For the first three models, the dimension of

the CTI subspace is q = 1 with canonical basis B0 = (2, 1, 0, . . . , 0)>/
√

5 ∈ Rp. Two

functions γ(·) = ξB0(B>0 ·) are considered: for all z ∈ R,

ξ
(1)
B0

(z) :=
1

10
+

9

10

(√
5z

3

)4

and ξ
(2)
B0

(z) :=
1

10
+

9

10
| cos(2z)|.

• Model 1 - For all x ∈ X , γ(x) = ξ
(1)
B0

(B>0 x) and `(u−1, x) = `(1)(u−1, x).

For this model, since `(1)(u−1, x) → 1 as u → 0, the basis B0 also satisfies condi-

tion (1) that is to say that the CTI subspace corresponds to the dimension reduction

subspace introduced in [7]. For the next model, we consider the slowly varying function

`(2)(u−1, x) which converges to B>1 x as u → 0. As a consequence, the CTI subspace

is still span(B0) while the dimension reduction subspace in [7] is span(B0, B1).
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• Model 2 - For all x ∈ X , γ(x) = ξ
(1)
B0

(B>0 x) and `(u−1, x) = `(2)(u−1, x).

In Models 1 and 2, the conditional tail-index ξ
(1)
B0

(·) is strictly monotone. The function

ξ
(2)
B0

(·), which is symmetric with respect to the vertical line y = π/4, is used in Model 3.

• Model 3 - For all x ∈ X , γ(x) = ξ
(2)
B0

(B>0 x) and `(u−1, x) = `(1)(u−1, x).

For the last model, the dimension of the CTI linear subspace is q = 2 with canonical

basis B0 = (e1, e2) ∈ Rp×2 where e1 = (1, 0, . . . , 0)> and e2 = (0, 1, 0, . . . , 0)>.

• Model 4 - For all x ∈ X , `(u−1, x) := `(1)(u−1, x) and

γ(x) = ξB0(B>0 x) :=
1

10
+

9

5

[
(e>1 x− 0.5)2 + (e>2 x− 0.5)2

]
.

4.4 Simulation results

Our aim is to compare the finite sample performance of a local-Hill type estimator

γ̂
(H)
n (x, B̌n) of the conditional tail-index γ(x) with different estimated dimension re-

duction subspaces span(B̌n). More specifically, we consider 6 different estimated basis:

• B̌n = B̂
(H)
n , the proposed local-Hill CTI estimator, see Definition 6;

• B̌n = B̂
(G)
n , the TDR estimator proposed by Gardes [7];

• B̌n = B̂
(T1)
n and B̌n = B̂

(T2)
n which are the two estimators proposed by Aghbalou

et al. [1] (respectively, TIREX1 and TIREX2 as named by the authors);

• B̌n = B0 corresponding to the ideal situation where the true basis B0 is known;

• B̌n = Ip corresponding to the case where no dimension reduction is used.

Note that B̂
(H)
n is consistent only if γ(x) > 0 for all x ∈ X while B̂

(G)
n , B̂

(T1)
n and B̂

(T2)
n

are consistent regardless the sign of the conditional tail-index. The TDR estimator

in [7] is also the solution of a constrained optimization problem which is solved with the

procedure described in Section 4.2. Moreover, because the execution time increases

exponentially with the dimension p, the estimator B̂
(G)
n is only considered in the

case p = 4.

For each model, we generate N = 100 samples of size n = 2000 for p = 4 and n = 4000

for p = 30. The accuracy of the estimator γ̂
(H)
n (x, B̌n) for the conditional tail-index

γ(x) is evaluated on the compact X0 := [εp, 1 − εp]p. We take εp = (1 − 0.9p)/2 so

that approximatively 90% of observations belong to X0.
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As mentioned in Section 4.1, the tuning parameters are given by h = n−b/q/2 and

α = n−a for (a, b) ∈ (0, 1)2. The couple (a, b) in taken in the set

G := {0.25, 0.3, 0.35, 0.4, 0.45, 0.5} × {0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4}.

For r ∈ {1, . . . , N}, let γ̂
(H,r)
n (x, B̌n) be the local-Hill estimator of γ(x) evaluated on

the rth replication. For each r ∈ {1, . . . , N} and each (a, b) ∈ G, we compute the error

E(r)(B̌n, a, b) :=
1

M

M∑
i=1

(
γ̂(H,r)
n (xi, B̌n)− γ(xi)

)2

,

where M = 10.000 and {xi; i = 1, . . . ,M} are the points of a Halton sequence on the

compact X0. Note that E(r)(B̌n, a, b) is an approximation of the integral∫
X0

(
γ̂(H,r)
n (x, B̌n)− γ(x)

)2

dx.

For r ∈ {1, . . . , N}, let E(r,opt)(B̌n) := E(r)(B̌n, â
(opt)
n , b̂

(opt)
n ) where

(â(opt)
n , b̂(opt)n ) := arg min

(a,b)∈G
M̂ISE(B̌n, a, b).

where

M̂ISE(B̌n, a, b) :=
1

N

N∑
r=1

E(r)(B̌n, a, b),

is an estimation of the Mean Integrated Squared Error

E
[∫
X0

(
γ̂(H,r)
n (x, B̌n)− γ(x)

)2

dx

]
.

For each estimator B̌n, the boxplot of the values {E(r,opt)(B̌n); r = 1, . . . , N} are

given in Figure 1 and 2. The CTI approach consistently achieves lower errors com-

pared to the alternatives, indicating its effectiveness in estimating the tail-index γ(x)

when dimension reduction is properly applied. As expected, the ideal scenario where

B̌n = B0 achieves slightly better results, but this serves only as a benchmark, as the

true subspace is generally unknown in practice. In contrast, using B̌n = Ip leads to

significantly higher errors, underscoring the importance of reducing dimensionality for

accurate tail-index estimation. For Model 2, where the CTI subspace is included in

the dimension reduction subspace introduced in [7], the estimation of B0 by B̂
(G)
n is

inaccurate. This is in line with the theory. For Model 3 where the function ξB0(·) is

symmetric with respect to the vertical line y = π/4, B̂
(G)
n , B̂

(T1)
n and B̂

(T2)
n are clearly

less efficient. This phenomenon is also observed with the SIR method which fails to

recover the true direction in presence of a symmetric relationship. Note that Gardes’
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Figure 1: Boxplots of the values {E(r,opt)(B̌n); r = 1, . . . , N} for the 6 choices

for B̌n on N = 100 replications of a sample of size n = 2000 from Models 1 to 4

with p = 4.

estimator and TIREX1 failed to estimate the dimension reduction subspace in Model 4

for which q = 2.

In addition to the boxplots, heatmaps are used to display the values of E(r)(B̌n, a, b)

over the entire grid of tuning parameters (a, b). These heatmaps provide a detailed

visualization of the sensitivity of each method to the choice of parameters. All the

methods demonstrate robust performance across a wide range of tuning parameters.

Moreover it seems that the choice of the optimal parameters does not strongly depend

of the model. The choice (a, b) = (0.3, 0.2) give good results in all cases for our esti-

mation procedure, this is why we recommend it. Figure 3 shows the heatmaps for our

method on the different models. The heatmaps for the other methods are available in

the Github page mentioned in the introduction of Section 4.
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Figure 2: Boxplots of the values {E(r,opt)(B̌n); r = 1, . . . , N} for different

choices for B̌n on N = 100 replications of a sample of size n = 4000 from

Models 1 to 4 with p = 30. For the case B̌n = Ip the errors are very high and

are not represented (For instance, medians for the four models are respectively

5.64, 0.33, 6.25, 5.91).
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Figure 3: Estimated MISE values over the entire grid of tuning parameters (a, b)

(a on x-axis, b on y-axis).
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4.5 Estimation of the dimension of the CTI subspace

In the above simulations, the true dimension q of the CTI subspace was used. In

practice, this dimension is, in most of the cases, unknown and need to be estimated.

Our procedure of estimation lies on the following result. For all d ∈ {1, . . . , p}, let

B0,d ∈ Bd be a matrix such that Ψ(B0,d,X0) ≤ Ψ(B,X0) for all B ∈ Bd. Let also us

introduce the notation,

c(d,X0) := Ψ(B0,d,X0).

Proposition 2. Assume that (C.3) holds. If for all d ∈ {1, . . . , p − 1} there exists a

matrix Cd+1 ∈ Bd+1 with span(B0,d) ⊂ span(Cd+1) and such that

P
[
{ξCd+1(C>d+1X) 6= ξB0,d(B>0,dX)} ∩ {X ∈ X0}

]
> 0,

then, for all d ∈ {1, . . . , q−1}, one has c(d+1,X0) < c(d,X0) and for all d ∈ {q, . . . , p},

c(d,X0) = E[γ(X)I{X ∈ X0}].

As a consequence, we get that q = min{d ∈ {1, . . . , p}; c(d,X0) ≤ c(d + 1,X0)}. We

thus naturally propose to estimate (with tunning parameters a = 0.3 and b = 0.2) the

unknown dimension by

q̂n := min{d ∈ {1, . . . , p}; ĉn(d,X0) ≤ ĉn(d+ 1,X0)},

where

ĉn(d,X0) = min
B∈Bd

Ψ̃(H)
n0

(B,X0).

As shown in Table 2, the worst result is obtained for Model 4 with p = 4 where our

estimator failed to recover the true dimension in 18% of the replications.

We also look at the finite sample behavior of the estimator γ̂
(H)
n (x, B̂

(d,H)
n ) where

B̂(d,H)
n = arg min

B∈Bd
Ψ̂(H)
n (B,X0).

We compute the estimated Mean Integrated Squared Error M̂ISE(B̂
(d,H)
n , a, b) with

the tuning parameters a = 0.3 and b = 0.2 as indicated in the previous section.

As expected, the smallest value is observed when d is the true dimension; for all

the consider models, using the estimated dimension q̂n instead of the true dimension

provides very similar results.
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Estimation of q Estimated MISE

Model q̂n = 1 q̂n = 2 q̂n = 3 d = 1 d = 2 d = 3 d = q̂n

1 (q = 1) 100 % 0 % 0 % 0.012 0.015 0.026 0.012

2 (q = 1) 96 % 4 % 0 % 0.014 0.014 0.016 0.014

3 (q = 1) 99 % 1 % 0 % 0.066 0.075 0.107 0.065

4 (q = 2) 18 % 81 % 1 % 0.085 0.063 0.075 0.065

Table 1: Left part of the table: estimation of the CTI subspace dimension over

N = 100 replications of a sample of size n = 2000 generated from Models 1 to 4

with p = 4. Right part of the table: Estimated MISE of the local-Hill tail-index

estimator γ̂
(H)
n (x, B̂

(d,H)
n ) for different values of d.

Estimation of q Estimated MISE

Model q̂n = 1 q̂n = 2 q̂n = 3 d = 1 d = 2 d = 3 d = q̂n

1 (q = 1) 99 % 1 % 0 % 0.010 0.013 0.020 0.010

2 (q = 1) 93 % 6 % 1 % 0.014 0.016 0.018 0.013

3 (q = 1) 98 % 2 % 0 % 0.053 0.066 0.090 0.052

4 (q = 2) 12 % 88 % 0 % 0.073 0.050 0.062 0.052

Table 2: Left part of the table: estimation of the CTI subspace dimension over

N = 100 replications of a sample of size n = 4000 generated from Models 1

to 4 with p = 30. Right part of the table: Estimated MISE of the local-Hill

tail-index estimator for different values of d.
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5 Application to a real data set

As the world’s economies and industries develop, people are increasingly exposed to

pollution, especially in urban areas. Some pollutants, such as ozone, can cause serious

health problems. It forms under certain meteorological conditions (temperature, hu-

midity, etc.) from primary pollutants emitted directly into the atmosphere by human

activities. The aim here is to identify the primary pollutants that can lead to extreme

ozone concentrations.

Our study is based on the record of n = 4841 daily concentration pollutants in Chicago

from 1987 to 2000. These data were obtained few years ago from the Internet-based

Health and Air Pollution Surveillance System (iHAPSS) website but unfortunately

they are no longer available. The data set provides n observations of the maximum

daily concentration of ozone (O3) and of several primary pollutants including the max-

imum daily concentration of nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate

matter with a diameter smaller than 10 micrometers (PM10) and carbon monoxide

(CO). This data set was considered by many authors to illustrate the effect of dimen-

sion reduction (see, for example, [7, 16, 22]).

The response variable is given by Y = exp(O3/σO3) where σ2
O3

is the variance of O3.

In practice this variance is replaced by its empirical counterpart. The covariate

X = (XNO2 , XSO2 , XPM10 , XCO)> ∈ [0, 1]p with p = 4 is normalized version of the

random vector (NO2, SO2,PM10,CO), where X• = [• − max(•)]/[min(•) − max(•)].

The exponential function is applied to the maximum daily concentration of ozone in

order to obtain a heavy-tailed distributed random variable. By looking at the Pareto

quantile plot {(ln(k/i), ln(Yn−i,n/Yn−k,n)); i ∈ {1, . . . , k = 200}}, see Figure 4, we

can see that the points are approximately located on a straight line which is what it is

expected for a heavy-tailed distribution. It should be noted that we should check that

the conditional distribution of Y given X = x is heavy-tailed for all x in the support

of X. This task cannot be done in practice, but the fact that Y is heavy-tailed allows

us to hope that the same is true for conditional distributions.

We apply the estimation procedure proposed in this paper to this data set with

X0 := [0.02, 0.4]p. This compact contains around 88% of the observations. Follow-

ing the recommendation made in the simulation study, the tuning parameters are set

to a = 0.3 and b = 0.2. Applying the procedure described in Section 4.5, we find that

q̂n = 1 (with ĉn(1,X0) = 0.531 and ĉn(2,X0) = 0.614). By applying the minimization
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Figure 4: Pareto quantile plot (x-axis: ln(k/i), y-axis: ln(Yn−i,n/Yn−k,n) for

i ∈ {0, . . . , k = 200}. The fitted line is depicted in red.)

procedure described in Section 4.2, the estimated basis of the CTI subspace is given by

B̂(H)
n = (0.831, 0.095, 0.500, 0.223)>.

Note that the two largest components of B̂
(H)
n correspond to NO2 and PM10. In Fig-

ure 5, the (100×α)% largest observations of O3 are represented versus the projection

of the covariate unto the estimated CTI subspace. It appears that an increase in

the extreme values of ozone is associated with increasing values of the 1-dimensional

reduced covariate that is to say with increasing values of NO2 and PM10.

We can now estimate the conditional tail-index function. The estimated values

γ̂
(H)
n (xi, B̂

(H)
n ) for xi ∈ X0 as a function of [B̂

(H)
n ]>xi are depicted in Figure 6. This

figure shows a positive correlation between the tail-index and the CTI direction. As

a conclusion, it seems that the magnitude of extreme ozone concentrations increases

with the concentrations of NO2 and PM10. Note that a study of this data set was also

conducted by [16]. The author concluded that ozone concentration (not necessarily

extreme) mostly depends on the level of NO2. Our study shows that PM10 becomes

another important factor for extreme ozone concentration.
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subspace spanned by B̂
(H)
n .

Conclusion

When the tail-index function is positive and defined on a lower-dimensional linear

subspace (referred to as the CTI subspace), this paper proposes an estimation proce-

dure for a basis of this subspace, as well as an estimation of the conditional tail-index.
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The consistency of these estimators is established, and a simulation study demon-

strates that our method outperforms those of our main competitors. Additionally, we

propose a method for estimating the unknown dimension of the dimension reduction

subspace, which yields satisfactory results on synthetic data. The implementation

of the estimation procedure described in this paper in an R package is currently in

progress; however, all the codes are available on a GitHub page.

6 Proofs

6.1 Preliminary results

Lemma 1. Assume that model (M) holds with the conditions (C.1) and (C.2). For

B ∈ Bq, if the conditional tail-index γ(·) and the positive measurable function c(·)

involved in (C.2) are such that the function

y ∈ (0,∞) 7→ E
[
c(X)y−1/γ(X) | B>X

]
,

is almost surely regularly varying with index −1/ξB(B>X) < 0, then the conditional

distribution of Y given B>X is heavy-tailed with tail-index ξB(B>X).

Proof −We have to prove that the conditional survival function SB(·, B>X) is almost

surely regularly varying with tail-index −1/ξB(B>X). In the rest of the proof, all

the equalities and inequalities are assumed to hold almost surely. We start with the

following equalities.

SB(y,B>X) = E
[
S(y,X) | B>X

]
=

∫ 1

0

P
(
S(y,X) > z | B>X

)
dz

=

∫ 1

0

P
(

1

γ(X)
<

ln(L(y,X))

ln(y)
− ln(z)

ln(y)

∣∣∣∣B>X) dz.
Set s = − ln(z)/ ln(y). We get

SB(y | B>X) = ln(y)

∫ ∞
0

y−sP
(

1

γ(X)
< s+

ln(L(y,X))

ln(y)

∣∣∣∣B>X) ds
By assumption (C.2), for all ε > 0, there exists Y0 > 0 such that for all y ≥ Y0,

SB(y | B>X) ≤ ln(y)

∫ ∞
0

y−sP
(

1

γ(X)
− ln(c(X))

ln(y)
< s+

ε

ln(y)

∣∣∣∣B>X) ds.
Hence, let t = s+ ε/ ln(y),

SB(y | B>X) ≤ eε ln(y)

∫ ∞
ε/ ln(y)

y−tP
(

1

γ(X)
− ln(c(X))

ln(y)
< t

∣∣∣∣B>X) dt.
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Since for y large enough,

sup
x∈X

(
ε

ln(y)
+

ln(c(x))

ln(y)

)
< inf
x∈X

1

γ(x)
,

we have, for y large enough, that

P
(

1

γ(X)
− ln(c(X))

ln(y)
<

ε

ln(y)

∣∣∣∣B>X) = 0.

As a consequence,∫ ε/ ln(y)

0

y−sP
(

1

γ(X)
− ln(c(X))

ln(y)
< s

∣∣∣∣B>X) ds = 0,

leading to

SB(y | B>X) ≤ eε ln(y)

∫ ∞
0

y−tP
(

1

γ(X)
− ln(c(X))

ln(y)
< t

∣∣∣∣B>X) dt.
In the same way, we have for all ε > 0 that

SB(y | B>X) ≥ e−ε ln(y)

∫ ∞
0

y−tP
(

1

γ(X)
− ln(c(X))

ln(y)
< t

∣∣∣∣B>X) dt.
Remarking that

ln(y)

∫ ∞
0

y−tP
(

1

γ(X)
− ln(c(X))

ln(y)
< t

∣∣∣∣B>X) dt = E
[
c(X)y−1/γ(X) | B>X

]
,

we have shown that for all ε > 0, we have for y large enough, that

e−εE
[
c(X)y−1/γ(X) | B>X

]
≤ S(y | B>X) ≤ eεE

[
c(X)y−1/γ(X) | B>X

]
,

which is the desired result.

The next result establishes the uniform consistency of the general estimator Ψ̂n(B,X0)

of Ψ(B,X0).

Lemma 2. Assume that model (M) holds together with conditions (C.4) and (C.5).

Then,

sup
B∈Bq

∣∣∣Ψ̂n(B,X0)−Ψ(B,X0)
∣∣∣ P→ 0.

Proof − We start by the inequality

sup
B∈Bq

∣∣∣Ψ̂n(B,X0)−Ψ(B,X0)
∣∣∣ ≤ Tn,1 + Tn,2,

Tn,1 := sup
B∈Bq

∣∣∣Ψ̃n(B,X0)−Ψ(B,X0)
∣∣∣

and Tn,2 := sup
B∈Bq

sup
x∈X0

∣∣∣ξ̂n,B(B>x)− ξB(B>x)
∣∣∣ .
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Condition (C.5) ensures that Tn,2
P→ 0. For the term T1,n, we must prove a uniform law

of large numbers for the set of parametric functions Fq := {x ∈ X 7→ ξB(B>x)I{X ∈

X0}; B ∈ Bq}. This result is established by compiling different results that can be

found for instance in the monograph of [19]. Note that under (C.1), Fq ⊂ L1(X)

where L1(X) is the set of all functions f : X → R such that E(|f(X)|) <∞. Let ‖ · ‖1

be the L1(X)-norm defined by ‖f‖1 = E(|f(X)|). According to [19, Theorem 2.4.1],

the result of Lemma 2 is true if the bracketing number N[](ε,Fq, ‖ · ‖1) is finite for

all ε > 0 (see [19, Definition 2.1.6] for a definition of bracketing numbers). We now

use [19, Theorem 2.7.11] ensuring that under (C.4), one has for all ε > 0,

N[](ε,Fq, ‖ · ‖1) ≤ N
(

ε

2E(M(X))
,Bq, ‖ · ‖

)
,

where for all η > 0 and ‖ ·‖ any norm in Rp×q, N(η,Bq, ‖ ·‖) is the covering number of

the set Bq (see [19, Definition 2.1.5]). We conclude the proof by using the compacity

of Bq and the fact that the covering number of a compact subset is finite.

6.2 Proofs of main results

Proof of Proposition 1 − Thanks to Lemma 1, we only need to prove that for all

B ∈ Bq, the function

y ∈ (0,∞) 7→ E
[
c(X)y1/γ(X) | B>X

]
, (4)

is almost surely regularly varying with index −1/ξB(B>X) < 0. According to [9,

Theorem 1.2.1 and Remark 1.2.3], for any positive random variable Z, the limit

lim
y→∞

E[ln(Z/y)I{Z > y} | B>X]

P(Z > y | B>X)
= ξB(B>X), (5)

holds almost surely if and only if the function

y ∈ (0,∞) 7→ P(Z > y | B>X) = E
[
P(Z > y | X) | B>X

]
,

is almost surely regularly varying with index −1/ξB(B>X) < 0. Taking for Z a

positive random variable such that for all x ∈ X and y > [c(x)]γ(x),

P(Z > y | X = x) = c(x)y−1/γ(x),

proving (4) is thus equivalent to prove (5). In the rest of the proof, all equalities,

inequalities, limits, etc. are assumed to hold almost surely. Using the tower property
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of the conditional expectation, we get

E[ln(Z/y)I{Z > y} | B>X] = E
[
E[ln(Z/y)I{Z > y} | X]|B>X

]
.

Moreover

E[ln(Z/y)I{Z > y} | X] =

∫ ∞
0

P(Z > yez | X)dz

= γ(X)c(X)y−1/γ(X) = γ(X)P(Z > y | X).

Hence,

E[ln(Z/y)I{Z > y} | B>X] = E
[
γ(X)P(Z > y | X)|B>X

]
= E

[
E[γ(X)I{Z > y} | X]|B>X

]
= E[γ(X)I{Z > y} | B>X]

=

∫ ξB(B>X)

0

P
(
{γ(X) > t} ∩ {Z > y}|B>X

)
dt.

As a consequence, prove (5) is equivalent to prove that

lim
y→∞

∫ ξB(B>X)

0

P
(
{γ(X) > t} ∩ {Z > y}|B>X

)
P(Z > y | B>X)

dt = ξB(B>X).

Since the integrand is positive and smaller than 1, one can use the dominated conver-

gence theorem to exchange limit and integral. It thus finally remains to prove that for

all t ∈ (0, ξB(B>X)),

lim
y→∞

P
(
{γ(X) > t} ∩ {Z > y}|B>X

)
P(Z > y | B>X)

= 1.

Under (C.1), the distribution of the random variable γ(X) is absolutely continuous

and thus {γ(X) > t} = {γ(X) ≥ t}. This leads to the equality

P
(
{γ(X) > t} ∩ {Z > y}|B>X

)
P(Z > y | B>X)

= 1−
P
(
{γ(X) < t} ∩ {Z > y}|B>X

)
P(Z > y | B>X)

.

The rest of the proof consists in showing that for all t ∈ (0, ξB(B>X)),

lim
y→∞

y1/tP
(
{γ(X) < t} ∩ {Z > y}|B>X

)
= 0, (6)

and

lim
y→∞

y1/tP(Z > y | B>X) =∞. (7)

Let us start by proving (6). We have

y1/tP
(
{γ(X) > t} ∩ {Z > y}|B>X

)
= E

[
y1/tI{γ(X) < t}P(Z > y | X)

∣∣∣B>X]
= E

[
c(X)y1/t−1/γ(X)I{γ(X) < t}

∣∣∣B>X] .
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Since for y > 1, one has c(X)y1/t−1/γ(X)I{γ(X) < t} ≤ c(X) and since by assumption

c(·) is bounded, we can apply the dominated convergence theorem to get

lim
y→∞

y1/tP
(
{γ(X) > t} ∩ {Z > y}|B>X

)
= E

[
c(X)I{γ(X) < t} lim

y→∞
y1/t−1/γ(X)

∣∣∣∣B>X] = 0,

proving (6). Let us now turn to the proof of (7). First, note that

P(Z > y | B>X) = E
[
P(Z > y | X)|B>X

]
= E

[
c(X)y−1/γ(X)

∣∣∣B>X] .
Moreover, for t ∈ (0, ξB(B>X)), let εt(B

>X) := (t−1−ξ−1
B (B>X))/2. Since ξB(B>X)

is the right endpoint of the conditional distribution of γ(X) given B>X, we have

P(γ−1(X) < t−1 − εt(B>X) | B>X) > 0.

Hence, for all y > 0,

y1/tP(Z > y | B>X) ≥ E
[
c(X)yt

−1−γ−1(X)I{γ−1(X) ≤ t−1 − εt(B>X))}
∣∣∣B>X]

≥ inf
x∈X

c(x)P
(
γ−1(X) < t−1 − εt(B>X) | B>X

)
yεt(B>X),

which converges to infinity as y →∞ since under (C.2), infx∈X c(x) > 0.

Proof of Theorem 1 − The scheme of this proof is similar to the one used in the

proof of [11, Theorem 5.1]. From the definition (4) of B̂n, we have

P
(

Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)
)

= 1.

For a norm ‖ · ‖ in Rp×q, let U(B0, ρ) be the open ball in Rp×q of center B0 and radius

ρ > 0. For all ρ > 0,

1 = P
(

Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)
)

= P
({

Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)
}
∩ {B̂n ∈ U(B0, ρ)}

)
+ P

({
Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)

}
∩ {B̂n /∈ U(B0, ρ)}

)
.

Hence, since

P
({

Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)
}
∩ {B̂n ∈ U(B0, ρ)}

)
≤ P

(
B̂n ∈ U(B0, ρ)

)
,

and

P
({

Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)
}
∩ {B̂n /∈ U(B0, ρ)}

)
≤ P

(
inf

B/∈U(B0,ρ)
Ψ̂n(B,X0) ≤ Ψ̂n(B0,X0)

)
,
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we have that

P
(
B̂n ∈ U(B0, ρ)

)
+ P

(
inf

B/∈U(B0,ρ)
Ψ̂n(B,X0) ≤ Ψ̂n(B0,X0)

)
≥ 1.

As a consequence, if we show that

lim
n→∞

P
(

inf
B/∈U(B0,ρ)

Ψ̂n(B,X0) ≤ Ψ̂n(B0,X0)

)
= 0, (8)

then, for all ρ > 0,

lim
n→∞

P
(
B̂n ∈ U(B0, ρ)

)
= 1,

which is the desired result. To prove (8), let us remark first that

inf
B/∈U(B0,ρ)

(
Ψ̂n(B,X0)−Ψ(B,X0)

)
+ inf
B/∈U(B0,ρ)

Ψ(B,X0) ≤ inf
B/∈U(B0,ρ)

Ψ̂n(B,X0).

Hence,

pn := P
(

inf
B/∈U(B0,ρ)

Ψ̂n(B,X0) ≤ Ψ̂n(B0,X0)

)
≤ P

(
inf

B/∈U(B0,ρ)

(
Ψ̂n(B,X0)−Ψ(B,X0)

)
+ Ψ(B0,X0)− Ψ̂n(B0,X0) ≤ Ψ(B0,X0)− inf

B/∈U(B0,ρ)
Ψ(B,X0)

)
Now, since for all (x, y) ∈ R2, if x ≤ y then |x| ≥ −y, we have

pn ≤ P
(∣∣∣∣ inf

B/∈U(B0,ρ)

(
Ψ̂n(B,X0)−Ψ(B,X0)

)
+ Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣ ≥ inf
B/∈U(B0,ρ)

Ψ(B,X0)−Ψ(B0,X0)

)
Under condition (C.3), for all ρ > 0, there exists ε > 0 such that

inf
B/∈U(B0,ρ)

Ψ(B,X0)−Ψ(B0,X0) > ε.

Furthermore,∣∣∣∣ inf
B/∈U(B0,ρ)

(
Ψ̂n(B,X0)−Ψ(B,X0)

)
+ Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣∣
≤
∣∣∣∣ inf
B/∈U(B0,ρ)

(
Ψ̂n(B,X0)−Ψ(B,X0)

)∣∣∣∣+
∣∣∣Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣
≤ sup
B/∈U(B0,ρ)

∣∣∣Ψ̂n(B,X0)−Ψ(B,X0)
∣∣∣+
∣∣∣Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣
≤ sup
B∈Bq

∣∣∣Ψ̂n(B,X0)−Ψ(B,X0)
∣∣∣+
∣∣∣Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣ .
Hence,

pn ≤ P

(
sup
B∈Bq

∣∣∣Ψ̂n(B,X0)−Ψ(B,X0)
∣∣∣+
∣∣∣Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣ ≥ ε) .
We conclude the proof by using Lemma 2.
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Proof of Theorem 2 − Let ε > 0. We need to prove that

lim
n→∞

P
[

sup
x∈X0

∣∣∣ γ̂n (x, B̂n)− γ(x)
∣∣∣ > ε

]
= lim
n→∞

P
[

sup
x∈X0

∣∣∣ ξ̂n,B̂n

(
[B̂n]>x

)
− ξB0(B>0 x)

∣∣∣ > ε

]
= 0.

We start with the following decomposition: let η ∈]0, ε/(2M)[,

P
[

sup
x∈X0

∣∣∣ γ̂n (x, B̂n)− γ(x)
∣∣∣ > ε

]
=: T1,n + T2,n,

where

T1,n = P
[{

sup
x∈X0

∣∣∣ γ̂n (x, B̂n)− γ(x)
∣∣∣ > ε

}
∩
{
‖B̂n −B0‖ < η

}]
and T2,n = P

[{
sup
x∈X0

∣∣∣ γ̂n (x, B̂n)− γ(x)
∣∣∣ > ε

}
∩
{
‖B̂n −B0‖ ≥ η

}]
Of course, from Theorem 1,

T2,n ≤ P
(
‖B̂n −B0‖ ≥ η

)
→ 0.

Next,

T1,n ≤ P

[
sup

B: ‖B−B0‖<η
sup
x∈X0

∣∣∣ ξ̂n,B (B>x)− ξB0(B>0 x)
∣∣∣ > ε

]

≤ P

[
sup

B: ‖B−B0‖<η
sup
x∈X0

∣∣∣ ξ̂n,B (B>x)− ξB(B>x)
∣∣∣ > ε/2

]

+ I

{
sup

B: ‖B−B0‖<η
sup
x∈X0

∣∣∣ξB (B>x)− ξB0(B>0 x)
∣∣∣ > ε/2

}
.

The first term converges to 0 according to (C.5) and the second term is equal to 0

since from (C.4),

sup
B: ‖B−B0‖<η

sup
x∈X0

∣∣∣ξB (B>x)− ξB0(B>0 x)
∣∣∣ ≤Mη < ε/2.

The proof is then complete.

Proof of Proposition 2 − Let us start with some notations. For all matrix B ∈ Bd

with d ∈ {1, . . . , p} and for any x ∈ X , let Ax(B) :=
{
z ∈ Rp; B>z = B>x

}
. Note

that, according to (2), ξB(B>x) = max {γ(z); z ∈ Ax(B)}. Let Cd+1 ∈ Bd+1 be a

matrix satisfying the condition of Proposition 2. Since Ax(Cd+1) ⊂ Ax(B0,d), for all

x ∈ X , we have ξCd+1

(
C>d+1x

)
≤ ξB0,d

(
B>0,dx

)
and thus

min
B∈Bd+1

Ψ(B,X0) = min
B∈Bd+1

E
[
ξB(B>X)I{X ∈ X0}

]
≤ E

[
ξCd+1(C>d+1X)I{X ∈ X0}

]
≤ E

[
ξB0,d(B>0,dX)I{X ∈ X0}

]
= min
B∈Bd

Ψ(B,X0), (9)
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for all d ∈ {1, . . . , p}. In particular, the assumption on the matrix Cd+1 ensures that,

for all d ∈ {1, . . . , q − 1},

min
B∈Bd+1

Ψ(B,X0) < min
B∈Bd

Ψ(B,X0).

Moreover, since for all B ∈ Bd and x ∈ X , ξB(B>x) = max{γ(z); B>z = B>x} ≥

γ(x), we have, for all d ∈ {1, . . . , p},

E [γ(X)I{X ∈ X0}] ≤ min
B∈Bd

Ψ(B,X0). (10)

From (9), we also have that for all d ≥ q,

min
B∈Bd

Ψ(B,X0) ≤ min
B∈Bq

Ψ(B,X0) = E [γ(X)I{X ∈ X0}] . (11)

Gathering (10) and (11) entails that for all d ≥ q,

min
B∈Bd

Ψ(B,X0) = E [γ(X)I{X ∈ X0}] ,

and the proof is complete.
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