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Dimension reduction for the estimation of the

conditional tail-index

L. Gardes and A. Podgorny

Abstract

We are interested in the relationship between the large values of a real

random variable Y and its associated covariate X that takes its values

in a subset X of Rp when the conditional distribution of Y given X = x

is heavy-tailed with tail index γ(x) > 0. Estimating this index is a cru-

cial step for the inference of the conditional distribution, but this task

becomes more challenging as the dimension p increases. The objective of

this work is to propose a dimension reduction method to obtain a more

efficient estimator of the extreme value index. Specifically, we assume the

existence of a subspace S0 of dimension q < p with basis B0 ∈ Rp×q and

a positive function g(·) such that for all x ∈ X , γ(x) = g(B>0 x). We

propose a method to estimate the matrix B0 and establish its consistency.

We illustrate the advantages of this dimension reduction procedure for es-

timating the extreme value index through simulations and an application

to real data.

Keywords— Tail-index, dimension reduction, heavy-tailed distributions

1 Introduction

Let (X,Y ) be a random couple where Y is a R-valued response variable associated

to a covariate X taking its values in the set X ⊂ Rp with p ∈ N \ {0}. The

purpose of nonparametric regression is the estimation of the regression function

X 3 x 7→ E(Y | X = x). Given a sample (X1, Y1), · · · , (Xn, Yn) of independent copies
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of (X,Y ) and a point x ∈ X , two main approaches for the estimation of E(Y | X = x)

can be found in the literature: the kernel method introduced independently by

Nadaraya [13] and Watson [21] and the nearest-neighbors approach (see for instance

Cover [6]). However, it is well known that, for a given level of accuracy of one of these

estimators, the number n of observations growths exponentially with respect to the

dimension p. This phenomenon is often referred to as the curse of dimensionality (see

Bellman [2]). A solution to avoid this problem is to assume the existence of a mean

dimension reduction subspace (see Cook and Li [5]). Recall that a q-dimensional

linear subspace S is a mean dimension reductions subspace if E(Y | X) = E(Y | B>X)

almost surely where B ∈ Rp×q is a basis of S. Hence, if B is known (or at least can

be estimated), inference on E(Y | X) can be done by replacing X by the covariate

B>X of dimension q ≤ p. When q is much smaller than p, the kernel method and the

nearest-neighbors approaches provide more accurate estimates.

In some practical cases, there is a need to pay special attention to the right

tail of the distribution, rather than to the central part of the distribution. This

is the case in finance (see, e.g., Rockafellar and Uryasev [15]) or insurance (see for

instance Brazauskas et al. [4] and Read and Vogel [14]). In these fields of application,

conditional heavy-tailed distributions are often considered and will be the focus of

this paper. Recall that the conditional distribution of Y given X is heavy-tailed if

S(y, x) := P(Y > y | X = x) = y−1/γ(x)L(y, x),

for almost all x ∈ X , where γ(·) is a positive function referred to as the conditional tail-

index and L(·, x) is a positive slowly varying function, namely L(ty, x)/L(y, x)→ 1 as

y → ∞ for all t > 0 and x ∈ X . The conditional tail-index controls the tail behavior

of the conditional distribution. The capability to estimate it accurately is therefore of

primary importance. Of course, we are still confronted to the curse of dimensionality

all the more so since only the largest observations are kept in the estimation process.

Despite its practical interest, little work has been done on dimension reduction for

extreme values. A first attempt can be found in Gardes [7] where it is assumed that

there exists a q-dimensional subspace S for which

lim
y→∞

sup
x∈X

∣∣∣∣ S(y, x)

SB(y,B>x)
− 1

∣∣∣∣ = 0, (1)
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where B ∈ Rp×q is a basis of S and SB(·, B>x) is the conditional survival function of

Y given B>X = B>x. If such a tail dimension reduction subspace S exists, inference

on the conditional tail distribution can be achieved by replacing the covariate X

by its reduced version B>X. Recently, a different way to define a tail dimension

reduction subspace was introduced in Aghbalou et al. [1]. Their approach can be

seen as an adaptation of the Sliced Inverse Regression method introduced by Li [12]

and differs significantly from Gardes [7]. In particular, condition (1) and the specific

condition used in Aghbalou et al. [1] are not equivalent. Moreover, the final objective

in Gardes [7] is the estimation of extreme quantile while the one in Aghbalou et al. [1]

is to predict the occurence of tail event. Another attempt to reduce the dimension in

the tail of the distribution can be found in Bousebata et al. [3]. The authors propose

a specific inverse regression model and the dimension reduction is achieved by using

a tail version of the partial least square method.

As mentioned above, an important step in inference on conditional heavy-tailed

distributions is the estimation of the conditional tail index, but none of the afore-

mentioned papers specifically address this issue. However, in some situations,

a more accurate dimension reduction subspace can be found for the purpose of

estimating γ(·). For instance, if for all x ∈ X there exists B ∈ Rp×q with q < p such

that S(y, x) = y−1/g(B>x)c(x), where g(·) and c(·) are positive functions then the tail

dimension reduction subspace defined in Gardes [7] is the whole set Rp while in this

case, the dimension reduction subspace of interest is obviously span(B), the linear

subspace of Rp spanned by the columns of B.

The main contribution of this work is precisely to deal with the situation where the

conditional tail-index is defined on a lower dimensional linear subspace. This subspace

is referred to as the tail-index dimension reduction (TIDR) subspace. The framework

and the main definitions, in particular the definition of the TIDR subspace S, are given

in Section 2. Section 3 is devoted to the estimation of a basis of S. The consistency of

the proposed estimator is also established. Section 4 presents the results of a simulation

study, followed by an application to a real data set in Section 5. A procedure to

estimate the dimension of the TIDR subspace is also presented and illustrated in

Section 4. All the proofs are gathered in Section 6.
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2 Tail-index dimension reduction subspace

2.1 Framework

Throughout this paper, we consider a (Rp × R)-valued random couple (X,Y ) defined

on a given probability space (Ω,A,P). For any q ≤ p, B ∈ Rp×q and y ∈ R, let

SB(y,B>X) := P(Y > y | B>X)

be the conditional survival function of Y given B>X. When B is the identity matrix

(i.e., q = p) the conditional survival function of Y given that X is denoted S(y,X).

For ω ∈ Ω such that B>X(ω) = z, we write SB(y,B>X)(ω) = SB(y, z). The couple

(X,Y ) is distributed according to the following model.

(M) The support X of X is assumed to be compact with a non-empty interior and the

support of Y is confined to the positive half-line. Moreover, for all x ∈ X , the

conditional distribution of Y given X = x is heavy tailed with tail-index γ(x)

i.e., S(y, x) = y−1/γ(x)L(y, x), for some slowly varying function L(·, x).

In Section 2.2, we establish a result ensuring (under suitable conditions) that if the

distribution of Y given X is heavy-tailed so is the conditional distribution of Y given

B>X for any B ∈ Rp×q. The definition of the tail-index dimension reduction subspace

is given in Section 2.3

2.2 Preliminary result

For a given matrix B ∈ Rp×q with 1 ≤ q < p, we can ask ourselves what happens if

the covariate X is replaced by its projection XB := B(B>B)−1B>X onto the linear

subspace span(B). Obviously, the knowledge of the conditional distribution of Y given

XB is equivalent to the one of Y given B>X. Since SB(y,B>X) = E
[
S(y,X)|B>X

]
,

the conditional survival function of Y given B>X can be seen as a mixture of the

conditional survival function of Y given X. Hence, for all x ∈ X , we are inclined to

think that the decay of the conditional distribution of Y given B>X = B>x is driven

by the largest tail-index involved in the mixture i.e., by

ξB(B>x) := max
z:B>z=B>x

γ(z). (2)

Note that ξB(·) is a measurable function corresponding to the right endpoint of the

conditional distribution of γ(X) given B>X = ·. Under additional assumptions on
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the functions L(·, ·) and γ(·), we prove hereafter that, as soon as model (M) holds, the

conditional distribution of Y given B>X is also heavy tailed with tail index ξB(B>X).

These additional conditions are given below. The first one is dedicated to the tail-index

in model (M).

(C.1) The distribution of the random variable γ(X) is absolutely continuous with

respect to the Lebesgue measure. Moreover,

γ := inf
x∈X

γ(x) > 0 and γ := sup
x∈X

γ(x) <∞,

The second condition is related to the function L(·, ·).

(C.2) There exists a positive measurable function c(·) for which

lim
y→∞

sup
x∈X

∣∣∣∣L(y, x)

c(x)
− 1

∣∣∣∣ = 0, with inf
x∈X

c(x) > 0 and sup
x∈X

c(x) <∞,

We are now in position to state a result that will be central to the definition of our

dimension reduction subspace.

Proposition 1. Assume that model (M) holds with conditions (C.1) and (C.2). For

each B ∈ Bq with 1 ≤ q < p, the conditional distribution of Y given B>X is heavy

tailed with tail-index ξB(B>X).

Note that under (C.1), the tail-index of the conditional distribution of Y given B>X

belongs to the interval [γ, γ] ⊂ (0,∞).

2.3 Main definitions

We can now give the definition of the dimension reduction subspace that will be

referred hereafter to as the TIDR subspace. Roughly speaking, if the tail-index in

model (M) is such that γ(·) = g(B>·) for some matrix B ∈ Rp×q and some positive

function g(·) then S = span(B) is a TIDR subspace. More precisely,

Definition 1. Let B ∈ Rp×q be a matrix with q linearly independent columns. The

linear subspace S = span(B) is a tail-index dimension reduction (TIDR) subspace if

ξB(B>X) = γ(X) almost surely.

The basis B ∈ Rp×q such that S = span(B) is of course not unique. In all what

follows, we use the canonical basis of S which is defined hereafter.
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Definition 2. Let B̃ ∈ Rp×q be any basis of S and let B̌> be the matrix B̃> in is

reduced row echelon form. The canonical basis B of S is the orthogonal basis obtained

by applying the Gram-Schmidt process on the columns of B̌.

It is well known that the reduced row echelon form of a given matrix is unique and

thus so is the canonical basis. If B ∈ Bq then B>B = Iq, the identity matrix of

dimension q. When q = 1, the elements of the set B1 are the vectors β ∈ Rp with a

positive first nonzero entry for which β>β = 1. Note also that Bq is a compact subset

of Rp×q.

When B = Ip, it is readily seen that ξB(B>x) = γ(x) for all x ∈ X and thus that

S = Rp is always a TIDR subspace. Of course, we are interested in finding the smallest

subspace. More specifically, we are interested in finding the central tail-index subspace

define as follows.

Definition 3. A linear subspace S0 is the central tail-index (CTI) subspace if S0 is a

TIDR subspace such that S0 ⊂ S for all TIDR subspace S.

This definition is a straightforward adaptation of the definition of the central mean

subspace (see Cook and Li [5]). The CTI subspace does not necessarily exist but if it

is the case, it is unique. We assume in the remainder of this paper that the random

couple (X,Y ) is such that the CTI subspace S0 exists. We also suppose that the

dimension q of the CTI subspace is known.

In what follows, we denote by B0 ∈ Bq the canonical basis of the CTI subspace S0. As

a consequence of Proposition 1, the conditional distribution of Y given B>0 X (which

is not necessarily equals to the one of Y given X) is heavy tailed with tail-index

ξB0(B>0 X) = γ(X). Hence, assuming that B0 is known, the conditional tail-index

can be estimated using a sample of the random couple (B>0 X,Y ) ∈ Rq ×R instead of

(X,Y ) ∈ Rp×R. When q � p, this permits us to construct a more efficient estimator

of γ(·). Of course in practice, B0 is unknown. Its estimation is investigated in the

next section.

3 Estimation of the CTI subspace

In all that section, we assume that the CTI subspace S0 exists and that its dimension q

is known. The estimation of q will be investigated in Section 4.
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3.1 General procedure

To estimate the canonical basis B0 ∈ Bq of the CTI subspace, we start by remarking

that for all x ∈ X and B ∈ Bq, one has γ(x) = ξB0(B>0 x) ≤ ξB(B>x), since γ(x)

belongs to the support of the conditional distribution of γ(X) given B>X = B>x.

The unicity of the CTI subspace entails that for all B ∈ Bq with B 6= B0,

P
[
γ(X) < ξB(B>X)

]
> 0, (3)

leading to

arg min
B∈Bq

E
[
ξB(B>X)

]
= {B0}.

For technical reasons, the above expectation can be estimated consistently as soon

as the density of X is bounded away from zero. We thus slightly modify the opti-

mization problem by introducing a trimming factor IX0(X) where X0 is a compact

subset in the interior of X . In other word, we now want to minimize the function

B 7→ E
[
ξB(B>X)IX0(X)

]
over the set Bq. This modification was also adopted by

Ichimura [11] for estimationg the direction of a single-index model. To ensure that

B0 is still the only solution of the trimmed optimization problem, a slightly stronger

condition than (3) is required.

(C.3) For all B ∈ Bq with B 6= B0, P
[{
γ(X) < ξB(B>X)

}
∩ {X ∈ X0}

]
> 0,

Under (C.3), we have

arg min
B∈Bq

E
[
ξB(B>X)IX0(X)

]
=: arg min

B∈Bq
Ψ(B,X0) = {B0}.

Given a sample (X1, Y1), · · · , (Xn, Yn) of independent copies of the random couple

(X,Y ), the natural idea to estimate the canonical basis of the CTI subspace is to min-

imize over Bq an estimation of the expectation Ψ(B,X0). The empirical counterpart

of Ψ(B,X0) is given by

Ψ̃n(B,X0) :=
1

n

n∑
i=1

ξB(B>Xi)IX0(Xi).

It can be shown that under model (M) where the tail-index satisfies condition (C.1)

and is such that

(C.4) for all x ∈ X , the function B 7→ ξB(B>x) is Lipschitz in B ∈ Bq, that is to say

there exists a measurable function M : X → [0,∞) such that 0 < E(M(X)) <∞

and, for all B1 ∈ Bq, B2 ∈ Bq and x ∈ X ,∣∣∣ξB1

(
B>1 x

)
− ξB2

(
B>2 x

)∣∣∣ ≤M(x)‖B1 −B2‖,
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then,

sup
B∈Bq

∣∣∣Ψ̃n(B,X0)−Ψ(B,X0)
∣∣∣ P→ 0,

see the proof of Lemma 2. Hence, given an estimator ξ̂n,B(B>x) of ξB(B>x), we

propose to estimate Ψ(B,X0) for all B ∈ Bq by the plug-in estimate

Ψ̂n(B,X0) :=
1

n

n∑
i=1

ξ̂n,B(B>Xi)IX0(Xi). (4)

The definition of the proposed estimator of B0 is given below.

Definition 4. Under model (M), for a sample (X1, Y1), · · · , (Xn, Yn) of independent

copies of the random couple (X,Y ), the estimator B̂n of the canonical basis of CTI

subspace minimizes the function B 7→ Ψ̂n(B,X0).

3.2 Main result

The main result of this section establishes that if the conditional tail-index estimator

is uniformly consistent i.e.,

(C.5) sup
B∈Bq

sup
x∈X0

∣∣∣ξ̂n,B(B>x)− ξB(B>x)
∣∣∣ P→ 0,

then the estimator B̂n in Definition 4 is consistent.

Theorem 1. Under model (M) with conditions (C.1) to (C.4), if the estimator

Ψ̂n(·,X0) defined in (4) satisfies condition (C.5) then ‖B̂n − B0‖
P→ 0 for any norm

‖ · ‖ in Rp×q.

In the next section, we propose an estimator of the conditional tail-index satisfying

condition (C.5).

3.3 A local-Hill estimator of the CTI subspace

For B ∈ Bq and x ∈ X , let us now propose an appropriate estimator of the con-

ditional tail-index ξB(B>x) of the conditional distribution of Y given B>X = B>x

(see Proposition 1) leading to an estimator of B0. To motivate the definition of our

estimator, let us start with the unrealistic situation where we have at our disposal a

sample {Ži(B, x), i = 1, · · · ,m} of m ∈ N \ {0} independent random variables with

common distribution the conditional distribution of Y given B>X = B>x. The as-

sociated order statistics are denoted Ž(1)(B, x) < · · · < Ž(n)(B, x). The best known
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estimator of the tail-index is the Hill estimator which is given by

ξ̌
(H)
B (B>x) :=

1

bαmc

bαmc∑
i=1

ln
Ž(m−i+1)(B, x)

Ž(m−bαmc)(B, x)
,

for some α ∈ (1/m, 1). Of course, this is not a proper estimator since the random

variables {Ži(B, x), i = 1, · · · ,m} are not observed. We therefore propose to replace

them in the expression of ξ̌
(H)
B (B>x) by a suitable set of observed random variables.

More precisely, let us introduce the set,

T (B, x, h) := {z ∈ X | ‖B>z −B>x‖ ≤ h},

where h = hn > 0 and let

M? = M(B, x, h) :=

n∑
i=1

IT (B,x,h)(Xi),

be the random number of covariates in the set T (B, x, h). We denote by {W ?
i =

Wi(B, x, h), i = 1, · · · ,M?} the set of covariates that belong to T (B, x, h). The

associated response variables are denoted {Z?i = Zi(B, x, h), i = 1, · · · ,M?}. Note

that the presence of a star (?) recalls the dependence on B, x and h. This shortcut

will be used in the rest of that paper. Intuitively, when h is close enough to zero, the

random variable Z?i is approximatively distributed as Ži(B, x). For some sequence

(αn) = (α) ∈ (0, 1), this leads us to introduce the estimator of the conditional tail-

index defined below.

Definition 5. Under model (M), for all (B, x) ∈ Bq × X , the local-Hill estimator of

the tail-index ξB(B>x) is

ξ̂
(H)
B (B>x) = ξ̂

(H)
B (B>x, α, h) :=

1

bαM?c

bαM?c∑
i=1

ln
Z?(M?−i+1)

Z?(M?−bαM?c)
,

if αM? > 1 and ξ̂
(H)
B (B>x, α, h) = 0 otherwise.

Note that this estimator is quite similar to the one introduced in Gardes and

Stupfler [8]. Under additional assumptions given below, we show that this estima-

tor is uniformly consistent over the set Θ := Bq × X0. This set is endowed with

the product distance δ defined for all θ = (B, x) ∈ Θ and θ′ = (B′, x′) ∈ Θ by

δ(θ, θ′) := ‖B −B′‖+ ‖x− x′‖. Below, we give the assumptions required to establish

the uniform consistency. Note that these assumptions are more or less the same that

the ones used in [8].
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(H.1) The distribution of X is absolutely continuous with respect to the Lebesgue

measure.

Note that since B ∈ Bq is a full rank matrix, condition (H.1) entails that for all

B ∈ Bq, the distribution of B>X is also absolutely continuous. Let us denote by fB(·)

the associated density function.

(H.2) For all B ∈ Bq and x ∈ X0, fB(B>x) > 0. Moreover, there exists a positive

constant Kf such that for all (B,B′) ∈ B2
q and (x, x′) ∈ X 2,

sup
B∈Bq

∣∣∣fB(B>x)− fB′([B′]>x′)
∣∣∣ ≤ Kf

(
‖B −B′‖+ ‖x− x′‖

)
.

Since Θ is compact, this condition entails that

sup
(B,x)∈Θ

fB(B>x) < C2 <∞ and inf
(B,x)∈Θ

fB(B>x) > C1 > 0.

(H.3) The function (B, x) ∈ Bq ×X 7→ ξB(B>x) is continuous.

For all B ∈ Bq and z ∈ B>X , let QB(·, z) be the inverse function of the function

y 7→ SB(y, z). From Proposition 1, we have for almost all z ∈ B>X and u ∈ (0, 1)

that

QB(u, z) = u−ξB(z)`B(u−1, z),

where for all B ∈ Bq and z ∈ B>X , `B(·, z) is a slowly varying function. The following

condition on `B(·, ·) is required. With the notation

∆B,x(y) := sup
t>1

ln

(
`B(ty|B>x)

`B(y|B>x)

)
,

we assume that

(H.4) lim
y→∞

sup
(B,x)∈Bq×X

∆B,x(y) = 0.

Finally, for all B ∈ Bq, we measure the oscillation of the function x 7→ QB(·, B>x) by

ω(u, v,B, x, h) = ω?(u, v) := sup
(β,x′)∈D?

u,v

∣∣∣∣ln( QB(β,B>x)

QB(β,B>x′)

)∣∣∣∣
where

D?u,v = Du,v(B, x, h) =
{

(b, y) ∈ (0, 1)×X ; b ∈ [u, v] and ‖B>(x− y)‖ ≤ h
}
.

The oscillation is controlled by following assumption.
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(H.5) There exists κ > 0 such that

lim
n→∞

sup
(B,x)∈Bq×X

ω?
(
n−(1+κ), 1− n−(1+κ)

)
= 0.

We establish below the uniform consistency of the local-Hill estimator given in Defi-

nition 5.

Theorem 2. Under model (M) and conditions (C.1), (H.1)-(H.5), if the sequences

(α) and (h) are such that nhqα/ ln(n)→∞ and α ln(nhq)→ 0 as n→∞ then,

sup
(B,x)∈Θ

∣∣∣ξ̂(H)
B (B>x)− ξB(B>x)

∣∣∣ P→ 0.

Since the proof of Theorem 2 is quite long and technical, it is postponed to the Ap-

pendix. The scheme of the proof is similar to the one of [8, Theorem 1] with however

some additional difficulties due to the necessity to prove uniformity on Bq. Using the

local-Hill estimator of the conditional tail-index we define the local-Hill CTI estimator

of B0 as follows.

Definition 6. Under model (M), for a sample (X1, Y1), · · · , (Xn, Yn) of independent

copies of the random couple (X,Y ), the local Hill estimator B̂
(H)
n of the canonical basis

of CTI subspace minimizes the function

B 7→ Ψ̂(H)
n (B,X0) :=

1

n

n∑
i=1

ξ̂
(H)
B (B>Xi)IX0(Xi).

The consistency of B̂
(H)
n follows directly from Theorems 1 and 2.

Corollary 1. Under model (M), conditions (C.1)-(C.4) and (H.1)-(H.5), if the se-

quences (α) and (h) are such that nhqα/ ln(n) → ∞ and α ln(nhq) → 0 as n → ∞

then, ‖B̂(H)
n −B0‖

P→ 0.

4 Finite sample size behavior

Let (X1, Y1), · · · , (Xn, Yn) be independent copies of a random couple (X,Y ) for which

there exists a CTI subspace S0 with canonical basis B0. In this section, we are in-

terested in the finite sample behavior of two estimators: the local-Hill CTI estimator

B̂
(H)
n of B0, see Definition 6, and the estimator ξ̂

(H)

B̂
(H)
n

([B̂
(H)
n ]>x) of the conditional

tail-index γ(x). We start by assuming that the dimension q of S0 is known. Its esti-

mation is investigated in Section 4.5. This Section is organized as follows. Section 4.1
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is devoted to the choice of the tuning parameters required to compute these estima-

tors. We explain in Section 4.2 the procedure we adopted to find the solution to the

optimization problem involved in the definition of the local-Hill CTI estimator. Dif-

ferent models for the distribution of (X,Y ) are given in Section 4.3 and the simulation

results are commented in Section 4.4. Finally, a way to estimate the dimension q of

the CTI subspace is presented in Section 4.5.

4.1 Selection of the tuning parameters

The local-Hill CTI estimator depends on the choice of a compact set X0 included in

the unknown support X , see Equation (4). We suggest to take

X0 := {x ∈ X | HD(x) ≥ η},

where η ∈ (0, 1) and HD(x) is the multivariate Tukey’s depth function given for all

x ∈ X by HD(x) := min{PX(Hθ,x) | θ ∈ Rp}, with Hθ,x the half-space in the direction

of θ passing through the point x. The value HD(x) ∈ [0, 1/2] can be interpreted as

a distance between x and the center of the distribution: the point x is close to the

center of the distribution when HD(x) is close to 1/2. In practice, the distribution

PX is unknown. The subspace X0 is thus replaced by X̂0 := {x ∈ X | ĤDn(x) ≥ η},

where ĤDn(x) is the empirical estimator of HD(x). The level η is arbitrarily chosen

such that 20% of the sample lies within X̂0.

Two other tuning parameters are required to compute the local-Hill CTI estimator.

First of all, a bandwidth h must be chosen to select the observations closest to the

point of interest x. According to Lemma 5 in the Appendix, the number of selected

observations is asymptotically proportional to nhqϑq, where ϑq is the volume of the

unit q-ball. In all what follows, we use the uniform norm ‖ · ‖∞ for which ϑq = 2q.

Denoting by diam(X ) := sup{‖x− y‖∞ | (x, y) ∈ X 2} the diameter of the support X ,

we propose to take h = diam(X ) × (n−b/ϑq)
1/q for some b > 0. Note that the band-

width h increases with the diameter of X . Next, we have to choose a probability

α ∈ (0, 1) controlling the number of largest observations used in the estimation pro-

cedure. Proposing a method to select the parameters h (or equivalently b) and α is

beyond the scope of this paper and left for future work. However, based on numerous

simulations, it seems that our estimation procedure is relatively robust to a non op-

timal choice. We have decided to take b = 2/9 and α = n−3/10 which provide good

12



results in most situations.

4.2 Finding the solution of the optimization problem

Recall that the estimator B̂
(H)
n is solution of the constrained optimization problem

(P) min
B∈Rp×q

Ψ̂
(H)
n (B,X0) subject to B ∈ Bq.

Searching for the solution by moving along the feasible set is rather difficult. In

particular, the solution strongly depends on the initialization of the algorithm. We

thus decided to relax the constraint by considering the problem

(P’) min
B∈Rp×q

Ψ̂
(H)
n (B,X0) subject to B>B − Iq = 0.

Since Bq is the set of all canonical q-dimensional basis, each element of Bq corresponds

to a different subspace of Rp. Of course, this is no longer the case if we only impose B

to be an orthogonal matrix but (P’) is easier to solve than (P). Moreover, if B (resp.

B′) is a solution of (P) (resp. (P’)), then

Ψ̂(H)
n (B′,X0) ≤ Ψ̂(H)

n (B,X0).

To solve the constrained optimization problem (P’), we apply an algorithm in the

class of penalty methods. More specifically, let (Pj)j∈N be a sequence of penalized

(unconstrained) problems with

(Pj) min
B∈Rp×q

Ψ̂
(H)
n (B,X0) + cj × g(B),

where (cj) is an increasing sequence converging to infinity and g : Rp×q → R is a

penalty function i.e., a function such that g(B) = 0 if B is feasible (B>B = Iq) and

g(B) > 0 otherwise. For an arbitrarily chosen matrix B(0) ∈ Rp×q, we optimize (P0)

by using the Particle Swarm Optimization (PSO) algorithm with its first particle

initialized to B(0). Denoting by B(1) the obtained solution, we next optimize (P1)

with the PSO algorithm where the first particle is initialized to B(1). This process

is repeated until convergence. More details on the PSO algorithm can be found in

Shami et al. [17] and in Wang et al. [20]. In our simulation study, this procedure

is implemented as follows. For the initialization, the matrix B(0) is randomly chosen

by generating independently each of its components uniformly over [−1, 1]. For the

penalty function we opt for the natural choice g(B) = ‖B>B − Iq‖2F , where ‖ · ‖F is

the Frobenius norm, with the penalty sequence cj = 2j × 10−2. The maximal number

iterations for the PSO algorithm is 100 and the convergence is assumed to be achieved

when ‖B(j) −B(j+1)‖F ≤ 10−3√pq where B(j+1) is the solution of (Pj).

13



4.3 Models

Four models are considered for the distribution of the random couple (X,Y ). The

random vector X is uniformly distributed on the space X := [0, 1]p with p ∈ {4, 16}.

We have here diam(X ) = 1. Let Q(·, x) be the inverse of the function y 7→ S(y, x). The

random variable Y is given by Y := U−γ(x)`(U−1, x) where U is a standard uniform

random variable. Let B1 = (0, 0, 5, 5, 0, . . . , 0)> ∈ Rp. Two different slowly varying

functions are used in our simulation study:

`(1)(u−1, x) := [1 + exp{B>1 x− u−1}]−1 and `(2)(u−1, x) := exp(−u/2)B>1 x.

For the first three models, the dimension of the CTI subspace is q = 1 with canonical

basis B0 = (2, 1, 0, . . . , 0)>/
√

5 ∈ Rp. Two functions γ(·) = ξB0(B>0 ·) are considered:

for all z ∈ R,

ξ
(1)
B0

(z) :=
1

10
+

9

10

(√
5z

3

)4

and ξ
(2)
B0

(z) :=
1

10
+

9

10
| cos(2z)|.

• Model 1 - For all x ∈ X , γ(x) = ξ
(1)
B0

(B>0 x) and `(u−1, x) = `(1)(u−1, x).

For this model, since `(1)(u−1, x)→ 1 as u→ 0, the basis B0 also satisfies condition (1)

that is to say that the CTI subspace corresponds to the dimension reduction subspace

introduced in Gardes [7]. For the next model, we consider the slowly varying function

`(2)(u−1, x) which converges to B>1 x as u → 0. As a consequence, the CTI subspace

is still span(B0) while the dimension reduction subspace in [7] is span(B0, B1).

• Model 2 - For all x ∈ X , γ(x) = ξ
(1)
B0

(B>0 x) and `(u−1, x) = `(2)(u−1, x).

In Models 1 and 2, the conditional tail index ξ
(1)
B0

(·) is strictly monotone. The function

ξ
(2)
B0

(·), which is symmetric with respect to the vertical line y = π/4, is used in Model 3.

• Model 3 - For all x ∈ X , γ(x) = ξ
(2)
B0

(B>0 x) and `(u−1, x) = `(1)(u−1, x).

For the last model, the dimension of the CTI linear subspace is q = 2 with canonical

basis B0 = (e1, e2) ∈ Rp×2 where e1 = (1, 0, · · · , 0)> and e2 = (0, 1, 0, · · · , 0)>.

• Model 4 - For all x ∈ X , `(u−1, x) := `(1)(u−1, x) and

γ(x) = ξB0(B>0 x) :=
1

10
+

9

5

[
(e>1 x− 0.5)2 + (e>2 x− 0.5)2

]
.

Let us mention that for Model 4 with p = 16, the optimization procedure described in

Section 4.2 is repeated 10 times for different initialization matrix B(0). We kept the

initialization providing the smallest value of Ψ̂
(H)
n (B̂n,X0).
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4.4 Simulation results

For each model, we generate N = 100 samples of size n = 2000. We first compare

the local-Hill CTI estimator B̂
(H)
n , see Definition 6, with the TDR estimator proposed

by Gardes [7]. This estimator is denoted B̂
(G)
n . Note that B̂

(H)
n is consistent only if

γ(x) > 0 for all x ∈ X while B̂
(G)
n is consistent regardless the sign of γ(x). As the

execution time to obtain the estimator of Gardes [7] is important, we only make the

comparison in the case p = 4. Also, we choose not to compare our estimator to those

proposed in Aghbalou et al. [1] mainly because we cannot check if the condition used

in the definition of their dimension reduction subspace is satisfied or not by the models

of Section 4.3. The performance of a given estimator B̌n of B0 is measured by the

distance

1
√
pq
‖B̌n −B0‖F =

(
1

pq

p∑
i=1

q∑
j=1

δ̂2
i,j

)1/2

,

where δ̂i,j is the element of row i and column j of the matrix B̌n − B0. The division

by
√
pq ensures that the above distance does not necessarily increases with p and q.

To implement the estimator B̂
(G)
n , we have to choose a bandwidth h to select the

most pertinent observations and a number k of largest observations. We propose to

select these tuning parameters as in Gardes [7], namely h = n−2/9 and α = n−1/3.

The TDR estimator in Gardes [7] is also the solution of a constrained optimization

problem which is solved with the procedure described in Section 4.2.

The boxplots of the errors are given in Figure 1 for p = 4. For all the models, the

local-Hill estimator provides the best results. For Model 2, where the CTI subspace

is included in the dimension reduction subspace introduced in [7], the estimation

of B0 by B̂
(G)
n is inaccurate. This is in line with the theory. For Model 3 where

the function ξB0(·) is symmetric with respect to the vertical line y = π/4, B̂
(G)
n is

clearly less efficient. This phenomenon is also observed with the SIR method which

fails to recover the true direction in presence of a symmetric relationship. Note that

Gardes’ estimator failed to estimate the dimension reduction subspace in Model 4 for

which q = 2.

The finite sample behavior of the local-Hill CTI estimator is also investigated for a

larger dimension (p = 16). We can check in Table 1 that its accuracy seems not to be

affected by the dimension of the covariate.
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Model 1 2 3 4

p = 4 0.061 0.235 0.035 0.037

(0.024) (0.066) (0.017) (0.014)

p = 16 0.055 0.138 0.068 0.083

(0.012) (0.022) (0.043) (0.048)

Table 1: Average of the errors of the local-Hill estimator on N = 100 replications

of a sample of size n = 2000 from Models 1 to 4 with p = 4 and p = 16. The

standard deviation is given in parentheses.

We are now interested in the effect of the dimension reduction on the estimation of

the tail index. For that purpose, we look at the finite sample behavior of the local-

Hill estimator ξ̂
(H)

B̌n
(B̌>n x) where B̌n is one of the two estimators of the CTI subspace

considered above. To demonstrate the need of reducing the dimension, these tail index

estimators are compared to the estimator ξ̂
(H)
Ip

(Ipx) which is the estimator of γ(x)

obtained without prior dimension reduction. Finally, we also look at the behavior of

the tail index ’estimator’ ξ̂
(H)
B0

(B>0 x) that can only be computed in the unrealistic case

where the true CTI subspace is known. All these estimators are compared according

to their mean squared error

Eγ(B̌n) := E
[(
ξ̂

(H)

B̌n
(B̌>nX)− γ(X)

)2
]
.

The expectation Eγ(B̌n) is approximated with a Monte Carlo method by generating

1000 uniform random variables X on X .

The average and the standard deviation over the N = 100 replications are gathered in

Tables 2 and 3. As expected from the previous results, the estimation of the extreme

value index based on the local-Hill CTI estimator is better for all the models. Also,

the error Eγ(Ip) is always larger than Eγ(B̂
(H)
n ) showing the gain of the dimension

reduction procedure. As expected, this gain is more important when p = 16.

4.5 Estimation of the dimension of the CTI subspace

In the above simulations, the true dimension q of the CTI subspace was used. In

practice, this dimension is, in most of the cases, unknown and need to be estimated.
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Figure 1: Comparison of the local-Hill estimator and the estimator B̂
(G)
n on

N = 100 replications of a sample of size n = 2000 from Models 1 to 4 with p = 4.
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Model Eγ(B̂
(H)
n ) Eγ(B̂

(G)
n ) Eγ(B0) Eγ(Ip)

1 0.015 0.021 0.008 0.100

(0.016) (0.021) (0.006) (0.037)

2 0.018 0.027 0.011 0.026

(0.008) (0.008) (0.006) (0.006)

3 0.064 0.122 0.031 0.221

(0.018) (0.062) (0.015) (0.046)

4 0.048 0.133 0.049 0.168

(0.017) (0.053) (0.011) (0.040)

Table 2: Average of the mean squared errors Eγ(B̌n) for p = 4. The standard

deviation is given in parentheses.

Model Eγ(B̂
(H)
n ) Eγ(B0) Eγ(Ip)

1 0.016 0.008 2.888

(0.013) (0.006) (0.256)

2 0.021 0.011 0.230

(0.008) (0.006) (0.040)

3 0.065 0.031 3.585

(0.042) (0.015) (0.347)

4 0.059 0.049 3.151

(0.030) (0.011) (0.297)

Table 3: Average of the mean squared errors Eγ(B̌n) for p = 16. The standard

deviation is given in parentheses.
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To do so, for all d ∈ {1, · · · , p}, let B0,d ∈ Bd be a matrix such that Ψ(B0,d,X0) ≤

Ψ(B,X0) for all B ∈ Bd and let us introduce the quantity,

c(d,X0) := Ψ(B0,d,X0).

We have the following result.

Proposition 2. Assume that (C.3) holds. For all d ∈ {1, · · · , q − 1}, one has c(d +

1,X0) ≤ c(d,X0) and for all d ∈ {q, · · · , p}, c(d,X0) = E[γ(X)IX0(X)].

Unfortunately, if there exists d ∈ {1, · · · , q − 1} such that c(d + 1,X0) = c(d,X0),

Proposition 2 does not permit us to characterize the dimension q. The proof of Propo-

sition 2 mainly consists in showing that there exists a non empty set B?d+1 such that

ξB(B>x) ≤ ξB0,d(B>0,dx) for all d ∈ {1, · · · , p− 1}, B ∈ B?d+1 and x ∈ X . The natural

condition ensuring that the function d 7→ c(d,X0) is decreasing for d < q is given

below.

(A) For all d ∈ {1, · · · , q − 1}, there exists B ∈ B?d+1 such that

P
[
{ξB(B>X) < ξB0,d(B>0,dX)} ∩ {X ∈ X0}

]
> 0.

Since under (A) and (C.3), the function d 7→ c(d,X0) is decreasing for d < q and

constant for d ≥ q we get that q = min{d ∈ {1, · · · , p}; c(d,X0) ≤ c(d + 1,X0)}. We

thus naturally propose to estimate the unknown dimension by

q̂n := min{d ∈ {1, · · · , p}; ĉn(d,X0) ≤ ĉn(d+ 1,X0)},

where

ĉn(d,X0) = min
B∈Bd

Ψ̂(H)
n (B,X0).

As shown in Table 4, for Models 1, 3 and 4 with p = 4, the N = 100 replications of q̂n

are always equal to the true dimension q of the CTI subspace. The worst result is

obtained for Model 1 with p = 16 (see Table 5) where our estimator failed to recover

the true dimension in 14% of the replications.

We also look at the finite sample behavior of the estimator ξ̂
B̂

(d,H)
n

([B̂
(d,H)
n ]>x) of γ(x)

where

B̂(d,H)
n = arg min

B∈Bd
Ψ̂(H)
n (B,X0).

As expected, the smallest mean squared error Eγ(B̂
(d,H)
n ) is observed when d is the true

dimension but for all the consider models, using the estimated dimension q̂n instead

of the true dimension provides very similar results.
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Estimation of q Eγ(B̂
(d,H)
n )

Model q̂n = 1 q̂n = 2 q̂n = 3 d = 1 d = 2 d = 3 d = q̂n

1 (q = 1) 100 % 0 % 0 % 0.015 0.035 0.053 0.015

2 (q = 1) 97 % 3 % 0 % 0.018 0.018 0.020 0.018

3 (q = 1) 100 % 0 % 0 % 0.035 0.105 0.152 0.035

4 (q = 2) 0 % 100 % 0 % 0.067 0.048 0.097 0.048

Table 4: Left part of the table: estimation of the CTI subspace dimension over

N = 100 replications of a sample of size n = 2000 generated from Models 1 to 4

with p = 4. Right part of the table: mean squared error of the local-Hill tail

index estimator for different values of d.

Estimation of q Eγ(B̂
(d,H)
n )

Model q̂n = 1 q̂n = 2 q̂n = 3 d = 1 d = 2 d = 3 d = q̂n

1 (q = 1) 86 % 14 % 0 % 0.026 0.048 0.066 0.031

2 (q = 1) 89 % 11 % 0 % 0.022 0.027 0.032 0.022

3 (q = 1) 94 % 5 % 1 % 0.065 0.125 0.176 0.063

4 (q = 2) 0 % 98 % 2 % 0.101 0.059 0.103 0.059

Table 5: Left part of the table: estimation of the CTI subspace dimension over

N = 100 replications of a sample of size n = 2000 generated from Models 1 to 4

with p = 16. Right part of the table: mean squared error of the local-Hill tail

index estimator for different values of d.
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5 Application to a real data set

As the world’s economies and industries develop, people are increasingly exposed to

pollution, especially in urban areas. Some pollutants, such as ozone, can cause serious

health problems. It forms under certain meteorological conditions (temperature, hu-

midity, etc.) from primary pollutants emitted directly into the atmosphere by human

activities. The aim here is to identify the primary pollutants that can lead to extreme

ozone concentrations.

Our study is based on the record of n = 4841 daily concentration pollutants in Chicago

from 1987 to 2000. These data were obtained few years ago from the Internet-based

Health and Air Pollution Surveillance System (iHAPSS) website but unfortunately

they are no longer available. The data set provides n observations of the maximum

daily concentration of ozone (O3) and of several primary pollutants including the max-

imum daily concentration of nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate

matter with a diameter smaller than 10 micrometers (PM10) and carbon monoxide

(CO). This data set was considered by many authors to illustrate the effect of dimen-

sion reduction (see, for example, [7], [16] and [22]).

The response variable is given by Y = exp(O3/σO3) where σ2
O3

is the variance

of O3. In practice this variance is replaced by its empirical counterpart. The co-

variate X = (X1, · · · , Xp)> with p = 4 is the centered and normalized (empir-

ical) version of the random vector (NO2, SO2,PM10,CO). The exponential func-

tion is applied to the maximum daily concentration of ozone in order to obtain a

heavy-tailed distributed random variable. By looking at the Pareto quantile plot

{(ln(k/i), ln(Yn−i,n/Yn−k,n)); i ∈ {1, · · · , k = 200}}, see Figure 2, we can see that the

points are approximatively located on a straight line which is what it is expected for a

heavy-tailed distribution. It should be noted that we should check that the conditional

distribution of Y given X = x is heavy-tailed for all x in the support of X. This task

cannot be done in practice, but the fact that Y is heavy-tailed allows us to hope that

the same is true for conditional distributions.

We apply the dimension reduction procedure proposed in this paper to this data set.

The set X̂0 is obtained as in the simulation study. Applying the procedure described

in Section 4.5, we find that q̂n = 1 (with ĉn(1, X̂0) = 0.531 and ĉn(2, X̂0) = 0.594).

The tuning parameters are set to α = n−3/10 and h = diam(X )× (n−b/2q̂n)1/q̂n with

b = 2/9 and diam(X ) := max
{
‖xi − xj‖∞ | (i, j) ∈ {1, · · · , n}2

}
≈ 15, where xi is
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Figure 2: Pareto quantile plot (x-axis: ln(k/i), y-axis: ln(Yn−i,n/Yn−k,n) for

i ∈ {0, . . . , k = 200}. The fitted line is depicted in red.)

the observation of the covariate X for day i. By applying the minimization procedure

described in Section 4.2, the estimated basis of the CTI subspace is given by

B̂n = (0.757, 0.032, 0.608, 0.239)>.

Note that the two largest components of B̂n correspond to NO2 and PM10. In Fig-

ure 3, the (100×α)% largest observations of O3 are represented versus the projection

of the covariate unto the estimated CTI subspace. It appears that an increase in

the extreme values of ozone is associated with increasing values of the 1-dimensional

reduced covariate that is to say with increasing values of NO2 and PM10.

We can now estimate the function x ∈ X 7→ γ(x) of conditional extreme value indices

by γ̂n(x) := ξ̂
(H)

B̂n
(B̂>n x). The estimated values γ̂n(xi) for xi ∈ X̂0 as a function of

B̂>n xi are depicted in Figure 4. This figure shows a positive correlation between the

tail-index and the CTI direction. As a conclusion, it seems that the magnitude of

extreme ozone concentrations increases with the concentrations of NO2 and PM10.

Note that a study of this data set was also conducted by Scrucca [16]. The author

concluded that ozone concentration (not necessarily extreme) mostly depends on the

level of NO2. Our study shows that PM10 becomes another important factor for

extreme ozone concentration.
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Figure 3: Largest observations of O3 versus the projected covariates on the linear

subspace spanned by B̂n. The smooth curve is obtained by fitting a polynomial

of order 2.

Conclusion

When the tail-index function is positive and defined on a linear subspace of lower

dimension (referred to as the CTI subspace), an estimation procedure of a basis of

this subspace is proposed in this paper. Its weak consistency is established and a

simulation study is conducted showing that our method is more efficient than the one

introduced in Gardes [7]. In addition, we propose a method for estimating the unknown

dimension of the dimension reduction subspace which gives satisfactory results on

synthetic data. The implementation of the estimation procedure described in this

paper in an R package is a work in progress.
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Figure 4: Estimated tail-index versus the projected covariates on the linear

subspace spanned by B̂n.

6 Proofs

6.1 Preliminary results

Lemma 1. Assume that model (M) holds with the conditions (C.1) and (C.2). For

B ∈ Bq, if the conditional tail-index γ(·) and the positive measurable function c(·)

involved in (C.2) are such that the function

y ∈ (0,∞) 7→ E
[
c(X)y−1/γ(X) | B>X

]
,

is almost surely regularly varying with index −1/ξB(B>X) < 0, then the conditional

distribution of Y given B>X is heavy-tailed with tail-index ξB(B>X).

Proof −We have to prove that the conditional survival function SB(·, B>X) is almost

surely regularly varying with tail-index −1/ξB(B>X). In the rest of the proof, all

the equalities and inequalities are assumed to hold almost surely. We start with the
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following equalities.

SB(y,B>X) = E
[
S(y,X) | B>X

]
=

∫ 1

0

P
(
S(y,X) > z | B>X

)
dz

=

∫ 1

0

P
(

1

γ(X)
<

ln(L(y,X))

ln(y)
− ln(z)

ln(y)

∣∣∣∣B>X) dz.
Set s = − ln(z)/ ln(y). We get

SB(y | B>X) = ln(y)

∫ ∞
0

y−sP
(

1

γ(X)
< s+

ln(L(y,X))

ln(y)

∣∣∣∣B>X) ds
By assumption (C.2), for all ε > 0, there exists Y0 > 0 such that for all y ≥ Y0,

SB(y | B>X) ≤ ln(y)

∫ ∞
0

y−sP
(

1

γ(X)
− ln(c(X))

ln(y)
< s+

ε

ln(y)

∣∣∣∣B>X) ds.
Hence, let t = s+ ε/ ln(y),

SB(y | B>X) ≤ eε ln(y)

∫ ∞
ε/ ln(y)

y−tP
(

1

γ(X)
− ln(c(X))

ln(y)
< t

∣∣∣∣B>X) dt.
Since for y large enough,

sup
x∈X

(
ε

ln(y)
+

ln(c(x))

ln(y)

)
< inf
x∈X

1

γ(x)
,

we have, for y large enough, that

P
(

1

γ(X)
− ln(c(X))

ln(y)
<

ε

ln(y)

∣∣∣∣B>X) = 0.

As a consequence,∫ ε/ ln(y)

0

y−sP
(

1

γ(X)
− ln(c(X))

ln(y)
< s

∣∣∣∣B>X) ds = 0,

leading to

SB(y | B>X) ≤ eε ln(y)

∫ ∞
0

y−tP
(

1

γ(X)
− ln(c(X))

ln(y)
< t

∣∣∣∣B>X) dt.
In the same way, we have for all ε > 0 that

SB(y | B>X) ≥ e−ε ln(y)

∫ ∞
0

y−tP
(

1

γ(X)
− ln(c(X))

ln(y)
< t

∣∣∣∣B>X) dt.
Remarking that

ln(y)

∫ ∞
0

y−tP
(

1

γ(X)
− ln(c(X))

ln(y)
< t

∣∣∣∣B>X) dt = E
[
c(X)y−1/γ(X) | B>X

]
,

we have shown that for all ε > 0, we have for y large enough, that

e−εE
[
c(X)y−1/γ(X) | B>X

]
≤ S(y | B>X) ≤ eεE

[
c(X)y−1/γ(X) | B>X

]
,

which is the desired result.
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The next result establishes the uniform consistency of the general estimator Ψ̂n(B,X0)

of Ψ(B,X0).

Lemma 2. Assume that model (M) holds together with conditions (C.4) and (C.5).

Then,

sup
B∈Bq

∣∣∣Ψ̂n(B,X0)−Ψ(B,X0)
∣∣∣ P→ 0.

Proof − We start by the inequality

sup
B∈Bq

∣∣∣Ψ̂n(B,X0)−Ψ(B,X0)
∣∣∣ ≤ Tn,1 + Tn,2,

Tn,1 := sup
B∈Bq

∣∣∣Ψ̃n(B,X0)−Ψ(B,X0)
∣∣∣

and Tn,2 := sup
B∈Bq

sup
x∈X0

∣∣∣ξ̂n,B(B>x)− ξB(B>x)
∣∣∣ .

Condition (C.5) ensures that Tn,2
P→ 0. For the term T1,n, we must prove a uni-

form law of large numbers for the set of parametric functions Fq := {x ∈ X 7→

ξB(B>x)IX0(x); B ∈ Bq}. This result is established by compiling different results

that can be found for instance in the monograph of van der Vaart and Wellner [19].

Note that under (C.1), Fq ⊂ L1(X) where L1(X) is the set of all functions f : X → R

such that E(|f(X)|) <∞. Let ‖ · ‖1 be the L1(X)-norm defined by ‖f‖1 = E(|f(X)|).

According to [19, Theorem 2.4.1], the result of Lemma 2 is true if the bracketing num-

ber N[](ε,Fq, ‖ · ‖1) is finite for all ε > 0 (see [19, Definition 2.1.6] for a definition of

bracketing numbers). We now use [19, Theorem 2.7.11] ensuring that under (C.4), one

has for all ε > 0,

N[](ε,Fq, ‖ · ‖1) ≤ N
(

ε

2E(M(X))
,Bq, ‖ · ‖

)
,

where for all η > 0 and ‖ ·‖ any norm in Rp×q, N(η,Bq, ‖ ·‖) is the covering number of

the set Bq (see [19, Definition 2.1.5]). We conclude the proof by using the compacity

of Bq and the fact that the covering number of a compact subset is finite.

6.2 Proofs of main results

Proof of Proposition 1 − Thanks to Lemma 1, we only need to prove that for all

B ∈ Bq, the function

y ∈ (0,∞) 7→ E
[
c(X)y1/γ(X) | B>X

]
, (5)
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is almost surely regularly varying with index −1/ξB(B>X) < 0. According to [9,

Theorem 1.2.1 and Remark 1.2.3], for any positive random variable Z, the limit

lim
y→∞

E[ln(Z/y)I(y,∞)(Z) | B>X]

P(Z > y | B>X)
= ξB(B>X), (6)

holds almost surely if and only if the function

y ∈ (0,∞) 7→ P(Z > y | B>X) = E
[
P(Z > y | X) | B>X

]
,

is almost surely regularly varying with index −1/ξB(B>X) < 0. Taking for Z a

positive random variable such that for all x ∈ X and y > [c(x)]γ(x),

P(Z > y | X = x) = c(x)y−1/γ(x),

proving (5) is thus equivalent to prove (6). In the rest of the proof, all equalities,

inequalities, limits, etc. are assumed to hold almost surely. Using the tower property

of the conditional expectation, we get

E[ln(Z/y)I(y,∞)(Z) | B>X] = E
[
E[ln(Z/y)I[y,∞)(Z) | X]

∣∣B>X] .
Moreover

E[ln(Z/y)I(y,∞)(Z) | X] =

∫ ∞
0

P(Z > yez | X)dz

= γ(X)c(X)y−1/γ(X) = γ(X)P(Z > y | X).

Hence,

E[ln(Z/y)I[y,∞)(Z) | B>X] = E
[
γ(X)P(Z > y | X)|B>X

]
= E

[
E[γ(X)I(y,∞)(Z) | X]

∣∣B>X] = E[γ(X)I(y,∞)(Z) | B>X]

=

∫ ξB(B>X)

0

P
(
{γ(X) > t} ∩ {Z > y}|B>X

)
dt.

As a consequence, prove (6) is equivalent to prove that

lim
y→∞

∫ ξB(B>X)

0

P
(
{γ(X) > t} ∩ {Z > y}|B>X

)
P(Z > y | B>X)

dt = ξB(B>X).

Since the integrand is positive and smaller than 1, one can use the dominated conver-

gence theorem to exchange limit and integral. It thus finally remains to prove that for

all t ∈ (0, ξB(B>X)),

lim
y→∞

P
(
{γ(X) > t} ∩ {Z > y}|B>X

)
P(Z > y | B>X)

= 1.
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Under (C.1), the distribution of the random variable γ(X) is absolutely continuous

and thus {γ(X) > t} = {γ(X) ≥ t}. This leads to the equality

P
(
{γ(X) > t} ∩ {Z > y}|B>X

)
P(Z > y | B>X)

= 1−
P
(
{γ(X) < t} ∩ {Z > y}|B>X

)
P(Z > y | B>X)

.

The rest of the proof consists in showing that for all t ∈ (0, ξB(B>X)),

lim
y→∞

y1/tP
(
{γ(X) < t} ∩ {Z > y}|B>X

)
= 0, (7)

and

lim
y→∞

y1/tP(Z > y | B>X) =∞. (8)

Let us start by proving (7). We have

y1/tP
(
{γ(X) > t} ∩ {Z > y}|B>X

)
= E

[
y1/tI(0,t)(γ(X))P(Z > y | X)

∣∣∣B>X]
= E

[
c(X)y1/t−1/γ(X)I(0,t)(γ(X))

∣∣∣B>X] .
Since for y > 1, one has c(X)y1/t−1/γ(X)I(0,t)(γ(X)) ≤ c(X) and since by assumption

c(·) is bounded, we can apply the dominated convergence theorem to get

lim
y→∞

y1/tP
(
{γ(X) > t} ∩ {Z > y}|B>X

)
= E

[
c(X)I(0,t)(γ(X)) lim

y→∞
y1/t−1/γ(X)

∣∣∣∣B>X] = 0,

proving (7). Let us now turn to the proof of (8). First, note that

P(Z > y | B>X) = E
[
P(Z > y | X)|B>X

]
= E

[
c(X)y−1/γ(X)

∣∣∣B>X] .
Moreover, for t ∈ (0, ξB(B>X)), let εt(B

>X) := (t−1−ξ−1
B (B>X))/2. Since ξB(B>X)

is the right endpoint of the conditional distribution of γ(X) given B>X, we have

P(γ−1(X) < t−1 − εt(B>X) | B>X) > 0.

Hence, for all y > 0,

y1/tP(Z > y | B>X) ≥ E
[
c(X)yt

−1−γ−1(X)I[0,t−1−εt(B>X)](γ
−1(X))

∣∣∣B>X]
≥ inf
x∈X

c(x)P
(
γ−1(X) < t−1 − εt(B>X) | B>X

)
yεt(B>X),

which converges to infinity as y →∞ since under (C.2), infx∈X c(x) > 0.
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Proof of Theorem 1 − The scheme of this proof is similar to the one used in the

proof of [11, Theorem 5.1]. From the definition (4) of B̂n, we have

P
(

Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)
)

= 1.

For a norm ‖ · ‖ in Rp×q, let U(B0, ρ) be the open ball in Rp×q of center B0 and radius

ρ > 0. For all ρ > 0,

1 = P
(

Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)
)

= P
({

Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)
}
∩ {B̂n ∈ U(B0, ρ)}

)
+ P

({
Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)

}
∩ {B̂n /∈ U(B0, ρ)}

)
.

Hence, since

P
({

Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)
}
∩ {B̂n ∈ U(B0, ρ)}

)
≤ P

(
B̂n ∈ U(B0, ρ)

)
,

and

P
({

Ψ̂n(B̂n,X0) ≤ Ψ̂n(B0,X0)
}
∩ {B̂n /∈ U(B0, ρ)}

)
≤ P

(
inf

B/∈U(B0,ρ)
Ψ̂n(B,X0) ≤ Ψ̂n(B0,X0)

)
,

we have that

P
(
B̂n ∈ U(B0, ρ)

)
+ P

(
inf

B/∈U(B0,ρ)
Ψ̂n(B,X0) ≤ Ψ̂n(B0,X0)

)
≥ 1.

As a consequence, if we show that

lim
n→∞

P
(

inf
B/∈U(B0,ρ)

Ψ̂n(B,X0) ≤ Ψ̂n(B0,X0)

)
= 0, (9)

then, for all ρ > 0,

lim
n→∞

P
(
B̂n ∈ U(B0, ρ)

)
= 1,

which is the desired result. To prove (9), let us remark first that

inf
B/∈U(B0,ρ)

(
Ψ̂n(B,X0)−Ψ(B,X0)

)
+ inf
B/∈U(B0,ρ)

Ψ(B,X0) ≤ inf
B/∈U(B0,ρ)

Ψ̂n(B,X0).

Hence,

pn := P
(

inf
B/∈U(B0,ρ)

Ψ̂n(B,X0) ≤ Ψ̂n(B0,X0)

)
≤ P

(
inf

B/∈U(B0,ρ)

(
Ψ̂n(B,X0)−Ψ(B,X0)

)
+ Ψ(B0,X0)− Ψ̂n(B0,X0) ≤ Ψ(B0,X0)− inf

B/∈U(B0,ρ)
Ψ(B,X0)

)
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Now, since for all (x, y) ∈ R2, if x ≤ y then |x| ≥ −y, we have

pn ≤ P
(∣∣∣∣ inf

B/∈U(B0,ρ)

(
Ψ̂n(B,X0)−Ψ(B,X0)

)
+ Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣ ≥ inf
B/∈U(B0,ρ)

Ψ(B,X0)−Ψ(B0,X0)

)
Under condition (C.3), for all ρ > 0, there exists ε > 0 such that

inf
B/∈U(B0,ρ)

Ψ(B,X0)−Ψ(B0,X0) > ε.

Furthermore,∣∣∣∣ inf
B/∈U(B0,ρ)

(
Ψ̂n(B,X0)−Ψ(B,X0)

)
+ Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣∣
≤
∣∣∣∣ inf
B/∈U(B0,ρ)

(
Ψ̂n(B,X0)−Ψ(B,X0)

)∣∣∣∣+
∣∣∣Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣
≤ sup
B/∈U(B0,ρ)

∣∣∣Ψ̂n(B,X0)−Ψ(B,X0)
∣∣∣+
∣∣∣Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣
≤ sup
B∈Bq

∣∣∣Ψ̂n(B,X0)−Ψ(B,X0)
∣∣∣+
∣∣∣Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣ .
Hence,

pn ≤ P

(
sup
B∈Bq

∣∣∣Ψ̂n(B,X0)−Ψ(B,X0)
∣∣∣+
∣∣∣Ψ(B0,X0)− Ψ̂n(B0,X0)

∣∣∣ ≥ ε) .
We conclude the proof by using Lemma 2.

Proof of Proposition 2 − Let us start with some notations. For all matrix B ∈ Bd

with d ∈ {1, · · · , p} and for any x ∈ X , let Ax(B) :=
{
z ∈ Rp; B>z = B>x

}
. Note

that, according to (2), ξB(B>x) = max {γ(z); z ∈ Ax(B)}. Let us introduce the set

B?d+1 gathering the matrices of the form [B0,d, u] ∈ Rp×(d+1) where u ∈ Rp is a vector

linearly independent to the columns of B0,d. For all Cd+1 ∈ B?d+1, let C̃d+1 ∈ Bd+1

be the canonical basis of the subspace spanned by the columns of Cd+1. It is readily

seen that Ax(C̃d+1) = Ax(Cd+1) and thus that for all x ∈ X , ξC̃d+1

(
C̃>d+1x

)
=

ξCd+1

(
C>d+1x

)
. Since Ax(Cd+1) ⊂ Ax(B0,d), for all x ∈ X , we have ξC̃d+1

(
C̃>d+1x

)
≤

ξB0,d

(
B>0,dx

)
, leading to

min
B∈Bd+1

Ψ(B,X0) = min
B∈Bd+1

E
[
ξB(B>X)IX0(X)

]
≤ E

[
ξC̃d+1

(C̃>d+1X)IX0(X)
]

≤ E
[
ξB0,d(B>0,dX)IX0(X)

]
= min
B∈Bd

Ψ(B,X0), (10)

for all d ∈ {1, · · · , p}. Moreover, under (C.3),

min
B∈Bq

Ψ(B,X0) = Ψ(B0,X0) = E [γ(X)IX0(X)] .
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Since for all B ∈ Bd and x ∈ X , ξB(B>x) = max{γ(z); B>z = B>x} ≥ γ(x), we

have, for all d ≥ q,

E [γ(X)IX0(X)] ≤ min
B∈Bd

Ψ(B,X0). (11)

From (10), we also have that for all d ≥ q,

min
B∈Bd

Ψ(B,X0) ≤ min
B∈Bq

Ψ(B,X0) = E [γ(X)IX0(X)] . (12)

Gathering (11) and (12) entails that for all d ≥ q,

min
B∈Bd

Ψ(B,X0) = E [γ(X)IX0(X)] ,

and the proof is complete.
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Appendix − Proof of Theorem 2

We shall prove that the estimator ξ̂
(H)
B (B>x;α, h) = ξ̂

(H)
B (B>x) satisfies condi-

tion (C.5) i.e., that for all ε > 0, the probability

pn := P

(
sup

(B,x)∈Θ

∣∣∣ξ̂(H)
B (B>x)− ξB(B>x)

∣∣∣ > ε

)
,

converges to 0 as n goes to infinity. The proof consists in showing the uniform consis-

tency on a sequence of “sufficiently large” subsets Θn of Θ and deal with the oscillation

of the estimator. We use the same scheme as the one used for the proof of [8, Theo-

rem 1] but here we have to deal with the uniformity on Bq × X and not only on X .

This gives rise to technical difficulties.

Since Θ is a compact subset, for a fixed η > q and every n ∈ N \ {0}, there

exists a finite subset Θn of Θ such that for all θ := (B, x) ∈ Θ, one can find

θ̃n(θ) = (B̃n(θ), x̃n(θ)) ∈ Θn satisfying δ(θ̃n(θ), θ) < n−η. Note that Θn can be

chosen such that for some c = c(η) > 0, card(Θn) = O(nc) for all n ∈ N \ {0}, see [10,

Proof of Lemma 1]. The triangular inequality yields:

pn ≤ I

{
sup

θ=(B,x)∈Θ

∣∣∣ξB(B>x)− ξB̃n(θ)

(
[B̃n(θ)]>x̃n(θ)

)∣∣∣ > ε/3

}

+ P

(
sup

θ̃=(B̃,x̃)∈Θn

∣∣∣ξ̂(H)

B̃

(
B̃>x̃

)
− ξB̃(B̃>x̃)

∣∣∣ > ε/3

)

+ P

(
sup

θ=(B,x)∈Θ

∣∣∣ξ̂(H)

B̃n(θ)

(
[B̃n(θ)]>x̃n(θ)

)
− ξ̂(H)

B

(
B>x

)∣∣∣ > ε/3

)
.

We must prove that the three terms in the above inequality converge to 0 as n goes

to infinity. This is carried out in Propositions 3, 4 and 5 given below.

Proposition 3. Under condition (H.3), for n large enough and for all ε > 0,

sup
θ=(B,x)∈Θ

∣∣∣ξB(B>x)− ξB̃n(θ)

(
[B̃n(θ)]>x̃n(θ)

)∣∣∣ > ε.

Proposition 4. Under conditions (C.1), (H.1), (H.2), (H.4) and (H.5), if the se-

quences (α) and (h) are such that nhqα/ ln(n) → ∞ and α ln(nhq) → 0 as n → ∞

then, for all ε > 0,

P

(
sup

θ̃=(B̃,x̃)∈Θn

∣∣∣ξ̂(H)

B̃

(
B̃>x̃

)
− ξB̃(B̃>x̃)

∣∣∣ > ε

)
→ 0.
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Proposition 5. Under conditions (C.1), (H.1), (H.2), (H.4) and (H.5), if the se-

quences (α) and (h) are such that nhqα/ ln(n) → ∞ and α ln(nhq) → 0 as n → ∞

then, for all ε > 0,

P

(
sup

θ=(B,x)∈Θ

∣∣∣ξ̂(H)

B̃n(θ)

(
[B̃n(θ)]>x̃n(θ)

)
− ξ̂(H)

B

(
B>x

)∣∣∣ > ε

)
→ 0.

Proof of Proposition 3

From (H.3), the function (B, x) ∈ Θ 7→ ξB(B>x) is continuous. Since Θ is compact,

it is also uniformly continuous which shows the result since δ(θ̃n(θ), θ) < n−η → 0 as

n goes to infinity.

Proof of Proposition 4

Notations

For all i ∈ {1, · · · , n} and B ∈ Bq, let

Vi(B) := SB(Yi, B
>Xi) and U?i = Ui(B, x, h) = SB(Z?i , B

>W ?
i ), (13)

where the random variables Z?i and W ?
i have been introduced in Section 3.3. Recall

that the star (?) is here to recall the dependence on B, x and h.

Let m :=
(
m(B̃, x̃); (B̃, x̃) ∈ Θn

)
be a list of card(Θn) integers. We introduce the

event

Bn(m) :=
⋂

(B̃,x̃)∈Θn

{
M(B̃, x̃, h) = m(B̃, x̃)

}
.

Finally, denoting by ϑq the volume of the unit q-ball and by

Ln =

{
m; m(B̃, x̃) ∈

{⌈
C1ϑq

2
nhq

⌉
, · · · ,

⌊
3C2ϑq

2
nhq

⌋}
for all (B̃, x̃) ∈ Θn

}
,

we introduce the event

An :=
⋃

m∈Ln

Bn(m).

Note that the events {Bn(m); m ∈ Ln} are disjoint.

Preliminary results

The following result of real analysis will be useful in the proof of Lemma 6. A proof

can be found in [8, Lemma 1].
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Lemma 3. Let {a1, · · · , an} and {b1, · · · , bn} be two sets of distincts real numbers such

that for all i = 1, · · · , n, ai ≤ bi. Denoting by {a(1), · · · , a(n)} and {b(1), · · · , b(n)} the

ordered sets, we have for all i = 1, · · · , n that a(i) ≤ b(i).

The next result is dedicated to the random variables Vi(B) and U?i .

Lemma 4. i) The random variables V1(B), . . . , Vn(B) are independent standard

uniform random variables which are independent from X1, . . . , Xn.

ii) For all (B̃, x̃) ∈ Θn and conditionally to Bn(m) with m :=(
m(B̃, x̃); (B̃, x̃) ∈ Θn

)
, the random variables U?1 , . . . , U

?
m(B̃,x̃)

are independent

standard uniform random variables.

iii) For all (B̃, x̃) ∈ Θn and conditionally to Bn(m), the random variables{
Ei(B̃, x̃, h) = E?i := i ln

(
U?(i)
U?(i+1)

)
, i = 1, · · · ,m(B̃, x̃)

}
,

are independent standard exponential random variables.

Proof − Points i) and ii) are proved in [8, Lemma 4]. For the point iii), let m =

m(B̃, x̃) and for all i = 1, · · · ,m, let F ?i := − ln(U?i ). Using the result of ii), we

get that conditionally to Bn(m), F ?1 , · · · , F ?m are independent standard exponential

random variables. Hence, if F(1) < · · · < F(m) are the associated order statistics,

{E?i , i = 1, · · · ,m} =
{
i
(
F ?(m−i+1) − F ?(m−i)

)
, i = 1, · · · ,m

}
.

We conclude the proof by using Rényi representation theorem.

The next result is dedicated to the number of observations in the set T (B, x, h).

Lemma 5. Under conditions (H.1) and (H.2), if nhq/ ln(n)→∞ as n→∞ then,

1

nhq
sup

(B̃,x̃)∈Θn

∣∣∣M(B̃, x̃, h)− ϑqnhqfB̃
(
B̃>x̃

)∣∣∣ P→ 0.

Lemma 5 means that, uniformly on (B̃, x̃) ∈ Θn,

M(B̃, x̃, h)

nhq
P→ ϑqfB̃

(
B̃>x̃

)
.

As a consequence, since

An :=
⋂

(B̃,x̃)∈Θn

{
M(B̃, x̃, h)

nhq
∈
[
C1ϑq

2
,

3C2ϑq
2

]}
,
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and since, from (H.2), 0 < C1 < fB̃

(
B̃>x̃

)
< C2 for all (B̃, x̃) ∈ Θn, it is readily seen

that P(An)→ 1.

Proof Lemma 5 − For all (B̃, x̃) ∈ Θn, we have the inequality∣∣∣M(B̃, x̃, h)− ϑqnhqfB̃
(
B̃>x̃

)∣∣∣ ≤ T1,n(B̃, x̃, h) + T2,n(B̃, x̃, h),

where

T1,n(B̃, x̃, h) :=
∣∣∣nP(X ∈ T (B̃, x̃, h)

)
− ϑqnhqfB̃

(
B̃>x̃

)∣∣∣ ,
and

T2,n(B̃, x̃, h) :=
∣∣∣M(B̃, x̃, h)− nP

(
X ∈ T (B̃, x̃, h)

)∣∣∣ .
We thus have to prove that, as n→∞,

1

nhq
sup

(B̃,x̃)∈Θn

T1,n(B̃, x̃, h)→ 0 and
1

nhq
sup

(B̃,x̃)∈Θn

T2,n(B̃, x̃, h)
P→ 0. (14)

Denoting by Uq the unit q-ball, we get

P
(
X ∈ T (B̃, x̃, h)

)
= hq

∫
Uq
fB̃

(
B̃>x̃+ hu

)
du

= ϑqh
qfB̃

(
B̃>x̃

)
+ hq

∫
Uq

[
fB̃

(
B̃>x̃+ hu

)
− fB̃

(
B̃>x̃

)]
du. (15)

Since B̃ ∈ Bq is an orthogonal matrix, we can write

fB̃

(
B̃>x̃+ hu

)
= fB̃

(
B̃>

(
x̃+ hB̃(B̃>B̃)−1u

))
.

By construction of the set Bq, we have ‖B̃(B̃>B̃)−1‖ = ‖B̃‖ <∞. Hence, for all u ∈

Uq, the vector x̃+hB̃(B̃>B̃)−1u belongs to the ball of center x̃ and radius h‖B̃‖. Since

h → 0 as n → ∞, using [8, Lemma 2] we get that for n large enough and uniformly

on (B̃, x̃) ∈ Θn, the vector x̃+ hB̃u belongs to X . Hence, from condition (H.2), for n

large enough, we have that for all u ∈ Uq, there exists Kf > 0 such that∣∣∣fB̃ (B̃>x̃+ hu
)
− fB̃

(
B̃>x̃

)∣∣∣ ≤ Kfh‖B̃u‖ ≤ Kh. (16)

Gathering (15) and (16), we obtain that for all (B̃, x̃) ∈ Θn, T1,n(B̃, x̃, h) ≤

Kfϑqnh
q+1, proving the first part of (14). Let us now focus on the second part

of (14). For all ε > 0,

P

(
1

nhq
sup

(B̃,x̃)∈Θn

T2,n(B̃, x̃, h) > ε

)
= P

 ⋃
(B̃,x̃)∈Θn

{
1

nhq
T2,n(B̃, x̃, h) > ε

}
≤ card(Θn)× P

(
1

nhq
T2,n(B̃, x̃, h) > ε

)
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We now use Berstein’s inequality to get

P
(

1

nhq
T2,n(B̃, x̃, h) > ε

)
≤ 2 exp

(
− εnhq

2[λn(B̃, x̃, h)− 1/3]

)
,

where

λn(B̃, x̃, h) :=
1

εhq
P
(
X ∈ T (B̃, x̃, h)

)
P
(
X /∈ T (B̃, x̃, h)

)
.

Using (15) and (16), we have

P
(
X ∈ T (B̃, x̃, h)

)
P
(
X /∈ T (B̃, x̃, h)

)
≤ P

(
X ∈ T (B̃, x̃, h)

)
≤ ϑqhq

(
fB̃

(
B̃>x̃

)
+Rn

)
,

where |Rn| ≤ Kϑqh → 0. Hence, from (H.2), there exists C2 > 0 such that

λn(B̃, x̃, h) ≤ 2ϑqC2/ε. Recall that card(Θn) = O(nc), we finally get that

P

(
1

nhq
sup

(B̃,x̃)∈Θn

T2,n(B̃, x̃, h) > ε

)
= O

(
nc exp

(
− εnhq

2[2ϑqC2/ε− 1/3]

))
,

which converges to 0 since nhq/ ln(n)→∞.

Let us now provide an expansion of the conditional tail-index estimator. We use the

notations introduced in Lemma 4.

Lemma 6. Assume that nhqα→∞ as n→∞. Uniformly on (B̃, x̃) ∈ Θn, for n large

enough, we have conditionally to Bn(m) with m :=
(
m = m(B̃, x̃); (B̃, x̃) ∈ Θn

)
, that∣∣∣∣∣∣ξ̂(H)

B̃
(B̃>x̃)− ξB̃(B̃>x̃)

1

bαmc

bαmc∑
i=1

E?i

∣∣∣∣∣∣ ≤ 2ω?
(
V(1)(B̃), V(n)(B̃)

)
+ ∆B̃,x̃

(
1/U?(bαM?c+1)

)
.

Proof − Since nhqα→∞, we have conditionally to Bn(m) and uniformly on (B̃, x̃) ∈

Θn that for n large enough,

ξ̂
(H)

B̃
(B̃>x̃) =

1

bαmc

bαmc∑
i=1

ln

(
Z?(m−i+1)

Z?(m−bαmc)

)
,

where we use the shortcuts m = m(B̃, x̃) and Z?i = Zi(B̃, x̃, h). For all i ∈

{1, · · · , bαmc}, we have

lnZ?i = ln
(
QB̃(U?i , B̃

>W ?
i )
)
≤ ln

(
QB̃(U?i , B̃

>x̃)
)

+ ω?
(
U?(1), U

?
(m)

)
,
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where U?i = Ui(B̃, x̃, h) and ω?(u, v) = ω(u, v, B̃, x̃, h). Using Lemma 3, we get that

for all i = 1, · · · ,m

lnZ?(m−i+1) ≤ ln
(
QB̃(U?(i), B̃

>x̃)
)

+ ω?
(
U?(1), U

?
(m)

)
.

Similarly,

lnZ?(m−i+1) ≥ ln
(
QB̃(U?(i), B̃

>x̃)
)
− ω?

(
U?(1), U

?
(m)

)
.

We deduce from these two last inequalities that∣∣∣∣∣ln
(
Z?(m−i+1)

Z?(m−bαmc)

)
− ln

(
QB̃(U?(i), B̃

>x̃)

QB̃(U?(bαmc+1), B̃
>x̃)

)∣∣∣∣∣ ≤ 2ω?
(
V(1)(B̃), V(m)(B̃)

)
,

since V(1)(B̃) ≤ U?(1) and V(m)(B̃) ≥ U?(m). As a consequence, conditionally to Bn(m)

and uniformly on (B̃, x̃) ∈ Θn we have for n large enough,∣∣∣∣∣∣ξ̂(H)

B̃
(B̃>x̃)− 1

bαmc

bαmc∑
i=1

ln

(
QB̃(U?(i), B̃

>x̃)

QB̃(U?(bαmc+1), B̃
>x̃)

)∣∣∣∣∣∣ ≤ 2ω?
(
V(1)(B̃), V(m)(B̃)

)
.

Now remark that from Lemma 4, iii) and since ln(QB̃(u, B̃>x̃)) = ξB̃(B̃>x̃) ln(u−1) +

ln(`B̃(u−1, B̃>x̃)),

1

bαmc

bαmc∑
i=1

ln

(
QB̃(U?(i), B̃

>x̃)

QB̃(U?(bαmc+1), B̃
>x̃)

)
=

1

bαmc

bαmc∑
i=1

i ln

(
QB̃(U?(i), B̃

>x̃)

QB̃(U?(i+1), B̃
>x̃)

)

= ξB̃(B̃>x̃)
1

bαmc

bαmc∑
i=1

E?i +
1

bαmc

bαmc∑
i=1

i ln

(
`B̃(1/U?(i), B̃

>x̃)

`B̃(1/U?(i+1), B̃
>x̃)

)
.

We conclude the proof by remarking that∣∣∣∣∣∣ 1

bαmc

bαmc∑
i=1

i ln

(
`B̃(1/U?(i), B̃

>x̃)

`B̃(1/U?(i+1), B̃
>x̃)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

bαmc

bαmc∑
i=1

ln

(
`B̃(1/U?(i), B̃

>x̃)

`B̃(1/U?(bαmc+1), B̃
>x̃)

)∣∣∣∣∣∣ ≤ ∆B̃,x̃

(
1/U?(bαmc+1)

)
.

We are now in position to prove Proposition 4.

Proof of Proposition 4

For all ε > 0, we have

P

(
sup

(B̃,x̃)∈Θn

∣∣∣ξ̂(H)

B̃

(
B̃>x̃

)
− ξB̃(B̃>x̃)

∣∣∣ > ε

)

≤ [1− P(An)] + P

({
sup

(B̃,x̃)∈Θn

∣∣∣ξ̂(H)

B̃

(
B̃>x̃

)
− ξB̃(B̃>x̃)

∣∣∣ > ε

}
∩ An

)
.
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Since Lemma 5 entails that P(An)→ 1, we only need to focus on the second term. We

have

P

({
sup

(B̃,x̃)∈Θn

∣∣∣ξ̂(H)

B̃

(
B̃>x̃

)
− ξB̃(B̃>x̃)

∣∣∣ > ε

}
∩ An

)

≤
∑

m∈Ln

P

({
sup

(B̃,x̃)∈Θn

∣∣∣ξ̂(H)

B̃

(
B̃>x̃

)
− ξB̃(B̃>x̃)

∣∣∣ > ε

}∣∣∣∣∣Bn(m)

)
P(Bn (m)) .

Since the events {Bn(m), m ∈ Ln} are disjoints, we obtain

P

({
sup

(B̃,x̃)∈Θn

∣∣∣ξ̂(H)

B̃

(
B̃>x̃

)
− ξB̃(B̃>x̃)

∣∣∣ > ε

}
∩ An

)

≤ sup
m∈Ln

P

({
sup

(B̃,x̃)∈Θn

∣∣∣ξ̂(H)

B̃

(
B̃>x̃

)
− ξB̃(B̃>x̃)

∣∣∣ > ε

}∣∣∣∣∣Bn(m)

)
=: sup

m∈Ln

T (m).

Using Lemma 6 and keeping the same notations, we get that T (m) ≤ T1(m)+T2(m)+

T3(m), where

T1(m) := P

(
sup

(B̃,x̃)∈Θn

ω?
(
V(1)(B̃), V(n)(B̃)

)
> ε/8

∣∣∣∣∣Bn(m)

)
,

T2(m) := P

 sup
(B̃,x̃)∈Θn

ξB̃(B̃>x̃)

∣∣∣∣∣∣ 1

bαmc

bαmc∑
i=1

E?i − 1

∣∣∣∣∣∣ > ε/2

∣∣∣∣∣∣Bn(m)

 ,

and

T3(m) := P

(
sup

(B̃,x̃)∈Θn

∆B̃,x̃

(
1/U?(bαmc+1)

)
> ε/4

∣∣∣∣∣Bn(m)

)
.

Let us first focus on the term T1(m). Recall that there exists some c > 0 such that

card(Θn) = O(nc). Let κ > c and let us introduce the set

Gn :=
⋂

(B̃,x̃)∈Θn

{
V(1)(B̃) > n−(1+κ)

}
∩
{
V(n)(B̃) < 1− n−(1+κ)

}
.

We have,

1− P(Gn) = P

 ⋃
(B̃,x̃)∈Θn

{
V(1)(B̃) ≤ n−(1+κ)

}
∪
{
V(n)(B̃) ≥ 1− n−(1+κ)

}
.


≤ 2card(Θn)

(
1− [1− n−(1+κ)]n

)
= O(nc−κ)→ 0.

Hence, for all m ∈ Ln, we have

T1(m) ≤ I
{
ω?
(
n−(1+κ), 1− n−(1+κ)

)
> ε/8

}
+ [1− P (Gn|Bn(m))].
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From Lemma 4 i), we know that the events Gn and Bn(m) are independent. Hence,

P(Gn | Bn(m)) = P(Gn)→ 1 and using condition (H.5),

sup
m∈Ln

T1(m) ≤ I
{
ω?
(
n−(1+κ), 1− n−(1+κ)

)
> ε/8

}
+ [1− P(Gn)]→ 0. (17)

For the term T2(m), we have under (C.1)

T2(m) ≤ card(Θn) sup
(B̃,x̃)∈Θn

P

∣∣∣∣∣∣ 1

bαmc

bαmc∑
i=1

E?i − 1

∣∣∣∣∣∣ > ε

2γ

∣∣∣∣∣∣Bn(m)

 .

Using Chernoff’s inequality for exponential random variables, there exists a constant

C3 > 0 such that for all m ∈ Ln,

T2(m) ≤ card(Θn) exp (−C3bαmc) ≤ card(Θn) exp

(
−3C2C3ϑq

2
nhqα

)
.

Since card(Θn) = O(nc) and nhqα/ ln(n)→∞, we get that

sup
m∈Ln

T2(m)→ 0. (18)

Finally, for the term T3(m), we start with the inequality

T3(m) ≤ card(Θn) sup
(B̃,x̃)∈Θn

P
(

∆B̃,x̃

(
1/U?(bαmc+1)

)
> ε/4

∣∣Bn(m)
)
.

For all sequence (εn) such that εn → 0, condition (H.4) entails that for n large

enough and uniformly on (B̃, x̃) ∈ Θn, if the event {U?(bαmc+1) ≤ εn} holds then

∆B̃,x̃

(
1/U?(bαmc+1)

)
≤ ε/4. As a consequence,

T3(m) ≤ card(Θn) sup
(B̃,x̃)∈Θn

P
(
U?(bαmc+1) > εn

∣∣Bn(m)
)
.

From the second part of Lemma 4, conditionally to Bn(m), the random variable

U?(bαmc+1) follows a Beta distribution with parameters bαmc+1 and m−bαmc. Hence,

P
(
U?(bαmc+1) > εn

∣∣Bn(m)
)

=
m!

bαmc!(m− bαmc − 1)!

∫ 1

εn

xbαmc(1− x)m−bαmc−1dx

≤ mbαmc+1(1− εn)m−bαmc−1

Since ln(1− u) ≤ −u for all u ∈ (0, 1), we have for all m ∈ Ln,

P
(
U?(bαmc+1) > εn

∣∣Bn(m)
)

≤ exp

[
−mεn

(
m− bαmc+ 1

2m
− (bαmc+ 1)

ln(m)

mεn

)]
.
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Since m = O(nhq) uniformly on (B̃, x̃) ∈ Θn, it is readily seen that for all sequence εn

such that α ln(nhq)/εn → 0, for n large enough, there exists a constant C4 > 0 such

that

sup
(B̃,x̃)∈Θn

P
(
U?(bαmc+1) > εn

∣∣Bn(m)
)
≤ exp (−C4nh

qεn) .

As a consequence, since card(Θn) = O(nc), for a sequence (εn) such that

α ln(nhq)/εn → 0 and nhqεn/ ln(n)→∞, we get that

sup
m∈Ln

T3(m)→ 0. (19)

For instance, one can take εn = (α ln(nhq))1/2. Since by assumption, α ln(nhq) → 0,

we have α ln(nhq)/εn → 0. Moreover,

nhqεn
ln(n)

=
nhqα

ln(n)

(
ln(nhq)

α

)1/2

→∞,

since by assumption nhqα/ ln(n)→∞.

The conclusion of the proof is then straightforward by gathering (17), (18) and (19).

Proof of Proposition 5

Notations

Recall that for all θ = (B, x) ∈ Θ we have δ(θ̃n(θ), θ) < n−η with η > q. For all C̃ > 0

and (B̃, x̃) ∈ Θn, let

T̃n,C̃(B̃, x̃, h) :=
{
y ∈ X ; h− C̃n−η <

∥∥∥B̃>(x̃− y)
∥∥∥ ≤ h+ C̃n−η

}
= T (B̃, x̃, h+ C̃n−η) \ T (B̃, x̃, h− C̃n−η)

Note that since η > q, for n large enough, C̃n−η < h. Let also

D̃n(B̃, x̃) :=

n∑
i=1

I
{
Xi ∈ T̃n,C̃(B̃, x̃, h)

}
.

Preliminary results

Lemma 7. There exists a constant C̃ > 0 such that for all θ = (B, x) ∈ Θ,

T (B̃n(θ), x̃n(θ), h− C̃n−η) ⊂ T (B, x, h) ⊂ T (B̃n(θ), x̃n(θ), h+ C̃n−η)
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Proof of Lemma 7 − From the reverse triangular inequality, ‖B>(y − x)‖ ≥

|Tn,1(θ)− Tn,2(θ)|, where

Tn,1(y, θ) :=
∥∥∥[B̃n(θ)]>(x̃n(θ)− y)

∥∥∥
and Tn,2(y, θ) :=

∥∥∥(B − B̃n(θ))>(y − x) + [B̃n(θ)]>(x− x̃n(θ))
∥∥∥ .

Now, remark that there exists a constant K0 > 0 such that ‖(B−B̃n(θ))>‖ ≤ K0‖B−

B̃n(θ)‖. In particular, ‖[B̃n(θ)]>‖ ≤ K0.

Furthermore, since x and y belong to the compact X , we have ‖x−y‖ ≤ 2N(X ) where

N(X ) = sup
x∈X
‖x‖ <∞. As a consequence, letting C̃ := K0 max(2N(X ), 1), we get

Tn,2(y, θ) ≤ C̃δ(θ̃n(θ), θ) ≤ C̃n−η.

Hence, if Tn,1(y, θ) > h + C̃n−η then ‖B>(y − x)‖ > h. In other word, if y /∈

T (B̃n(θ), x̃n(θ), h+ C̃n−η) then y /∈ T (B, x, h) proving the second inclusion. Next, if

Tn,1(y, θ) ≤ h − C̃n−η then ‖B>(y − x)‖ ≤ min(h − C̃n−η, C̃n−η) < h. This entails

that if y ∈ T (B̃n(θ), x̃n(θ), h − C̃n−η) then y ∈ T (B, x, h) proving the first inclusion

and completing the proof.

Lemma 8. Assume that conditions (H.1) and (H.2) holds. If nhq/ ln(n) → ∞ as

n→∞ then for all integer K such that K > bc/(η − 1)c,

lim
n→∞

P

(
sup

(B̃,x̃)∈Θn

D̃n(B̃, x̃) ≥ K

)
= 0.

Proof of Lemma 8 − It suffices to prove that for all K > c/(η − 1),

lim
n→∞

P

(
sup

(B̃,x̃)∈Θn

D̃n(B̃, x̃) ≥ K

)
≤ lim
n→∞

∑
(B̃,x̃)∈Θn

P
(
D̃n(B̃, x̃) ≥ K

)
≤ lim

n→∞
card(Θn) sup

(B̃,x̃)∈Θn

P
(
D̃n(B̃, x̃) ≥ K

)
= 0.

Let h± := h ± C̃n−η and let I be the set of all list i := {i1, · · · , iK} of K distinct

indices in {1, · · · , n}K .

P
(
D̃n(B̃, x̃) ≥ K

)
= P

(⋃
i∈I

K⋂
s=1

{
h− < ‖B̃(Xis − x̃)‖ ≤ h+

})

=

(
n

K

)[
P
(
h− < ‖B̃(X − x̃)‖ ≤ h+

)]K
.
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From (15) in the proof of Lemma 5,

P
(
h− < ‖B̃(X − x̃)‖ ≤ h+

)
= P

(
‖B̃(X − x̃)‖ ≤ h+

)
− P

(
‖B̃(X − x̃)‖ ≤ h−

)
= ϑqfB̃

(
B̃>x̃

)
[(h+)q − (h−)q] + (h+)qR+ − (h−)qR−,

where

R± :=

∫
Uq

[
fB̃

(
B̃>x̃+ h±u

)
− fB̃

(
B̃>x̃

)]
du.

First remark that

(h+)q − (h−)q = hq
[(

1 + C̃
n−η

h

)q
−
(

1− C̃ n
−η

h

)q]
.

Since η > q, we know that n−η/h→ 0 and thus,

(h+)q − (h−)q = O
(
hq−1n−η

)
. (20)

Furthermore, (h+)qR+ − (h−)qR− = (h+)qR1,+ − (h−)qR1,− + [(h+)q − (h−)q]R2,

where

R1,± :=

∫
Uq

[
fB̃

(
B̃>x̃+ h±u

)
− fB̃

(
B̃>x̃+ hu

)]
du

and R2 :=

∫
Uq

[
fB̃

(
B̃>x̃+ hu

)
− fB̃

(
B̃>x̃

)]
du.

Mimicking the proof of (16) in the proof of Lemma 5, we have

|R1,±| ≤ ϑqKf C̃n
−η and |R2| ≤ ϑqKfh.

From (20), (h+)qR+ − (h−)qR− = O(hqn−η) and, since from (H.2) |fB(B>x)| is

uniformly bounded on (B, x) ∈ Θ,

P
(
h− ≤ ‖B̃(X − x̃)‖ ≤ h+

)
= O(hq−1n−η) +O(hqn−η) = O(n−η). (21)

Since
(
n
K

)
= O(nK) and card(Θn) = O(nc), we get

card(Θn) sup
(B̃,x̃)∈Θn

P
(
D̃n(B̃, x̃) ≥ K

)
= O

(
nc+K(1−η)

)
.

We conclude the proof by remarking that the condition K > bc/(η − 1)c entails that

nc+K(1−η) → 0.
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Proof of Proposition 5

We keep the notations used for the definition of the conditional tail-index estimator

in Section 3.3. In particular, M? = M(B, x, h) and Z?i = Zi(B, x, h). In addition,

for all θ = (B, x) ∈ Θ, let M̃±n := M(B̃n(θ), x̃n(θ), h±) and for i = 1, · · · , M̃±n , let

Z̃?,±i := Z
(M̃±n −i+1)

(B̃n(θ), x̃n(θ), h±). Moreover, for K > bc/(η − 1)c, let

Cn(K) :=

{
sup

(B̃,x̃)∈Θn

D̃n(B̃, x̃) < K

}
∩ A+

n ∩ A−n ,

where

A±n :=
⋂

(B̃,x̃)∈Θn

{
M(B̃, x̃, h±)

n(h±)q
∈
[
C1ϑq

2
,

3C2ϑq
2

]}
,

From Lemma 5 and Lemma 8, we know that P(Cn(K)) → 1. In what follows, we

assume that the event Cn(K) holds. We have the following inequalities: for all (B, x) ∈

Θ,

M? −K + 1 ≤ M̃−n ≤M?, M? ≤ M̃+
n ≤M? +K − 1,

and
C1ϑq

2
n(h−)q ≤M? ≤ 3C2ϑq

2
n(h+)q. (22)

As a straightforward consequence, for n large enough and uniformly on (B, x) ∈ Θ,

we have bαM?c < M̃−n < M̃+
n .

Now, Lemma 7 ensures that for all i ∈ {1, · · · , bαM?c},

Z̃?,−
(M̃−n −i+1)

≤ Z?(M?−i+1) ≤ Z̃?,+(M̃+
n −i+1)

. (23)

Moreover, for all k+ ≥ bαM?c + K, we have Z?(M?−bαM?c) ≥ Z̃?,+
(M̃+

n −k+)
. Indeed, the

largest value of Z̃?,+
(M̃+

n −k+)
is obtained when M̃+

n = M? + K − 1 with the additional

(K − 1) observations larger than the maximal observation Z?(M?). In the same way,

for all k− ≤ bαM?c − K + 1, we have Z?(M?−bαM?c) ≤ Z̃?,−
(M̃−n −k−)

. Note that for

n large enough and uniformly on (B, x) ∈ Θ, bαM?c > K − 1. To sum up, for

k+ ≥ bαM?c+K, and k− ≤ bαM?c −K + 1, we have for n large enough, that

Z̃?,−
(M̃−n −k−)

≥ Z?(M?−bαM?c) ≥ Z̃?,+(M̃+
n −k+)

. (24)

Taking α+ := α+ 2(K + 2)/[C1ϑqn(h+)q], we have

bα+M̃
+
n c ≥ αM̃+

n +
2(K + 2)

C1ϑqn(h+)q
M̃+
n + 1 ≥ αM̃+

n +K + 1 ≥ bαM?c+K.

Similarly, we show that for α− := α− 2(K + 1)/[C1ϑqn(h−)q],

bα−M̃−n c ≤ bαM?c −K + 1.
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We can thus use inequality (23) and inequality (24) with k− = bα−M̃−n c and k+ =

bα+M̃
+
n c to obtain for n large enough and uniformly on θ = (B, x) ∈ Θ,

bα−M̃−n c
bαM?c ξ̂

(H)

B̃n(θ)

(
[B̃n(θ)]>x̃n(θ);α−, h−

)
≤ ξ̂

(H)
B

(
B>x;α, h

)
≤ bα+M̃

+
n c

bαM?c ξ̂
(H)

B̃n(θ)

(
[B̃n(θ)]>x̃n(θ);α+, h+

)
.

Note from (22), it easy to check that there exist constants C− > 0 and C+ > 0 such

that for all (B, x) ∈ Θ

1− C−
nhq

≤ bα−M̃
−
n c

bαM?c ≤ 1 and 1 ≤ bα+M̃
+
n c

bαM?c ≤ 1 +
C+

nhq

Hence, uniformly on (B, x) ∈ Θ,(
1− C−

nhq

)
ξ̂

(H)

B̃n(θ)

(
[B̃n(θ)]>x̃n(θ);α−, h−

)
≤ ξ̂

(H)
B

(
B>x;α, h

)
≤
(

1 +
C+

nhq

)
ξ̂

(H)

B̃n(θ)

(
[B̃n(θ)]>x̃n(θ);α+, h+

)
. (25)

Recall that all the previous results hold under the event Cn(K). We thus write for all

ε > 0,

P

(
sup

θ=(B,x)∈Θ

∣∣∣ξ̂(H)

B̃n(θ)

(
[B̃n(θ)]>x̃n(θ)

)
− ξ̂(H)

B

(
B>x

)∣∣∣ > ε

)
≤ Tn + (1− P(Cn(K))) ,

where

Tn := P

({
sup

θ=(B,x)∈Θ

∣∣∣ξ̂(H)

B̃n(θ)

(
[B̃n(θ)]>x̃n(θ)

)
− ξ̂(H)

B

(
B>x

)∣∣∣ > ε

}
∩ Cn(K)

)
.

Since P(Cn(K))→ 1, we only need to focus on Tn. We have Tn ≤ Tn,1 + Tn,2 where

Tn,1 = P

({
sup

θ=(B,x)∈Θ

∣∣∣ξ̂(H)
B

(
B>x

)
− ξB̃n(θ)

(
[B̃n(θ)]>x̃n(θ)

)∣∣∣ > ε/2

}
∩ Cn(K)

)

and Tn,2 = P

(
sup

(B̃,x̃)∈Θn

∣∣∣ξ̂(H)

B̃

(
B̃>x̃

)
− ξB̃

(
B̃>x̃

)∣∣∣ > ε/2

)
.

From Proposition 4, we have Tn,2 → 0. It thus remain to show that Tn,1 → 0.

Using (25), Tn,1 ≤ T+
n,3 + T−n,3 where

T±n,3 = P

(
sup

(B̃,x̃)∈Θn

∣∣∣∣(1± C±
nhq

)
ξ̂

(H)

B̃

(
B̃>x̃;α±, h±

)
− ξB̃

(
B̃>x̃

)∣∣∣∣ > ε/2

)
.

Since h± ∼ h, α± ∼ α and nhq →∞, we can use Proposition 4 to conclude the proof.
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