
HAL Id: hal-04589705
https://hal.science/hal-04589705v2

Submitted on 17 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Two-level dynamic load-balanced p-adaptive
discontinuous Galerkin methods for compressible CFD

simulations
Yongseok Jang, Emeric Martin, Jean-Baptiste Chapelier, Vincent Couaillier

To cite this version:
Yongseok Jang, Emeric Martin, Jean-Baptiste Chapelier, Vincent Couaillier. Two-level dynamic load-
balanced p-adaptive discontinuous Galerkin methods for compressible CFD simulations. Comput-
ers & Mathematics with Applications, 2024, 176, pp.165-178. �10.1016/j.camwa.2024.10.008�. �hal-
04589705v2�

https://hal.science/hal-04589705v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Computers and Mathematics with Applications 176 (2024) 165–178

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Two-level dynamic load-balanced p-adaptive discontinuous Galerkin

methods for compressible CFD simulations

Yongseok Jang ∗, Emeric Martin, Jean-Baptiste Chapelier, Vincent Couaillier

DAAA, ONERA–The French Aerospace Lab, Polytechnic Institute of Paris, Châtillon, 92320, France

A R T I C L E I N F O A B S T R A C T

Keywords:

Dynamic load balancing

𝑝-adaptation

High-order discontinuous Galerkin method

Two-level parallelization

CFD

We present a novel approach utilizing two-level dynamic load balancing for 𝑝-adaptive discontinuous Galerkin
(DG) methods in compressible Computational Fluid Dynamics (CFD) simulations. The high-order explicit first
stage, specifically the singly diagonal implicit Runge–Kutta (ESDIRK) method, is employed for time integration,
where the pseudo-transient continuation is integrated with the restarted generalized minimal residual (GMRES)
method to handle the solution of nonlinear equations at each stage of ESDIRK, excluding the initial stage. Relying
on smoothness indicators, we carry out the refinement/coarsening process for 𝑝-adaptation with dynamic load
balancing. This approach involves a coarse level (distributed memory) decomposition based on MPI paradigm
and a fine level (shared memory) decomposition based on OpenMP paradigm, enhancing parallel efficiency.
Dynamic load balancing is achieved by computing weights based on degrees of freedom, ensuring balanced
computational loads across processors. The parallel computing framework adopts either a graph-based type
(ParMETIS and Zoltan) or space-filling curves type (GeMPa) for coarse level partitioning, and a graph-based type
(METIS and Zoltan) for fine level partitioning. The effectiveness of the method is demonstrated through numerical
examples, highlighting its potential to significantly improve the scalability and efficiency of compressible flow
simulations. The numerical simulations were conducted using the CODA flow solver, a state-of-the-art tool
developed collaboratively by the French National Aerospace Center (ONERA), the German Aerospace Center
(DLR), and Airbus.
1. Introduction

Computational Fluid Dynamics (CFD) has emerged as a powerful tool
for simulating and analyzing fluid flow phenomena in various engineer-

ing and scientific applications. The ability to accurately predict fluid
behavior plays a crucial role in optimizing designs, improving perfor-

mance, and understanding complex flow phenomena. With advances in
numerical methods and computational resources, CFD has become an
indispensable tool in diverse fields such as aerospace, automotive, en-

ergy, and environmental engineering.

Developing efficient and accurate numerical methods capable of han-

dling a wide range of flow conditions, ranging from laminar to turbulent
and from subsonic to hypersonic regimes, remains a critical challenge in
CFD. Significant research conducted in the late 1990s and early 2000s
established Discontinuous Galerkin (DG) methods [1–3] as a powerful
approach for addressing complex flow physics, including shock waves,
boundary layers, and vortical structures, with high accuracy and effi-

* Corresponding author.

E-mail addresses: yongseok.jang@onera.fr (Y. Jang), emeric.martin@onera.fr (E. Martin), jean-baptiste.chapelier@onera.fr (J.-B. Chapelier),
vincent.couaillier@onera.fr (V. Couaillier).

ciency. Similarly to finite volume schemes, DG discretizations can be
solved in conservative form, which preserves conservation for mass,
momentum and total energy. Furthermore, DG methods provide sev-

eral advantages, such as high-order accuracy, geometric flexibility, and
robustness on unstructured grids, making them a preferred choice for
modern CFD applications.

Compared to continuous Galerkin finite element method and finite
volume method, one of the primary weaknesses of DG methods lies in
their computational cost, especially for high-order approximations and
fine-grid resolutions. The discontinuous nature of the solution represen-

tation introduces additional numerical fluxes and inter-element com-

munication, leading to increased computational overhead. To resolve
the high computational cost and large memory requirement, Babǔshka
and Suri [4] introduced the adaptive method to adjust locally the spa-

tial mesh ℎ and/or the polynomial degree 𝑝. We also refer to the works
of Houston and Süli [5,6] and the work of Hartmann and Houston [7].
While both ℎ- and 𝑝-adaptations lead to reduction of the total degrees of
https://doi.org/10.1016/j.camwa.2024.10.008

Received 5 June 2024; Received in revised form 20 September 2024; Accepted 6 Oc

Available online 14 October 2024

0898-1221/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access

by -nc -nd /4 .0/).
tober 2024

 article under the CC BY-NC-ND license (http://creativecommons .org /licenses /

https://doi.org/10.1016/j.camwa.2024.10.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2024.10.008&domain=pdf
mailto:yongseok.jang@onera.fr
mailto:emeric.martin@onera.fr
mailto:jean-baptiste.chapelier@onera.fr
mailto:vincent.couaillier@onera.fr
https://doi.org/10.1016/j.camwa.2024.10.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178
freedom during simulations, 𝑝-adaptation is often preferred in practice
due to its ability to achieve high accuracy with lower computational
cost, flexibility in targeting specific regions, preservation of conser-

vation properties, and simplicity of implementation. Furthermore, the
selection of 𝑝-adaptation or ℎ𝑝-adaptation depends on a careful consid-

eration of the trade-offs between computational cost, implementation
complexity, and the requirements of the problem at hand. Although ℎ𝑝-
adaptation offers the potential for greater flexibility and accuracy by
allowing both mesh refinement and polynomial degree adjustment, 𝑝-
adaptation remains a viable and efficient approach in many practical
applications.

In essence, error indicators are important components of adaptive
algorithms, providing critical information for refining numerical solu-

tions, optimizing computational resources, and ensuring accurate and
efficient simulations across various domains and problem types. Three
types of indicators are commonly used in the literature: (i) feature
based [8,9], (ii) discretization error based [7,10], and (iii) adjoint-based
[11,12] indicators. A comparative study by Naddei et al. [9] explored
feature-based and discretization error-based indicators, concluding that
smoothness indicators [13,8,14] demonstrate favorable numerical per-

formance in terms of accuracy and efficiency. Conversely, adjoint-based
methods involve significant computational costs, despite exhibiting su-

periority in steady problems, as observed in [15].

Load balancing is another critical aspect of parallel CFD simulations,
especially for large-scale computations on distributed memory architec-

tures, as it helps prevent idle processes and minimize communication
overhead. Load balancing techniques aim to distribute computational
work evenly across processors to maximize parallel efficiency and mini-

mize execution time. In the context of 𝑝-adaptive DG methods, dynamic
load balancing becomes even more challenging due to the varying com-

putational workload associated with adaptive refinement. Recently, Li et
al. [16] presented the dynamically load-balanced 𝑝-adaptive DG method
for Euler equations on tetrahedral grids. Furthermore, the work of Jäger-

sküpper and Vollmer [17] exhibited high parallel scalability of CFD on
unstructured meshes based on a two-level domain decomposition.

Throughout our article, we primarily utilize the CFD software jointly
developed by ONERA, DLR and Airbus, hereafter referred to as CODA
[18,19], for numerical simulations. The CODA solver represents the new
generation of CFD solvers for aeronautical applications. It includes both
classic finite volume methods and modern high-order discontinuous
Galerkin schemes, offering a versatile tool specifically tailored for the
complex demands of aerodynamic design and research. CODA supports
multidisciplinary analysis and design optimization, making it a multi-

functional tool for research activities and aircraft design. As the new
reference solver for aerodynamic applications within Airbus, including
aircraft, helicopters, space, and military domains, CODA is set to play a
pivotal role in enhancing the design and analysis processes across these
diverse engineering fields. The solver’s comprehensive capabilities ex-

tend from steady-state Reynolds-averaged Navier-Stokes (RANS) equa-

tions with various turbulence models to Large Eddy Simulation (LES)
and hybrid RANS/LES models, catering to both steady and unsteady
flow scenarios with a selection of explicit and implicit time-stepping
methods. This makes CODA a powerful and flexible tool for tackling the
most challenging aerodynamic simulations.

Our present work focuses on the development and application of
two-level dynamic load-balanced 𝑝-adaptive DG methods for simulating
unsteady compressible flows. The 𝑝-adaptive methods, which dynami-

cally adjust the polynomial order of the solution within each element
based on the local error estimate, offer a promising approach to achieve
high accuracy while minimizing computational cost. By adaptively re-

fining the local polynomial degrees in regions of high gradients or flow
features and coarsening others, 𝑝-adaptive methods can capture fine-

scale flow structures and improve solution accuracy without increasing
computational overhead. Furthermore, to balance computational loads
during simulations, several types of parallel mesh partitioners are in-

troduced such as graph-[20], hyper graph-[21] and space-filling curves
166
(SFC) [22] based partitioning. To the best of our knowledge, our re-

search on two-level partitioning, combining the graph-type and the
SFC-type mesh partitioners, is the first investigation to exhibit higher
scalability.

The main objectives of this study are to develop robust and efficient
𝑝-adaptive algorithms and to investigate their performance and scala-

bility on parallel computing platforms. The proposed methods will be
validated against analytical solutions and benchmark test cases to assess
their accuracy and robustness. Additionally, numerical experiments will
be conducted to analyze the impact of dynamic load balancing strate-

gies on parallel efficiency and scalability for a range of flow scenarios
and computational configurations.

The article is organized as follows. Section 2 introduces compressible
flow models with DG discretization as well as temporal discrete schemes.
The 𝑝-adaptive algorithm with two-level dynamic load balancing is pre-

sented in Section 3. Various numerical results validate the accuracy and
efficiency of our proposed method with the comparison study of load
balancers in Section 4. Finally, Section 5 concludes our work.

2. Model problem

In this section, we present semi-discrete and fully discrete formu-

lations for unsteady compressible flows. We consider a compressible
Navier-Stokes equation on the bounded domain Ω ∈ ℝ𝑑 where 𝑑 is
the space dimension. When we denote 𝒖 as the conservative state vari-

ables such that 𝒖 = (𝜌, 𝜌𝑽 𝑇 , 𝜌𝐸)𝑇 with the density 𝜌, the velocity vector
𝑽 = (𝑉1, 𝑉2, 𝑉3)𝑇 and the total energy 𝐸, the compressible Navier-Stokes
equation can be written as

𝜕𝒖

𝜕𝑡
+∇ ⋅ 𝑭 𝑐(𝒖) − ∇ ⋅ 𝑭 𝑑 (𝒖,∇𝒖) = 𝟎, (2.1)

where 𝑭 𝑐 and 𝑭 𝑑 represent convective and diffusive fluxes, respec-

tively. The specific total energy 𝐸 is defined as 𝐸 = 𝑃∕
(
𝜌(𝑟𝑇 − 1)

)
+

𝑽 ⋅ 𝑽 ∕2 with the pressure 𝑃 and the specific heat ratio 𝑟𝑇 . With Ein-

stein notation, the convective and diffusive fluxes can be expressed by

𝑭 𝑐
𝑖
(𝒖) =

⎡⎢⎢⎢⎢⎢⎣

𝜌𝑉𝑖
𝜌𝑉1𝑉𝑖 + 𝑃𝛿𝑖1
𝜌𝑉2𝑉𝑖 + 𝑃𝛿𝑖2
𝜌𝑉3𝑉𝑖 + 𝑃𝛿𝑖3
𝜌𝑉𝑖𝐸

⎤⎥⎥⎥⎥⎥⎦
and 𝑭 𝑑

𝑖
(𝒖,∇𝒖) =

⎡⎢⎢⎢⎢⎢⎣

0
𝜏𝑖1
𝜏𝑖2
𝜏𝑖3

𝜏𝑖𝑘𝑉𝑘 − 𝑞𝑖

⎤⎥⎥⎥⎥⎥⎦
, (2.2)

where the viscous stress tensor 𝝉 and the heat flux 𝒒 are given by

𝜏𝑖𝑗 = 𝜇
(
𝜕𝑉𝑖

𝜕𝑥𝑗
+
𝜕𝑉𝑗

𝜕𝑥𝑖
− 2

3
𝜕𝑉𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗

)
and 𝑞𝑖 = −𝜆 𝜕𝑇

𝜕𝑥𝑖
.

Here, 𝜇 is the dynamic viscosity, 𝜆 is the thermal conductivity defined
with the specific heat capacity at constant pressure 𝐶𝑃 and the Prandtl
number Pr such as 𝜆 = 𝜇𝐶𝑃 ∕Pr, and 𝑇 denotes the temperature. We
suppose that 𝜇 and 𝜆 are constants.

2.1. Discontinuous Galerkin method

Let the spatial domain Ω be subdivided by an unstructured mesh ℎ
consisting of non-overlapping and non-empty elements 𝐾 . We denote
the set of interior faces in ℎ and the boundary faces by Γℎ and Γ𝑏 ∶=
∪𝐾∈ℎ𝜕𝐾∖Γℎ, respectively. When we define the space of polynomials of
degree less than or equal to 𝑝 over 𝐾 such that

𝑝(𝐾)=span

{
𝑥
𝑖1
1 ⋯𝑥𝑖𝑑

𝑑
| 𝑑∑
𝑚=1
𝑖𝑚 ≤ 𝑝, 𝒙 ∈𝐾, 𝑖𝑚 ∈ℕ ∪ {0} for each 𝑚

}
,

our DG finite element space is given by

𝑘(ℎ) = {𝑣 ∈𝐿2(ℎ) ||| 𝑣|𝐾 ∈ 𝑝(𝐾) for each 𝐾 ∈ ℎ},
and the analogous vector field is defined by ℎ

𝑘
∶= [𝑘(ℎ)](𝑑+2).

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178
By introducing appropriate variational projections for the convective
and diffusive terms, we can derive the following semi-discrete problem:
find 𝒖ℎ(𝑡) ∈ 

ℎ
𝑘

satisfying for any 𝒗 ∈ 
ℎ
𝑘
,∑

𝐾∈ℎ ∫𝐾
𝜕𝒖ℎ

𝜕𝑡
⋅ 𝒗𝑑𝐾 +𝑐(𝒖ℎ,𝒗) +𝑑 (𝒖ℎ,𝒗) = 0, (2.3)

where 𝑐 and 𝑑 are the variational forms of the convection and dif-

fusion terms, respectively. The semi-discrete solution 𝒖ℎ can be written
as

𝒖ℎ(𝑡) =
𝑁dof∑
𝑖=1

𝝓𝑖𝑈𝑖(𝑡), (2.4)

where {𝝓𝑖} is a set of basis functions of ℎ
𝑘
, 𝑁dof is the number of de-

grees of freedom and 𝑈1, … , 𝑈𝑁dof
are degrees of freedom of the discrete

solution. We refer to [3] for the procedure of generating orthonormal
basis functions.

For an interior face 𝑒 = 𝜕𝐾𝑖 ∩ 𝜕𝐾𝑗 with 𝑖 < 𝑗, we define an average
and a jump by

{𝒗} =
(𝒗|𝐾𝑖)|𝑒 + (𝒗|𝐾𝑗)|𝑒

2
and [𝒗] = (𝒗|𝐾𝑖)|𝑒 − (𝒗|𝐾𝑗)|𝑒.

For convenient notation, we denote (𝒗|𝐾𝑖)|𝑒 and (𝒗|𝐾𝑗)|𝑒 by ‘𝒗+ ’ and
‘𝒗− ’, respectively. Using the jump and average, we introduce the varia-

tional formulations of the convective and viscous terms.

Upwind scheme In this paper, to define 𝑐 , we use a numerical flux
based on Roe scheme [23,24]. By integrating by parts, we get

𝑐(𝒖ℎ,𝒗) = −
∑
𝐾∈ℎ ∫𝐾

𝑭 𝑐 ∶ ∇𝒗𝑑𝐾 + ∫
Γℎ

[𝒗] ⋅𝐻𝑐(𝒖+,𝒖−,𝒏)𝑑𝑒

+ ∫
Γ𝑏

𝒗 ⋅ 𝑭 𝑐(𝒖𝑏) ⋅ 𝒏𝑑𝑒,
(2.5)

where the notation: is for the tensor inner product, 𝐻𝑐 is a numerical
flux which approximates the convective flux on an element face, 𝒏 is an
outward normal vector and 𝒖𝑏 is given by the boundary condition. We
refer to [23] for the detail of the numerical flux 𝐻𝑐 of the Roe scheme.

Lifting operator By introducing lifting operators, we can discretize the
diffusion term. In particular, we employ local and global lifting op-

erators proposed by Bassi and Rebay, so-called BR2 method, e.g., see
[1,2,25]. We define a local lifting operator 𝒍𝑒

ℎ
for 𝑒 ∈ Γℎ that satisfies

∫
𝐾𝑖∪𝐾𝑗

𝒍𝑒
ℎ
⋅ 𝒗𝑑𝐾 = −∫

𝑒

[𝒖ℎ ⊗ 𝒏] ⋅ {𝒗}𝑑𝑒, ∀𝒗 ∈ 
ℎ
𝑘
, (2.6)

where 𝑒 = 𝜕𝐾𝑖 ∩ 𝜕𝐾𝑗 of the distinct two elements 𝐾𝑖 and 𝐾𝑗 . Here, the
support of the local lifting operator is the union of neighbor elements of
𝑒. Then a global lifting operator 𝑳𝐾

ℎ
is given as the sum of local lifting

operators such that

𝑳𝐾
ℎ
=
∑
𝑒∈𝜕𝐾

𝒍𝑒
ℎ

for each 𝐾. (2.7)

Using the definition of the lifting operators, we can derive the varia-

tional form of the diffusive term such that

𝑑 (𝒖ℎ,𝒗) =
∑
𝐾∈ℎ ∫𝐾

𝑭 𝑑 (𝒖,∇𝒖+𝑳𝐾
ℎ
) ∶ ∇𝒗𝑑𝐾

− ∫
Γℎ

[𝒗] ⋅ {𝑭 𝑑 (𝒖,∇𝒖+ 𝜂𝑒𝒍𝑒ℎ)} ⋅ 𝒏𝑑𝑒

− ∫
Γ𝑏

𝒗 ⋅ 𝑭 𝑑 (𝒖𝑏,∇𝒖𝑏 + 𝜂𝑒𝒍𝑒ℎ) ⋅ 𝒏𝑑𝑒, (2.8)
167
where 𝜂𝑒 is the number of faces of neighbor elements.

Let 𝑼 (𝑡) be a vector of degrees of freedom. Then the semi-discrete
problem (2.3) becomes equivalent to the following ODE system:

𝑀
𝑑𝑼

𝑑𝑡
+(𝑼) = 𝟎, (2.9)

where 𝑀 is the mass matrix and  is the spatial residual vector. Assem-

bling 𝑀 and (𝑼) follows an obvious way such that ∀𝑖, 𝑗 = 1, … , 𝑁dof,

𝑀𝑖𝑗 =
∑
𝐾∈ℎ ∫𝐾

𝝓𝑗 ⋅𝝓𝑖𝑑𝐾 and 𝑖(𝑼) = 𝑐(𝒖ℎ,𝝓𝑖) +𝑑 (𝒖ℎ,𝝓𝑖).

Note that the system of ODEs (2.9) is nonlinear hence further lineariza-

tion would be required to solve it numerically.

2.2. Time integration

Let Δ𝑡 > 0 be a (global) time step size. We introduce inner-outer
time integration schemes to obtain a fully discrete problem of (2.9).
The inner time integration is employed for linearizing the spatial resid-

ual vector, while the outer time integration is performed to compute
a fully discrete solution for the next time step. We mainly concern the
linearly implicit Euler method for linearization. As our outer time integra-

tor, we consider implicit Runge-Kutta-type time integrations. In particu-

lar, we employ fourth order explicit singly diagonally implicit Runge-Kutta

(ESDIRK4) scheme [26]. We also refer to [27] for more details of the
implicit Runge-Kutta methods.

Implicit Euler method We employ the implicit Euler scheme in (2.9) for
linearization to yield(1
Δ𝑡
𝑀 + 𝐽𝑛

)
Δ𝑼 𝑛 = −(𝑼 𝑛), (2.10)

where Δ𝑼 𝑛 =𝑼 𝑛+1 −𝑼 𝑛 and 𝐽𝑛 is the Jacobian matrix defined by

𝐽𝑛 = 𝜕(𝑼 𝑛)
𝜕𝑼

.

In addition, we use the pseudo-transient continuation technique, namely
Switched Evolution Relaxation (SER) algorithm [28] and the Jacobian-free
Newton Krylov (JFNK) method [29].

The SER algorithm leads to quadratic convergence of nonlinear iter-

ations by introducing pseudo-time stepping and it brings(1
Δ𝜏𝑘

𝑀 + 𝐽𝑛,𝑘
)
Δ𝑼𝑘 = −(𝑼 𝑛,𝑘), (2.11)

where Δ𝑼𝑘 ∶= 𝑼 𝑛,𝑘+1 − 𝑼 𝑛,𝑘, 𝑼 𝑛,0 = 𝑼 𝑛, Δ𝜏𝑘 is the pseudo-time step
size defined by

Δ𝜏0 = CFLmin and Δ𝜏𝑘+1 = min
⎛⎜⎜⎜⎝Δ𝜏

𝑘

‖‖‖(𝑼 𝑛,𝑘−1)‖‖‖𝛽𝐿2‖‖‖(𝑼 𝑛,𝑘)‖‖‖𝛽𝐿2
,CFLmax

⎞⎟⎟⎟⎠ ,
for user-defined parameters 0 < CFLmin < CFLmax, and 0 < 𝛽 ≤ 1. Here
Δ𝜏𝑘 is often referred to as the CFL number at 𝑘-th nonlinear step and is
also called a local time step size. Note that too large CFL numbers may
cause the linear systems to be ill-conditioned.

In solving the linear algebraic system corresponding to (2.11), the
computation of 𝐽𝑛,𝑘 is expensive. The computation of the Jacobian ap-

pears only once in the matrix-vector product if we use Krylov subspace
methods to solve the linear system. Hence, instead of matrix-vector mul-

tiplication for the exact Jacobian matrix, we will employ the Jacobian-

free approach of the automatic differentiation type [30]. This Jacobian
matrix-free method is beneficial in computational costs as well as mem-

ory reductions. Consequently, we can solve the linear system by using
the preconditioned GMRES method. In this study, we consider various
linear solvers with combinations such as block Jacobi preconditioner,
block ILU(0) preconditioner, and block element LU decomposition.

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178
Table 2.2.1

The standard Butcher tableau of 4 stages (left) and the Butcher tableau of ES-

DIRK43 (right) [27].

𝑐1 𝑎11 0 0 0

𝑐2 𝑎21 𝑎22 0 0

𝑐3 𝑎31 𝑎32 𝑎33 0

𝑐4 𝑎41 𝑎42 𝑎43 𝑎44
𝑏1 𝑏2 𝑏3 𝑏4

0 0 0 0 0

2𝛾 𝛾 𝛾 0 0

1 1 − 𝑎32 − 𝛾 𝑎32 𝛾 0

1 1 − 𝑏2 − 𝑏3 − 𝛾 𝑏2 𝑏3 𝛾

1 − 𝑏2 − 𝑏3 − 𝛾 𝑏2 𝑏3 𝛾

ESDIRK scheme We consider the ESDIRK method (in particular ES-

DIRK43) of four stages (consisting of a first explicit stage and three
implicit stages) and a fourth order. The ESDIRK43 scheme follows:

⎧⎪⎪⎨⎪⎪⎩
𝑀𝑼 𝑛+1 =𝑀𝑼 𝑛 −Δ𝑡

4∑
𝑖=1
𝑏𝑖(𝒀 (𝑖)),

𝑀𝒀 (𝑖) =𝑀𝑼 𝑛 −Δ𝑡
𝑖∑
𝑗=1
𝑎𝑖𝑗(𝒀 (𝑗)) for 𝑖 = 1,… ,4,

(2.12)

where the set of coefficients is formed by the Butcher tableau illustrated
in Table 2.2.1. To complete the fill of Runge-Kutta coefficients, we set

𝛾 = one of the approximate roots of 6𝑥3 − 18𝑥2 + 9𝑥− 1 = 0,

𝑎32 =
−2𝛾 + 1

4𝛾
, 𝑏2 =

−1
12𝛾(2𝛾 − 1)

, 𝑏3 =
−6𝛾2 + 6𝛾 − 1

6𝛾 − 3
.

We refer to [31,27] for the definition of Butcher tableau for (ES)DIRK
schemes and their properties.

In the ESDIRK scheme (2.12), it is necessary to solve three nonlin-

ear systems for 𝒀 (2), 𝒀 (3) and 𝒀 (4), since 𝑎11 = 0. These three nonlinear
systems can be solved by recalling the implicit Euler method with the
pseudo-transient continuation (2.11). To be specific, the nonlinear sys-

tem in (2.12) can be rewritten as


𝑛(𝒀 (𝑖)) ∶= 1

Δ𝑡
𝑀𝒀 (𝑖) +𝛾(𝒀 (𝑖))− 1

Δ𝑡

(
𝑀𝑼 𝑛 −Δ𝑡

𝑖−1∑
𝑗=1
𝑎𝑖𝑗(𝒀 (𝒋))

)
= 0,

(2.13)

for 𝑖 = 2, 3, 4, since 𝑎𝑖𝑖 = 𝛾 . Let 𝒀 𝑖,𝑚 be an approximate solution of 𝒀 (𝑖) at
𝑚-th iteration and Δ𝒀 𝑖,𝑚 ∶= 𝒀 𝑖,𝑚+1−𝒀 𝑖,𝑚. After noting that the Jacobian
matrix of  𝑛(𝒀 𝑖,𝑚) is defined as

𝜕 𝑛(𝒀 𝑖,𝑚)
𝜕𝒀

= 1
Δ𝑡
𝑀 + 𝛾𝐽 𝑖,𝑚 where 𝐽 𝑖,𝑚 = 𝜕(𝒀 𝑖,𝑚)

𝜕𝒀
,

the pseudo-transient continuation on (2.13) leads to(1
Δ𝑡
𝑀 + 1

Δ𝜏𝑚
𝑀 + 𝛾𝐽 𝑖,𝑚

)
Δ𝒀 𝑖,𝑚 = − 𝑛(𝒀 𝑖,𝑚). (2.14)

As seen in the Euler scheme, (2.14) will be solved by the JFNK method
for 𝑌 (2), 𝑌 (3) and 𝑌 (4) one at a time.

3. Dynamic load-balanced p-adaptation

Achieving high-performance simulations involves dynamically bal-

anced computational loads across the domains, while jointly adjusting
the polynomial degree 𝑝 for precise and resource-efficient solutions.
In this section, we explore dynamic load-balanced 𝑝-adaptation, a fun-

damental component of our 𝑝-adaptive DG algorithm, to enhance the
scalability and parallel efficiency of the simulation. We investigate the
collaborative integration of load balancing and 𝑝-adaptation, presenting
a comprehensive overview of the algorithm, its adaptive strategy utiliz-

ing ‘smoothness’ based indicators, and the effective ways of repartition-

ing computational domains. Furthermore, hybrid parallel computation,
blending distributed memory and shared memory improves scalability
as well as efficiency. Positioned at the forefront of advanced CFD tech-

niques, this adaptive methodology provides a scalable solution to meet
the computational demands of modern simulations.
168
Algorithm 1 Two-level parallel 𝑝-adaptive DG algorithm in CFD simu-

lation.

User defined parameters: the number of time steps 𝑁 , global time step
size Δ𝑡, pseudo-time stepping parameters (CFLmin, CFLmax, 𝛽), frequency
of refinement 𝑁𝑝.

1: Setup a physical model problem.

2: Initialize spatial and temporal discretizations, boundary conditions, and
mesh partitioning.

3: Compute the discrete solution at the initial state 𝑛 = 0.

4: while 𝑛 ≤𝑁 do

5: Solve the discrete problem of (2.9) w.r.t. the time integrator.

6: 𝑛 ← 𝑛 + 1
7: if mod (𝑛, 𝑁𝑝) = 0 and 𝑛 <𝑁 then

8: Evaluate a posteriori indicator 𝜂𝐾 for each element 𝐾 .

9: Refine and coarsen the polynomial degree 𝑝 for each 𝐾
10: Define weight values based on 𝑝 for element.

11: Partition the mesh w.r.t. weight values for distributed memory level.

12: Partition subdomains for shared memory level w.r.t. weight values.

13: end if

14: end while

We provide the 𝑝-adaptive DG algorithm with two-level dynamic
load balancing for unsteady CFD simulation in Algorithm 1. Varying
with time integrator, we solve different fully discrete problems such as
(2.12). Due to the presence of pseudo-transient continuation, ESDIRK
scheme consists of inner-outer time integration for non-linear steps and
linear steps, respectively. Hence the ESDIRK scheme requires two stop-

ping criteria for nonlinear iterations and linear iterations, when the
Krylov subspace method is employed as the linear solver.

Depending on the choice of 𝑝-refinement strategies and mesh par-

titioning methods, our algorithm will have different numerical perfor-

mance. In this study, we consider the 𝑝-adaptation based on smoothness
indicators. To implement the dynamically load-balanced adaptive algo-

rithm, we present and compare different types of parallel mesh parti-

tioning.

3.1. A posteriori error indicator

The smoothness indicator is widely used for shock capturing [13].
This is beneficial in stabilizing the discontinuities during simulations.
We define three smoothness refinement indicators; small-scale energy
density (SSED) indicator [14], spectral decay (SD) indicator [8] and Pers-

son&Peraire (PP) indicator [13]. These element-wise indicators are com-

puted for each 𝐾 ∈ ℎ by

𝜂SSED
𝐾

=

‖‖‖(𝜌𝑽)𝑝 − (𝜌𝑽)𝑝−1
‖‖‖𝐿2(𝐾)√|𝐾| , (3.1)

𝜂SD
𝐾

=

‖‖‖(𝜌𝑽)𝑝 − (𝜌𝑽)𝑝−1
‖‖‖𝐿2(𝐾)‖‖‖(𝜌𝑽)𝑝

‖‖‖𝐿2(𝐾) , (3.2)

𝜂PP
𝐾

=

‖‖‖(𝜌)𝑝 − (𝜌)𝑝−1
‖‖‖2𝐿2(𝐾)‖‖‖(𝜌)𝑝‖‖‖2𝐿2(𝐾)

, (3.3)

where (⋅)𝑝 denotes the numerical solution of polynomial degree 𝑝, (⋅)𝑝−1
represents the projection of the discrete solution onto the lower order
space 𝑝−1(𝐾) and |𝐾| is the geometrical measure of 𝐾 . While the SSED
and SD indicators are defined with the momentum density to capture
discontinuity in kinetic energy, the PP indicator is developed to detect
cells for shock capturing. The performance of the SSED indicator is con-

strained by its dependence on the higher modes of the solution. The SD
indicator underperforms due to its tendency to incorrectly identify re-

gions with low values in both high-energy content and total energy [32].
On the other hand, the PP indicator is restricted to measuring energy er-

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178
rors. The optimal choice of error indicators for 𝑝-adaptation is still an
open question and remains problematic.

Maximum marking adaptive strategy After evaluating error indicators
for all elements, we decide whether to increase, decrease or keep polyno-

mial degrees for each element. When we denote the maximum indicator
over elements by 𝜂max, the adaptation criteria in our study are given as
follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

increase the polynomial order 𝑝 by one if 𝜂𝐾 ≥ 𝜈max𝜂max,
but no higher than the maximum

allowed degree 𝑝max,
decrease the polynomial order 𝑝 by one if 𝜂𝐾 ≤ 𝜈min𝜂max,
but no lower than the minimum

allowed degree 𝑝min,

where 𝜈min and 𝜈max are user-defined parameters. Additionally, if 𝑝 is
already at its limit 𝑝max (or 𝑝min), no further increase (or decrease) in the
polynomial degree will be made. In this case, 𝑝will either be maintained
at its current value or, if necessary, adjusted to the nearest allowed value
within the constraints. This ensures that 𝑝 remains within the predefined
bounds at all times. Taking lower values of 𝜈max leads to more accurate
orders of convergence but more expensive computational costs. Also,
larger 𝜈min implies aggressive coarsening in 𝑝.

3.2. Mesh partitioning

Mesh partitioning is a fundamental aspect of parallel computing in
numerical simulations, particularly within the domain of CFD. This pro-

cess involves dividing a computational mesh into multiple subdomains
to enable efficient parallel processing on distributed computing sys-

tems. Mesh partitioning plays a crucial role in enhancing computational
performance, minimizing communication overhead, and optimizing re-

source utilization in parallel and high-performance computing environ-

ments.

Various strategies are employed for mesh partitioning, each tailored
to specific simulation requirements and the architecture of the comput-

ing system, for example, recursive bisection (RCB) method, graph-based
methods, and SFC method. RCB divides the mesh into two halves recur-

sively, while graph-based methods model the mesh as a graph, where
nodes represent mesh elements, and edges represent connections. SFC
methods leverage curve-based approaches, such as the Hilbert or Morton
curve, to achieve optimal partitioning. The RCB is the most simple, fast
and inexpensive but it is inefficient in practice, especially, with complex
geometries. The RCB partitioning is nevertheless employed to balance
the initial mesh-data distribution obtained after loading the mesh, to
avoid memory bottleneck in the graph-based partitioning.

The scalability limits of graph-based partitioning algorithms become
apparent as memory consumption grows linearly with the graph size.
One such alternative is the SFC partitioning method. SFC maps the 1D
unit interval onto a higher-dimensional space in a way that neighbor-

ing points on the unit interval also become neighboring points in the
target space. This results in a partitioning approach characterized by
low memory usage, offering a potential solution to address the scala-

bility challenges observed in traditional graph-based methods. For the
comparison of the methods, we refer to [22].

In this work, we employ several mesh partitioners such as METIS/

ParMETIS [20], Zoltan [21] and GeMPa [33,34] as described in Ta-

ble 3.2.1. The RCB will not be used solely as a mesh partitioner but
it will be employed with graph-based partitioners for initial distribu-

tion. We thereby consider three partitioners for the MPI process level
and two partitioners for the thread level. For example, using the cor-

responding mesh partitioner, we can distribute the unstructured mesh
of NACA12 airfoil on 4 MPI processes as illustrated in Fig. 3.2.1. The
mesh consists of 28,590 elements of prisms and hexahedrons and each
partitioner is supposed to equally allocate the number of elements per
169
Table 3.2.1

Mesh partitioners.

Mesh partitioner Type Usage

RCB Geometry Initial distribution

ParMETIS Graph-based Distributed memory level

METIS Graph-based Shared memory level

Zoltan Graph-based Distributed and shared memory levels

GeMPa SFC Distributed memory level

process. We can observe the characteristics of bisection methods in RCB
such that the domain is geometrically divided into 4 parts. The graph
based partitioners, ParMETIS and Zoltan, are combined with RCB as the
initial distributor and Zoltan exhibit the property of hypergraph par-

titioning. To be specific, the hypergraph partitioning of Zoltan allows
Process 3 to possess elements of upper and lower parts for the airfoil
where they are disconnected. On the other hand, GeMPa shows the dif-

ferent partitioning results that Process 1 does not contain any element
near the airfoil. In terms of computational complexity, the cost of Zoltan
is the most expensive but the cost of partitioning will be negligible in
the total numerical simulation.

Remark. ParMETIS is an extension of METIS designed for parallel com-

puting environments. It provides scalable parallel graph partitioning
algorithms that are crucial for large-scale simulations and computa-

tions on distributed memory parallel machines. Zoltan, like METIS and
ParMETIS, is designed for parallel computing and additionally provides
hypergraph partitioning to connect more than two vertices, offering a
more expressive means to capture complex connectivity patterns beyond
standard graphs. For a detailed evaluation of graph-based partitioners,
we refer to [35].

Partitioning weights In the context of dynamic load balancing for 𝑝-
adaptive simulations, the weight of each element is computed to achieve
a balanced distribution across MPI processes. The weight value for an
element is determined by the number of degrees of freedom correspond-

ing to a given polynomial degree. For example, in 3D, the weight 𝑤𝐾
for each element 𝐾 ∈ ℎ is calculated as follows:

𝑤𝐾 = (𝑝+ 1)(𝑝+ 2)(𝑝+ 3)
6

.

Let 𝐼𝑖 denote the mesh partition distributed on MPI process 𝑖, where
∪
𝑛proc

𝑖=1 𝐼𝑖 = ℎ, and 𝐼𝑖 ∩ 𝐼𝑗 = ∅ for 𝑖 ≠ 𝑗, with 𝑛proc as the number of pro-

cesses in the simulation. The distribution ensures that the sum of 𝑤𝐾
for each MPI process fulfills the condition for the imbalance factor such
that

Imbalance factor ∶=
𝑛proc𝑤max

𝑤total

≤ 1.05.

Here, 𝑤max is the maximum local load, and 𝑤total is the total load defined
by:

𝑤max = max
𝑖

∑
𝐾∈𝑖

𝑤𝐾 and 𝑤total =
∑
𝐾∈ℎ

𝑤𝐾.

Consequently, this condition ensures that the load imbalance across do-

mains stays within a 5% threshold concerning weights. Similarly, load
balancing at the thread level is performed based on weight values to
maintain this criterion for load balance.

3.3. Two-level parallel computing

In our specific implementation of two-level decomposition, MPI
is utilized at the coarse level for inter-process communication, and
OpenMP is used at the fine level for intra-process parallelizm. At the
distributed memory level, the classical domain decomposition requires
the use of halo cells to make remote data locally available, leading to
an increase in the total memory footprint with the number of processes
(𝑛proc) and limited parallel scalability. To address this, the goal is to

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178

Fig. 3.2.1. Distribution of elements in processes 0-3 w.r.t. mesh partitioners: 3D global view (left) and XZ plane 2D close view around the NACA12 airfoil. Processes
0-3 are colored by red, green, blue and sky blue, respectively.
minimize synchronization and maximize data locality. On the shared
memory level, multi-threading is employed for thorough subdomain de-

composition, allowing each cell to be exclusively owned by a unique
thread, thus reducing global MPI synchronization needs. Additional de-

tails on the hybrid parallelization of MPI and OpenMP can be found in
[17].

4. Numerical experiments

In this section, we present numerical examples to compare the
proposed algorithm across various CFD simulations. The numerical
simulations were conducted using the CODA and ONERA’s cluster
system, where each node is equipped with two Intel Xeon Cascade
Lake - 6240R processors, featuring 24 cores (2.4 GHz, 35.75MB
cache). To specify the (MPI) processes and threads configuration on
a node, we use P and T, respectively. For instance, in MPI-only
mode with one node having 48 physical cores, the configuration
is denoted as 48P per node. In the case of the two-level partition-

ing with 12 MPI processes and 4 threads per node, it is expressed
as 12P × 4T. The architecture of a node is depicted in Fig. 4.0.1.
Depending on the number of cores used, we employ a correspond-

ing number of nodes. For instance, when simulating numerical tests
170
with 480 cores, either in MPI mode or hybrid mode, we use 10
nodes.

During the CFD simulation, we introduce two types of stopping crite-

ria for nonlinear and linear iterations, respectively. For nonlinear steps,
we define the maximum number of pseudo-Newton iterations 𝑁nl per
time step and the convergence tolerance of relative residual for vari-

ables of interest 𝜖nl, where the variables are defined as the density,
the momentum and the energy. When we solve linear systems in our
simulations, we employ GMRES-type solvers with the stopping crite-

ria of the maximum number of linear iterations 𝑁l and the relative
linear residual error tolerance 𝜖l . We combine GMRES solvers with
block Jacobi and LU-type preconditioners (element-wise LU and ILU0)
for convergence. For simplicity, we denote linear solver setting as fol-

lows:

• GMRES(𝑚): the restarted GMRES with the Krylov subspace size 𝑚.

• Jacobi(𝑘): 𝑘-times applying the block Jacobi iteration.

Table 4.0.1 demonstrates the setting of 𝑝-adaptive solver parameters for
each test case.

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178
Fig. 4.0.1. Hardware topology of a Cascade Lake node with 24-cores sockets.
Process and thread distribution where each brown box represents a physical
core.

Table 4.0.1

Solver and parameter settings.

Case 1 Case 2 Case 3

GMRES GMRES(50) GMRES(200) GMRES(100)

Jacobi Jacobi(10) Jacobi(10) Jacobi(10)

LU ILU0 element-wise LU element-wise LU

CFLmin 106 1 1

CFLmax 1012 1012 1012
𝛽 0.4 0.4 0.4

(𝜖nl,𝑁nl) (10−8,200) (10−5,200) (10−4,200)
(𝜖l ,𝑁l) (10−3,100) (10−2,200) (10−2,400)
(𝜈min , 𝜈max) (0.001,0.1) (0.01,0.5) (0.01,0.001)
(𝑝min, 𝑝max) (1,3) (2,4) (1,4)
𝑁𝑝 5 2 5

4.1. Unsteady Euler flow

As our first numerical example, the convection of a 2D isentropic
vortex in a uniform flow is simulated on a 3D mesh (by taking one
cell in 𝑧-direction). As described in [36], the vortex is transported by
the uniform flow at a Mach number Ma = 0.5 in the 𝑥-direction. For
171
Fig. 4.1.1. Initial (left) and final (right) states of simulations with uniform
DG(3).

the reference state of the Kok vortex, we define the reference density
𝜌∞ = 1, the reference pressure 𝑃∞ = 1, the specific heat ratio 𝑟𝑇 = 1.4
and the radius of vortex 𝑟 = 0.5. While we consider the computational
domain [−22.25, −14.25] ×[−4, 4] ×[0, 1], the initial center of the vortex
is located at (−18.75, 0, 𝑧) and the vortex travels 30% of domain during
simulating. We define a uniform hexahedral mesh of 100 × 100 × 1 ele-

ments and impose periodic boundary conditions on all boundaries. With
the vortex transport period 8∕(Ma

√
ln 2), we consider 2000 time steps

and hence define the global time step size Δ𝑡 by

Δ𝑡 = 0.3 × (the vortex transport period)∕(the number of time steps).

Numerical results Following the illustration in Fig. 4.1.1, the vortex
transportation is effectively captured by the uniform DG(3) scheme.
Similarly, the 𝑝-adaptive DG solvers with ParMETIS in full MPI mode,
as shown in Fig. 4.1.2, successfully preserve the vortex. Although the
usage of PP indicator leads to less smoothness of the solution, the nu-

merical density ensures the persistence of the vortex in the simulation.
Fig. 4.1.3 illustrates the distribution of polynomial degrees with respect
to indicators at the final state. Furthermore, as in Fig. 4.1.4, both SSED
and SD indicators lead to similar 𝑝-refinements with more elements of
higher polynomial orders than the PP indicator.

As shown in Table 4.1.1, the 𝑝-adaptive algorithm can significantly
reduce the runtime of a simulation. In particular, the dynamically load-

balanced (based on the weight values) 𝑝-adaptive solvers exhibit more
efficiency than the static 𝑝-adaptive solvers where the subdivisions are
distributed on processes to have the (almost) equal number of elements.
Therefore, the load balancing process is essential in the 𝑝-adaptive al-

gorithm for the sake of efficiency. While the different indicators lead
to different 𝑝-refinements as well as numerical convergences, dynamic
load balancing does not change the number of nonlinear/linear itera-

tions. Utilizing a coarse-level distribution of 480 cores with ParMETIS,
the SSED and SD indicators with load balancing result in an almost
half reduction in run time compared to the DG(3) scheme, as detailed
in Table 4.1.1. Notably, since the most refined elements have linear
polynomial order, the ADG solver with the PP indicator demonstrates
significant time reduction, e.g., more than 80%. Hereafter, we always
combine ADG solvers with load balancing.

When we evaluate 𝐿2 norm error of cell averaged quantities such
as numerical density, momentum 𝑉1 and 𝑉2, and energy density 𝜌𝐸
in Table 4.1.2, we can observe similar 𝐿2 norm error results between
the DG and ADG solvers. Although the PP indicator results in only 𝑃1
and 𝑃2 elements, the numerical solution exhibits reasonable numerical
errors in cell based average computation.

Next, we examine the numerical scalability of the simulation on 1
million elements using up to 1960 cores. The numerical scalability rate
can be computed by the change in runtime over the change in the num-

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178

Fig. 4.1.2. Numerical density by 𝑝-adaptive solvers with SSED (left), SD (center) and PP (right) indicators for the final time.

Fig. 4.1.3. Distribution of polynomial orders (e.g., red for 𝑃1, green for 𝑃2, and blue for 𝑃3). The figure shows 𝑝-adaptation with SSED (left), SD (center), and PP
(right) indicators.

Fig. 4.1.4. Change of polynomial orders in adaptation with SSED (left), SD (center), and PP (right) indicators, which are colored by red for 𝑃1, green for 𝑃2, and
blue for 𝑃3, respectively (x-axis: adaptive iterations and y-axis: the number of elements).

Table 4.1.1

CPU run time of simulations with 480 cores (if load-balanced, it is partitioned by
ParMETIS in MPI mode).

Total nonlinear It. Total linear It. Run time (s) Reduction (%)

DG(3) 6142 8901 1884.08

ADG-SSED 4515 6976 1755.79 6.81

(load-balanced) 4515 6976 1133.80 39.82

ADG-SD 3952 6417 1530.99 18.74

(load-balanced) 3952 6417 994.07 47.24

ADG-PP 3737 5308 310.42 83.52

(load-balanced) 3738 5307 153.31 91.86

Table 4.1.2

𝐿2 norm error of DG(3) and ADG schemes at the final time.

Density 𝜌 Momentum 𝑉1 Momentum 𝑉2 Energy density 𝜌𝐸

DG(3) 7.931e-04 5.103e-04 3.207e-02 2.208e-03

ADG-SSED 7.925e-04 5.116e-04 3.206e-02 2.210e-03

ADG-SD 7.925e-04 5.115e-04 3.206e-02 2.210e-03

ADG-PP 7.908e-04 4.926e-04 3.195e-02 2.205e-03
172

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178
Table 4.1.3

Scalability rates for ADG-SD solver simula-

tions on 1 million mesh elements. MPI mode:
48P per node, hybrid: 12P×4T per node with
up to 1920 cores.

Coarse level Fine level Scalability rate

ParMETIS (MPI only) 0.945

METIS 0.972

Zoltan 0.968

Zoltan (MPI only) 0.946

METIS 0.972

Zoltan 0.976

GeMPa (MPI only) 0.948

METIS 0.961

Zoltan 0.976

ber of cores so that the ideal rate is 1. Table 4.1.3 describes the numerical
scalability rates with respect to mesh partitioning, where the simulations
are performed with the ADG-SD solver for 1 million elements. While
the MPI mode utilizes 48P on each node, the hybrid approach employs
12P × 4T in their simulations.

As a result, as seen in Table 4.1.3, the two-level partitioning dis-

plays better scalability for all coarse-level distributors than the MPI-

only mode. In particular, using Zoltan as the shared memory distributor
shows the most efficiency, with Zoltan and GeMPa for the distributed
memory level, while ParMETIS is better combined with the shared mem-

ory partitioner METIS.

4.2. Unsteady Taylor-Green Vortex flow

Next, we consider the 3D compressible Navier-Stokes equation with
the simple initial flow called the Taylor-Green Vortex (TGV). The flow is
simulated on a periodic spatial domain [−𝜋, 𝜋]3 with 64,000 hexahedral
elements. We refer to https://cfd .ku .edu /hiocfd /case _c3 .5 .pdf for phys-

ical properties and flow conditions so that we define the Mach number
𝑀𝑎 = 0.1, the initial velocity 𝑉0 = 1, the initial density 𝜌0 = 1, 𝑟𝑇 = 1.4,
the initial temperature 𝑇0 = 273.15, the Prandtl number 𝑃𝑟 = 0.71 the
Fig. 4.2.1. The temporal evolution of kine

Table 4.2.1

CPU run time of simulations with 960 cor

in MPI mode.

Total nonlinear It. Total lin

DG(4) 1792 4782

ADG-SSED 1716 4322

ADG-SD 1711 4527

ADG-PP 1713 4571

173
pressure 𝑝0 = 1∕(𝑟𝑇𝑀𝑎)2 and the Reynolds number 𝑅𝑒 = 1600. The nu-

merical simulation is performed with Δ𝑡 = 0.005 for 200 time steps.

Numerical results In this experiment, our primary focus is on evaluat-

ing the efficiency of the dynamically load-balanced 𝑝-adaptive solver
rather than investigating physical properties. In other words, the char-

acteristic convective time is not concerned for the physical duration of
computation. However, we use reference data from https://cfd .ku .edu /
hiocfd /case _c3 .5 .pdf to compare temporal evaluations of kinetic energy
and enstrophy with respect to spatial discretization. Fig. 4.2.1 displays
that the solutions of uniform DG and ADG schemes exhibit similar ac-

curacy in terms of physical quantities and Fig. 4.2.2 describes similar
contour slices of density. On the other hand, as shown in Table 4.2.1,
employing the 𝑝-adaptive algorithms with dynamic load balancing leads
to significant runtime reductions, up to 86.8% compared to the DG(4)
solver. As outlined in the graph, e.g., Fig. 4.2.3, using the SD indicator
only generates 𝑃4 elements, requiring more CPU run time than other
indicators. As observed earlier, the usage of the PP indicator does not
result in much refinement of polynomial orders.

We explore the numerical performance of ADG solvers with the SD
indicator, aiming to compare outcomes based on different mesh parti-

tioners. Employing a two-level mesh partitioning approach, each node
is constructed with 12P×4T cores. By varying the number of cores from
768 to 1,536, we can observe the CPU runtime for each mesh parti-

tioner in Fig. 4.2.4. Among the mesh partitioners, GeMPa as the coarse
level partitioner exhibits the best results in both MPI mode and the
hybrid approaches. However, GeMPa combined with METIS or Zoltan
shows comparable performance to ParMETIS and Zoltan in MPI mode.
On the other hand, using Zoltan for the distributed memory level re-

sults in less efficiency compared to ParMETIS and GeMPa. In the shared
memory level, there is no significant difference in runtime between
METIS and Zoltan. Additionally, we evaluate the numerical scalabil-

ity in Table 4.2.2. Higher scalability results are observed for ParMETIS
and GeMPa as the coarse-level distributors compared to MPI mode.
Conversely, employing Zoltan for the coarse level results in poorer nu-

merical performance and scalability.
tic energy (left) and enstrophy (right).

es which load-balanced by ParMETIS

ear It. Run time(h) Reduction(%)

13.18

3.15 76.1

6.10 53.7

1.75 86.8

https://cfd.ku.edu/hiocfd/case_c3.5.pdf
https://cfd.ku.edu/hiocfd/case_c3.5.pdf
https://cfd.ku.edu/hiocfd/case_c3.5.pdf

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178

Fig. 4.2.2. Contour slice plots of density at 𝑡 = 1; DG(4) (top left), ADG-SSED (top right), ADG-SD (bottom left) and ADG-PP (bottom right).

Fig. 4.2.3. Change of polynomial orders in time with SSED (left), SD (center), and PP (right) indicators, which are colored by red for 𝑃2, green for 𝑃3, and blue for
𝑃4, respectively (x-axis: time domain and y-axis: the number of elements).
Fig. 4.2.4. Comparison results of run time with respect to mesh partitioning:
MPI-only (□) or two-level partitioning (○ by Zoltan and ▽ by METIS for the
fine level, respectively).

Remark. With the structured Cartesian mesh in the TGV simulation, it is
observed that mesh partitioning does not affect the convergence results.
Specifically, the total number of linear/nonlinear iterations required
for convergence does not depend on the choice of mesh partitioners
174
Table 4.2.2

Scalability rates for ADG-SD solver simula-

tions. MPI mode: 48P per node, hybrid: 12P×
4T per node with up to 1536 cores.

Coarse level Fine level Scalability rate

ParMETIS (MPI only) 0.906

METIS 0.908

Zoltan 0.918

Zoltan (MPI only) 0.904

METIS 0.884

Zoltan 0.885

GeMPa (MPI only) 0.832

METIS 0.932

Zoltan 0.929

in either MPI mode or hybrid mode, regardless of the number of cores.
However, in practical terms, different mesh decompositions can lead to
variations in numerical convergence. For instance, the numerical per-

formance of the linear solver with block preconditioning is influenced
by the computational mesh decomposition. Consequently, the numeri-

cal convergence, concerning both linear and nonlinear iterations, may
vary based on the chosen method of mesh partitioning.

4.3. Periodic laminar flow past a cylinder

Following the classical numerical test of the well-known vortex shed-

ding phenomenon, we examine the unsteady flow around a circular

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178

Table 4.3.1

Average drag coefficient and root mean square of the lift coefficient with reference
results.

𝐶̄𝐷 . 𝐶 ′
𝐿

𝑀𝑎 Domain size Run time (hh:mm)

Naddei et al. [9] 1.33 0.227 0.1 200𝐷
Ferrero et al. [37] 1.34 - 0.2 100𝐷
Rajani et al. [38] 1.34 0.179 0 20𝐷
Williamson (exp.) [39] 1.33 -

Tritton (exp.) [40] 1.26 -

Norberg (exp.) [41] - 0.227

ADG-SSED 1.35 0.229 0.2 100𝐷 10:39

ADG-SD 1.34 0.228 0.2 100𝐷 08:08

ADG-PP 1.35 0.229 0.2 100𝐷 05:01

Table 4.3.2

Numerical performance of ADG-SD solver simulations with respect to mesh partitioning
(MPI mode: 48P per node, hybrid: 12P× 4T per node).

Coarse Fine # cores Nonlin./lin. It. Run time(s) [Scalability rate]

ParMETIS (MPI only) 480 22,724 / 374,716 29,309

960 22,726 / 376,144 16,186 [0.90]

METIS 480 22,776 / 369,909 30,257

960 22,745 / 371,833 16,853 [0.90]

Zoltan 480 22,769 / 363,927 29,129

960 22,761 / 380,201 18,252 [0.80]

Zoltan (MPI only) 480 22,750 / 374,660 29,953

960 22,766 / 374,193 16,945 [0.88]

METIS 480 22,749 / 373,797 31,204

960 22,771 / 370,777 17,274 [0.90]

Zoltan 480 22,778 / 362,152 28,857

960 22,756 / 367,430 16,907 [0.85]

GeMPa (MPI only) 480 22,798 / 372,875 29,897

960 22,751 / 372,195 20,050 [0.75]

METIS 480 22,765 / 364,299 29,045

960 22,774 / 364,193 17,255 [0.84]

Zoltan 480 22,758 / 372,452 31,239

960 22,752 / 369,810 16,954 [0.92]

Fig. 4.3.1. Laminar flow past a cylinder where 𝑅𝑒 = 100, 𝑀𝑎 = 0.2 and 𝑡 = 500.
cylinder with 𝑅𝑒 = 100 and 𝑀𝑎 = 0.2. Characteristic far-field bound-

ary conditions are applied to a circular boundary, located at a distance
equal to 100 times the cylinder diameter 𝐷. The solid wall is treated as
adiabatic. The 3D domain is discretized using an unstructured O-mesh
consisting of 3,958 prism elements and 7,680 hexahedral elements. The
mesh is extruded based on a 2D structure. Several simulations were con-

ducted with the static DG scheme to assess the behavior of the proposed
discretization in the presence of unsteady flow fields, with computations
continuing until periodicity is achieved with Δ𝑡 = 0.05. For additional
numerical solutions using different types of discretization, we refer to
[37].

Numerical results After performing the simulation with the uniform DG
scheme for 𝑡 ∈ [0, 500], the periodicity is observed where at least 6 shed-
175
ding cycles appear. With the solution state for 𝑡 = 500 as the initial state
illustrated in Fig. 4.3.1, we simulate 1,000 time steps with applying the
𝑝-adaptive algorithm. To verify the characteristic of the vortex shed-

ding, we compute the average drag coefficient (𝐶̄𝐷) of a shedding cycle
and the root mean square of the lift coefficient (𝐶 ′

𝐿
). We then compare

our result with other numerical and experimental results in Table 4.3.1.

As seen in Fig. 4.3.2, higher refinements are derived by the SSED
indicator. In a similar way to the previous numerical examples, the PP
indicator imposes lower order simulations. On the other hand, we can
observe high-order polynomial elements near the boundary of the cylin-

der and flow paths past the cylinder in Fig. 4.3.3 for all indicators.

Table 4.3.2 describes the numerical performance of the ADG-SD
solver with various dynamic load balancers in MPI mode or hybrid
mode. While as remarked in Section 4.2, the mesh partitioning does

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178

Fig. 4.3.2. Change of polynomial orders in time with SSED (left), SD (center), and PP (right) indicators, which are colored by gray for 𝑃1, red for 𝑃2, green for 𝑃3,
and blue for 𝑃4, respectively (x-axis: time domain and y-axis: the number of elements).

Fig. 4.3.3. Local polynomial distribution at 𝑡 = 550 in the global view (left) and the close view near the cylinder (right) indicated by colors e.g., gray for 𝑃1, red for
𝑃2, green for 𝑃3 and blue for 𝑃4, respectively.
not have any significant impact on the total number of nonlinear/linear
iterations for the structured mesh, the different choices of distributors
lead to distinct qualities of linear solvers for the unstructured mesh.
Since local block preconditioning relies on mesh decomposition, in the
unstructured mesh domain, the numerical performance exhibits a de-

pendency on mesh distribution and the number of cores for parallel
computation. On the other hand, the numerical results exhibit better
scalability by two-level partitioning. In particular, when we combine
176
SFC based partitioning for distributed memory level and hyper-graph
based partitioning for shared memory level, we can observe significant
improvement in scalability. On the other hand, the hypergraph parti-

tioning at the fine level failed to show the benefit of the two-level de-

composition. For instance, with ParMETIS/Zoltan (MPI level) + Zoltan
(thread level), the linear iterations to be performed are significantly in-

creased in the number of cores, which implies poorer performance of
linear solvers.

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178
5. Conclusion

In our investigation, we conducted a comprehensive analysis of 𝑝-
adaptive DG solvers to assess their effectiveness in simulating various
fluid flow phenomena. We compared the performance of 𝑝-adaptive
schemes with uniform DG approaches across different scenarios, in-

cluding vortex transportation, unsteady Taylor-Green vortex flow, and
laminar flow past a cylinder. Our findings consistently underscored the
superiority of 𝑝-adaptive strategies, particularly those utilizing a posteri-

ori error indicators. These methods not only exhibited superior solution
accuracy but also demonstrated remarkable computational efficiency
gains across a diverse range of flow scenarios.

Smoothness-based indicators adjusted local polynomial degrees, re-

ducing runtime significantly by up to 90% without compromising accu-

racy in physical quantities or flow characteristics. Specifically, while the
PP indicator led to relatively passive refinement, the numerical solutions
showed comparable convergence. The SSED and SD indicators resulted
in similar distributions of polynomial degree on structured meshes. Ad-

ditionally, we observed significantly enhanced efficiency through dy-

namic load balancing compared to uniform mesh distributions. Utilizing
multi-threading, numerical performance achieved better scalability than
in pure MPI mode. Notably, the combination of the SFC-based parti-

tioner GeMPa for the coarse level with graph-based partitioning for the
fine level significantly enhanced numerical scalability.

Although the choice of domain decomposition methods had no sig-

nificant impact on numerical performance for structured mesh prob-

lems, the quality of linear solvers depended on the type of mesh parti-

tioning for unstructured meshes. For instance, employing ParMETIS or
Zoltan for MPI level and Zoltan for thread level resulted in poor perfor-

mance in scalability, suggesting that hypergraph mesh partitioning may
fail to define sufficiently good local preconditioners for unstructured
cases. In our proposed method, the quantity of partitioning weights is
determined by the degree of freedoms relative to the polynomial de-

gree, making it suitable for load balancing when solving linear systems.
However, it may not be optimal for computing residual vectors, defining
Jacobian matrices, and discretizing problems, as these processes heav-

ily rely on the number of quadrature points for numerical integration
and other discretization parameters. Therefore, we plan to investigate
task-based load balancing for unsteady problems in our future studies,
as demonstrated in [34]. It is also planned to address the topic of dy-

namic ℎ𝑝 adaptation at runtime. Static ℎ𝑝 adaptation techniques have
been already developed in CODA and tested for a number of applica-

tions [42]. However, ℎ𝑝 dynamic adaptation comes with a number of
technical challenges that need to be addressed, including efficient par-

allel remeshing, conservative interpolation from an arbitrary mesh to
another with 𝑝 heterogeneity, and efficient dynamic mesh partitioning.
These points have not been treated and will be the topic for future re-

search.

CRediT authorship contribution statement

Yongseok Jang: Investigation, Software, Visualization, Writing –
original draft, Writing – review & editing. Emeric Martin: Writing –
review & editing. Jean-Baptiste Chapelier: Formal analysis, Writing –
review & editing. Vincent Couaillier: Formal analysis, Project admin-

istration, Supervision.

Acknowledgements

The work presented here has received funding from the European
Union’s Horizon 2020 research and innovation program under grant
agreement No. 956104 (“NextSim”). We gratefully acknowledge this
support, which has been instrumental in conducting the research de-

scribed in this paper.
177
Data availability

Data will be made available on request.

References

[1] F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the
numerical solution of the compressible Navier–Stokes equations, J. Comput. Phys.
131 (2) (1997) 267–279.

[2] F. Bassi, S. Rebay, GMRES discontinuous Galerkin solution of the compressible
Navier-Stokes equations, in: Discontinuous Galerkin Methods: Theory, Computation
and Applications, Springer, 2000, pp. 197–208.

[3] F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, P. Tesini, On the flexibility of agglomer-

ation based physical space discontinuous Galerkin discretizations, J. Comput. Phys.
231 (1) (2012) 45–65.

[4] I. Babuška, M. Suri, The 𝑝 and ℎ𝑝 versions of the finite element method, basic prin-

ciples and properties, SIAM Rev. 36 (4) (1994) 578–632.

[5] P. Houston, E. Süli, ℎ𝑝-adaptive discontinuous Galerkin finite element methods for
first-order hyperbolic problems, SIAM J. Sci. Comput. 23 (4) (2001) 1226–1252.

[6] P. Houston, E. Süli, A note on the design of ℎ𝑝-adaptive finite element methods for
elliptic partial differential equations, Comput. Methods Appl. Mech. Eng. 194 (2–5)
(2005) 229–243.

[7] R. Hartmann, P. Houston, Adaptive discontinuous Galerkin finite element methods
for the compressible Euler equations, J. Comput. Phys. 183 (2) (2002) 508–532.

[8] G. Gassner, C. Altmann, F. Hindenlang, M. Staudenmeier, C. Munz, Explicit discon-

tinuous Galerkin schemes with adaptation in space and time, in: 36th CFD/ADIGMA
Course on ℎ𝑝-Adaptive and ℎ𝑝-Multigrid Methods, 2009, pp. 1–68.

[9] F. Naddei, M. de la Llave Plata, V. Couaillier, F. Coquel, A comparison of refinement
indicators for 𝑝-adaptive simulations of steady and unsteady flows using discontin-

uous Galerkin methods, J. Comput. Phys. 376 (2019) 508–533.

[10] M. Kompenhans, G. Rubio, E. Ferrer, E. Valero, Comparisons of 𝑝-adaptation strate-

gies based on truncation- and discretisation-errors for high order discontinuous
Galerkin methods, Comput. Fluids 139 (2016) 36–46.

[11] L. Wang, D.J. Mavriplis, Adjoint-based ℎ𝑝 adaptive discontinuous Galerkin meth-

ods for the 2D compressible Euler equations, J. Comput. Phys. 228 (20) (2009)
7643–7661.

[12] K.J. Fidkowski, Output-based space–time mesh optimization for unsteady flows us-

ing continuous-in-time adjoints, J. Comput. Phys. 341 (2017) 258–277.

[13] P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin meth-

ods, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, p. 112.

[14] G. Kuru, M. de la Llave Plata, V. Couaillier, R. Abgrall, F. Coquel, An adaptive varia-

tional multiscale discontinuous Galerkin method for large eddy simulation, in: 54th
AIAA Aerospace Sciences Meeting, 2016, p. 0584.

[15] K.J. Fidkowski, D.L. Darmofal, Review of output-based error estimation and mesh
adaptation in computational fluid dynamics, AIAA J. 49 (4) (2011) 673–694.

[16] W. Li, A.K. Pandare, H. Luo, J. Bakosi, J. Waltz, A parallel 𝑝-adaptive discontinuous
Galerkin method for the Euler equations with dynamic load-balancing on tetrahedral
grids, Int. J. Numer. Methods Fluids 95 (12) (2023) 1913–1932.

[17] J. Jägersküpper, D. Vollmer, On highly scalable 2-level-parallel unstructured CFD,
in: ECCOMAS Congress 2022, 2022, pp. 1–12.

[18] T. Leicht, J. Jägersküpper, D. Vollmer, A. Schwöppe, R. Hartmann, J. Fiedler, T.
Schlauch, DLR-Project Digital-X - next generation CFD solver ‘Flucs’, in: Deutscher
Luft- und Raumfahrtkongress 2016, 2016, pp. 1–14, https://elib .dlr .de /111205/.

[19] P. Stefanin Volpiani, J.-B. Chapelier, A. Schwöppe, J. Jägersküpper, S. Champag-

neux, Aircraft simulations using the new CFD software from ONERA, DLR, and
Airbus, J. Aircr. 61 (3) (2024) 1–13.

[20] G. Karypis, K. Schloegel, V. Kumar, ParMETIS: Parallel graph partitioning and
sparse matrix ordering library, Tech. rep, University of Minnesota, 1997, https://

conservancy .umn .edu /server /api /core /bitstreams /1a922221 -2cb8 -4726 -b56a -
7cc3c88d0d18 /content.

[21] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data man-

agement services for parallel dynamic applications, Comput. Sci. Eng. 4 (2) (2002)
90–96.

[22] R. Borrell, J.C. Cajas, D. Mira, A. Taha, S. Koric, M. Vázquez, G. Houzeaux, Parallel
mesh partitioning based on space filling curves, Comput. Fluids 173 (2018) 264–272.

[23] P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes,
J. Comput. Phys. 43 (2) (1981) 357–372.

[24] P.L. Roe, Characteristic-based schemes for the Euler equations, Annu. Rev. Fluid
Mech. 18 (1) (1986) 337–365.

[25] T. Houba, A. Dasgupta, S. Gopalakrishnan, R. Gosse, S. Roy, Supersonic turbulent
flow simulation using a scalable parallel modal discontinuous Galerkin numerical
method, Sci. Rep. 9 (1) (2019) 14442.

[26] H. Bijl, M.H. Carpenter, V.N. Vatsa, C.A. Kennedy, Implicit time integration schemes
for the unsteady compressible Navier–Stokes equations: laminar flow, J. Comput.
Phys. 179 (1) (2002) 313–329.

[27] C.A. Kennedy, M.H. Carpenter, Diagonally implicit Runge-Kutta methods for ordi-

nary differential equations. A review, Tech. rep., NASA, 2016, https://ntrs .nasa .gov /
api /citations /20160005923 /downloads /20160005923 .pdf.

[28] W.A. Mulder, B. Van Leer, Experiments with implicit upwind methods for the Euler
equations, J. Comput. Phys. 59 (2) (1985) 232–246.

http://refhub.elsevier.com/S0898-1221(24)00451-6/bibB5796B78AA10DD93AA5A18B5FE229554s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibB5796B78AA10DD93AA5A18B5FE229554s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibB5796B78AA10DD93AA5A18B5FE229554s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibFFA1AA4F4A745CB0FCAE16C8C7ABE57Cs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibFFA1AA4F4A745CB0FCAE16C8C7ABE57Cs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibFFA1AA4F4A745CB0FCAE16C8C7ABE57Cs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib31BE13547EF9C479A5A1E9DF2EEB674Es1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib31BE13547EF9C479A5A1E9DF2EEB674Es1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib31BE13547EF9C479A5A1E9DF2EEB674Es1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib04E3EAFB916022D6FC41717263BC7B35s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib04E3EAFB916022D6FC41717263BC7B35s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib7B458D5F66491CD1EBE16649742BF394s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib7B458D5F66491CD1EBE16649742BF394s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibCA99C2BE4C0BF36F01A5C198D67BBDB0s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibCA99C2BE4C0BF36F01A5C198D67BBDB0s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibCA99C2BE4C0BF36F01A5C198D67BBDB0s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib1A16AB9423F95CC6145B0CFB35535EDBs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib1A16AB9423F95CC6145B0CFB35535EDBs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibA272A7E978508C5951FAE6108F31EE88s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibA272A7E978508C5951FAE6108F31EE88s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibA272A7E978508C5951FAE6108F31EE88s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibE3E6F9B493C4911723A68D19B75CF275s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibE3E6F9B493C4911723A68D19B75CF275s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibE3E6F9B493C4911723A68D19B75CF275s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibD11D8E8374F93518EB5CB936F996F333s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibD11D8E8374F93518EB5CB936F996F333s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibD11D8E8374F93518EB5CB936F996F333s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib6E5721880EE0635C1A3625CE8B4FDB5Fs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib6E5721880EE0635C1A3625CE8B4FDB5Fs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib6E5721880EE0635C1A3625CE8B4FDB5Fs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib94DFEA106345F40D7964076B2C191460s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib94DFEA106345F40D7964076B2C191460s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib6BD6372BF90DD586A52C5B2B5B4A7647s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib6BD6372BF90DD586A52C5B2B5B4A7647s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibDB9542DB530FA9819E97D1F48A91778Cs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibDB9542DB530FA9819E97D1F48A91778Cs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibDB9542DB530FA9819E97D1F48A91778Cs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib38A4BC6075822C0560F8A320353D769Ds1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib38A4BC6075822C0560F8A320353D769Ds1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib2552F5A56FEE3F1A293F99168E503B78s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib2552F5A56FEE3F1A293F99168E503B78s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib2552F5A56FEE3F1A293F99168E503B78s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibA81AA5D474BDD720E8827469D632552Ds1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibA81AA5D474BDD720E8827469D632552Ds1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib1D4327D79CACE9E8292B3EAD573D9630s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib1D4327D79CACE9E8292B3EAD573D9630s1
https://elib.dlr.de/111205/
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib1D4327D79CACE9E8292B3EAD573D9630s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib0A9DD056969B8E536872D1CABFD4DEF4s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib0A9DD056969B8E536872D1CABFD4DEF4s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib0A9DD056969B8E536872D1CABFD4DEF4s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib8D15BEAFA7C2E905F53A3B8337DF6E8Es1
https://conservancy.umn.edu/server/api/core/bitstreams/1a922221-2cb8-4726-b56a-7cc3c88d0d18/content
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib8D15BEAFA7C2E905F53A3B8337DF6E8Es1
https://conservancy.umn.edu/server/api/core/bitstreams/1a922221-2cb8-4726-b56a-7cc3c88d0d18/content
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib8D15BEAFA7C2E905F53A3B8337DF6E8Es1
https://conservancy.umn.edu/server/api/core/bitstreams/1a922221-2cb8-4726-b56a-7cc3c88d0d18/content
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib8D15BEAFA7C2E905F53A3B8337DF6E8Es1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib9FE6CA65346D35AC6704518DC82BA096s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib9FE6CA65346D35AC6704518DC82BA096s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib9FE6CA65346D35AC6704518DC82BA096s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib3CCB320B1F4DED2146BCEE5CD5251010s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib3CCB320B1F4DED2146BCEE5CD5251010s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib5842172AB20801451AD1F665D22735A9s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib5842172AB20801451AD1F665D22735A9s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib25F4337288D70EB49807E95B81D872DAs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib25F4337288D70EB49807E95B81D872DAs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibF157BCAA2545B75E858750065B8B1B75s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibF157BCAA2545B75E858750065B8B1B75s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibF157BCAA2545B75E858750065B8B1B75s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib02DD2C0581BE19BE4F66F0FF17B2D497s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib02DD2C0581BE19BE4F66F0FF17B2D497s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib02DD2C0581BE19BE4F66F0FF17B2D497s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibB300A7A8DC67E3D593E4FDF6F6A358DFs1
https://ntrs.nasa.gov/api/citations/20160005923/downloads/20160005923.pdf
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibB300A7A8DC67E3D593E4FDF6F6A358DFs1
https://ntrs.nasa.gov/api/citations/20160005923/downloads/20160005923.pdf
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibB300A7A8DC67E3D593E4FDF6F6A358DFs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib6DDF02E96304D07A8D7B596A2B4B4759s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib6DDF02E96304D07A8D7B596A2B4B4759s1

Y. Jang, E. Martin, J.-B. Chapelier et al. Computers and Mathematics with Applications 176 (2024) 165–178
[29] T.T. Chisholm, D.W. Zingg, A Jacobian-free Newton–Krylov algorithm for compress-

ible turbulent fluid flows, J. Comput. Phys. 228 (9) (2009) 3490–3507.

[30] P.D. Hovland, L.C. McInnes, Parallel simulation of compressible flow using automatic
differentiation and PETSc, Parallel Comput. 27 (4) (2001) 503–519.

[31] R. Alexander, Diagonally implicit Runge–Kutta methods for stiff ODE’s, SIAM J. Nu-

mer. Anal. 14 (6) (1977) 1006–1021.

[32] J.G. Bautista, M. de la Llave Plata, V. Couaillier, M. Visonneau, K. Schneider,
ℎ-adaptation for high-order discontinuous Galerkin schemes built on local multi-

wavelet analysis, Comput. Fluids 256 (2023) 105844.

[33] R. Borrell, G. Oyarzun, D. Dosimont, G. Houzeaux, Parallel SFC-based mesh parti-

tioning and load balancing, in: 2019 IEEE/ACM 10th Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems (ScalA), 2019, pp. 72–78.

[34] G. Baldan, R. Borell, J. Jägersküpper, A runtime-based dynamic mesh-partitioning
approach, in: 8th European Congress on Computational Methods in Applied Sciences
and Engineering, ECCOMAS Congress 2022, Scipedia, 2022, pp. 1–12.

[35] S. Rajamanickam, E.G. Boman, An evaluation of the Zoltan parallel graph and hy-

pergraph partitioners, Tech. rep., Sandia National Lab. (SNL-NM), Albuquerque, NM
(United States), 2011, https://www .osti .gov /servlets /purl /1111609.

[36] J. Kok, A high-order low-dispersion symmetry-preserving finite-volume method
for compressible flow on curvilinear grids, J. Comput. Phys. 228 (18) (2009)
6811–6832.

[37] A. Ferrero, F. Larocca, G. Puppo, A robust and adaptive recovery-based discontinuous
Galerkin method for the numerical solution of convection–diffusion equations, Int.
J. Numer. Methods Fluids 77 (2) (2015) 63–91.

[38] B. Rajani, A. Kandasamy, S. Majumdar, Numerical simulation of laminar flow past
a circular cylinder, Appl. Math. Model. 33 (3) (2009) 1228–1247.

[39] C.H. Williamson, Oblique and parallel modes of vortex shedding in the wake of a
circular cylinder at low Reynolds numbers, J. Fluid Mech. 206 (1989) 579–627.

[40] D.J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds num-

bers, J. Fluid Mech. 6 (4) (1959) 547–567.

[41] C. Norberg, Fluctuating lift on a circular cylinder: review and new measurements, J.
Fluids Struct. 17 (1) (2003) 57–96.

[42] J.-B. Chapelier, F. Basile, F. Naddei, M. de la Llave Plata, V. Couaillier, R. Laraufie,
ℎ𝑝 adaptive discontinuous Galerkin strategies driven by a posteriori error estimation
with application to aeronautical flow problems, Adv. Appl. Mech. 58 (2024).
178

http://refhub.elsevier.com/S0898-1221(24)00451-6/bib7AED8037870BF652E5E329F4CBD5304Es1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib7AED8037870BF652E5E329F4CBD5304Es1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib111BC4F3B3D7B4F3D23ED9381BE59B75s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib111BC4F3B3D7B4F3D23ED9381BE59B75s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib07D809A51B76EAB19DC49CB5305DF923s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib07D809A51B76EAB19DC49CB5305DF923s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibBE68CA36B64808D4F0D19B2DCABD2960s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibBE68CA36B64808D4F0D19B2DCABD2960s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibBE68CA36B64808D4F0D19B2DCABD2960s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib0C1471911C0BED087A37F2A79FE4C59Bs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib0C1471911C0BED087A37F2A79FE4C59Bs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib0C1471911C0BED087A37F2A79FE4C59Bs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibCEA14ED6BF4709A61CDA56E6D4D58344s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibCEA14ED6BF4709A61CDA56E6D4D58344s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibCEA14ED6BF4709A61CDA56E6D4D58344s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib26D099181F1C58CA0230D1FC5FCE54EFs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib26D099181F1C58CA0230D1FC5FCE54EFs1
https://www.osti.gov/servlets/purl/1111609
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib26D099181F1C58CA0230D1FC5FCE54EFs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib953B7DF371EAB09D20C23EB563137BD2s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib953B7DF371EAB09D20C23EB563137BD2s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib953B7DF371EAB09D20C23EB563137BD2s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib3103875932CCD39C59AFDAF86F659F41s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib3103875932CCD39C59AFDAF86F659F41s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib3103875932CCD39C59AFDAF86F659F41s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib7F676DCB9A8D20C86CED881F4D9728E8s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib7F676DCB9A8D20C86CED881F4D9728E8s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibCAB24D9D46CA93A18251193A9AFAC813s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibCAB24D9D46CA93A18251193A9AFAC813s1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibBF96626796C08F7270DF60D397619BECs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibBF96626796C08F7270DF60D397619BECs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib74C7608A8FA5E9F2A031A0E4F6A89C9Cs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bib74C7608A8FA5E9F2A031A0E4F6A89C9Cs1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibC6B93E721329D11C8EE1292D57965D0Ds1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibC6B93E721329D11C8EE1292D57965D0Ds1
http://refhub.elsevier.com/S0898-1221(24)00451-6/bibC6B93E721329D11C8EE1292D57965D0Ds1

	Two-level dynamic load-balanced p-adaptive discontinuous Galerkin methods for compressible CFD simulations
	1 Introduction
	2 Model problem
	2.1 Discontinuous Galerkin method
	2.2 Time integration

	3 Dynamic load-balanced p-adaptation
	3.1 A posteriori error indicator
	3.2 Mesh partitioning
	3.3 Two-level parallel computing

	4 Numerical experiments
	4.1 Unsteady Euler flow
	4.2 Unsteady Taylor-Green Vortex flow
	4.3 Periodic laminar flow past a cylinder

	5 Conclusion
	CRediT authorship contribution statement
	Acknowledgements
	Data availability
	References

