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Abstract

In the era of burgeoning data diversity in heterogeneous sources, unlocking
valuable insights becomes pivotal. Raw data often lack context and meaning,
necessitating the deployment of services that link and enhance data, thereby
extracting meaningful patterns and information. For example, exploring the
significance of IoT sensors in measuring air quality across cities emphasizes
the potential to establish connections between air quality and associated
metrics like traffic intensity and meteorological conditions.

Introducing the Data Enrichment Toolchain (DET), this study underscores
its role in harmonizing and curating diverse datasets. DET operates on
linked-data principles and adheres to the NGSI-LD standard, enabling seam-
less integration and correlation analysis across disparate data domains. The
research delves into the intricate relationship between traffic patterns and
prevalent air pollutants, utilizing enriched datasets from European cities fo-
cusing on the smart city of Madrid as a use-case.

Considering the COVID-19 pandemic’s impact on traffic flow and meteoro-
logical influences on air quality, the study examines pre-pandemic, pandemic,
and post-pandemic traffic scenarios in Madrid. By leveraging DET-enhanced
datasets, the investigation aims to unravel nuanced insights into the inter-
play between traffic, meteorological factors, and air quality, offering valuable
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implications for urban planning and pollution mitigation strategies.

1. Introduction

Many major cities around the world have been facing an increased concen-
tration of air pollution as a result of daily human activities. As it has been
stated in recent World Health Organization (WHO) reports, air pollution is
responsible of an estimated seven million deaths globally in 2016 and 91% of
the global population are living in areas below the WHO air quality criteria
[1, 2]. Additionally, in pure economic terms, air pollution has an associated
cost, globally, that exceeds 3.7 billion euros per year [3]. For example, in
Spain it represents between 1.7% and 4.7% of its Gross Domestic Product
(GDP) [4]. This has led to Administrations establishing policies and legally
enforcing the reduction of air pollutants, mainly at urban areas. For exam-
ple, in July 2019 the European Commission announced its decision to refer
Spain to the European Court of Justice (CJEU) for exceeding legal air pol-
lutant emission limits – NOx in particular, in the urban areas of Madrid and
Barcelona1.

In this regard, several studies have described how urban areas have higher
concentrations of air pollutants than any other ecosystems. These studies
have concluded that the main reason for this is the large number of vehicles
and reduced road capacity [5, 6]. In European cities, about 70% of environ-
mental pollution is caused by motorized transport [7]. In order to address
this issue, some large cities have introduced policies to reduce traffic-related
pollution by encouraging the use of public transport.

This paper aims to assess what are the relationships between traffic and
some of the most relevant air pollutants by analyzing fine-grained datasets
coming from Internet of Things (IoT) deployment at the city of Madrid
(Spain). Concretely, we are focusing on the information on specific time
periods before, during and after the COVID-19 pandemic.

The rationale for selecting this time periods is that during the pandemic in
several countries, traffic has been severely reduced to limit the circulation
of people and the spread of the virus. This has created a unique situation

1http://europa.eu/rapid/press-release MEMO-18-4486 en.html
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to study the effect of reduced traffic on pollution. The traffic and pollution
data in March, April and May 2019 are very different from traffic data in
the same months of 2020. As an effect of some relaxation of lockdown, data
in 2021 in the same period are also different. This gives us the opportunity
to understand the effect of reduced traffic in 2020 and to compare data from
2019 and 2021 in order to understand how the traffic was different. At
the same time, pollution should have changed in the same period. So a
comparison can bring in additional elements. However, the pandemic forced
people at home so it is likely that heating could have had a different impact
on the pollution. We also consider the data in August 2020 in order to
compare the level of (reduced) traffic, and the pollution (without heating).

Mostly we consider the traffic-related emission as a major cause of air pol-
lution such as Nitrogen dioxide (NO2), which is the reason of asthma in
four million humans annually, Carbon monoxide (CO), Particulate matter
2.5 (PM2.5), Particulate matter 10 (PM10), and Sulphur dioxide (SO2).

As it has already been said, for the study that is presented in this paper,
we are leveraging large datasets that have been obtained from existing IoT
deployments in the city of Madrid. In this sense, the proliferation of data
sources associated with IoT deployment is creating an abundance of informa-
tion that is called to bring benefits for both the private and public sectors.
However, data itself is worthless (as gas would be if the combustion engine
did not exist), data is only valuable as it can be swiftly consumed so that
actual knowledge can be extracted from it. Thus, before actually analyz-
ing the available datasets, it is necessary to consider a number of aspects
that must be taken into account to guarantee swiftness in the consump-
tion of IoT data. In this work, we have leveraged a so-called Data En-
richment Toolchain (DET) developed within the EU-funded research project
SALTED2 (Situation-Aware Linked heTerogeneous Enriched Data) to deal
with two of them, namely data harmonization and data curation.

This paper endeavours to address the following pivotal research inquiries:
1) Can general-purpose data collection platforms adeptly accommodate spe-
cialized services?
2) How can collected data be harmonised and curated in order to build a
data injection chain?

2https://salted-project.eu/
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3) In what manner can harmonised and curated data be correlated and in-
terlinked through the implementation of a DET?

Paper key contributions are as follows:
1) In this study, we have employed DET to effectively model and unify
datasets sourced from diverse providers, spanning heterogeneous domains
and formats. Through the application of linked-data principles and adher-
ence to the NGSI-LD standard 3, DET facilitated the seamless harmonization
of these datasets. This critical harmonization, achieved via pre-processing,
established a standardized format essential for enabling correlation analysis.
Our work successfully unified datasets not only across distinct domains, such
as traffic and air quality data, allowing for the computation of the mutual
impact between road traffic and air pollution but also various cities, allowing
for extending the study carried out in this paper to other cities where similar
data is available.

2) Furthermore, DET played a pivotal role in curating the dataset by sys-
tematically removing faulty entries and rectifying duplicates or missing data
items. This rigorous pre-processing step was imperative in ensuring the in-
tegrity of our analyses, safeguarding against the potential bias introduced by
low-quality data in our correlation analyses, and it was possible to address it
in a systematic and homogeneous manner only after the data modelling and
harmonization enabled by the DET.

3) Finally, utilizing the harmonized and curated datasets integrated into
our system’s data broker, we conducted an extensive correlation analysis.
Our investigation focused on unraveling discernible patterns associated with
air quality issues by correlating air quality metrics with various relevant
parameters across diverse locations and temporal spans. This comprehensive
analysis aimed to illuminate intricate relationships and uncover meaningful
insights into the dynamics of air quality across different contexts.

The remaining of the paper is structured as follows. Section 2 provides an
overview of background knowledge and related works. Section 3 details the
architecture of the DET. In Section 4, we introduce the various data sources
collected and integrated into our system while Section 5 outlines the method
used for data curation and treatment. Moving forward, Section 6 focuses

3https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
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on a practical use case illustrating correlation analysis. Finally, Section 7
concludes the paper by summarizing key findings and presenting avenues for
future research directions.

2. Related work

In this section, we aim to present an overview encompassing prior research
and ongoing initiatives that explore the multifaceted realms of DET func-
tionalities. Additionally, we offer an in-depth analysis of previous works
concerning data correlation analysis and related use cases, providing valu-
able insights into the methodologies, advancements, and applications within
this critical domain of study.

2.1. General purpose Data Enrichment Toolchain

The concept of DET embodies a fusion of diverse microservices, synergis-
tically enhancing the quality and intrinsic value of initial information ex-
tracted from data. Conceptually, envision a DET as a dynamic pipeline,
comprising distinct sets of components, each meticulously addressing a piv-
otal stage within the data source enhancement cycle. This iterative cycle it-
erates systematically, affording adaptability by enabling certain components
to be dynamically parameterized, thus allowing for a flexible and responsive
operational framework.

The realm of DET for harmonizing diverse datasets and an experimental
evaluation of DET’s implementation is described in detail in [8] to show the
potential of enriching data into a semantic knowledge graph, creating new
data via linking, aggregation, reasoning and leveraging linked-data modelling
and semantics extends metadata for enhanced utility. However, the inter-
operability of different components is an important aspect of this toolchain.
Sharing data within each system necessitates a complex implementation pro-
cess and robust standardization initiatives [9]. In IoT ecosystems, platforms’
interoperability is an important problem; for example, [10] utilized five inter-
operability patterns crucial for cross-platform interoperability, aiding in the
establishment of successful IoT ecosystems. Moreover, semantic interoper-
ability is another important aspect of this subject, especially with the help
of machine learning; this can be applicable across standardization domains
[11], [12].
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In our work, the DET solution facilitates interoperability and incorporates
processing steps for enriching datasets sourced from heterogeneous data sources,
extending beyond IoT platforms.

2.2. Data correlation analysis

Many prior studies have consistently highlighted the connection between traf-
fic patterns and air pollution. It has been well-documented that pollution
stemming from vehicular traffic exerts deleterious impacts, not only on the
natural environment but also on the health of individuals residing in areas
influenced by high pollution levels, such as cardiovascular disease, leading
to premature death. Considering these consequences, governments at local
and national levels across the globe have proactively implemented a range
of policies designed to curtail vehicular emissions. These policies encompass
measures such as low emission zones, designated car-free days, and innovative
schemes like the odd-even license plate rotation system [13, 14, 15].

In 2020, human activities experienced a significant reduction due to the im-
plementation of stringent government measures, including city lockdowns
and restrictions on outdoor activities. A direct outcome of these policies
was the notable decrease in transportation and subsequent reduction in air
pollution [16]. Numerous studies have been conducted to investigate and
assess the impact of lockdown-induced reductions in traffic on air pollution
concentrations. In China, a study by Chen et al. [17] utilized regression
analysis to examine the correlation between changes in vehicle restriction
policies and air pollution levels before and after the onset of COVID-19 in
49 cities. The key finding suggests that cities with slower economic growth
experienced more substantial improvements in air quality due to reduced
traffic, compared to cities characterized by rapid development. In the [18],
the NO level around schools in the United Kingdom is found to reduce 35.1%
and 40.8% in Urban-South and Urban-North traffic during the stay-at-home
order in March 2020. Another study [14] analyzed the relationships between
traffic flow and air quality from 2017, 2018 and 2020 in Padova, Italy. It
found that NO and NOx are significantly associated with the vehicle flows
but no clear evidence for PM10. In the context of particulate matter such
as PM, humidity stands out as a crucial factor influencing its concentration.
An adaptive correction framework introduced by authors in [19] effectively
addresses this challenge by dynamically modeling hygroscopicity, thereby
mitigating humidity’s influence on particle measurements.
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Understanding and managing air quality is a major focus for researchers
investigating monitoring, modeling, and forecasting in urban areas. In this
regard, machine learning and deep learning methods are utilized to predict
the quality based on the observed patterns [20]. For instance, Iskandaryan et
al. utilized Graph Neural Networks to analyze data from Madrid, evaluating
metrics like Root Mean Square Error and Mean Absolute Error to assess
prediction accuracy [21, 22]. Additionally, they explored the effectiveness of
LSTM, which showed promising results in predicting metrics such as nitrogen
dioxide concentrations [23, 24]. Also, other methods such as long short-
term memory (LSTM) recurrent neural network (RNN) were used in traffic
forecasting based on various air pollutant and meteorological metrics [25].

In this study, we aim to analyze the correlation between various pollutants
and traffic, as well as meteorological metrics in the city of Madrid during the
pre, during, and post-COVID eras.

3. Data Enrichment Toolchain Architecture

In this section, the functional architecture of the DET is described, along
with a brief explanation of its role as the key enabler for data enrichment
and linking. Further insights on the DET can be found at [8].

The main objective of the DET is to enable the enhancement of datasets and
data-streams by way of enrichment mechanisms based on the application of
linked-data, semantics, and AI technologies.

The DET architecture is divided into two different planes based on the rela-
tion to data or control. The data plane allows utilizing data, and the control
plane enables configuring the components.

3.1. Data plane

Figure 1 depicts the DET functional architecture and illustrates the flow of
data through different modules. The DET is composed of microservices that
progressively transform and enhance the data. In general terms, the DET
can be seen as a pipeline with a set of modules that each target an atomic
step within the overall process. Particularly, the aim of the data enrichment
phase is to improve the quality and value of the original information.

The core components of the architecture, as seen in Figure 1, are the in-
jection chain, the context broker (one or multiple in a federation) and the
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Figure 1: DET Data Plane architecture [8].

enrichment chain. The injection chain is responsible for transforming raw
data into curated NGSI-LD data. The processed data can be accessed by
external applications through the context broker, which facilitates communi-
cation, storage, and historic data management. Finally, the enrichment chain
handles the linking and enrichment of NGSI-LD data obtained through the
broker. A more detailed explanation of each step is provided below:

� Data Discovery and Collection modules acquire raw data from
heterogeneous sources. These may include, but are not limited to,
IoT based deployments, social media, web-stored, statistical catalogues
or meteorological agencies. The output of this phase consists of the
raw data collected from various data sources, which are, by definition,
heterogeneous in both type and format.

� NGSI-LD Mapping modules transform the raw data into the NGSI-
LD information model, and more specifically, the resulting data is com-
pliant with FIWARE’s Smart Data Models initiative [26]. The trans-
formed data is then forwarded to the next phase.
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� Data Curationmodules ensure that the data injected in the NGSI-LD
Context Broker is adequate to be processed by data processing modules.
As an example, curation may include data quality mechanisms such as
outlier detection, deduplication, loss management or taggers for data
quality metrics (accuracy, timeliness and so on). These modules inject
their resulting clean data into the NGSI-LD Context Broker.

� Entity Linking modules create NGSI-LD Relationships between two
or more NGSI-LD Entities, regardless of their data source. This is
done by finding and establishing common aspects among data, whether
semantic, spatial, temporal, or otherwise. These relationships facilitate
any further processing by simplifying navigation through connected
data. Once the linking process is finished, the newly linked data is
injected back into the NGSI-LD Context Broker.

� Entity Enrichment modules generate new NGSI-LD Entities or new
NGSI-LD Properties in existing Entities. This is usually done by lever-
aging information from external knowledge sources. These modules are
typically specific to a particular domain and are designed with a spe-
cific application or use case in mind; however, this is not always the
case, as domain-agnostic enrichment is also a possibility. After the en-
richment process is complete, the enhanced data is injected back into
the NGSI-LD Context Broker.

3.2. Control plane

The control plane enables external or internal applications to configure the
DET components providing additional functionalities through parametriza-
tion. The control plane is decoupled from the data plane to avoid sharing the
same component for control-related functionalities and the control interfaces
are kept simple to avoid implementing different interfaces depending on the
component. Compared to the data plane, the NGSI-LD context broker is
replaced by the control broker in the control plane. The control broker pro-
vides the communication between the DET component and the application
configures the DET component.

The Inversion of Control (IoC) pattern is used to facilitate communication
among DET components and prevent them from learning the specifics of
other components or their endpoints. Applications or DET components can
call the components only through the control broker to reduce the security
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Figure 2: DET Control Plane architecture.

risks by not exposing the components to external applications directly. The
control broker uses a pub/sub-event-based mechanism for the communica-
tion. Components are subscribed to specific topics and users or applications
can publish to these topics to change the configuration of the DET compo-
nents. A predefined format is used based on the configurable parameters
available in each component.

3.3. DET deployment details

The deployment architecture of the DET is based on a federated setup that
includes Scorpio Context Broker Federator that connects the different “satel-
lites” of partners in the data plane. In addition, there is a control broker
that handles the control plane functions of the DET.

Access to the Federator Scorpio Broker and the EMQX Control Broker is
restricted using OAuth 2.0. The technology used for the Identity and Access
Management is Keycloak. This enables authorisation restrictions based on
JSON Web Tokens (JWT), and the communication is encripted with Trans-
port Layer Security (TLS).
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We have deployed the Scorpio NGSI-LD Brokers from their latest docker
images (i.e. scorpiobroker/all-in-one-runner:java-kafka-latest). On the other
hand, we have used Python 3 as the programming language for the DET
components. These are deployed as separate Python scripts acting indepen-
dently, which enhances their modularity and reusability. Communications
between components are achieved though HTTP, with most components im-
plementing their own lightweight HTTP server with the flask and waitress
Python libraries.

The DET used in this article is publicly available and can be found at [27].

Furthermore, several Injection Chains are implemented: IoT Data Injection
Chain, Web Data Injection Chain and Social Media Data Injection Chain.
This list can be extended by application developers by introducing new In-
jection Chains. Technical descriptions and deployment details of the listed
injection chains can be found in [28]. As a result of this implementation, a
bunch of enriched datasets have been created and are available at [29].

4. Data Sources

One of the critical stages in the DET platform is the initial phase of data dis-
covery and collection. This entails extracting raw data from diverse sources,
followed by a curation and pre-processing stage before the data is fed into
the brokers. The data collection spans various sources, including IoT-based
data, national and international meteorological data, and information from
social media platforms. However, the primary focus of this paper revolves
around the utilization of IoT-based data, specifically data obtained from a
wide array of IoT sensors, such as traffic, pollution, and weather sensors.

Furthermore, the analysis also incorporates meteorological data, as elabo-
rated in Section 6. As part of the work carried out in the framework of the
SALTED project, which constitutes the context for this paper, the selection
of cities for data acquisition is based on a set of rigorous criteria, including
the factors of public accessibility and data update frequency, with an em-
phasis on data being updated at intervals of one hour or less. In this sense,
data on traffic and pollution from several European cities have been gath-
ered through the corresponding DET injection chain. For a comprehensive
overview, Tables 1 and 2 summarize the essential characteristics of the traf-
fic and pollution datasets that have been collected so far. It is important to
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Table 1: Characteristics of the traffic datasets.

City Format Frequency Size #Sensors

Santander JSON 1 minute ∼900 MB ∼300

Barcelona CSV 5 minutes ∼100 MB ∼525

Oslo JSON 1 hour ∼15 MB ∼130

Madrid CSV 15 minutes 74-650MB ∼5000

Table 2: Characteristics of the pollution datasets.

City Format Frequency Pollutants #Stations

Santander CSV 1 hour PM10,SO2,NO2,CO 2

Barcelona JSON 1 hour PM10,SO2,NO,NO2,O3,CO 7

Oslo JSON 1 hour PM10,SO2,NO,NO2,O3,CO 13

Madrid CSV 1 hour PM10,SO2,NO2,O3,CO, PM2.5, NO 25

mention that data from more cities can be made available through the DET
just by integrating its corresponding Data Discovery and Data Collection
modules. Moreover, Tables 1 and 2 are only showing the details about the
data that has been used for establishing the correlations and relationships
that are within the scope of this paper. but since the DET is intended for
general purpose goals, its sources are not only related to these cities and
these data, but they are spanning over other application domains such as
social media, agriculture, socioeconomic statistical data, and, in perspective,
more.

Focusing on the scope of the paper, as shown in Tables 1 and 2, the most
common formats are CSV and JSON. The update frequency of the measure-
ments tends to be faster in the traffic data, resulting in additional processing
to align both datasets. This means either generating synthetic measurements
for the less frequent dataset or aggregating the measurements of the more
frequent one. The size of the datasets in terms of disk usage is quite relevant
for the traffic data since it can easily grow up to gigabytes. The sizes dis-
played in Table 1 are indicative of one month of data. Naturally, the more
frequent the measurements, the more sizable the dataset will be. This char-
acteristic is not as relevant in the case of the pollution data, given the fact
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that the number of pollution stations is significantly lower than the number
of traffic sensors. Finally, the pollutants covered by the different cities may
not totally overlap, but the most relevant ones for this study (as mentioned
in Section 1) are present in all of the cities surveyed.

There are data available from some well-monitored cities like Santander,
Madrid, Oslo and Barcelona. They share the accuracy in determining the
traffic intensity (per hour, the worst case of Oslo) and relevant measurement
in terms of pollutants (PM10, SO2, NO2 and CO). These cities are also inter-
esting because they have different traffic patterns depending on the touristic
period and the way the cities “behave” because of differences in weather con-
ditions. Other cities like Dublin and Aarhus have been considered, but the
datasets on traffic have not comparable accuracy.

The analysis presented in the following sections has focused on the largest
city of the ones from which we had data available, Madrid. However, as it
will be presented in Section 7 the same analysis will be performed over the
data available from the other three cities so that, on the one hand, the DET
platform capacities for allowing the development of interoperable application
and services over harmonized data sources are further validated (as it will
not only show the correlation of heterogeneous types of data, but also enable
multi-site correlation), and, on the other hand, multi-site results’ evaluation
(including comparison and transfer learning) might allow for the extraction
of further conclusions that are not evident on the single-site case.

5. Curation and treatment of the data

DET’s injection chains (cf. Figure 1) analyze raw data sources and generate
the correspondingly normalized data elements using the NGSI-LD informa-
tion model. By formatting heterogeneous data into a single, standardized
format, the mapping function enables uniform processing for the following
components in the pipeline. Due to its heterogeneous nature, the input can be
represented using several different data formatting standards such as Comma
Separated Values (CSV) or JavaScript Object Notation (JSON). Moreover,
both the names of the properties and the values can be highly different from
one another, as a result of the heterogeneous data sources and their internal
policies, language, units, and several other factors.

Moreover, in the process of transforming the raw data to NGSI-LD-formatted
high quality data, rigorous checks were conducted to ensure data consistency
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and reliability. This involved refining the data to eliminate sequences gen-
erated by malfunctioning sensors and incorporating missing sequences. No-
tably, specific procedures and checks were implemented for the considered use
case to ensure high data usability and quality. It is important to highlight
that thanks to the initial harmonization of data, subsequent processing and
curation of data can be performed homogeneously independently of which
data source it has been collected from. Detailed descriptions of these essen-
tial processes are presented in the subsequent sections.

5.1. Pollution data

In the context of air pollution data collection and analysis, our approach
involves careful curation and handling of the employed datasets. As defined
in the previous section, pollution data was obtained from open data portals,
that comprised various pollutants, including CO, SO2, PM10, NO2, and NO,
recorded on an hourly basis. To ensure the accuracy and applicability of the
data, we initiated the process with extensive data cleaning and pre-processing
to ensure that it is suitable for analysis.

This involved identifying the essential components of our study, as well as
checking for missing or inconsistent data, and transforming the data into a
format that can be easily analyzed. Some of our datasets showed various
inconsistencies over the course of a year, with periodic gaps in the recorded
values related to pollution levels. These gaps can occur for several reasons,
including equipment failure, delays in the data collection process, or other
unanticipated events. To keep the dataset coherent and manageable, we
used an interpolation method to approximate the missing values by looking
for patterns in the available data.

5.1.1. Interpolation technique

A linear interpolation technique was used to fill the missing values in the
data. This approach is predicated on the idea that pollution levels fluctuate
gradually over time and that trends in the existing data can be utilized to
forecast values for the missing intervals. Linear interpolation is the simplest
method to estimate the missing value based on the known values. Equation
1 below shows the mathematical expression for the linear interpolation where
a represents the timestamp where we want to estimate the value.

� (a−a1) shows the variation between the earliest known timestamp and
the target timestamp.
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� (b2−b1) shows the variation in pollutant levels between the second and
first known timestamps.

� (a1 − a2) shows the time interval between the two known values.

b(interpolated) = b1 +
(a− a1) · (b2 − b1)

a2 − a1
(1)

5.2. Traffic data

The traffic data utilized in this study is sourced from the Madrid City Coun-
cil Open Data portal4. This dataset serves as a comprehensive reference
for traffic-related attributes, and its observation frequency is deemed suffi-
cient for our analysis. The city is equipped with approximately 4,746 traffic
sensors, each capable of providing real-time traffic intensity data with a com-
mendable level of precision. Each sensor in the dataset records various at-
tributes at 15-minute intervals, contributing to a substantial volume of data.
For instance, a single day’s traffic observations encompass data from all 4,746
sensors over 24 hours, with each sensor generating four observations per hour.
This results in a large dataset, reflecting the detailed and continuous nature
of the traffic observations.

Initially, our focus was on a select set of attributes from the sensors capturing
the collected data, specifically, Occupancy and sensor status. Occupancy
represents the percentage of time a vehicle occupies the detector within a
15-minute timeframe. The details regarding traffic attributes, such as the
Occupancy time interval, are elaborated in the traffic data structure and
content document specification.

The curation process applied to the raw data aimed to identify and address
missing data. During this process, we discovered 145 instances of missing
values for a single sensor in April 2019, specifically related to the Occupancy
attribute. While these individual instances are negligible in the context of the
overall data volume for a month, the cumulative total of missing values across
all sensors amounted to 22,992 in a single month. This cumulative figure
could potentially introduce inconsistencies and hinder a coherent analysis of
the data.

4https://datos.madrid.es/portal/site/egob
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To handle the missing values, we employed interpolation techniques, uti-
lizing functions supported by the Panda library, as detailed in Subsection
5.1.1. This approach ensures a more complete dataset and facilitates a more
accurate and comprehensive exploration of the data.

6. Data correlation use case

The well-structured data collected in our system offers many opportunities for
both predictive and descriptive analyses. In the realm of smart cities, diverse
datasets make it apparent that many of these datasets are intuitively related
to each other. An example of this correlation is the interaction between
meteorological data and traffic data with air pollution data. Meteorological
factors such as wind, temperature, and humidity significantly influence the
behaviour of various pollutants and their dispersion within the environment.

Furthermore, the intensity of traffic plays a pivotal role as a major contribu-
tor to pollution levels. It stands to reason that higher traffic intensity would
correspond to a heightened concentration of pollutants. However, it is im-
portant to note that city datasets encapsulate intricate phenomena, making
it challenging to discern straightforward and easily identifiable relationships
among the various datasets. Therefore, a critical need arises for tools and
processes that can facilitate the assessment of correlations between these
phenomena and the datasets that encapsulate them. The DET architecture
has been developed aiming at easing the linking and enrichment of different
types of data.

In order to evaluate the potential of the DET, a specific use case requiring
correlation and integration of different datasets is presented. The selected
Use Case for challenging the linking capabilities serves as the analysis, in
well-monitored cities, of the relation between traffic intensity, meteorological
conditions and pollution values before, during and after the COVID period.
The aim is to evaluate how the lockdown period impacted on these values
considering that it is reasonable to assume an almost negligible contribution
of the road traffic during the strictest periods of lockdown (i.e. April 2020).

6.1. Use case introduction

As previously mentioned, the main objective of the data fusion enabled
through the DET is to delve into the correlation between traffic patterns
and meteorological conditions with the air pollution factors in various city
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scenarios. In this paper, we specifically focus on the city of Madrid. We
will achieve this by conducting a comprehensive analysis of historical data
pre-processed through DET injection chains from three distinct periods:
pre-COVID (2019), during the COVID pandemic (2020), and post-COVID
(2022). Our initial focus on Madrid is motivated by three key factors ob-
tained after thorough examination:

� Madrid’s highly developed transport network infrastructure makes it
one of the biggest European cities with exceeding air pollution from
WHO standards and thus requires demanding traffic pollution policies
[30].

� Madrid, with almost 6 million inhabitants, has been one of the most
strongly impacted cities by COVID-19, accounting for the greatest
share of cases and deaths in the country [31]. The lockdown policy
in such a densely populated city could give us a clearer impact on the
factors influencing air pollution changes.

� Madrid prides itself on being a smart city equipped with over hundreds
of thousands of IoT sensors and open data platforms. The study takes
advantage of open data to understand the nature and interplay between
meteorological factors, traffic volume and, ultimately, air quality.

Pre-COVID (2019) During-COVID (2020) Post-COVID (2022)

2019

March June

WHO Declared a pandemic  
Applying restrictions

Starting to remove 
restrictions

March June

2022

March June

2020

Figure 3: Selected data of Madrid city in 3 time periods.

In any case, as it will be highlighted and further discussed in Section 7, con-
sidering the fact that similar data, already harmonised and curated through
the DET pre-processing, is available from three other cities (i.e. Barcelona,
Oslo and Santander), the same correlation analysis will be carried out on
those datasets. In this sense, the motivation for limiting the use case to
the analysis in the city of Madrid is, besides article extension limitation,
the fact that it already allows fulfilling the research objectives addressed in
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the paper in terms of the harmonisation and curation of heterogeneous data
sources, and the interlinking of such harmonised datasets in look for disco-
vering higher-level knowledge (in our case, impact of traffic reduction policies
in the city air pollution levels).

6.2. Madrid historical data

In the use-case, the data was extracted from the NGSI-LD Broker within the
DET to conduct the analysis. The COVID era data serves as an invaluable
context for our research, given the stringent lockdown measures implemented
to mitigate the pandemic’s spread and the consequential reduction in traffic
along with meteorological metrics, which provides a pivotal point of interest
for assessing pollution metrics. Madrid, in particular, experienced several
stages of restrictions during this period, from the pre-state of alarm on March
8th to the lifting of restrictions on June 20th, 2020.

To carry out our analysis, as shown in Figure 3, we focused on a four-month
duration during the COVID pandemic from the start of March to the end of
June. We also studied equivalent timeframes in 2019 (pre-COVID) and 2022
(post-COVID) to facilitate correlation pattern analysis. The selected data
was subsequently subjected to pre-processing to establish a daily unit within
the defined interval, encompassing all stages of the COVID-19 pandemic
lockdown in Madrid.

To further investigate whether there have been alterations in pollutant con-
centrations and traffic flows in selected time periods and to what extent these

Table 3: Summary of selected stations.

Type No. of Stations Features Unit

Air Station 3

NO

µg/m3NOx

PM2.5

PM10

Meteorological
Station

3

Wind Speed m/s
Temperature C
Solar Radiation W/m2

Humidity %

Traffic Station 33 Passing Cars Num/hour
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changes have occurred, we have employed various features in the selected sta-
tions as indicated in Table 3.

6.2.1. Air quality data

From the pool of 24 air quality monitoring stations scattered throughout
Madrid, we picked three stations that are strategically located in distinct
areas, each offering unique characteristics for our comprehensive analysis:

Figure 4: Illustration of Madrid selected air and traffic stations. For three selected air
stations in each area, the distance difference threshold and the number of within-distance
traffic stations are shown.

� Area 1 (A1: Urban-North): Located in the northern part of Madrid,
called “Plaza Castilla” which serves as a pivotal transport hub, facil-
itating the convergence of traffic from multiple routes. This area is
renowned for its ease of commuting and is a sought-after residential
neighborhood, making it an ideal candidate for analyzing traffic flow
and pollution. Numerous offices and residential communities surround
it.

� Area 2 (A2: Urban-South): Situated in the southern region of
Madrid at “Méndez Álvaro”, this station is strategically positioned
near one of the city’s major bus and train stations. Given its proximity
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to these transport hubs, this area experiences heavy traffic flow, serving
as a primary gateway to the city center.

� Area 3 (A3: Suburban): Nestled in the west of Madrid, “Casa de
Campo” offers a distinct setting away from the city center. Notably,
this area features a sprawling public park, attracting residents, espe-
cially during weekends and holidays, as it is famous for its pleasant and
healthy climate. Furthermore, the nearby “Avenue of Portugal” serves
as a primary entry point into Madrid center, making it an intriguing
case study for analyzing traffic flow from outside the city.

Among all the stations in these areas, we have applied the first filter to look
at only stations with sensors that measure our interested air quality indexes:
NO, NOx, PM2.5 and PM10.

Only seven stations pass the first filter, with only one from Urban-South
and 1 from Suburban. To select the remaining Urban-North, we look at the
furthest station. The finalists’ station name, type and location are illustrated
in Figure 4.

Pertaining to the sensors with which these stations are equipped, for the
PM2.5 and PM10, they use a continuous dichotomous ambient air monitor
composed of two Filter Dynamics Measurement Systems (FDMS) and two
mass sensors housed in a single cabinet, with a measurement range of 0 to
1,000,000 µg/m³ (1 g/m³), a resolution of 0.1 µg/m³, a precision: ±2.0 µg/m³

(1-hour avg) and an accuracy for mass measurement: ±0.75%. Regarding
the Nitrogen oxides, the sensor used is based on cross-flow modulation with
reduced pressure chemiluminescence (CLD). Its measurement range is of 0-
0.1/0.2/0.5/1.0 ppm, its repeatability ±1.0% of F.S. and a linearity of ±1.0%
of F.S.

Furthermore, the chosen stations record air quality metrics on an hourly
basis and periodic measurement campaigns are also conducted by means of a
mobile unit. Additional miscellaneous information about the placement and
pollutants measured by each station is readily available on their air quality
web portal5. We collect this information through a REST interface provided
by Madrid’s Open Data portal. After the retrieval, the data is processed as
described in Section 5.

5Madrid air quality portal (in Spanish)
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6.2.2. Meteorological data

Figure 5: Pair-wise distance matrix between meteorological and air stations in KM.

Meteorological data plays a crucial role in understanding the atmospheric
conditions that impact air quality. Our study focuses on four key meteoro-
logical factors: wind speed, temperature, solar radiation and humidity, as
they are pivotal in assessing air quality in Madrid. However, it is essential to
note that not all meteorological stations in the region provide data on all four
of the mentioned indicators. In fact, out of the 36 meteorological stations
scattered across Madrid, only 8 are equipped to measure wind speed, tem-
perature, solar radiation and humidity simultaneously. To ensure the highest
level of precision and accuracy in our analysis, we create a pair-wise distance
matrix based on the latitude and longitude of each station (as depicted in
Figure 5). By doing so, we identify the meteorological stations that are in
closest proximity to the selected air stations, as illustrated in Figure 6.

These stations are equipped with thermo-hygrometer sensors in addition to,
in some cases, other devices that match the meteorological parameter be-
ing measured (e.g., if the station measures wind speed, then it is equipped
with anemometers). In the case of these sensors, their specifications are
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Figure 6: Madrid selected meteorological stations and their pair-wise distance to the
selected air station.

not provided by the city; nevertheless, information about the placement and
parameters measured by each station is readily available on their meteorolog-
ical web portal6. We collect this information hourly, using the same method
pointed out in the air quality data subsection.

It is essential to clarify that our primary objective is not solely to establish
the direct correlation between meteorological factors and air quality at in-
dividual air stations. Instead, we opt for a more comprehensive approach.
We aggregate the meteorological data by calculating the daily average values
from the three selected meteorological stations. As a result, each of the three
air stations will have a singular value for each meteorological factor per day,
creating a harmonized dataset that simplifies further analysis. This approach
ensures consistency and comparability in our study, enhancing the accuracy
and reliability of our findings.

6.2.3. Traffic data

In our study, we aim to comprehensively assess the air quality in Madrid,
considering not only meteorological factors but also the influence of traf-

6Madrid meteorological portal (in Spanish)
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fic conditions. The number of traffic stations continuously rises, with new
installations each year. To ensure a fair and consistent comparison over a
3-year period, we specifically selected traffic stations from 2019, resulting in
a total of 4,153 stations for our analysis. These traffic stations record data
at a 15-minute interval.

These traffic measurement points are based on vehicle detection. A small
number of them are equipped with cutting-edge modules: around 1% of the
sensors include number plate readers, and almost 2% incorporate optical sen-
sors that enable artificial vision processing at the city’s Mobility Management
Center. Their basic functionality, on the other hand, is based on semaphore
control to measure the number of vehicles passing through a specific lane.
We process this information as pointed out in the previous subsections.

To align the data for meaningful comparisons, we aggregate all data points
into daily units, representing each sensor’s data on a daily basis. The key
feature we are interested in from this traffic dataset is the number of passing
cars, which can significantly impact air quality in urban areas.

Similar to our approach with meteorological stations, we create a pair-wise
distance matrix based on the latitude and longitude of each of the 4,153
traffic stations concerning the 3 air stations in our study. Determining an
optimal proximity threshold for traffic stations in proximity to air stations
differed in selected areas as traffic sensors are more likely to be located in
two selected urban rather than suburban ones. Finally, as shown in Figure
4, we calculated the optimal threshold for our analysis to cover a couple of
sensors near the selected air stations.

To derive meaningful insights, we average the number of daily passing cars
from the closest traffic stations to determine a single traffic density value
for each air station’s area. This approach enables us to assess the impact of
traffic conditions on air quality in various regions of Madrid, contributing to
a more comprehensive and accurate analysis of air quality factors.

6.3. Analysis of air quality, traffic and meteorological metrics changes

To gain a comprehensive understanding of the data collected from these
three types of monitoring stations, we have conducted a detailed analysis
that focuses on both the statistical means and the percentage change from
the previous year. This analysis encompasses air quality and traffic flow,
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taking into account not only the temporal dimension but also the spatial
aspect of station locations.

6.3.1. Statistical metrics

To assess alterations in selected air quality, traffic and meteorological met-
rics, we employed the Mann-Whitney U test, a non-parametric statistical
method designed to ascertain significant differences between distributions of
two independent groups. This test is particularly suitable when the data fails
to meet the assumptions necessary for parametric tests such as the t-test. By
evaluating whether one group’s values consistently rank higher or lower than
the other across the entirety of their distributions, the Mann-Whitney U
test provides insights into potential disparities between the groups. The test
statistic U is calculated as follows:

For two independent samples, with n1 observations in group 1 and n2 obser-
vations in group 2:

� Ranking all values from both groups together in ascending order, as-
signing ranks from 1 to N = n1 + n2 to the combined dataset

� Calculating the sum of ranks (R1) for the observations in group 1.

� The test statistic U1 can be computed as:

U1 = n1 × n2 +
n1 × (n1 + 1)

2
−R1 (2)

We also employed effect size or ”probability of superiority” (ϕ) measures
to help quantify the magnitude of differences or the strength of association
between groups. This metric is calculated as the probability that a randomly
selected observation from one group will be greater than a randomly selected
observation from the other group. This effect size can be obtained using the
formula:

ϕ =
U

n1 × n2

(3)

Where ϕ is the probability of superiority (effect size), U is the Mann-Whitney
U test statistic and n1 and n2 are the number of observations in group 1 and
2, respectively.
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The ϕ value ranges from 0 to 1, with higher values indicating a greater
probability that an observation from one group is higher than an observation
from the other group.

Figure 7: Descriptive statistics from air quality stations.

6.3.2. Air quality changes

The analysis of air quality changes over three different time spans in each
area is depicted in Figure 7. A detailed examination of each pollutant reveals
a consistent decrease in all pollutants during the COVID period (averaging a
46% reduction for NO and NOx, and a 15% reduction for PM2.5 and PM10),
except for PM10 in suburban areas, which exhibited a marginal increase.

Upon comparing the Post-COVID period to the During-COVID phase, on
average, NO levels remained relatively stable across all areas (with a 2%
change), whereas NOx experienced a substantial 41.6% increase, notably
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Table 4: Mann Whitney U-test p-value and effect size on the change of air pollution
concentration.

p-value effect size

Pollutant Area Pre&During During&Post Pre&Post Pre&During During&Post Pre&Post

NO
A1 0.000 0.201 0.000 0.727 0.001 0.8
A2 0.000 0.000 0.37 0.261 -0.043 0.26
A3 0.001 0.852 0.001 0.403 0.032 0.446

NOx
A1 0.000 0.000 0.002 1.146 -0.851 0.426
A2 0.000 0.000 0.025 0.571 -0.324 0.384
A3 0.000 0.000 0.000 0.741 -0.289 0.532

PM2.5

A1 0.000 0.184 0.461 0.467 -0.349 -0.131
A2 0.041 0.000 0.35 0.174 -0.452 -0.372
A3 0.294 0.015 0.901 0.217 -0.262 -0.118

PM10

A1 0.000 0.000 0.054 0.838 -0.359 -0.158
A2 0.062 0.000 0.000 0.282 -0.43 -0.365
A3 0.251 0.014 0.001 -0.122 -0.294 -0.319

soaring by 64% in the Urban-North region. Conversely, both PM2.5 and PM10

showed higher average concentrations post-COVID, with increases of 20.3%
and 68.8%, respectively. Particularly noteworthy is the surge in PM10 levels
in the Urban-South area, rising from 12.6 µg/m3 during the post-COVID
phase to 24.4 µg/m3.

These variations underscore the intricate nuances in pollutant levels across
different temporal periods and geographical areas, elucidating a notable di-
vergence in the trends observed for various pollutants post-COVID, especially
evident in PM10 concentrations within the Urban-South locality.

To statistically examine the alterations, Table 4 presents the outcomes of
the Mann-Whitney U-test alongside effect size measurements. The compar-
ison of changes in each pollutant across different areas is categorized into
three groups: Pre&During, During&Post, and Pre&Post COVID periods.
Significant changes are indicated in the table by p-values of 0.

For a more comprehensive understanding of these changes, effect size values
offer a broader perspective. A value greater than 0.5 signifies a substantial
effect. However, in cases where the effect size is negative, it implies that the
average of the second group has increased compared to the first group. These
effect size measurements provide additional insights into the magnitude and
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directionality of the observed changes in pollutant levels across distinct time
periods and geographical regions.

6.3.3. Meteorological changes

We conducted an analysis of the average values for four specific meteoro-
logical metrics—temperature, wind speed, solar radiation and humidity as
depicted in Figure 8. Temperature and wind speed exhibit notable stability
across all the compared time spans. For instance, the temperature in Madrid
remains relatively consistent, registering at 14.7°C from March to June dur-
ing pre-COVID years and at 14.6°C during the COVID period, with a slight
increase to 15.1°C post-COVID. Concurrently, the wind speed maintains a
steady trend throughout the selected timeframe, averaging at 1.88 m/s.

However, the solar radiation factor displays some variation. It experienced a
reduction from 270.7 W/m2 in the pre-COVID year to 238.5 W/m2 during
the COVID period, before rebounding by 5% to 250.7 W/m2 in the post-
COVID year. This shift in solar radiation levels suggests fluctuations in
environmental conditions during these time periods, potentially influencing
various aspects of the observed air quality changes. The same trend has
been observed in reverse for humidity. For this metric, it was 45% in the pre-
COVID year while it increased to 57.73% during the COVID period, before
decreasing by 5% to 52.32% in the post-COVID year.

Referring to Table 5, it’s evident that humidity and solar radiation stand
out with the most substantial effect size and the smallest p-values among
all meteorological metrics. This prominence can be attributed to significant
changes in averages observed across all three selected periods. Conversely,
the trends for temperature and wind speed exhibit less pronounced effects,
largely remaining steady throughout these periods.

6.3.4. Traffic changes

Traffic plays a significant role in air quality, and it stands as a primary factor
in our analysis. As demonstrated in Figure 9, there was a substantial 61.5%
decrease in traffic flow across selected areas during the COVID-19 period.
While post-COVID restrictions were lifted, daily average traffic levels have
not fully rebounded to pre-pandemic norms, signifying enduring alterations
in traffic behavior. Analysis of traffic averages across regions indicates a
marginally higher traffic volume in Urban-North, attributed to the presence
of numerous corporate entities. Notably, the suburban region consistently
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Figure 8: Descriptive statistics from meteorological stations.

records double the traffic volumes of urban areas, mainly due to the strategic
importance of the A-5 motorway connecting Madrid to the Spanish-Portugal
border and central Madrid.

As presented in Table 6, the analysis of p-values for traffic flow across all
three time periods highlights substantial changes across different areas with
average of less than 0.01 for all parts. In examining these changes more
comprehensively, the effect size indicates significant differences, particularly
when comparing the pre and during-COVID eras, with a notable effect size
of 1.057 observed in the suburban area. Comparatively, when evaluating the
pre and post-COVID periods, a smaller yet positive effect size is evident,
signifying a slight reduction in the average traffic flow.

6.4. Results of correlation analysis

For correlation analysis, we used Spearman’s rank correlation coefficient,
which is a statistical method used to assess the strength and direction of
association between two variables. It measures the monotonic relationship
between variables, which means it determines whether the variables tend to
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Table 5: Mann Whitney U-test p-value and effect size on the change of meteorological
concentration.

p-value effect size

Pre&During During&Post Pre&Post Pre&During During&Post Pre&Post

Temperature 0.924 0.903 0.759 0.006 -0.054 0.048

Wind Speed 0.071 0.327 0.351 0.141 -0.016 0.134

Solar Radiation 0.000 0.028 0.056 0.383 -0.126 0.222

Humidity 0.000 0.000 0.000 -0.791 0.303 -0.463

Table 6: Mann Whitney U-test p-value and effect size on the traffic flow change.

p-value effect size

Area Pre&During During&Post Pre&Post Pre&During During&Post Pre&Post

A1 0.000 0.000 0.004 0.734 -1.072 0.135

A2 0.000 0.000 0.005 0.969 -0.883 0.142

A3 0.000 0.000 0.009 1.057 -0.83 0.243

Avg 0.000 0.000 0.006 0.778 -0.671 0.221

increase or decrease together, but not necessarily at a constant rate. Spear-
man’s rank correlation coefficient (ρ) is calculated using the following for-
mula:

ρ = 1− 6
∑

di
2

n(n2 − 1)
(4)

Where ρ represents Spearman’s rank correlation coefficient, di denotes the
difference between the ranks of corresponding variables, and n is the number
of data points.

We conducted a correlation analysis to assess the interplay between me-
teorological features, traffic flow, and pollutant concentration levels. This
involved three distinct correlation analyses: time-domain, area-domain, and
cross time-and-area domain. These analyses aimed to deepen our under-
standing of how each measured feature impacts air quality across different
domains.
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Figure 9: Descriptive statistics from traffic stations.

6.4.1. From time domain

The presented Table 7 showcases correlation coefficients between humidity,
solar radiation, temperature, wind speed, and traffic flow, concerning NO,
NOx, PM2.5, and PM10 within distinct temporal phases: pre-COVID (2019),
during COVID (2020), and post-COVID (2022). A significant discovery
emerges from the data indicating a robust negative correlation between wind
speed and all air pollutants across the examined years, signifying a con-
siderable dispersion of pollutants facilitated by higher wind speeds. This
negative relationship underscores the role of wind in reducing pollutant con-
centrations. The same negative correlation is observed in humidity as well.
However, for humidity, a greater negative correlation exists for metrics PM2.5

and PM10 specially in pre and during the COVID era.

Another noteworthy finding is the consistent and statistically significant
negative correlation observed between traffic flow and NO as well as NOx
throughout the three-year timeframe. However, the correlation coefficients
between traffic flow and PM2.5, as well as PM10, were notably low and lacked
statistical significance. Conversely, temperature emerged as a dominant fac-
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Table 7: Correlation coefficient between meteorological features and traffic flow with air
pollutant concentration in time domain.

NO NOx

Pre During Post Pre During Post

Temperature -0.07 0.11 0.04 -0.07 0.08 0

Wind Speed -0.29 -0.22 -0.24 -0.38 -0.3 -0.28

Solar Radiation -0.08 0.12 0.02 -0.14 0.02 -0.13

Humidity -0.05 -0.23 -0.02 -0.12 -0.26 0.01

Traffic Flow -0.12 -0.27 -0.24 -0.26 -0.18 -0.33

PM2.5 PM10

Pre During Post Pre During Post

Temperature 0.41 0.3 0.36 0.39 0.55 0.37

Wind Speed -0.26 -0.22 -0.24 -0.1 -0.09 -0.16

Solar Radiation 0.1 0.1 -0.05 0.14 0.31 -0.08

Humidity -0.36 -0.21 -0.15 -0.43 -0.47 -0.2

Traffic Flow 0.05 -0.03 0.03 0.11 0.09 -0.08

tor strongly correlating with PM2.5 and PM10, exhibiting a substantial aver-
age coefficient of 0.4 with a p-value less than 0.01.

This detailed analysis highlights the influential role of wind speed and humid-
ity in dispersing pollutants and the varying degrees of correlation between
traffic flow, temperature, and different air pollutant levels across the studied
time periods, providing valuable insights into the complex dynamics affecting
air quality under different environmental conditions.

6.4.2. From area domain

In the area-domain correlation analysis as presented in Table 8, traffic flow ex-
hibits notably high correlation coefficients with NO, NOx, PM2.5, and PM10,
particularly evident in the Urban-North traffic area, displaying statistical
significance with p-values less than 0.01. However, contrasting results arise
in the Urban-South and Suburban regions, where traffic flow shows statisti-
cal correlation solely with NO and NOx, lacking significant associations with
PM2.5 and PM10.

Analyzing meteorological features reveals distinct patterns. Solar radiation,
for instance, exhibits correlation exclusively with the Suburban region across
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Table 8: Correlation coefficient between meteorological features and traffic flow with air
pollutant concentration in area domain.

NO NOx

Urban-North Urban-South Suburban Urban-North Urban-South Suburban

Temperature -0.04 -0.01 0.1 0 -0.03 0.04

Wind Speed 0.03 -0.32 -0.47 -0.1 -0.38 -0.49

Solar Radiation 0.05 0.02 0.11 0.05 -0.09 -0.09

Humidity -0.13 -0.22 -0.18 -0.23 -0.23 -0.18

Traffic Flow 0.59 0.46 0.27 0.74 0.48 0.34

PM2.5 PM10

Urban-North Urban-South Suburban Urban-North Urban-South Suburban

Temperature 0.34 0.22 0.51 0.36 0.42 0.49

Wind Speed -0.22 -0.21 -0.25 -0.09 -0.06 -0.17

Solar Radiation 0.06 -0.07 0.21 0.1 0.13 0.18

Humidity -0.26 -0.15 -0.38 -0.34 -0.36 -0.37

Traffic Flow 0.17 0.04 -0.04 0.33 0.19 -0.08

all air pollutants, displaying a relatively higher coefficient, especially notable
for PM2.5 and PM10 at approximately 0.20. On the other hand, temper-
ature demonstrates statistically significant positive associations solely with
PM2.5 and PM10 across the three locations, implying a trend where higher
temperatures coincide with increased concentrations of these pollutants.

The influence of wind speed on air pollutants varies concerning pollutant
type and location. However, a consistent trend emerges in the suburban
area, showcasing a robust and negative correlation between wind speed and
all air pollutants. This pattern is explained by the suburban environment
characterized by fewer obstructive buildings and construction sites, allow-
ing unimpeded wind flow. This unobstructed airflow significantly aids in
dispersing and diluting air pollutant concentrations.

Regarding humidity, the results indicate a negative correlation between hu-
midity and all pollutants. Specifically, for PM10, the negative correlation
exceeds 0.3 in all three areas.

These observations highlight the nuanced relationships between traffic flow,
meteorological features, and air pollutant concentrations across distinct geo-

32



Table 9: Correlation coefficient between meteorological features and traffic flow with air
pollutant concentration in cross-domain (time and area).

A1:Urban-North NO NOx

Pre During Post Pre During Post

Temperature -0.29 0.1 0.03 -0.25 0.14 0.11

Wind Speed 0.01 0.1 -0.08 -0.24 -0.09 -0.25

Solar Radiation -0.21 0.13 0.05 -0.24 0.15 0.06

Humidity 0.25 -0.26 0.05 0.09 -0.38 -0.03

Traffic Flow 0.45 0.75 0.37 0.37 0.77 0.44
PM2.5 PM10

Pre During Post Pre During Post

Temperature 0.24 0.45 0.35 0.42 0.65 0.22

Wind Speed -0.31 -0.27 -0.15 -0.08 -0.11 -0.17

Solar Radiation -0.07 0.24 -0.07 0.14 0.43 -0.24

Humidity -0.24 -0.40 -0.09 -0.41 -0.57 0.01

Traffic Flow -0.05 0.22 0.04 0.09 0.35 0.08

A2:Urban-South NO NOx

Pre During Post Pre During Post

Temperature -0.08 0.09 0.02 -0.07 0.03 -0.02

Wind Speed -0.43 -0.36 -0.38 -0.49 -0.46 -0.49

Solar Radiation -0.11 0.1 -0.06 -0.19 -0.03 -0.25

Humidity -0.17 -0.23 0.02 -0.25 -0.22 0.12

Traffic Flow 0.25 0.3 0.44 0.13 0.32 0.38
PM2.5 PM10

Pre During Post Pre During Post

Temperature 0.33 -0.01 0.33 0.42 0.4 0.47

Wind Speed -0.23 -0.14 -0.33 -0.04 -0.04 -0.17

Solar Radiation 0 -0.19 -0.1 0.17 0.14 0.01

Humidity -0.33 0.07 -0.13 -0.48 -0.32 -0.27

Traffic Flow -0.11 -0.14 0.05 0.06 0.23 0.04

A3:Suburban NO NOx

Pre During Post Pre During Post

Temperature 0.01 0.21 0.13 0.05 0.13 -0.05

Wind Speed -0.58 -0.44 -0.47 -0.69 -0.53 -0.46

Solar Radiation -0.06 0.21 0.12 -0.1 0.01 -0.35

Humidity -0.05 -0.25 -0.04 -0.18 -0.18 0.19

Traffic Flow 0.24 0.19 0.31 0.02 0.2 0.3
PM2.5 PM10

Pre During Post Pre During Post

Temperature 0.63 0.52 0.4 0.44 0.63 0.44

Wind Speed -0.24 -0.25 -0.28 -0.23 -0.14 -0.16

Solar Radiation 0.34 0.27 0 0.18 0.38 0

Humidity -0.53 -0.43 -0.22 -0.47 -0.57 -0.28

Traffic Flow -0.11 -0.31 0.07 -0.08 -0.32 0.06
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graphical locations, emphasizing the impact of local environmental conditions
on the dispersion and concentration levels of pollutants in specific regions.

6.4.3. From time and area domain

In Table 9, encompassing both time and area domains, distinct correlations
between traffic flow and air pollutant concentrations are evident, particularly
during the COVID period in 2020. Statistically significant positive correla-
tions are observed solely between traffic flow and NO as well as NOx across
all station types. Notably, the Urban-North traffic station displays the high-
est correlation, followed by the Urban-South and Suburban stations, with
coefficients of 0.75, 0.3, and 0.19 for NO, exemplifying this trend. Another
noteworthy metric during this period is humidity, which exhibits the high-
est negative correlation compared to all meteorological metrics, particularly
concerning PM2.5 and PM10 in Urban-north and Suburban areas.

Across non-COVID years (2019 and 2022), a similar sequence in the degree
of correlation persists, albeit with generally smaller coefficients. This trend
underscores that restricting vehicular movement has a more pronounced im-
pact on reducing NO and NOx concentrations in the specified order of Urban-
North, Urban-South, and Suburban areas.

Contrarily, for PM2.5 and PM10, non-COVID years exhibit an absence of
significant correlation between traffic flow and pollution concentrations across
all stations. However, in 2020 during the city lockdown, a notable shift
occurs: PM2.5 and PM10 demonstrate statistical correlations with traffic flow,
exclusively observed at the Urban-North area, with coefficients of 0.22 and
0.35 for PM2.5 and PM10, respectively. In the Urban-South, PM10 displays
statistical correlation with traffic flow, but PM2.5 does not exhibit such a
relationship.

One significant factor driving this behavior could be particle size. PM10

particles, being larger than PM2.5 particles, settle more rapidly from the at-
mosphere. When emitted from vehicles, PM10 particles tend to concentrate
around areas with dense traffic. Additionally, local conditions play a role.
PM10, being larger and heavier, is less affected by atmospheric conditions
and tends to stay closer to its sources, including traffic. In contrast, PM2.5

particles can disperse over longer distances and may not exhibit as strong a
correlation as PM10. The results suggest that local environmental conditions,
such as wind speed and humidity patterns, influence the dispersion and trans-

34



port of pollutants. For instance, humidity demonstrated a strong negative
correlation with PM10 particles in Urban-South and Suburban areas.

An anomalous phenomenon arises in the Suburban area: both PM2.5 and
PM10 exhibit statistically negative correlations with traffic flow during the
reduced vehicular period, suggesting that fewer vehicles result in higher air
pollutant concentrations. Overall, the implementation of vehicle reduction
measures results in decreased PM2.5 and PM10 concentrations solely in the
Urban-North area, with PM10 affected in the Urban-South area, while no im-
provements, and potentially worsening conditions, are noted in the Suburban
area.

6.5. DET linking implementation details

Statistical analysis and correlation functions were executed using Python
libraries, constituting integral components developed within the SALTED
project and housed in the project’s GitHub repository7. Although they
are currently tailored for specific discussed use cases, assessing correlation
through statistical analysis and measuring correlation values is a common
necessity across various applications integrating diverse datasets. The DET
platform can potentially provide a suite of general-purpose functionalities
for immediate application. Moreover, programmers using the SALTED plat-
form will have the flexibility to customize these functionalities to suit specific
platform requirements.

6.6. Discussion on results bias and limitation

The study has considered traffic and pollution data before, during, and after
the pandemic events in Madrid. An ”Event bias” may have had an influence
on the results. The pandemic has been an exception in the lives of people.
Hence, the resulting behavior could be considered ”special” and biased by
the peculiarity of the situation and different regulations and laws imposed
to contrast the diffusion of COVID. The data during the pandemic’s peak
may be characterized by people’s impulsive and immediate responses and
urgencies of people to the events. However, the important aspect of the
study, i.e., a very reduced vehicle circulation during the considered period of
the year is evidence. To avoid a Time interval bias, the study has considered
comparable intervals of time from available data sets. Considering other

7https://github.com/SALTED-Project
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years (after COVID) will help consolidate the results minimizing the interval
time bias.

The City of Madrid has planned and deployed traffic sensors and pollution
base stations according to their goals and purposes. These do not neces-
sarily coincide with the needs in terms of the location of sensors to the
best placement for the current study. However, to avoid or at least limit a
”Location-based bias”, the areas and the sensors taken into consideration are
those that do show a good closeness between the pollution stations and the
traffic intensity sensors. In addition, these areas have been chosen to exem-
plify different aspects of the traffic and pollution in a big city. Still, they may
have particular local traffic trends or patterns, however, they were chosen to
be general, diversified, and close enough to pollution stations to be consid-
ered as a core set of data that could be further elaborated and consolidated.
We believe they are representative of the City of Madrid. However, a larger
study may consolidate the results by considering more sensors in additional
areas.

Another possible bent may be related to a ”vehicle profiles” bias circulating in
major cities. In recent years, national and European policies have supported
a shift from thermal engines to electrical or hybrid ones. This can be seen
as a susceptibility bias: the data could be influenced by a change in the
type of vehicles with a different pollution impact. Even if the shift towards
more effective vehicles progresses, its effects (as well as the normalization
of usage of vehicles within the city) will take a while to substantially affect
the pollution patterns in a large city (for instance, 8 the average age of the
Spanish vehicle fleet is 13.5 years). Also in this case adding additional data
sets for a longer interval (when available) will provide more consolidated
data.

Weather conditions of the considered range of years could influence the re-
sults, a ”Weather bias”. Two considerations hold here: a trend towards an
increase of temperatures (that may have effects on the pollution) and differ-
ent specific climate events in the period considered (from March to May of
each year). Also for this case, a longer period of study can reconduct the
analysis to the ”average” situation. However, the relevant climatic measure-

8according to https://www.acea.auto/figure/average-age-of-eu-vehicle-fleet-by-
country/
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ments in the analyzed periods are compatible and consistent. The results are
related to a highly monitored city like Madrid and they can be influenced
by how citizens ”use” the city, a Behavioral bias. Some specific behaviors
Madrid people put in place in daily life (e.g., peak traffic hours) can differ
from other cities in other European Countries or the world. However, the
general relationship between traffic and pollution still holds despite differ-
ent citizens’ habits and attitudes. Enlarging the study to other Spanish or
international cities will consolidate this research.

The study has also considered some limitations. The study started with
Madrid, but it will be extended to consider different types of cities (smaller,
such as Santander in Spain, or similar in size, like Barcelona) or in different
countries (like Dublin in Ireland). The attempt is to generalize and compare
the results under several conditions and environments. Not all the available
pollutants and traffic data have been considered, it is envisaged to operate
on a double line of research: to progressively consider in the study all the
available pollutants for Madrid, to focus on those stronger related to thermal
engines for analysis of cities with a smaller range of data looking for similari-
ties and differences. In line with this, the study could progressively introduce
other weather conditions that could affect pollution. The current research
has focused on the most common parameters for vehicle-generated pollutants
and weather features. Enlarging the range of analyzed values can consolidate
the work. However, the ”transfer” and comparison with other cities could
be more difficult due to the richness of the data set of Madrid compared to
other cities. All these aspects are considered for further developments and
improvements of the study in the near future.

7. Conclusion and Future Work

The escalating concerns regarding the impact of air pollution on public health
have spurred the design and implementation of traffic reduction policies
aimed at mitigating air pollutant concentrations. This study investigates
the reduction in organic traffic resulting from COVID lockdowns as a pa-
rameter to assess changes in air pollutant levels. Through a comprehensive
three-tiered statistical analysis across both place and time domains, notable
reductions in NO and NOx are observed in descending order: most promi-
nently at Urban-North area, followed by Urban-South locations, and finally,
the suburban area. Conversely, statistically significant reductions in PM10
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concentrations are solely evident at Urban-North and Urban-South sites,
while PM2.5 demonstrates a significant decrease exclusively at Urban-North
area.

The findings align with previous studies, affirming that vehicular flows no-
tably impact NO and NOx levels, thus reinforcing this initial conclusion. Fur-
thermore, our analysis provides a more nuanced insight by elucidating that
PM2.5 and PM10 experience substantial reductions specifically in the Urban-
North area. These observations suggest that policy interventions aimed at
reducing traffic flows can effectively enhance air quality, particularly for NO
and NOx, in the Urban-North regions. However, addressing PM2.5 and PM10

concentrations in the Urban-South and suburban areas demands alternative
strategies from the Madrid municipal administration to supplement traffic
reduction policies for comprehensive air quality improvements.

In this sense, considering broader policy implications, the results obtained
from the analysis carried out, and, even more importantly, the data linking
and enrichment that the DET enables, highlight the benefits of integrating
IoT technologies and advanced data analytics into decision-making processes
in general, and urban planning in particular. The harmonization of reusable
data and its integration within data processing pipelines should lead to the
creation of accurate models that could feed precise Smart City Digital Twins
where alternatives for urban planning and policy-making, especially in the
context of sustainable mobility, can be evaluated and assessed.

Future work will be twofold. On the one hand, as has been previously in-
dicated, similar analyses will be carried out using the data from Barcelona,
Oslo and Santander. This way, not only the potentiality of the DET plat-
form for enabling interoperable data fusion over harmonized data sources will
be further validated by demonstrating multi-site correlation, but also, such
multi-site results’ comparison and cross-site discussion should allow for the
extraction of further conclusions that are not evident on the single-site case.

On the other hand, the focus will be put on refining the automated evaluation
of data correlation by incorporating more complex statistical measures that
can handle diverse types of data relationships. Expanding beyond the tradi-
tional correlation coefficients, exploring nonlinear correlations and dynamic
relationships within datasets could be a promising avenue. Additionally,
delving deeper into the integration of machine learning models with inter-
pretability features could enhance the applicability of advanced predictive
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analysis. Research could further investigate techniques to make these sophis-
ticated models more transparent and explainable, ensuring that correlations
and predictions derived from these models are not only accurate but also
comprehensible to domain experts and stakeholders. Furthermore, future
studies might concentrate on devising adaptable frameworks that efficiently
identify the most suitable predictive models for specific datasets, streamlin-
ing the process of fitting data into these advanced analytical functions. Such
frameworks could facilitate automated model selection and parameter tun-
ing, optimizing the utilization of available data and enhancing the overall
predictive performance.
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[10] Bröring, A., Schmid, S., Schindhelm, C., Khelil, A., Käbisch, S.,
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