
HAL Id: hal-04589656
https://hal.science/hal-04589656v1

Preprint submitted on 27 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering data for the Optimal Classication Tree
Problem

Zacharie Ales, Valentine Huré, Amélie Lambert

To cite this version:
Zacharie Ales, Valentine Huré, Amélie Lambert. Clustering data for the Optimal Classication Tree
Problem. 2024. �hal-04589656�

https://hal.science/hal-04589656v1
https://hal.archives-ouvertes.fr

Clustering data for the Optimal Classi�cation Tree Problem

Zacharie Ales1,2, Valentine Huré1, and Amélie Lambert1

1CEDRIC, Conservatoire National des Arts et Métiers, 75003 Paris, France
2UMA, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France

Abstract

Solving the optimal classi�cation tree problem enables to compute classi�ers which are both
interpretable and e�cient. Most of the exact methods for this problem are based on on a Mixed
Integer Linear Program (MILP) formulation. However, the e�ciency of MILP solvers generally
does not allow these formulations to be solved directly, once the dataset exceeds a critical size.
To address this challenge, we propose in this paper an iterative exact algorithm than handles
medium-sized datasets from the state-of-the-art. The basic idea is to start by solving a MILP
formulation on a small subset of data points representative of the considered dataset. Then, the
subset is iteratively extended until global optimality of the initial problem is reached.

A key feature is to compute relevant initial subsets of data points. For this, we introduce
the concept of data-partitions and design several algorithms to compute them. We then de�ne
two MILP formulations to compute optimal classi�cation trees on data-partitions. We prove that
combining our iterative algorithm with our �rst formulation enables to obtain an optimal solution
of the original problem. We also propose an alternative method based on the second formulation
which is signi�cantly faster.

We present extensive computational experiments to compare our algorithms with state-of-the-
art approaches. We show that our methods constitute the best compromise between in-sample
accuracy and interpretability.

1 Introduction

1.1 Related works

Classi�cation trees are widely used machine learning models that stand out for their interpretability and
solid performances. Indeed, due to their straightforward structure, predictions given by classi�cation
trees can be easily understood. More precisely, they are oriented trees where internal nodes separate
data points using linear split functions, and terminal nodes assign labels to the data points that reach
them. We focus in this article on binary trees which are the most commonly considered.

Building optimal binary classi�cation trees is a well-known problem, which was proven to be NP-
hard in 1976 [22]. One of the �rst algorithms designed was the greedy heuristic CART [7] that iteratively
separates data points until a stopping criteria, such as a maximal depth or a minimal number of data
reaching each leaf, is met. In CART, data points are separated according to Gini index but other
algorithms such as ID3 [30], C5.0 [31] use di�erent impurity measures. These greedy heuristics have
been improved upon by local search [9,14], or by more advanced greedy heuristics such as GUIDE [25,26]
which is based on statistical tests. These approaches are quick and e�ective. However, to get good
prediction performances, they tend to provide large and deep trees, thus reducing their interpretability.
Heuristics using oblique hyperplane splits (see for instance [8,27,29,36]) can provide smaller trees, but
at the cost of more computation time. Prediction performances of classi�cation trees can be enhanced
with ensemble methods such as Random Forests [6], TreeBoost [17], or XGBoost [10]. Such methods

1

clearly improve the performances of the predictions but, since the prediction involves several trees,
interpretability is often lost.

Recently, exact solution methods for the construction of optimal classi�cation trees that are based
on Mixed-Integer Linear Programming (MILP) formulations were introduced [1, 3, 34]. Due to the
signi�cant improvements in the last decades of both the hardware computational power and the MILP
solver performances [4], these MILPs can now be solved optimally for small-sized datasets. Such opti-
mal trees tend to better highlight the underlying trends of datasets thus increasing the interpretability
of the predictions. This is especially the case since these approaches generally limit the number of
features involved in the separations to avoid over�tting [1, 3, 34]. They moreover reach the similar
accuracy as CART, ID3, or C5.0 heuristics but with signi�cantly smaller trees. Furthermore, the ver-
satility of mathematical programs eases the integration of fairness in the construction of classi�cation
trees [1,34]. Most of the MILP formulations involve binary variables that indicate which leaf reaches a
data point, and thus their size increases linearly with that of the datasets. Consequently, they are often
intractable for medium-sized datasets. Several approaches have been considered to tackle this issue.
Some are based on the choice of a good formulation [1,34], while others focus on more speci�c datasets
to speed-up the learning time. For instance, in [20] the authors focus on datasets with categorical
features, and in [1,11,24] the dataset is restricted to binary features. More recently, non-linear models
have also been proposed to compute optimal classi�cation trees [2] or optimal randomized decision
trees [5]. Finally, dynamic programming approaches were also proposed [11,24].

Another approach to scale-up is to build heuristic algorithms based on MILP formulations. For
example, in [15] a heuristic based on column generation is proposed. In [21], the resolution is speeded
up by heuristically excluding parts of the search space. The authors of [12] consider SVM-separators at
each node which aim to substitute binary variables by continuous ones. Finally, the method proposed
in [41] selects a subset of data points for which the MILP formulation is solved. Following this latter
idea, our goal in this paper is to improve the scalability of MILP formulations. For this, we reduce
the size of the dataset by computing clusters of points that may follow the same path in an optimal
classi�cation tree. Then, we design an iterative algorithm that, starting from an initial clustering,
solves a MILP formulation on the reduced dataset and updates the clustering for the next iterations
until an optimal classi�cation tree is found.

1.2 Our contributions

In this paper, we propose an iterative algorithm that computes optimal classi�cation trees for medium-
sized datasets. Starting from a recent e�cient MILP formulation [2], our main idea is to �rst solve
the MILP on a reduced dataset in order to fasten its resolution. Then, at each iteration, we increase
the size of the dataset until optimality is proven. Note that the reduced dataset can be signi�cantly
smaller than the original one, thus enabling to handle larger datasets than with the original MILP.
The e�ciency of this method strongly depends on the choice of the reduced dataset. To determine a
relevant one, we introduce the concept of data-partition. It corresponds to a partition of the initial
dataset which additionally associates to each cluster a representative data and a label. We then design
several algorithms to build good data-partitions which share similarities with hierarchical clustering
algorithms. We adapt the formulation from [2] in two di�erent ways to handle data-partitions. Finally,
we propose an algorithm that iteratively increase the size of a data-partition by solving one of our two
adapted formulations. We compare the performances of our approaches with that of state-of-the-art
heuristics on medium-sized datasets of the literature.

To sum up, our contributions are:

1. The introduction of the concept of data-partitions, properties to describe it, and constructive
algorithms.

2. Two MILP formulations that compute an optimal classi�cation tree from a data-partition.

3. An iterative algorithm that provides classi�cation trees using data-partitions. We prove that this
algorithm provides optimal solutions when combined with one of our formulations.

2

4. Computational results showing that our algorithms achieve same or better performances than
state-of-the-art methods while providing greater interpretability.

The paper is organized as follows. Section 2 presents a targeted review of the state of the art,
recalling the MILP formulation used to compute optimal trees, as well as the main classical hierar-
chical clustering algorithms. In Section 3, we formally de�ne the concept of data-partition. We then
characterize several properties of data-partitions and we introduce three algorithms to compute them.
In Section 4, we introduce two new MILP formulations that compute an optimal tree from a data-
partition, and our new iterative algorithm that uses them to compute classi�cation trees. We further
prove that it reaches optimality when combined with one of our formulations. Finally, we present
experimental results in Section 5 and Section 6 draws a conclusion.

2 Preliminaries

In this section, we present a targeted review of the literature. We start by presenting the MILP
formulation introduced in [2] that we use in our main algorithm. Then, we recall the main principles
of standard hierarchical clustering algorithms that create partitions of unlabeled data.

2.1 An optimal tree problem MILP formulation [2]

A classi�cation tree is an oriented binary tree T = (N ∪ L, E) which associates a split function
ft : R|J | → {true, false} to each of its internal node t ∈ N and a label k ∈ K to each of its leaves
` ∈ L. A data i ∈ I is a vector Xi of |J | features that is classi�ed by following the path from the root
to a leaf according to the split functions ft. More precisely, a data i follows the left branch of node
t ∈ N if ft(Xi) is true and the right branch otherwise. Its predicted label is the one associated with
the leaf reached by data i. We consider linear split functions of the form aᵀXi < b with a ∈ R|J | and
b ∈ R, applied on real-valued datasets. Moreover, vectors a are restricted to be binary unit vectors
leading to axis-aligned trees.

We now present the recent MILP formulation from [2] for computing an optimal classi�cation tree.
For a given depth δ, the tree is modeled by its sets N of 2δ−1 nodes, and L of 2d leaves. Each node
t ∈ N separates data points according to a linear split function modeled by variables aj,t and bt: data
point i ∈ I goes through the left branch of t if

∑
j∈J aj,txi,j < bt, otherwise it goes through its right

branch. Note that here aj,t is a binary variable since we consider an axis-aligned model. Each leaf of
the tree assigns a label to data points that reach it. The binary variable ck,` indicates if leaf ` assigns
label k.

Since it may not be optimal to split data points at each node, we use binary variables dt to indicate
whether node t ∈ N is active or not and binary variables l` to indicate whether a leaf ` ∈ L is reached
by at least one data point. To track the path of data points in the tree, binary variables zi,` indicate
whether data point i reaches leaf `. Finally, the last variables of the formulation enable to count the
number of misclassi�cations of the tree. Variable θi,k,` indicates whether data point i reaches leaf `
which is assigned label k. By summing variables θ for all leaves `, all labels k and all data points with
a label di�erent from k, we obtain the number of misclassi�cations.

Given a maximal depth δ, and a sparsity parameter γ, formulation (Pδ,γ) is the following:

3

(Pδ,γ)

min f(θ, d) =
∑
`∈L

∑
k∈K

∑
i∈I\Ik

θi,k,` +
1

γ + 1

∑
t∈N

dt

s.t.
∑
j∈J

aj,t = dt t ∈ N (1)

0 ≤ bt ≤ dt t ∈ N (2)

dt ≤ da(t) t ∈ N \ {r} (3)∑
t∈N

dt ≤ γ (4)∑
k∈K

ck,` = l` ` ∈ L (5)∑
i∈I

zi,` ≥ l` ` ∈ L (6)

zi,` ≤ l` ` ∈ L, i ∈ I (7)

l` ≤ dt ` ∈ L, t ∈ AL(`) (8)∑
`∈L

zi,` = 1 i ∈ I (9)∑
j∈J

aj,t(xi,j + µj − µ−) + µ− ≤ bt + (1 + µ+)(1− zi,`) i ∈ I, ` ∈ L, t ∈ AL(`)(10)

∑
j∈J

aj,txi,j ≥ bt − (1− zi,`) i ∈ I, ` ∈ L, t ∈ AR(`)(11)

θi,k,` ≥ ck,` + zi,` − 1 i ∈ I, k ∈ K, ` ∈ L (12)

θi,k,` ≥ 0 i ∈ I, k ∈ K, ` ∈ L (13)

aj,t ∈ {0, 1}, dt ∈ {0, 1} t ∈ N , j ∈ J (14)

ck,` ∈ {0, 1}, l` ∈ {0, 1}, zi,` ∈ {0, 1} i ∈ I, k ∈ K, ` ∈ L (15)

where the �rst sum of the objective function is the number of misclassi�cations and the second is the
number of nodes that applies a split, weighted by 1

γ+1 . Observe that Constraint (4) ensures that the
second objective is always lower than 1. Thus, among all the trees that minimize the number of
misclassi�cations, the problem returns an optimal solution that additionally has a minimal number of
splits.

The �rst sets of constraints �x the structure of the tree. Constraints (1) and (2) ensure that the
variables de�ning the split function of t ∈ N vanish when t is inactive. Constraints (3) inactivate
all descendants of an inactived node. Constraints (5) ensure that one and only one label is assigned
to each opened node. The second part of the model follows the path of the data in the tree. Con-
straints (6) and (7) link the value of variables zi,` and l`. Constraints (9) ensure that each data is
assigned to one and only one leaf, and Constraints (10) - (11) that the path of each data is consistent
with the split functions. Constraints (12) and (13) counts the number of misclassi�cations. Finally,
Constraints (8) enables to strengthen the linear relaxation. Note that since the number of misclassi�-
cations is minimized, an optimal solution always assigns to a leaf ` the most represented label among
the data reaching `.

This formulation solves the optimal classi�cation problem for a given value of the parameters (δ, γ).
In practice, these parameters are tuned by solving the problem for several tuples (δ, γ) within a
maximum depth δMAX and selecting the best tree according to a validation set, as introduced in [2].

4

2.2 Hierarchical clustering

Clustering aims to partition unlabeled data such that similar data are grouped together. A wide
variety of approaches have been considered for this task depending on the data type and the notion
of similarity considered. We refer the reader to [37, 38] for an in-depth surveys on the topic. In this
paper, we design hierarchical clustering algorithms to cluster labelled datasets.

Hierarchical clustering considers an initial partition of the data and greedily either merge (agglom-
erative algorithms) or split (divisive algorithms) clusters until a stopping criteria is met. This criteria
is often a given number of clusters that must be reached. In this article we focus on agglomerative
approaches which, at each step, merge the pair of clusters that minimizes a given distance function
based on the distance between the data points. One of the oldest agglomerative hierarchichal method
is single-linkage [16] which associates to two clusters C1 and C2 a similarity equals to the minimal
distance between one data point of each cluster (i.e., mini∈C1,j∈C2 di,j). This method su�ers from
the chaining e�ect which occurs when chains of data points are merged together over long distances
regardless of the homogeneity of their clusters. Indeed, since the similarity function of the single-
linkage is local � as it only involves the similarity between two close data points � it does not take into
account the shape of the clusters it merges often leading to poor performances. The complete-linkage
method which considers the maximal distance instead of the minimal one does not have this drawback.
However, it is highly sensitive to outliers. The average-linkage is a more robust approach in which
the similarity function is equal to the average distance between pairs of data points from the two
clusters (i.e., 1

|C1|×|C2|
∑
i∈C1

∑
j∈C2

dij). Other classical distance functions have been de�ned such as
the distance between the clusters centroids or the increase of the sum of the squared distances in the
clusters [35].

More complex hierarchical algorithms have also been designed. For example, CHAMELEON [23] both
take into account a proximity distance and an interconnectivity (i.e., homogeneity) measure in order to
determine which clusters must be merged. In CURE [18] a cluster is represented by several selected data
points and the choice of the representative points is adjusted dynamically to make it robust to noise
and outliers. BIRCH [39] takes advantage of a tree data structure to e�ciently merge clusters based
on their size, the sum of their distances and their squared distances. This makes it highly e�ective
on large datasets. In ROCK [19], the similarity between the clusters is based on neighbor points rather
than distances. This makes it directly applicable to categorical data.

Even though, a wide variety of hierarchical clustering algorithms have been designed, their adapta-
tion to cluster together labeled data that are likely to reach the same leaf of an optimal classi�cation
tree is not straightforward.

3 Data-partitioning of a dataset

As mentioned in the introduction, the size of formulation (Pδ,γ) depends on the number of data points
in the dataset, and solving it optimally becomes impracticable when the dataset has more than a few
thousand points. This is mainly due to the set of variables and constraints following the path of each
data points in the tree. To handle larger datasets, we propose to compute clusters of points that may
follow the same path in an optimal tree. Then, in the resulting formulation, we only follow the path
of one point per cluster called the representative of the cluster. As a result, we only have one set of
variables per cluster, instead of one set per data point, which enables to signi�cantly reduce the size
of the MILP. In Section 3.1, we start by de�ning the concept of data-partition and we characterize
several properties of data-partitions. In Section 3.2, we introduce 3 data-partitioning algorithms.

3.1 De�nition and properties of data-partitions

We now formally de�ne the concept of data-partitioning.

De�nition 1. A data-partition of I = (X,Y) is a triplet (P, X̃, Ỹ) such that:

5

� P = {pg}g=1,...,|P| is a partition of I;

� X̃ ∈ [0, 1]|P|×|J | is a set of representatives where X̃g ∈ [0, 1]|J | is the representative of cluster pg;

� Ỹ ∈ K|P| is a set of labels where ỹg is the label of cluster pg.

To illustrate De�nition 1, we consider the data-partition presented in Example 1.

Example 1. Figure 1 represents a dataset I = (X,Y) of 13 points, 2 features, and 2 labels (Figure 1a)
and a data-partition (P, X̃, Ỹ) with �ve clusters (Figure 1b). The symbol of each data corresponds
to its class, and each cluster of the partition P = {{1, 3, 4, 5}, {2}, {6, 10, 11, 12}, {7, 9, 13}, {8}} is
represented by the convex hull of its data points and by its representative in color. In this example,
we use barycenters as representatives. Since each cluster has data points of the same label that is thus
also the label of the cluster.

(a) Dataset of 13 data points (b) Example of data-partition

Figure 1: Example of data-partition

When using a data-partition in a MILP formulation, we aim to replace all the points contained
in one cluster by its representative in order to reduce the size of the formulation. Building a "good"
data-partition is thus a trade-o� between two con�icting goals: minimizing the number of clusters
and ensuring that all points follow the path of their representative in the computed tree. In order
to determine relevant data-partitions, we start by introducing 3 properties of data-partitions that are
likely to be satis�ed when the second goal is optimized. We also de�ne a metric for each property that
measures how close a data-partition is to satisfy it.

Let G : I → {1, ..., |P|} be the function that maps each data point to its cluster index, i.e.
∀i ∈ I, i ∈ pG(i). The �rst property is that each cluster only contains data points of the same label.

Property 1 (Homogeneity). We say that a data-partition (P, X̃, Ỹ) of I = (X,Y) is homogeneous

if and only if ∀i ∈ I, yi = ỹG(i).

The metric associated with homogeneity is the proportion of data points of I that belong to a
cluster of the same label.

De�nition 2 (Measure of homogeneity).

H(P, X̃, Ỹ) =
|{i ∈ I s.t. yi = ỹG(i)}|

|I|

6

Note that data-partition (P, X̃, Ỹ) is homogeneous if and only if H(P, X̃, Ỹ) = 1.
The second property characterizes the fact that the convex hulls of clusters should not intersect.

Indeed, if two clusters have intersecting convex-hull they cannot be separated by a linear split function.
Therefore, these clusters should either be merged since they cannot be properly separated by the tree
or split into none-intersecting that may follow distinct paths in the tree.

Property 2 (Exclusion). We say that a data-partition (P, X̃, Ỹ) of I = (X,Y) is exclusionary if
and only if ∀pa 6= pb ∈ P2, Conv({Xi, i ∈ pa}) ∩ Conv({Xi, i ∈ pb}) = ∅

To measure the exclusion of a data-partition, we take the proportion of clusters whose convex hull
is not intersected by the convex hull of another cluster.

De�nition 3 (Measure of exclusion).

E(P, X̃, Ỹ) =
|{pg ∈ P s.t. ∀g′ 6= g, Conv({Xi, i ∈ pg}) ∩ Conv({Xi, i ∈ pg′}) = ∅}|

|P|

Note that a data-partition (P, X̃, Ỹ) is exclusionary if and only if E(P, X̃, Ỹ) = 1. For the �nal
property of data-partition, we notice that, often, when data points of di�erent labels are close to each
other, they may also be close to a split function. Therefore, clustering those data points with others
may deteriorate the placement of the split function. Thus, we identify data points that are close
to data points whose closest neighbor is of di�erent label and consider that they should be alone in
their clusters (i.e. in singletons). Let us denote by n(i) the closest neighbor of the point i ∈ I i.e.
n(i) = arg mini′∈I\{i} ||Xi −Xi′ ||2.

Property 3 (Consistency). We say that a data-partition (P, X̃, Ỹ) of I = (X,Y) is consistent if for
all i ∈ I such that |pG(i)| > 1, yi = yn(i).

We measure the consistency by the proportion of points belonging to clusters of size more than 1
whose closest neighbor is of a di�erent class.

De�nition 4 (Measure of consistency).

C(P, X̃, Ỹ) = 1−
|{i ∈ I s.t. |pG(i)| > 1 and yn(i) 6= yi}|

|{i ∈ I s.t. yn(i) 6= yi}|

If {i ∈ I s.t. yn(i) 6= yi} is empty, we de�ne C(P, X̃, Ỹ) = 1.

Note that a data-partition (P, X̃, Ỹ) is consistent if and only if C(P, X̃, Ỹ) = 1.
Our aim is now to build data-partitions of minimum size that also maximize the homogeneity,

exclusion and consistency metrics. In the rest of the article, we call size reduction metric the following
ratio R = |I|−|P|

|I| .
As an example, the data-partition represented in Figure 1b is homogeneous and exclusionary but

not consistent (since data point 6 nearest neighbor is not of the same class).

3.2 Data-partitioning algorithms

The computation of a data-partition from an initial dataset requires to cluster data points. Since the
data are labeled, the direct use of unsupervised clustering methods is likely to lead to poor results in
terms of homogeneity, exclusion and consistency. To address this issue we design agglomerative hier-
archical clustering methods since this framework enables us to partially take into account these three
properties. All our algorithms start with a partition of |I| singletons and merge clusters iteratively.

7

Our �rst algorithm called GreedyPartitioning (GP) is sketched up in Algorithm 1. Let Ī =
{(i, j) ∈ I2 : i < j}, we denote by D the list of pairs of points of Ī ordered by increasing distance:

D =
{

(i, j) ∈ Ī : ∀[(i, j), (k, l)] ∈ Ī2, (i, j) < (k, l)⇔ ||Xi −Xj ||2 < ||Xk −Xl||2
}

The �rst loop iterates on the pairs of points (i, j) of the input dataset I following the order of list
D. Moreover, the clusters of i and j are merged only if i and j have the same label. We iterate until
at most ρ|I| clusters are obtained with ρ ∈]0, 1[. Thus, the size reduction metric R of the provided
data-partition is at least 1− ρ.The second loop iterates on all the clusters of the partition in order to
assign a representative and a label to each cluster.

Algorithm 1: GreedyPartitioning(I = (X,Y),D,ρ)

P ← {{i} ∀i ∈ I}
for (i, j) ∈ D do

if yi = yj then
Merge in P the clusters of i and j

if
|P |
|I| ≤ ρ then
break

for g ∈ |P| do
X̃g ←

(
1
|pg|

∑
i∈pg xi,j

)
j∈J // the representative is the barycenter

ỹg ← arg maxi∈pg yi // a cluster is assigned its most represented label

return (P, X̃, Ỹ)

Since Algorithm 1 is similar to single-linkage clustering, it has similar properties i.e. a small time
complexity but also its chaining e�ect [32] mentioned in Section 2.2 which can cause non-exclusionary
in data-partitions.

By construction, Algorithm 1 always provides a data-partition that is homogeneous but not neces-
sarily exclusionary or consistent.

Algorithm 1 depends on the choice of ρ that is not straightforward. Thus, we propose the
ImprovedGreedyPartitioning (IGP) algorithm (sketchep up in Algorithm 2) that does not use a
parameter as a stopping criteria. Its basic idea is to prioritize the merging of data points that do not
have points of a di�erent label close to them. For this, instead of iterating on pairs (i, j) of the ordered
set D, the pairs are ordered by increasing ratio between the distance from i to j and the distance to
the closest data point of di�erent label. We thus introduce, ∀i ∈ I, d(i) the distance of the closest
point of di�erent label,

d(i) = min
j∈I\{i}, s.t. yi 6=yj

||Xi −Xj ||2

and D′ the list of pair of points of I following the order described above:

D′ =
{

(i, j) ∈ Ī : ∀[(i, j), (k, l)] ∈ Ī2 , (i, j) < (k, l)⇔ ||Xi −Xj ||2
min(d(i), d(j))

≤ ||Xk −Xl||2
min(d(k), d(l))

}
The �rst loop of the algorithm iterates on the pairs of points (i, j) of the input dataset I following

the order of list D′. As in Algorithm 1, we only merge pairs of points of same label to compute
a data-partition that satis�es Property 1 of homogeneity. To build a data-partition as exclusionary
as possible (Property 2) Then, to prevent clusters from having intersecting convex hulls, we add a
merging condition: we merge two clusters only if their medoids are closer to each other than a point

of di�erent label (i.e. if
||XmG(i)

−XmG(j)
||2

min(d(mG(i)),d(mG(j))
< 1). We use medoids to represent clusters to reduce

8

computations. Using the barycenter bg would require to compute d(bg) each time a cluster is cre-
ated or merged. Instead, we consider its medoid mg = arg mini∈g

∑
j∈g ||Xi −Xj ||2 since d(mg) has

already been computed to obtain D′. Finally, we consider only the pairs of D′ whose ratio is less
than 1 in order to not merge data points whose closest neighbor is of a di�erent label. Doing this en-
sures that the computed data-partition satis�es Property 3 of consistency. Here again, the second loop
iterates on all the clusters of the partition in order to assign a representative and a label to each cluster.

Algorithm 2: ImprovedGreedyPartitioning (I = (X,Y),d,D′)

P ← {{i} ∀i ∈ I}
for (i, j) ∈ D′ do

mG(i),mG(j) ← the medoids of the cluster of i and j

if yi = yj and
||XmG(i)

−XmG(j)
||2

min(d(mG(i)),d(mG(j))
< 1 then

Merge in P the clusters of i and j

if
||Xi−Xj ||2

min(d(i),d(j)) ≥ 1 then

break

for g ∈ |P| do
X̃g ←

(
1
|pg|

∑
i∈pg xi,j

)
j∈J // the representative is the barycenter

ỹg ← Class of the data points in pg

return (P, X̃, Ỹ)

By construction, Algorithm 2 always computes homogeneous and consistent data-partitions. How-
ever, exclusion is not guaranteed.

Finally, we introduce the ClosestRepresentativeMerge (CRM) summed up in Algorithm 3. Our
idea here is to iterate on pairs of representatives of clusters instead on pairs of data points. This
requires to compute the representative of each cluster as soon as two clusters are merged. One can use
di�erent methods to compute them, here we use medoids.

Starting from the partition made of singletons of set I, we iterate following the increasing order
of the distances Dk between the representatives of the clusters. This list is initially equal to D and is
updated into Dk at each iteration k. As in Algorithms 1 and 2, we only merge pairs of clusters of same
label to compute a data-partition that satis�es Property 1 of homogeneity, giving us directly the label
of the cluster. Moreover, we want to build a data-partition as exclusionary as possible (Property 2).
For this, we maintain a taboo set called L that contains the clusters that cannot be merged anymore:
two clusters g1 and g2 are added to L if their representatives are the closest and if they have di�erent
labels.

9

Algorithm 3: ClosestRepresentativesMerge(I = (X,Y),D)

P ← {{i} ∀i ∈ I}
X̃ ← X

Ỹ ← Y
D0 ← D // pair of clusters of P
L← ∅ // taboo set of clusters that cannot be merged anymore
while |Dk| > 0 and |L| < |P| do

(g1, g2)← the �rst pair of Dk // the pair of cluster whose representatives are the closest
Dk ← Dk \ {(g1, g2)}
if ỹg1 6= ỹg2 then

L← L ∪ {g1, g2}
else

if g1 and g2 /∈ L then

g1 ← g1 ∪ g2

P ← P\{g2}
X̃g1 ← medoid of g1

Dk+1 ← Dk in which the pairs involving g2 are removed and the order is updated
according to X̃g1

k ← k + 1

return (P, X̃, Ỹ)

While Algorithm 3 aims at providing data-partitions that are homogeneous, exclusionary and con-
sistent, only homogeneity is guaranteed by construction. Examples 2 and 3 are counter-examples for
exclusion and consistency for Algorithm 3, respectively.

Example 2 (Non-exclusion). We consider a two-dimensional dataset with 2 labels depicted in Fig-
ure 2a. It contains 3 identical Y-shaped sets of data points such that the distance between successive
points (on its 3 branches) decreases from the center to the extremities. It ensures that points at the
bottom of the foot of each Y shapes are merged �rst. The data-partition provided by Algorithm 3 with
barycenters as representatives is presented in Figure 2b. Clusters are plotted by their convex hulls and
their representative is colored. We see that all data points of class circle and square are each merged in
one cluster. The data-partition is non-exclusionary since these clusters have intersecting convex-hulls.
Note that the same result would be obtained if the representatives were medoids instead of barycenters.

(a) Dataset (b) Data-partition provided by Algorithm 3

Figure 2: Dataset that leads to a non-exclusionary output with Algorithm 3

10

Example 3 (Non-consistency). We consider the 2-dimensional dataset presented in Figure 3a. The
second attribute is equal to 0.5 for all data points. The data-partition presented in Figure 3b is computed
by Algorithm 3 with medoids as representatives. The data-partition has 2 clusters. Data points of a
same cluster are linked by a dotted line. Data points of I are greyed and representatives are colored.
Note that in the left cluster, both points are half-colored, it indicates that the representatives can be
either of them. As B is closer to C than to A, the partition {{A,B}, {C,D,E}} is not consistent. Note
that Algorithm 3 with barycenters as representatives would also provide a non-consistent data-partition
for this dataset.

(a) Dataset (b) Data-partition provided by Algorithm 3

Figure 3: Dataset that leads to a non-consistent output with Algorithm 3

We now present how any data-partition provided by one of these algorithms can be leveraged in a
MILP to solve the classi�cation tree problem.

4 Building optimal classi�cation trees with data-partitions

In the previous section, we introduced the concept of data-partition that allows to cluster a dataset.
To provide better classi�cation trees than state-of-the-art MILP on medium and large datasets, we
�rst adapt (Pδ,γ) to take as an input a data-partition rather than a dataset. This new formulation
allows us to fastly compute feasible classi�cation trees for our original problem. Then, in order to
improve the obtained solutions, we introduce the Heuristic Iterative Algorithm (HIA), where at
each step we re�ne the data-partition by splitting some of its clusters. We further show that HIA

does not necessarily lead to an optimal classi�cation tree for the original dataset. Then, in order to
reach global optimality, we introduce a new model where we do not set a priori the representatives
of the clusters, but we instead compute them within the optimization process. We further prove that
embedding this new, but larger, formulation within our iterative framework allows us to compute an
optimal solution for the original dataset. We call this approach Exact Iterative Algorithm (EIA).
Finally, we present a post-processing algorithm that speeds up both HIA and EIA methods.

4.1 A Heuristic Iterative Algorithm to compute classi�cation trees

We start by adapting formulation (Pδ,γ) (presented in Section 2.1) to compute a classi�cation tree from
a data-partition (P, X̃, Ỹ). The basic idea is to de�ne variables z and θ for each cluster g ∈ {1, ..., |P|}
instead of for each data i ∈ I. Then, in the objective, we weight variables θg,k,` by |pg|, the size of
cluster g. We obtain formulation (DPδ,γ):

11

(DPδ,γ)

min f̃(θ, d) =
∑
`∈L

∑
k∈K

∑
g∈{1,...,|P|}
s.t.Ỹg 6=k

|pg|θg,k,` +
1

γ + 1

∑
t∈N

dt

s.t. (1)− (5), (8), (14)∑
g∈{1,...,|P|}

zg,` ≥ l` ` ∈ L (16)

zg,` ≤ l` ` ∈ L, g ∈ {1, ..., |P|} (17)∑
`∈L

zg,` = 1 g ∈ {1, ..., |P|} (18)∑
j∈J

aj,t(x̃g,j + µj − µ−) + µ− ≤ bt + (1 + µ+)(1− zg,`) g ∈ {1, ..., |P|}, ` ∈ L, t ∈ AL(`)(19)

∑
j∈J

aj,tx̃g,j ≥ bt − (1− zg,`) g ∈ {1, ..., |P|}, ` ∈ L, t ∈ AR(`)(20)

θg,k,` ≥ ck,` + zg,` − 1 g ∈ {1, ..., |P|}, k ∈ K, ` ∈ L (21)
θg,k,` ≥ 0 g ∈ {1, ..., |P|}, k ∈ K, ` ∈ L (22)
ck,` ∈ {0, 1}, l` ∈ {0, 1}, zg,` ∈ {0, 1} g ∈ {1, ..., |P|}, k ∈ K, ` ∈ L (23)

Note that similar adaptations can be straightforwardly obtained for other formulations of the
optimal classi�cation tree problem, such as those of [2, 3].

The main di�erence between models (Pδ,γ) and (DPδ,γ) comes from the data points they consider.
Obviously, when the data-partition considered in (DPδ,γ) is the original dataset I, both problems have
the same optimal value, i.e. f(θ, d) = f̃(θ, d). However, this is not the case for most data-partitions of
I, and even for a given tree T (i.e. for given values of θ and d), we may have f(θ, d) 6= f̃(θ, d). This is
because variables θ are weighted by |pg| in f̃ , assuming that all the data points of a cluster pg reach
the same leaf than their representative, which is not always true.

In the following we focus on the comparison of the objective value of problems (Pδ,γ) and (DPδ,γ),
i.e. of the values of f(θ, d) and f̃(θ, d) for a given tree. Both functions are a sum of two terms, and for
a same solution (i.e. values of θ and d), only the value of the �rst term (the number of misclassi�ed
data) are di�erent. To simplify the writing, we use the following notations in the rest of the paper:

� f(θ, d) = E(T) + 1
γ+1

∑
t∈N dt, where E(T) =

∑
`∈L

∑
k∈K

∑
i∈I\Ik

θi,k,`.

� f̃(θ, d) = Ẽ(T) + 1
γ+1

∑
t∈N dt, where Ẽ(T) =

∑
`∈L

∑
k∈K

∑
g∈{1,...,|P|}
s.t.Ỹg 6=k

|pg|θg,k,`.

In order to compare the values of f and f̃ , we start by showing through Examples 4 and 5 that the
values of E(T) and Ẽ(T) are incomparable.

Example 4 (An instance where Ẽ(T) < E(T)). We consider the dataset I = (X,Y) with 46 data
points, 2 features and 3 labels. Figure 4a depicts a data-partition (P, X̃, Ỹ) with 3 clusters, one for
each label. The representative of each cluster is the barycenter of its data points. In Figure 4b, we plot
the two split functions of an optimal tree T on (P, X̃, Ỹ) obtained by solving (DP2,2). The vertical
line corresponds to the split function of the root node while the horizontal line corresponds to the split
function of its left child. For each leaf, its predicted label is indicated in the top-left corner. Since each
representative of the data-partition reaches a di�erent leaf, Ẽ(T) is equal to 0. However, applying T

12

to the original dataset leads to E(T) = 6 since 6 samples of class circle do not follow the path of their
representative. Therefore, Ẽ(T) < E(T).

(a) A data-partition of I (b) An optimal tree T for (P, X̃, Ỹ)

Figure 4: An example where Ẽ(T) < E(T) (δ = 2 and γ = 2)

Example 5 (An instance where E(T) < Ẽ(T)). We consider the dataset I = (X,Y) with 50 data
points, 2 features and 2 labels and the data-partition (P, X̃, Ỹ) plotted in Figure 5a with 9 clusters.
In Figure 5a, we also plot a red line which corresponds to the optimal tree T on (P, X̃, Ỹ) obtained
by solving (DP1,1). Tree T only misclassi�es one representative of a cluster of size 5, thus Ẽ(T) = 5.
This is greater than E(T) = 4 as we can see in Figure 5b.

(a) A data-partition of I (b) An optimal tree T for (P, X̃, Ỹ)

Figure 5: An example where E(T) < Ẽ(T) (δ = 1 and γ = 1).

In the following, we introduce the intersection property in order to characterize the trees T for
which equality Ẽ(T) = E(T) holds.

13

Property 4 (Intersection of a tree with a data-partition). We say that a tree T intersects a data-
partition (P, X̃, Ỹ) if there exists a data point that follows a di�erent path in T than its representative.

Proposition 1. Let I = (X,Y) be a dataset and (P, X̃, Ỹ) be a data-partition of I. If a tree T does
not intersect (P, X̃, Ỹ), then E(T) = Ẽ(T).

Proof . If T does not satisfy Property 4 with respect to (P, X̃, Ỹ) it means that every data point

follow the same path than their representatives, and we thus have E(T) =
∑
`∈L

∑
k∈K

∑
i∈I\Ik

θi,k,` =∑
`∈L

∑
k∈K

∑
g∈{1,...,|P|}
s.t.Ỹg 6=k

|pg|θg,k,` = Ẽ(T).

From Proposition 1, we can easily characterize solutions of (DPδ,γ) for which f(θ, d) = f̃(θ, d).

Corollary 1. Given a dataset I = (X,Y) and (P, X̃, Ỹ) a data-partition of I. For any feasible
solution T of (DPδ,γ) for the data-partition (P, X̃, Ỹ) that does not satisfy the intersection property,

then f(θ, d) = f̃(θ, d).

Corollary 1 provides a su�cient condition for which the value of the solution induced by a tree T
is the same for both formulations (Pδ,γ) and (DPδ,γ). However, there is no guarantee that there exists
an optimal solution of (DPδ,γ) satisfying this condition. This is why we propose the generic framework
IterativeRefinement (ItR) (sketched up in Algorithm 4) that iteratively solves a model (M) (here
(DPδ,γ)) for increasing sized data-partitions (P, X̃, Ỹ) of the data set (X,Y). Basically, at each
iteration k, the clusters intersected by Tk, the current optimal solution of (M), are split. The algorithm
stops when the current optimal solution Tk does not intersect the current data-partition (P, X̃, Ỹ)k.

Algorithm 4: IterativeRefinement((X,Y),(P, X̃, Ỹ),(M))

(P, X̃, Ỹ)0 ← (P, X̃, Ỹ)

T0 ← optimal solution of (M) for (P, X̃, Ỹ)0

k ← 0

while Tk intersects (P, X̃, Ỹ)k do

Split clusters of (P, X̃, Ỹ)k to create (P, X̃, Ỹ)k+1 that is not intersected by Tk
Tk+1 ← optimal solution of (M) for (P, X̃, Ỹ)k+1

k ← k + 1

end

Return Tk

Proposition 2. In algorithm IterativeRefinement the number of loop iteration is polynomial in the
size of the dataset |I|. Moreover, it always converges to a tree Tk that does not intersect the current
data-partition (P, X̃, Ỹ)k.

Proof . In the worst case, we start with a data partition (P, X̃, Ỹ)0 composed of one cluster of size |I|.
If the initial tree T0 does not intersect (P, X̃, Ỹ)0 we are done. Otherwise, since at each iteration we
split at least one cluster, we iterate at most |I| times to get a data-partition having |I| clusters of size
one. In this case we have X̃ = X, i.e. the current data-partition is the initial dataset I where each
data is its own representative. Thus, it cannot be intersected by Tk.

We now focus on the case where (M) is (DPδ,γ) and call Algorithm 4 applied to model (DPδ,γ)
Heuristic Iterative Algorithm (HIA), and we show through Example 6, that an optimal solution
of (DPδ,γ) that does not intersect its data-partition is not necessarily optimal for (Pδ,γ).

14

Example 6. We consider the dataset I = (X,Y) with 30 data points, 2 features and 2 labels repre-
sented in Figure 6. In Figure 6a, the data points which are not representatives in the data-partition
(P, X̃, Ỹ) are grayed out, an the red line plotted is T ∗ an optimal tree for (DP1,1). We can see that

Ẽ(T ∗) = 4 since only the representative of the smallest cluster is misclassi�ed. However, T the optimal
solution of (P1,1) (see Figure 6b) leads to E(T) = 3.

(a) An optimal tree T ∗ for (DP1,1) (b) An optimal tree T for (P1,1)

Figure 6: Example of an optimal solution of (DP1,1) that is not optimal for (P1,1) (δ = 1 and γ = 1)

4.2 An Exact Iterative Algorithm for computing classi�cation trees

We now introduce a new formulation that allows us to compute an optimal tree for the initial dataset
starting from any data-partition. In this formulation the choice of the representatives of the clusters is
set free. More precisely, since any data point of a cluster can be its representative, we compute them
within the optimization process. We further prove that embedding this new, but larger, formulation
within our iterative framework (Algorithm 4) allows us to compute an optimal solution for the original
dataset. We call this method Exact Iterative Algorithm (EIA).

In our new formulation, we use a binary variable ri for each data point i ∈ I, where ri = 1 if
and only if i is the representative of its cluster. Then, to ensure that the representatives are correctly
classi�ed, the branching Constraints (24) and (25) are considered for all data points in I. We obtain

15

the following the formulation:

(DP ′α,δ)

min f̃(θ, d) =
∑
`∈L

∑
k∈K

∑
g∈1,...,|P|,Ỹk 6=k

|pg|θg,k,` +
1

γ + 1

∑
t∈N

dt

s.t. (1)− (5), (8), (14), (16)− (18), (21)− (23)∑
j∈J

aj,t(xi,j + µj − µ−) + µ−

≤ bt + (1 + µ+)(2− zg,` − ri) g ∈ 1, ..., |P|, i ∈ pg, ` ∈ L, t ∈ AL(`)(24)∑
j∈J

aj,txi,j ≥ bt − (2− zg,` − ri) g ∈ 1, ..., |P|, i ∈ pg, ` ∈ L, t ∈ AR(`)(25)

∑
i∈pg

ri = 1 g ∈ {1, ..., |P|} (26)

ri ∈ {0, 1} i ∈ I (27)

Observe that Constraints (24) and (25) only constrain the path of a data point i if ri = 1 (i.e. if
it is the representative of its cluster). In Formulation (DP ′δ,γ) the number of constraints is in the
same order of magnitude than in Formulation (Pδ,γ) but the number of variables can be signi�cantly
reduced. Indeed, the number of variables z and θ is proportional to the number of clusters rather than
to |I|.

The following proposition proves that we can characterize solutions of (DP ′δ,γ) that are optimal for
(Pδ,γ).

Proposition 3. Let I = (X,Y) be a dataset, (P, X̃, Ỹ) a data-partition of I and T an optimal solution
of (DP ′δ,γ) that does not intersect (P, X̃, Ỹ). We have f(θ, d) = f̃(θ, d) and T is optimal for (Pδ,γ).

Proof . Note that all variables of (Pδ,γ) are also in (DP ′δ,γ), while (DP ′δ,γ) has additional ri variables.

1. v(Pδ,γ) ≤ v(DP ′δ,γ). Obviously T is feasible for (Pδ,γ). Moreover, since T does not intersect

(P, X̃, Ỹ), by Proposition 1 we have E(T) = Ẽ(T), and thus f(θ, d) = f̃(θ, d).

2. v(Pδ,γ) ≥ v(DP ′δ,γ). Let T ∗ be an optimal solution to (Pδ,γ). To construct a feasible solution to

(DP ′δ,γ) where E(T ∗) ≥ Ẽ(T ∗), we take the tree T ∗, and we �x variables ri as follows. For each
cluster p we distinguish two cases:

� if ∃ī ∈ p correctly classi�ed by T , we take rī = 1, and ri = 0, ∀i ∈ p, i 6= ī. Thus, there is no
misclassi�cation associated to p in (DP ′δ,γ) Consequently, the number of misclassi�cations
for p in the initial dataset can only be higher.

� else, the number of misclassi�cations associated to p is |p| in both the initial dataset and
the data-partition. We thus we can choose any i ∈ p, such that ri = 1.

This choice of the representative ensures that E(T ∗) ≥ Ẽ(T ∗). From a feasible solution to (Pδ,γ),
we thus built a feasible (DP ′δ,γ) where f(θ, d) ≥ f̃(θ, d).

Combining Propositions 2 and 3, we can deduce the following Theorem.

Theorem 1. Let I = (X,Y) be a dataset and (P, X̃, Ỹ) be a data-partition of I. The tree T computed
by EIA computes an optimal solution of (Pδ,γ) for I.

Proof . We have to prove that i) Algorithm 4 converges to a solution that does not satisfy the inter-
section property, ii) such a T is also an optimal solution of (Pδ,γ) for I. These two claims are true
respectively by Propositions 2 and 3.

16

4.3 Algorithmic features to speed-up the computation

We now present algorithmic features that enable to accelerate the computation of classi�cation trees.
Our �rst idea is to post-process each solution obtained by (M) in order to reduce the number of
iterations of Algorithm 4. Since the variables that de�ne the split functions are continuous, our new
formulations (DP) and (DP ′) have a large number of equivalent optimal solutions, and thus the
optimal tree T ∗ returned by the MILP solver may not be the most relevant for the initial dataset.
Indeed, T ∗ may intersect clusters even if there exists an equivalent optimal tree T̄ which does not.
As stated by Property 4, a cluster pg is not intersected by a tree T if all data points belonging to pg
follow the same path as their representative in the data partition. Starting from an initial optimal
solution T ∗, our aim is thus to build a new tree T̄ that is optimal for (DP) (or (DP ′)), i.e. such that
f̃(θ∗, d∗) = f̃(θ̄, d̄), and that maximizes the number of data points that follow their representative in,
i.e. such that f(θ∗, d∗) ≥ f(θ̄, d̄).

In order to ensure that our new tree T̄ is optimal for (M), we keep in T̄ the structure of T ∗, i.e.
we keep the same branching and leaf nodes, and for each branching nodes, we set the value of the
linear coe�cients ā = a∗ taken from T ∗. Thus, the only di�erences between T ∗ and T̄ is the value of b̄,
the right-hand side of the split functions. Starting from the root node, we compute for each splitting
node t the new value of b̄t through the resolution of an optimization problem called (OPTt) presented
below.

To de�ne this problem, let L(t) ⊆ P (R(t) ⊆ P resp.) be the subset of clusters whose represen-
tatives are correctly classi�ed and that go to the left (right resp.) at node t of T ∗. To ensure that
f̃(θ∗, d∗) = f̃(θ̄, d̄), we impose that the path of the representatives of the clusters in L(t) and R(t) re-
mains the same in T̄ . Then, let l(t) ⊂ I (r(t) ⊂ I, resp.) be the subset of data points that reach node
t and for which going left (right resp.) make them either follow their correctly classi�ed representative
or not follow their misclassi�ed representative. Maximizing the number of data points of l(t) going to
the left and of r(t) going to the right may enable to reduce the number of misclassi�cations.

In formulation (OPTt), we denote by x̃g the feature vector of the representative of cluster pg,
and by xi the feature vector of data point i of the original dataset I. Let j∗ be the index of the
unique non-zero component of a∗, i.e. such that a∗j∗ = 1. Similarly to Support Vector Machine
algorithms [33], we try to �nd a separation which is as far as possible from the data points. To that
end, we consider bound variables b1 and b2 on b̄t. The value of b̄t is deduced by these bounds by

setting it to max
{
b1+b2

2 , b1 +µ
}
, where µ is the constant used to model the strict inequality xi,j∗ < b.

We use additional binary variables zi (i ∈ l(t) ∪ r(t)), and Constraints (28) and (29), to ensure zi = 1
when data point i reaches the left son of t i.e. when xi,j∗ < b. Moreover, Constraints (30) and (31)
ensure that f̃(θ∗, d∗) = f̃(θ̄, d̄). Finally, Constraints (32) and (33) de�ne the ranges of variables b1 and
b2. As stated before, we aim at building T̄ such that f(θ∗, d∗) ≥ f(θ̄, d̄). For this, we maximize the
number of data points of l(t) that go left, and of r(t) that go right. Finally, the secondary objective
(weighted by 0.5) maximizes the margin b2 − b1. We thus obtain the following optimization problem
(OPTt):

17

(OPTt)

max
∑
i∈l(t)

zi +
∑
i∈r(t)

(1− zi) +
b2 − b1

2

s.t. xi,j∗ ≤ b1 + (1 + µ)(1− zi) i ∈ l(t) ∪ r(t), j∗ : a∗j∗ = 1 (28)

xi,j∗ ≥ b2 − zi i ∈ l(t) ∪ r(t), j∗ : a∗j∗ = 1 (29)

x̃g,j∗ ≤ b1 g ∈ L(t), j∗ : a∗j∗ = 1 (30)

x̃g,j∗ ≥ b2 g ∈ R(t), j∗ : a∗j∗ = 1 (31)

0 ≤ b1 ≤ b2 − µ (32)

b1 + µ ≤ b2 ≤ 1 (33)

zi ∈ {0, 1} i ∈ l(t) ∪ r(t) (34)

b1 ∈ R, b1 ∈ R (35)

Note that (OPTt) can be solve either by a MILP solver or by a tailored enumeration algorithm
called EnumInterval that we sum up in Algorithm 5. Its basic idea is to enumerate, within the sorted
set S, intervals [b1, b2] of values of b̄t for which the number of misclassi�cations is constant. These
intervals are obtained by considering the consecutive values of data points in l(t) ∪ r(t) on feature j∗.
For each interval, the associated number of misclassi�cations is computed. The value of b̄t is set to
the middle of an interval that produces the lowest number of errors.

We illustrate algorithm EnumInterval in Figure 7. We see in Figure 7a the split function (on
feature j∗ = 1) of the root node t in an optimal solution T ∗ of (DP ′) where δ = 2. Note that, all
representatives are correctly classi�ed, and the subsets l(t) ((r(t) resp.) contains all the data points
labeled with the circle (square resp.). Our goal is to translate the split function (i.e. compute b̄t)
such that as many data points as possible follow their representatives. For this, we consider the 8
intervals of values of b̄t for which the number of misclassi�cations is constant (see Figure 7b). Since
the maximal value (on feature 1) of a representative going to the left is x3, and the minimal value
of a representative going to the right is x6, we have x3 < b̄t ≤ x6. Figure 7b highlights the intervals
]x3, x4],]x4, x5] and]x5, x6] in set S, for which any value of b̄t leads to a constant number of errors
in (OPTt). The number of errors for each interval is as follows: 4 for]x3, x4], 3 for]x4, x5], and 2 for
]x5, x6]. Consequently, b̄t is set to

x5+x6

2 .

(a) Solution on the data-partition T ∗ (b) Possible intervals

Figure 7: Illustration of Algorithm EnumInterval

18

Algorithm 5: EnumInterval((X,Y),(P, X̃, Ỹ),L(t),R(t),l(t),r(t), j∗,b∗)

Bmin ← maxg∈L(t){x̃g,j∗}
Bmax ← ming∈R(t){x̃g,j∗}
S ← increasing sorted subset of xi,j∗ such that Bmin ≤ xi,j∗ ≤ Bmax and i ∈ l(t) ∪ r(t)
S ← S ∪ {Bmin, Bmax}
E ← number of errors induced by T ∗ for the sub-tree of root t
(b̄1, b̄2)← (b∗, b∗)
for all consecutive pairs (b1, b2) ∈ S do

e← |i ∈ l(t) : xi,j∗ ≥ b2|+ |i ∈ r(t) : xi,j∗ ≤ b1|
if e < E or (e = E and b2 − b1 > b∗2 − b∗1) then

E ← e
(b̄1, b̄2)← (b1, b2)

end

end

b̄t ← b1+b2
2

Return b̄t

Proposition 4. From an optimal solution T ∗ of (DP) or (DP ′), Algorithm EnumInterval computes
a value b̄t that induces a tree T̄ such that f̃(θ∗, d∗) = f̃(θ̄, d̄), and f(θ∗, d∗) ≥ f(θ̄, d̄).

Proof . The proof is obvious by the initialization of E and of (b̄1, b̄2) from T ∗, and the condition within
the loop that ensures to keep a value as good as that of the data-partition MILP ((DP) or (DP ′)).

Finally, our post-processing is sketched-up in Algorithm 6.

Algorithm 6: PostProcess((X,Y),(P, X̃, Ỹ),T ∗)

T̄ ← T ∗

∀t ∈ N , L(t)← representatives correctly classi�ed and going left in T ∗

∀t ∈ N , R(t)← representatives correctly classi�ed and going right in T ∗

for each branching node t ∈ N do
l(t)← data points reaching t whose representative either go to the left and is correctly
classi�ed or go to the right and is misclassi�ed
r(t)← data points reaching t whose representative either go to the right and is correctly
classi�ed or go to the left and is misclassi�ed
b̄t ← EnumInterval((X,Y),(P, X̃, Ỹ),L(t),R(t),l(t),r(t), j∗,b∗)
Replace in T̄ the separation of node t by a∗txi < b̄t

end

Return T̄
From Proposition 4, we can deduce the following corollary.

Corollary 2. Given a dataset I = (X,Y), an associated data-partition (P, X̃, Ỹ) and T ∗ an optimal
solution of (DP) ((DP ′), resp.), the tree provided by Algorithm PostProcess is also optimal for (DP)
((DP ′), resp.).

To further improve the resolution, we make the following remarks:

� Algorithm PostProcess satis�es Property 4 even if T ∗ is not an optimal solution of (DP) or
(DP ′).

� Since Algorithm PostProcess preserves optimality, integrating it within EIA still provides an
optimal solution of (P). Theorem 1 then stands when PostProcess is used within EIA.

19

Finally, since optimally solving (DP ′) can be computationally costly, we show that in our frame-
work, we do not need to optimally solve it at every iteration to calculate a tree that is optimal for
the original formulation (P). Indeed, from Proposition 3 we can easily deduce that it is su�cient to
optimally solve (DP ′) at the last iteration of EIA to compute an optimal solution to (P). We thus use
this property within our ImprovedIterativeRefinement (IIR) sketched up in Algorithm 7.

Algorithm 7: ImprovedIterativeRefinement((X,Y),(P, X̃, Ỹ),(M))

(P, X̃, Ỹ)0 ← (P, X̃, Ỹ)

T0 ← optimal solution of (M) for (P, X̃, Ỹ)0

k ← 0

while Tk intersects (P, X̃, Ỹ)k and the time limit is not reached do

Split clusters of (P, X̃, Ỹ)k to create (P, X̃, Ỹ)k+1 that is not intersected by Tk
limitIter ← 1/3 of the remaining time
Tk+1 ← feasible solution of (M) for (P, X̃, Ỹ)k+1 obtained within limitIter
Tk+1 ← PostProcess((X,Y),(P, X̃, Ỹ)k, Tk+1)

if Tk+1 does not intersects (P, X̃, Ỹ)k+1 and Tk+1 is not proven optimal then

Tk+1 ← Resume solving (M) for (P, X̃, Ỹ)k+1 for the remaining time
end

k ← k + 1

end

Return Tk
In the rest of the paper, we denote by Heuristic Improved Iterative Algorithm (HIIA) the

Algorithm 7 applied to model (DPδ,γ) and by Exact Improved Iterative Algorithm (EIIA) the
Algorithm 7 applied to model (DP ′δ,γ).

5 Computational results

In this section, we evaluate our algorithms on several datasets of the literature [13] whose main char-
acteristics are reported in Table 1.

Datasets I J K
Monk3 122 6 2
Monk1 124 6 2
Iris 150 4 3
Monk2 169 6 2
Wine 178 13 3
Seeds 210 6 3
Haberman 306 3 2
Dermatology 358 34 6
Balance scale 625 4 3
Breast Cancer 683 9 2
Blood Transfusion 748 4 2
Car Evaluation 1728 6 4
Statlog satellite 4435 36 7
Spambase 4601 57 2
Magic04 19020 10 2

Table 1: Datasets and their characteristics.

20

We start by presenting a detailed comparison of our algorithmic features on a subset of datasets:
Iris, Monk2, Wine, Haberman, and Magic04. In particular, we compare the CPU times and the accu-
racy of the direct solution of (P) with that of our data-partitioning algorithms: GreedyPartitionning
(GP) (Alg. 1), ImprovedGreedyPartitionning (IGP) (Alg. 2), and ClosestRepresentativeMerge

(CRM) (Alg. 3) with algorithms HIIA or EIIA. We also evaluate the impact of the use of our PostProcess
step (Alg. 6) into the whole process. To sum up, for the two steps of our solution methods, we con-
sider three data-partitioning schemes and the two iterative algorithms based on Algorithm 7 (Exact
or heuristic). We summarize in Table 2 the methods that we have tested, but in the next sections we
only report the results of the most relevant ones.

Data-partitioning Iterative algorithm Name

GP

HIIA
GP+HIIA

IGP IGP+HIIA

CRM CRM+HIIA

GP

EIIA
GP+EIIA

IGP IGP+EIIA

CRM CRM+EIIA

Table 2: Methods considered in our experiments with associated steps.

Finally, in the last section, we compare the best combinations of our solution methods with state-
of-the-art methods TAO [9], GUIDE [25], CART [7], C5.0 [31] via out-sample accuracy.

Experimental environment
Our experiments were carried out on a server with 2 CPU Intel Xeon each of them having 16 cores and
32 threads of 2.3 GHz and 8 ∗ 16 GB of RAM using a Linux operating system. Each process is limited
to use 2 threads. For solving the MILP formulations (P), (DP) and (DP ′) we used the solver gurobi
version 9.1.1 [28]. Algorithms HIIA and EIIA are implemented in C++. We ran algorithms CART and
C5.0 with R libraries. For methods TAO and GUIDE we directly report the results provided in [40]. For
all other methods and all datasets, we consider the 5 partitions from [34]. A partition is described by
a training set, a validation set and a test set representing 50%, 25% and 25% of the original datasets,
respectively. We consider values of δ ∈ {2, 3, 4}, and we set the time limit to 1800 seconds.

5.1 Comparison of our algorithmic features

In this section, we provide an analysis of our various algorithmic features. We start by evaluating
the quality of our data-partitioning algorithms, in particular how much the computed data-partitions
satisfy Properties 1�3 introduced in Section 3. Then, we assess the e�ciency of our Post-Process

(Algorithm 6) applied to algorithms HIIA and EIIA. Finally, we compare them to (P) from their
in-sample accuracy point of view.

Description of the instances
We consider the following datasets:

� Iris and Wine are small datasets that can be solved optimally within 30 minutes;

� Monk2 and Haberman are harder small datasets, i.e. that can not all be solved optimally within
30 minutes;

� Magic04 is a large dataset for which the direct solution of (P) is impractical.

For each dataset, we run our tests on 5 di�erent training sets. Moreover, we consider 8 di�erent
values of parameters (δ, γ) = {(2, 2), (2, 3), (3, 3), (3, 5), (3, 7), (4, 4), (4, 7), (4, 10)}, obtaining a total of
40 instances per dataset.

21

5.1.1 Comparison of data-partition algorithms on Properties 1�3

We compare how the data-partitions computed by algorithms GreedyPartitionning (GP) (with ρ =
0.25), ImprovedGreedyPartitionning (IGP), and ClosestRepresentativeMerge (CRM) satisfy the
Properties 1�3. We present in Table 3 the average reduction, exclusion, and consistency metrics for the
40 considered instances. We denote by ′−′ the cases where a data-partition was not obtained within
400s. Recall that the size reduction metric is de�ned as R = |I|−|P|

|I| .

Metric Data-partitioning algorithms Iris Wine Monk2 Haberman Magic04
GP 0.75 0.75 0.75 0.75 0.75

Size reduction IGP 0.77 0.26 0.73 0.39 0.54
CRM 0.81 0.33 0.83 0.4 -
GP 1 1 0.87 0.77 0.97

Exclusion IGP 1 1 1 0.97 1
CRM 1 1 1 0.97 -
GP 0.69 0.83 0.23 0.43 0.36

Consistency IGP 1 1 1 1 1
CRM 1 1 0.9 1 -

Table 3: Average reduction, exclusion, and consistency metrics for algorithms GP, IGP, and CRM

We recall that, by construction, all algorithms provide homogeneous data-partition, the homoge-
neous metric is thus always equal to 1. We observe that the exclusion and consistency metrics are
lower for GP than for IGP or CRM. This is especially the case for Monk2, Haberman and Magic04. Note
moreover that CRM cannot provide data-partitions under a few minutes for datasets of more than a
few thousand data points. GP and IGP have a total CPU time always smaller than a minute which is
negligible in comparison to the total CPU time needed for computing the classi�cation tree.

5.1.2 Impact of algorithm Post-Process on EIIA and HIIA

We now compare the CPU times for the datasets Iris and Wine of Algorithms EIIA and HIIA both
used with and without algorithm Post-Process (PP). We label by \PP the methods that do not
use Post-Process (PP). For these experiments, we compute the starting data-partition with algo-
rithm IGP (i.e. Alg. 2). We present in Figure 8 the performance pro�les of the CPU times for meth-
ods IGP+EIIA, IGP+EIIA\PP, IGP+HIIA, IGP+HIIA\PP, and (P) on the datasets Iris (Fig. 8a) and
Wine (Fig. 8b). In a performance pro�le of CPU times, each curve corresponds to a formulation,
where each point of a curve gives, for a given factor τ , the percentage of instances whose CPU time
was at most τ times greater than the minimal CPU time within the considered methods. In particular,
for τ = 1, we have the proportion of instances on which the formulation was the best on the criterion.

22

(a) Iris (b) Wine

Figure 8: Performance pro�les of CPU time

This pro�le shows a clear order in terms of CPU times between our 4 algorithms for both datasets:
the fastest is IGP+HIIA, then IGP+HIIA\PP, then IGP+EIIA and �nally IGP+EIIA\PP. Note that we
also ran experiments with algorithms GP or CRM instead of IGP for computing the data-partitions and
we obtained similar results. We also observe that IGP+HIIA and IGP+HIIA\PP are always faster than
solving (P), with an average CPU time reduced by a factor of 2.8 and 1.7 respectively. In contrast,
IGP+EIIA\PP is on average two time slower than (P). In the rest of the paper, we only report the
results with the post-processing step since it always improves the performances.

5.1.3 Comparison of in-sample accuracy of algorithms EIIA and HIIA

In this section, we compare the performances of relevant combinations of our algorithms with (P).
We present in Table 4, the average in-sample accuracy for (P) as well as for EIIA and HIIA methods
combined with GP (with ρ = 0.25), IGP and CRM algorithms for computing the starting data-partition.
Each line corresponds to the average in-sample accuracy over the 40 considered instances. We highlight
in bold the results that are as good as that of (P). For each dataset, we also label the best performance
method by a '*'.

Algorithm Iris Wine Monk2 Haberman Magic04
GP+EIIA 98.8* 98.9* 74.9 79.6 74

GP+HIIA 98.8* 98.9* 75 80.2 78.7

IGP+EIIA 98.6 98.9* 75.3 80.5 79.4*

IGP+HIIA 98.8* 98.9* 75.3 80.8* 79.4*

CRM+EIIA 98.6 98.9* 75.3 80.4 -
CRM+HIIA 98.8* 98.9* 75.5* 80.7 -

(P) 98.8* 98.9* 75.4 80.3 65.3

Table 4: Comparison of average in-sample accuracy with methods GP+EIIA, GP+HIIA, IGP+EIIA,
IGP+HIIA, CRM+EIIA, CRM+HIIA and (P).

We observe that for Iris and Wine, HIIA has always the same in-sample accuracy as that of (P).
Since almost all these instances are solved optimally by (P) within the time limit of 30 minutes, it
means that HIIA provides almost always an optimal solution. In contrast, EIIA failed to reach the
accuracy of (P) for the Iris dataset. Regarding the data-partition algorithms, we observe that for

23

harder datasets (i.e. Haberman and Magic04), IGP and CRM combined with EIIA or HIIA algorithms
outperform GP+EIIA, GP+HIIA, and the solution of (P). In particular, results obtained for Magic04
show that our methods scale-up better than (P). Note moreover that HIIA and EIIA are faster when
combined with IGP and CRM than with GP. These results can be related to the low metric values of
Table 3 obtained by GP where exclusion and consistency metrics are decreasing with respect to the
reduction metric ρ. However, choosing a relevant value of ρ that leads to a good balance between the
3 criteria is highly dependent of the considered dataset.

5.2 Comparison of out-sample accuracy with state-of-the-art methods

We now compare our algorithms with state-of-the-art methods from the out-sample accuracy point of
view. We �rst give a detailed comparison of (P) and of the possible combinations of our algorithms.
Then, we compare our 2 best performing combinations with the state-of-the-art heuristics TAO [9],
GUIDE [25, 26], CART [7], and C5.0 [31].

For methods HIIA, EIIA, (P), CART, and C5.0, our experiments are carried out on 5 di�erent
partitions in training, validation and test sets. Since we do not have the sources of algorithms TAO

and GUIDE, we reported the results taken from [40] that were not run on the same partitions. For (P)
and our algorithms, trees are obtained via an iterative learning algorithm that selects the best values
for (δ, γ), where each iteration has a time limit of 30 minutes. Data-partitions are computed once per
training set, before the learning process. In order to choose a relevant value of ρ for algorithm GP, we
solve (DPδ=4,γ=15) (or (DP ′δ=4,γ=15)) with di�erent values of ρ with a time limit of 5 minutes, and
select the value of ρ that achieves the best in-sample accuracy.

5.2.1 Comparison with the direct resolution of (P)

We present in Tables 5 and 6 the out-sample accuracy results obtained with 6 combinations of our
algorithms that we compare with (P) for depths δ ∈ {3, 4}, respectively. Each line corresponds to the
average results of a dataset, where the method with the highest out-sample accuracy is highlighted in
bold. In order to compare our methods with (P), we indicate the average Relative Di�erence (RD),
with RD = Acc(M)−Acc(P)

Acc(P) , where Acc(P) is the accuracy of (P), and Acc(M) the accuracy of the
method M of the column. Thus, when RD is positive, it means that we are more accurate than (P).

HIIA EIIA

Dataset GP IGP CRM GP IGP CRM (P)
Monk3 92.26 92.90 92.90 92.26 93.55 92.26 93.55

Monk1 90.32 90.32 90.32 90.32 90.32 90.32 88.39
Iris 97.37 97.89 97.89 97.89 97.89 97.37 97.37
Monk2 53.95 56.74 54.42 55.35 53.95 57.21 57.67

Wine 90.65 90.65 90.20 90.66 90.20 90.2 90.21
Seeds 92.83 91.70 93.21 91.70 90.94 89.81 89.81
Haberman 72.47 74.81 75.84 73.77 74.03 75.32 74.03
Dermatology 87.33 87.56 87.11 79.78 84.44 86.67 87.11
Balance scale 70.96 71.72 71.97 70.70 71.46 70.57 70.7
Breast cancer 94.62 94.62 94.50 94.97 94.85 94.97 94.62
Blood transfusion 80.11 79.57 79.25 80.53 79.68 80.0 79.28
Car evaluation 78.52 79.26 77.69 78.15 78.56 77.59 79.26

Statlog satellite 77.91 77.91 - 77.66 77.89 - 76.86
Spambase 88.72 88.83 - 88.93 88.71 - 86.26
Average RD with (P) +0.07 +0.77 +0.19 -0.3 -0.03 +0.02

Table 5: Average out-sample accuracy for trees of depth δ = 3 over 5 test sets

24

For depth δ = 3, we observe in Table 5, that HIIA combined with any data-partitioning algorithms
always has a positive RD. However, the highest RD of +0.77 is rather small , even if method IGP+HIIA

strictly outperforms (P) on 9 datasets over 17. The two other combinations leads to similar or better
performances than (P), with an RD close to zero. Regarding combinations that use EIIA, we can
see that the RDs are very close to zero for any of the considered data-partitioning algorithms. Yet,
unexpectedly, method GP+EIIA that has the lowest relative di�erence of −0.3 is the combination that
most often get the highest out-sample accuracy (on more than a third of the datasets).

HIIA EIIA

Dataset GP IGP CRM GP IGP CRM (P)
Monk3 93.55 93.55 93.55 93.55 92.90 92.90 93.55

Monk1 96.13 93.55 96.13 92.90 96.13 95.48 92.26
Iris 97.37 97.89 97.89 97.89 97.89 97.37 97.37
Monk2 62.33 60.93 60.47 60.93 60.93 61.4 55.81
Wine 90.65 90.65 90.20 90.66 90.20 90.2 90.21
Seeds 92.83 89.81 93.21 91.70 90.19 89.43 92.83
Haberman 71.95 75.58 74.55 73.77 74.29 74.81 73.51
Dermatology 91.33 92.0 90.0 89.11 90.22 90.44 88.89
Balance scale 79.75 78.22 75.92 78.85 77.71 78.47 75.41
Breast cancer 94.62 94.50 94.50 94.85 94.62 94.85 94.62
Blood transfusion 79.79 79.47 80.64 80.32 80.75 81.07 78.48
Car evaluation 86.02 85.60 84.86 85.14 84.4 84.4 84.4
Statlog satellite 79.84 80.50 - 80.27 79.55 - 77.85
Spambase 89.61 90.04 - 90.48 89.77 - 86.26
Average RD with (P) +2.34 +2.05 +1.67 +1.88 +1.79 +1.69

Table 6: Average out-sample accuracy for trees of depth δ = 4 over 5 test sets

For δ = 4, we observe in Table 6 that the average improvement is greater than for δ = 3, and
always positive for all methods. Indeed, the size of the formulations become too large and (P) can
no longer optimally solve the instances within the time limit. Regarding our new approaches, they all
obtain better or equal results than (P). Methods GP+HIIA, IGP+HIIA, and GP+EIIA appear as the best
performers on these instances, with the best accuracy on 5 datasets each. These results clearly show
that data-partitioning-based methods are capable of scaling up on these datasets.

5.2.2 Comparison with state-of-the-art heuristics

We now compare our algorithms with state-of-the-art heuristics: TAO, GUIDE, CART and, C5.0. More
precisely, we run CART and C5.0 with R libraries on the same partitions used for our algorithms. For
CART, we compute the maximum tree and prune it according to the validation set. For C5.0, we took
the computed tree as is. For GUIDE and TAO, the results presented are taken from the survey [40] and
come from di�erent partitions.

The out-sample accuracy results are presented in Figure 7. Each row corresponds to a dataset for
which the best method is highlighted in bold. We recall that for methods GP+HIIA and IGP+HIIA the
maximum depth is �xed at δ = 4, whereas for the compared state-of-the-art approaches this parameter
is left free. To compare the results obtained on the criterion of accuracy, we compute for each dataset
the Relative Gap (RG) between the performance of the considered algorithm and that of the best
one, i.e. RG =

∣∣B−A
B

∣∣ ∗ 100, where B is the highest accuracy (in bold), and A the accuracy of the
considered method. We report in lines Average RG, the average relative gap in % over the �rst 8
datasets, then over the last 7, and we �nally give in line Total average RG the average over all 15
datasets. Considering only the 8 �rst datasets, we observe that method TAO, that was run on di�erent
partitions, has the smallest average out-sample accuracy. When we compare the performance of the 5

25

Di�erent
partitions

Same partitions

Dataset TAO GUIDE CART C5.0 GP+HIIA IGP+HIIA (P)
Iris 95.4 96.7 95.2 93.7 97.4 97.9 97.4
Wine 91.2 91.9 89.2 91.5 90.7 90.7 90.2
Dermatology 96.1 95.5 94.2 94.4 91.3 92 88.9
Balance scale 82.2 77.4 77.6 75.9 79.8 78.2 75.4
Breast cancer 95.9 94.6 94.6 94.4 94.6 94.5 94.6
Blood transfusion 77.9 78.8 76.1 75.7 79.8 79.5 78.5
Car evaluation 96.7 70.2 85.8 86.6 86 85.6 84.4
Spambase 92.7 92.8 89.2 91.5 89.6 90 86.3
Average RG 0.7 4.7 4.3 4.1 3.2 3.3 5.1

Monk3 - - 90.2 90.2 93.6 93.6 93.5
Monk1 - - 74.7 83.1 96.1 93.6 92.3
Monk2 - - 55.7 60.3 62.3 60.9 55.8
Seeds - - 86.8 89.4 92.8 89.8 92.8

Haberman - - 66.3 68.4 72 75.6 73.5
Statlog satellite - - 80.8 84.2 79.8 80.5 77.9
Magic04 - - 82.4 84.5 82 81.9 -
Average RG - - 8.8 4.8 1.8 2.2 4.1

Total average RG - - 5.2 3.2 1.4 1.6 3.4

Table 7: Average out-sample accuracy for TAO, GUIDE, CART, C5.0, GP+HIIA, IGP+HIIA and (P)

methods we tested on the same partitions, we can see that our 2 new algorithms GP+HIIA and IGP+HIIA

have the best average relative gaps. This is also the case for the last 7 datasets, where GP+HIIA and
IGP+HIIA outperform the compared methods. More precisely, the relative gap is reduced by a factor of
4.5, 2.6, 2.3, and 1.2 for method GP+HIIA, in comparison to methods CART, C5.0, (P), and IGP+HIIA,
respectively.

As already mentioned, in addition to accuracy, an important criterion for assessing the quality of
a decision tree is also its depth, since this characterizes its interpretability. To illustrate the balance
between these two criteria on the trees built by the methods considered, we propose the diagrams in
Figure 9 where we plot the average out-sample accuracy of trees as a function of their sizes. In these
diagrams, each point corresponds to the average depth and out-sample accuracy of the trees provided
by one method for one dataset. Thus, the further to the left a tree is, the more interpretable it is,
the higher up it is, the better its accuracy is. To make it easier to identify the points associated to
the same dataset, we draw their convex hull in the same color. Consequently, each point within a
convex hull corresponds to a compromise between accuracy and complexity. To further highlight the
improvement achieved by our methods HIIA+GP and HIIA+IGP compared with (P), we draw bold lines
between their respective points.

We plot in Figure 9a the results for the easiest datasets for which all methods provide small trees
and have very close out-sample accuracies. Our methods provide the best performances on Iris while
reducing the complexity of the trees compared with (P). On Wine all methods exhibit very similar
results, but our new methods enhance the accuracy compared with (P). Finally, on Breast cancer,
TAO has the best performances while only CART provide smaller trees than GP+HIIA and IGP+HIIA. In
Figure 9b and 9c, we present results for intermediate and hard instances, respectively. We observe that
the state-of-the-art heuristics almost always provide more complex trees than GP+HIIA and IGP+HIIA

with depths sometimes more than three times larger. Despite this, our methods reach competitive
performances. For Blood transfusion, we reach the best accuracy and for Balance scale, only TAO

outperforms us but at the cost of a signi�cant increase of the tree size (by a factor of 1.75). As
expected, for Dermatology, Car evaluation, and Spambase, the performances of TAO highlights that

26

(a) Simple instances (b) Intermediate instances

(c) Hard instances

Figure 9: Average out-sample accuracy as a function of the average depth

27

considering a depth larger than 4 is an advantage for achieving better performances. Note however
that the larger size of the trees provided by the other state-of-the-art heuristics does not always lead
to better performances. Finally we observe that our new methods always improve either the accuracy
or the interpretability of the trees compared to the direct resolution of (P).

6 Conclusion

We consider the problem of computing classi�cation trees that are both interpretable and e�cient.
Our approach is based on a MILP formulation embedded within an iterative algorithm that allows
us to handle medium-sized datasets. More precisely, we introduce the concept of data-partitions to
scale up the solution of the optimal classi�cation tree problem. By grouping data points together,
data-partitions enables to reduce the size of datasets. To frame the construction of data-partitions we
introduce 3 properties and associated metrics that measure the level to which properties are satis�ed.
We de�ne three algorithms that generate partitions likely to exhibit strong performance according to
these metrics. We then leverage data-partitions to build optimal classi�cation trees. For this, we design
the iterative Algorithm 4, and 2 new formulations that take as an input a data-partition. We prove
that the combination of one of our formulation with Algorithm 4 enables to reach global optimality.
Computational results show that using data-partitions on medium-sized datasets outperforms the
direct MILP solution, and that our methods provide the best compromise between in-sample accuracy
and interpretability when compared with state-of-the-art heuristics. In future work, we will focus on
extending the use of data-partitions to classi�cation trees with oblique splits.

References

[1] Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos. Learning Optimal and Fair Decision
Trees for Non-Discriminative Decision-Making. AAAI, 33(01):1418�1426, July 2019.

[2] Zacharie Ales, Valentine Huré, and Amélie Lambert. New optimization models for optimal classi-
�cation trees. Computers & Operations Research, 164:106515, April 2024.

[3] Dimitris Bertsimas and Jack Dunn. Optimal classi�cation trees. Machine Learning, 106(7):1039�
1082, July 2017.

[4] Dimitris Bertsimas and Angela King. Logistic regression: From art to science. Statistical Science,
pages 367�384, 2017.

[5] Rafael Blanquero, Emilio Carrizosa, Cristina Molero-Río, and Dolores Romero Morales. Optimal
randomized classi�cation trees. Computers & Operations Research, 132:105281, August 2021.

[6] L. Breiman. Random forests. Machine Learning, 45:5�32, 2001.

[7] Leo Breiman, Jerome Friedman, Charles J. Stone, and R. A. Olshen. Classi�cation and Regression
Trees. Taylor & Francis, January 1984.

[8] C. E. Brodley and P. E. Utgo�. Multivariate decision trees. Machine Learning, 19:45�77, 1995.

[9] Miguel A. Carreira-Perpinan and Pooya Tavallali. Alternating optimization of decision trees, with
application to learning sparse oblique trees. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

[10] T. Chen and C. Guestrin. Xgboost. Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. ACM., 2016.

28

[11] Emir Demirovi¢, Anna Lukina, Emmanuel Hebrard, Je�rey Chan, James Bailey, Christopher
Leckie, Kotagiri Ramamohanarao, and Peter J. Stuckey. MurTree: Optimal Decision Trees via
Dynamic Programming and Search. Journal of Machine Learning Research, 23(26):1�47, 2022.

[12] Federico D'Onofrio, Giorgio Grani, Marta Monaci, and Laura Palagi. Margin Optimal Classi�ca-
tion Trees, January 2023. arXiv:2210.10567 [cs, math].

[13] Dheeru Dua and Casey Gra�. UCI machine learning repository, 2017.

[14] Jack William Dunn. Optimal trees for prediction and prescription. Thesis, Massachusetts Institute
of Technology, 2018. Accepted: 2018-11-28T15:25:46Z.

[15] Murat Firat, Guillaume Crognier, Adriana F. Gabor, C. A. J. Hurkens, and Yingqian Zhang. Col-
umn generation based heuristic for learning classi�cation trees. Computers & Operations Research,
116:104866, April 2020.

[16] K. Florek, J. �ukaszewicz, J. Perkal, Hugo Steinhaus, and S. Zubrzycki. Sur la liaison et la division
des points d'un ensemble �ni. Colloq. Math., 2(3-4):282�285, 1951.

[17] J. H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189�1232, 2001.

[18] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An e�cient clustering algorithm for
large databases. ACM Sigmod record, 27(2):73�84, 1998.

[19] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust clustering algorithm for
categorical attributes. Information systems, 25(5):345�366, 2000.

[20] Oktay Günlük, Jayant Kalagnanam, Minhan Li, Matt Menickelly, and Katya Scheinberg. Opti-
mal decision trees for categorical data via integer programming. Journal of Global Optimization,
81(1):233�260, September 2021.

[21] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[22] Laurent Hya�l and Ronald L. Rivest. Constructing optimal binary decision trees is NP-complete.
Information Processing Letters, 5(1):15�17, May 1976.

[23] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: Hierarchical clustering using
dynamic modeling. computer, 32(8):68�75, 1999.

[24] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and Scalable
Optimal Sparse Decision Trees. In Proceedings of the 37th International Conference on Machine
Learning, pages 6150�6160. PMLR, November 2020. ISSN: 2640-3498.

[25] Wei-Yin Loh. Regression tress with unbiased variable selection and interaction detection. Statistica
Sinica, 12(2):361�386, 2002.

[26] Wei-Yin Loh. Improving the precision of classi�cation trees. The Annals of Applied Statistics,
3(4):1710�1737, 2009.

[27] S. K. Murthy, S. Kasif, and S. L. Salzberg. A system for induction of oblique decision trees.
Journal of Arti�cial Intelligence Research, 2:1�32, 1994.

[28] GUROBI optimization. GUROBI 9.1, 2021.

[29] C. Orsenigo and C. Vercellis. Multivariate classi�cation trees based on minimum features discrete
support vector machines. IMA Journal of Management Mathematics, 14(3):221�234, 2003.

29

[30] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81�106, 1986.

[31] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA., 1993.

[32] R. Sibson. SLINK: An optimally e�cient algorithm for the single-link cluster method. Comput.
J., 16(1):30�34, January 1973.

[33] V. Vapnik. Pattern recognition using generalized portrait method. Automation and Remote
Control, 1963.

[34] Sicco Verwer and Yingqian Zhang. Learning Optimal Classi�cation Trees Using a Binary Linear
Program Formulation. Proceedings of the AAAI Conference on Arti�cial Intelligence, 33(01):1625�
1632, July 2019. Number: 01.

[35] Joe H Ward Jr and Marion E Hook. Application of an hierarchical grouping procedure to a
problem of grouping pro�les. Educational and Psychological Measurement, 23(1):69�81, 1963.

[36] D. C. Wickramarachchi, B. L. Robertson, M. Reale, C. J. Price, and J. Brown. Hhcart: An
oblique decision tree. Computational Statistics & Data Analysis, 96:12�23, 2016.

[37] Dongkuan Xu and Yingjie Tian. A Comprehensive Survey of Clustering Algorithms. Ann. Data.
Sci., 2(2):165�193, June 2015.

[38] Rui Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on Neural Networks,
16(3):645�678, 2005.

[39] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: A new data clustering algorithm
and its applications. Data mining and knowledge discovery, 1:141�182, 1997.

[40] Arman Zharmagambetov, Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán, and Magzhan
Gabidolla. An Experimental Comparison of Old and New Decision Tree Algorithms. arXiv, Novem-
ber 2019.

[41] Haoran Zhu, Pavankumar Murali, Dzung Phan, Lam Nguyen, and Jayant Kalagnanam. A scalable
mip-based method for learning optimal multivariate decision trees. Advances in neural information
processing systems, 33:1771�1781, 2020.

30

