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Marine life is populated by a huge diversity of organisms with an incredible
range of colour. While structural colour mechanisms and functions are
usually well studied in marine animal species, there is a huge knowledge
gap regarding the marine macroalgae (red, green and brown seaweeds)
that have structural coloration and the biological significance of this
phenomenon in these photosynthetic organisms. Here we show that struc-
tural colour in the gametophyte life history phase of the red alga Chondrus
crispus plays an important role as a photoprotective mechanism in synergy
with the other pigments present. In particular, we have demonstrated that
blue structural coloration attenuates the more energetic light while simul-
taneously favouring green and red light harvesting through the external
antennae (phycobilisomes) which possess an intensity-dependent photopro-
tection mechanism. These insights into the relationship between structural
colour and photosynthetic light management further our understanding of
the mechanisms involved.
1. Introduction
The brightest colours in nature are often obtained by the interaction of light
with ordered nanostructured materials (often referred to as photonic crystals)
through interference [1,2]. These structures are widespread in terrestrial [3,4]
and marine animals [5] and their role is well understood in insects in terms
of communication, mate attraction and predation, impacting the individual’s
chances of reproducing and surviving [6,7]. However, structural colours are
also present in photosynthetic organisms including red, green and brown
macroalgae [8], diatoms [9], and land plants [10]. In the macroalgae, the biologi-
cal function of structural colour remains unclear. It has been hypothesized that
structural colour may have a photoprotective function in these organisms [8,11]
and/or provide a mechanism that produces an increase in photosynthesis [12]
but the impact of structural colours on the molecular photosynthetic machinery
is still unknown [8,13].

Chondrus crispus (Irish moss) is a common red alga on rocky shores and in
the shallow subtidal in the North Atlantic and an example of a seaweed that
exhibits structural colour, which is perceived by eye as blue iridescence
on the tips of its fronds. As a traditional source of carrageenan, the valuable
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polysaccharide used in the food and other industries, its
biology has been extremely well studied over many years
and it was one of the first red algae to have its whole
genome sequenced [14]. It has a triphasic life history [15]
consisting of (i) the dioecious haploid female and male game-
tophytes, (ii) the diploid carposporophyte which develops
directly on the female gametophyte, and (iii) the tetrasporo-
phyte which is morphologically similar in appearance to the
gametophyte phase [15].

Structural colour in C. crispus only occurs in the
gametophyte stage of the life history and is localized at approxi-
mately 1.5 cm from the tip of the frond [16]. Chandler et al. [11]
demonstrated that the blue structural colour on the surface of
the fronds was produced as a result of the dimensions and
organizationof several cuticular layers (lamellae) and suggested
that its presence in the alga was likely to be influenced by local
factors such as radiation intensity and turbidity of thewater [8],
suggesting a photoprotective function [11].

Red algae, as oxygenic photosynthetic organisms, convert
sunlight into chemical energy and contain two photosystems,
photosystem I (PSI) and photosystem II (PSII), located within
the thylakoid membrane of the chloroplast [17]. Both PSI
and PSII contain their own reaction centres inside these
protein complexes. PSII functions primarily in the initial
light-harvesting and water-splitting reactions, while PSI is
responsible for electron transfer and ultimately NADPH pro-
duction in the later stages of photosynthesis [18,19]. As the
light sensitivity of the reaction centre is limited to the blue
and red spectral region (ca 440 and 680 nm), some photosyn-
thetic organisms assemble unique antenna pigment–protein
complexes to absorb photons from other spectral regions and
efficiently transfer this energy to the reaction centre [20]. Red
algae contain PSI which includes light-harvesting complex I
(LHCI) antenna and PSII which contains an external antenna
system, the phycobilisome which is attached to the stromal
side of thylakoid membranes of the chloroplast in a highly
aggregated form [21]. Phycobilisomes contain chromophore-
linked phycobiliproteins and colourless hydrophobic linker
polypeptides. Among the phycobiliproteins, allophycocyanin
is at the core of the phycobilisomes, surrounded by rods con-
taining only phycocyanin or a combination of phycoerythrin
and phycocyanin, depending on the species [22,23]. Therefore,
an energy transfer chain is formed in the thylakoid membrane
following the pathway: phycoerythrin→ phycocyanin→
allophycocyanin→ chlorophyll [24,25]. Linker polypeptides
support the assembly of the proteins which indirectly affect
the energy transfer chain through its orientation and directly
because some of them are also biliproteins working as
intermediary acceptors and donors [26].

In order to achieve maximum efficiency during oxygenic
photosynthesis, a balanced distribution of absorbed light
energy between PSI and PSII needs to be maintained [27].
Moreover, under high light conditions, the maximum electron
transport rate is eventually exceeded, and undesired photo-
chemistry occurs, leading to the production of reactive
oxygen species which can damage the photosynthetic
apparatus. Therefore, regulatory mechanisms called photo-
protection mechanisms have evolved to cope with variations
in light intensity and ensure the smooth functioning of the
photosynthetic machinery. However, photoprotection mech-
anisms in red algae have not been intensively studied at the
level of the external antenna [28]. Two important light man-
agement mechanisms that act in the external antennae of red
algae are: (i) energy spill over between both photosystems
where phycobilisomes transfer energy not only to PSII but
also to PSI [29,30] and (ii) state transitions, involving phycobi-
lisome mobility [30–33]. Chondrus crispus presents a spill over
quenching mechanism through which the amount of light
received for each photosystem is regulated [32]. Moreover,
Lu-Ning Liu et al. [34], working on the unicellular red algae
Porphyridium cruentum, proposed another photoprotection
mechanism in phycobilisomes involving a light-induced phy-
coerythrin decoupling as a strategy to block the transfer from
phycoerythrin to phycocyanin. Yu-Hao Chiang et al. [35]
suggested that the decoupling of the phycobilisome of
photosystem II was the dominant process involved in non-
photochemical quenching through conformational changes
in the extremophilic red alga Cyanidioschyzon merolae.

The study of the photo-physics of energy transfer processes
in photosynthetic organisms has been made possible using
time-resolved optical spectroscopy (time-resolved fluorescence
spectroscopy and transient absorption) [36,37] and been able to
confirm the events that occur in sequential energy transfer
processes in extracted biliproteins [22,23,29,36–43].

The red alga C. crispus, because it only has structural
colour in one life history phase (gametophyte), makes an excel-
lent model with which to study light management in the
presence and absence of structural colour. Here, we report
on the influence of structural coloration on the molecular
mechanism of photosynthesis by comparing intact C. crispus
gametophytes and tetrasporophytes using time-resolved
fluorescence spectroscopy.
2. Results
The presence of structural colour as intensely blue coloured
frond tips in the gametophyte and its absence in the tetra-
sporophyte phase in situ Chondrus crispus (figure 1a) was
confirmed by the reflectivity spectra of the two life history
phases (figure 1b). Reflectivity spectra of both gametophyte
and tetrasporophyte showed a peak near 400 nm, which was
higher in the gametophyte due to the multi-layered structure.
By averaging over 35 reflectivity spectra, the mean reflectivity
at 400 nm was 0.014 for gametophyte samples, and 0.0025 for
tetrasporophyte samples, respectively.

As the maximum reflectivity of the photonic multi-layer
was near 400 nm, we selected that wavelength to excite
the samples to follow the energy transfer pathways in the
antennae of the alga with time-resolved fluorescence
spectroscopy. A multi-dimensional fluorescence map that
contains spectral, temporal, and intensity information is
presented in figure 1c,d for both life history stages (gameto-
phyte and tetrasporophyte) after excitation at 400 nm.
The fluorescence spectra (figure 1e,f ), which is given by the
emission of the four main algal pigments (chlorophyll,
phycoerythrin, phycocyanin and allophycocyanin), obtained
by integrating the multi-dimensional map over the whole
temporal window (2 ns), exhibited two main peaks, one at
585 nm related to phycoerythrin and the other at 685 nm
related to chlorophyll, whereas the contribution from phyco-
cyanin and allophycocyanin appeared as small shoulders for
both gametophyte and tetrasporophyte at approximately
640 nm and 660 nm, respectively. electronic supplementary
material, figure S1 shows the absorption and emission spectra
of the four main pigments. A linear combination of the
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Figure 1. Characterization of Chondrus crispus: (a) gametophyte, with structural colour at the frond tips (left); tetrasporophyte, without structural colour (right).
Insets show corresponding microscopic images of the gametophyte (left) and tetrasporophyte (right) tips. (b) Reflectivity spectra of gametophytes (35 replicas from
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deviation shown as a pink and purple area, respectively. Time-resolved fluorescence maps of (c) gametophyte and (d ) tetrasporophyte tips upon excitation at
400 nm and (e,f ) spectra integrated over a 2 ns window and spectra of the individual pigments of the algae [44] assigned to chlorophyll (Chl) [45,46], phycoer-
ythrin (PE), phycocyanin (PC), and allophycocyanin (APC) [43,47] and the fitted spectrum using the spectra of the individual pigments. The violet, orange, blue and
red lines are the spectra of PE, PC, APC and Chl with the amplitudes obtained by fitting to the experimental data and the dashed line is the spectrum generated by
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individual pigment fluorescence spectra was used to fit
the measured fluorescence spectra of C. crispus from which
the relative fluorescence contribution of each pigment was
determined (figure 1e,f) and the results are tabulated in elec-
tronic supplementary material, table S1. The analysis was
carried out for both gametophytes and tetrasporophytes,
which gave a similar fluorescence composition for both life his-
tory phases. Even though itwas not possible to assign a specific
spectral band to each pigment, due to the partial overlap
among the pigments, we identified four spectral ranges
where the contribution of each fluorophore was maximized:
phycoerythrin (570–590 nm), phycocyanin (630–650 nm),
allophycocyanin (650–670 nm), and chlorophyll (680–700 nm).

The fluorescence temporal decay (electronic supple-
mentary material, figure S2), obtained by integrating the
multi-dimensional map over the whole spectral region (550,
720 nm), showed a shorter dynamic in the presence of struc-
tural coloration and in particular between 550 and 610 nm, as
shown in the multi-dimensional fluorescence map (figure 1c,
d). The fluorescence temporal profiles of different pigments
(figure 2a–d) upon excitation at 400 nm (excitation intensity
of 5 µW) showed that for phycoerythrin, phycocyanin, and
allophycocyanin, the fluorescence decay is faster in the
gametophytes than in the tetrasporophytes. For chlorophyll,
the fluorescence decay for the gametophytes was slightly
faster than for the tetrasporophytes, although the difference
between the two life history phases was less pronounced
than for the other pigments. As the excitation wavelength
was at 400 nm, close to the maximum reflectivity of the
gametophytes, the number of photons interacting with
the photosystem was different in the presence of structural
colour than when absent. Therefore, an intensity-dependent
study was performed to investigate the role of excitation
intensity on fluorescence kinetics.

The emission spectra, integrated over 0–2 ns, upon exci-
tation at 400 nm with an increase of the laser power from 0.5
to 200 µW, for gametophyte and tetrasporophyte specimens
(electronic supplementary material, figure S3a–b), showed
that with an increase in the excitation intensity, the peak at
660 nm and the shoulder at 640 nm became prominent with
respect to the chlorophyll emission. This indicated less
energy transfer from the pigments to chlorophyll at higher exci-
tation intensity compared to the lower one. The fluorescence
peak at 580 nm, corresponding to the phycoerythrin emission,
increased with an increase in excitation intensity which is
in agreement with the reported literature for isolated phycobi-
lisomes [34]. To study further the role of excitation intensity, the
fluorescence decays for previously selected spectral ranges
at varying excitation intensities at 400 nm (figure 2e–l),
showed that in the case of phycoerythrin, phycocyanin, and
allophycocyanin, the increase in excitation intensity caused a
slower temporal dynamic up to a maximum above which
the intensity dependence vanishes. This observation showed
the presence of an intensity-dependent mechanism in the
external antennae of C. crispus. In the case of chlorophyll,
the fluorescence lifetime slightly increased with higher intensi-
ties. A similar excitation intensity-dependent fluorescence
lifetime for different pigments was observed in the case of
gametophytes (figure 2e–h) and tetrasporophyte (figure 2i–l).

The attenuation given by structural coloration in the case of
the gametophytes was simulated on the traces of the tetra-
sporophytes. As the photosynthetic system resides beneath
the structural colour multi-layers, which are on the surface,
there are fewer photons at around 400 nm that reach the
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gametophytes than reach the tetrasporophytes. Selecting
an illumination intensity for gametophytes and taking
into account the reflectivity at around 400 nm for both
gametophytes and tetrasporophytes (figure 1b), an intensity
attenuated by a factor of 5 was selected for the tetrasporophyte
to have a similar number of photons reaching the photo-
synthetic organisms. The fluorescence temporal traces of the
different spectral bands upon excitation at 400 nm, with a
laser power of 1 µW and 5 µW for tetrasporophytes and
gametophytes (figure 3a–d), were similar, suggesting that
the structural colour has the role of attenuating the photon
flux reaching the photosynthetic apparatus of the organism
in gametophytes.

To observe the behaviour of the photosynthetic system
outside the peak of spectral reflectivity of the structural
colour, a wavelength of 480 nm was selected. This allowed
the molecular pathways to be investigated when the effect of
structural colour was reduced compared to the peak at
400 nm. The spectrum, integrated over time, for excitation
at 480 nm, exhibited a stronger peak at 580 nm which was
given by phycoerythrin (electronic supplementary material,
figure S4), in agreement with the absorption spectrum of the
pigments (electronic supplementary material, figure S1). The
fluorescence time traces for different spectral regions upon
excitation at 400 nm and 480 nm are reported in (figure 3e,f ).
The energy transfer to the reaction centre can follow two path-
ways: phycoerythrin→ phycocyanin→ allophycocyanin→
chlorophyll or directly from the chlorophyll. As chlorophyll
strongly absorbs around 400 nm (Soret band), the second
path is predominant in the case of 400 nm excitation compared
to 480 nm excitation. The presence of the two pathways
was further confirmed by the measurements performed in a
shorter time window (120 ps) and higher temporal resolution
(approx. 3 ps) which exhibited a build-up in time traces in the
case of 480 nm excitation due to energy transfer between
the pigments (figure 3h), while the build-up cannot be
observed in the case of 400 nm excitation (figure 3g).
A build-up was also present inside the phycoerythrin spectral
band that could be attributed to different phycoerythrin
proteins [23,29] or from a small contribution of the emission
of phycocyanin. A faster decay in the spectral range of the
phycobilisome was observed in case of 480 nm excitation
compared to 400 nm excitation (figure 3i), as with the latter
wavelength the chlorophyll was mainly directly excited
leading to less energy transfer from the phycobilisomes to
chlorophyll and yielding a longer phycobilisome fluorescence
lifetime. In order to study the role of 400 nm and 480 nm exci-
tations on the fluorescence lifetimes of individual pigments,
the lifetime of different spectral bands representing mainly
individual pigments was plotted against varying excitation
intensities (figure 3j–l).

The fit of the experimental data was made by assuming a
global model including a temporal rising component (equation
(5.1)) and fixed spectral shapes (equation (5.2)) as described
in materials and methods. The results are summarized in elec-
tronic supplementary material, table S2 and figures S5–S8
for two representative powers, 5 µW and 50 µW. Figure 3j–l
exhibited an increase in mean lifetime (tau average) for all
three pigments upon an increase in excitation power. However,
the slope for 400 nmwas higher compared to 480 nm excitation
revealing a lower energy transfer for all the three pigments
by increasing the excitation intensity. electronic supple-
mentary material, figure S9 shows the fitting of five replicas,
with associated standard deviation, of gametophyte and
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of 0.0025, upon excitation at 400 nm with a laser power of 1 µW and 5 µW, respectively. Comparison of the dynamics of gametophytes excited at 400 nm in (e)
2 ns and (g) 120 ps windows and 480 nm in ( f ) 2 ns and (h) 120 ps windows. (i) The dynamics of the phycobilisome (PB) band [570-670 nm] upon excitation at
400 nm and 480 nm with a laser power of 5 µW. The mean lifetime (equation (5.3)) and the standard deviation of three replicas of ( j ) PE, (k) PC and (l ) APC are
plotted against the excitation intensity at 400 and 480 nm for tetrasporophytes.
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tetrasporophyte samples under 400 nm and 480 nm excitations
and intensity of 5 µW. It was possible to observe the difference
in mean lifetime between gametophytes and tetrasporophytes
in the presence of structural coloration (400 nm) for all the PBS
pigments. For chlorophyll, a differencewas observed but it was
not statistically significant. At 480 nm similar mean lifetime
for gametophytes and tetrasporophytes was observed. The
variations between gametophytes and tetrasporophytes at
different intensities exciting at 400 nm is presented in electronic
supplementary material, figure S10. Faster dynamics were
observed for the gametophyte at all the evaluated powers.
3. Discussion
In this study, in vivo time-resolved fluorescence measurements
on the gametophyte and tetrasporophyte life history phases
of C. crispus has revealed the role of structural coloration in
photoprotection mechanisms in this red alga. In fact, the game-
tophyte phase shows structural colour with a higher reflectivity
around 400 nm as opposed to the tetrasporophyte without
structural colour, where the little reflected light that is observed
can be due to the scattering from the alga’s tissue [48]. These
observations are consistent with the study of Chandler et al.
[11] in their examination of the cuticular structure of C. crispus
using anatomical and optical approaches.

Faster fluorescence dynamics were observed for the indi-
viduals with structural colour compared to those without
structural colour when they were excited at 400 nm with the
same intensity. In addition, an intensity-dependent mechan-
ism is observed in the external antennae of C. crispus for both
the gametophyte and tetrasporophyte phase. In detail, upon
increase in the excitation intensity, the prominence of the
peak at 660 nm and the shoulder at 640 nm with respect to
the chlorophyll emission and longer dynamics for the spectral
bands related to phycoerythrin, phycocyanin and allophyco-
cyanin pigments for both gametophyte and tetrasporophyte
indicate less energy transfer from the pigments to chlorophyll
at the higher excitation intensity compared to the lower
one. The spectral shapes obtained for C. crispus are consistent
with those reported for the red algae Griffithsia pacifica
and Porphyridium purpureum [23]. The observation that the
same mechanism was observed by exciting outside the wave-
length corresponding to the maximum value of reflectivity
(at 480 nm) can be attributed to less energy being transferred
between the pigments at higher excitation intensity. Previously,
Liu et al. [34] showed an intensity-dependent phycoerythrin
decoupling mechanism in extracted phycobilisomes due to
the presence of the γ subunit that is sensitive to the intense
light and decouples the b-phycoerythrin from the B-phycoery-
thrin domains of the phycobilisomes [34]. The slight increase in
the fluorescence lifetime of chlorophyll can be explained in
terms of the higher probability of finding the reaction centre
closed at higher intensities [49]. We have observed in vivo,
an intensity-dependent decoupling for all the three pigments
phycoerythrin, phycocyanin, and allophycocyanin, although
further investigation is needed to reveal the exact molecular
mechanism at the base of the intensity-dependent decoupling
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Figure 4. Schematic representation of the antenna systems and principal energy transfer pathways in Chondrus crispus. Two main pathways are represented: direct
excitation of the chlorophyll with 400 nm excitation ( purple arrow) and the indirect excitation of chlorophyll with 480 nm excitation (red arrow). A portion of the
light that arrives to the multilayer structure at 400 nm is reflected. The black arrows refer to energy transfer processes.
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of the phycobilisome structure. With intensity reduction,
attenuated according to the reflectivity values of structural
colour, tetrasporophyte samples (without structural colour)
exhibit a similar fluorescence decay to the gametophyte
samples. Thus, structural colour acts as an attenuator of the
high energy photons. This suggests a possible relationship
between structural colour and the intensity-dependent energy
transfer mechanism. Under white light illumination, two
main pathways are involved in collecting and directing the
energy to the reaction centre (figure 4). In pathway (a),
the chlorophyll is directly excited, whereas in pathway (b), the
pigments of the phycobilisome, once excited, transfer their
energy to the chlorophyll. According to the absorption spectra,
400 nm excitation favours path (a) while 480 nm excitation
favours path (b). As shown in figure 3j–l, at 480 nm excitation,
a smaller slope for tauavg Vs excitation intensity for phycoery-
thrin, phycocyanin and allophycocyanin compared to 400 nm
excitation is observed. Byexciting at 480 nm, the energy transfer
(from phycobilisome to chlorophyll) is more probable because
the acceptor (chlorophyll) is less saturated compared to the
400 nm excitation.

Therefore, the structural colour and the intensity-depen-
dent mechanism in the phycobilisomes work in synergy to
provide an efficient photoprotection mechanism for C. crispus.
Here, structural colour plays a crucial role in unbalancing the
excitation pathways by reducing the energy transfer that
arrives at the reaction centre through the direct excitation of
the chlorophyll (pathway (a)) and then favouring the relative
amount of energy that reaches the reaction centre through the
external antennae (pathway (b)).

Red algal light-harvesting complexes are considered to be
the ancestor of this protein system in plants and green algae
[50]. In particular, the amount of chlorophyll that binds to the
protein is smaller than in the green algae [51] and the red alga
Corallina (now Ellisolandia) elongata [52] is characterized by the
absence of the xanthophyll cycle which is one of the main
photoprotective mechanisms in the photosynthetic machin-
ery of the samples. Moreover, these organisms lack orange
carotenoid protein that is involved in the photoprotective
mechanism in cyanobacteria [53,54]. In this regard, structural
colour can reduce the amount of light that is received directly
from this light harvesting complex. The biological signifi-
cance of regulating the amount of light relates to the
protection of the gametophyte stage at higher levels of illumi-
nation when a higher concentration of reactive oxygen
species (ROS) is produced. ROS can cause oxidative stress
which could have a detrimental impact on the nuclei of the
sexual reproductive structures in the gametophyte [55].
Further evidence in support of this is that the cells required
for sexual reproduction of the organism are located just
below the frond tips in the gametophyte which is where
the structures responsible for structural colour are found [56].
4. Conclusion
By using time-resolved fluorescence spectroscopy in vivo to
study the role of structural colour in light management in
C. crispus, we observed the synergistic interaction within
different photoprotection mechanisms. Our results indicate
that the photonic structure in C. crispus works as an attenua-
tor in the gametophyte stage, and that it is able to unbalance
the collection of the photon energy, favouring the pathway
through the phycobilisomes which can be regulated by
an intensity-dependent mechanism. This study provides a
better understanding of the mechanism of photosynthetic
light harvesting in C. crispus and contributes insight into
the fine balance of light management within photosynthesis
and photoprotection in marine algae.
5. Material and methods
5.1. Collection of Chondrus crispus
Entire individuals of C. crispuswere collected in the UK from two
sites: one tetrasporophyte and five gametophytes from the tidal
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section of the river Lynher in Antony, Cornwall (50°2303300 N,
4°1300800 W) and six tetrasporophytes and six gametophytes from
Thurlestone, South Devon, England (50°1502800 N, 3°5103600 W).
Samples were randomly collected at low spring tide. Tetrasporo-
phytes were identified by the presence of tetraspores on the
fronds, while gametophytes were collected when blue structural
colour was visible on the tips of the fronds. All the samples were
collected and wrapped in wet paper with seawater (on tap at the
Marine Biological Association, piped in from Plymouth Sound)
for transportation. Then the samples were kept in artificial sea-
water (made up according to manufacturer’s instructions)
with 8 h of light and 16 h of dark under at 21°C. The lamp was a
NovoLux 60 LED 8 W providing white cool LED (6500 K) light,
with an intensity of 15 µmol photons m−2 s−1. Samples were kept
for 20 min in the dark before TRPL measurements.

5.1.1. Time-resolved fluorescence measurements
The time-resolved fluorescence set-up consisted of a light source
provided by a Ti : Sapphire oscillator (Chameleon Ultra II, Coher-
ent), producing a train of 140 fs pulses with a repetition rate of
80 MHz. A barium borate crystal (BBO) was used to obtain
the second harmonic generation; two absorbing high pass filters
(BG39, Thorlabs) were used to remove the residual fundamental
excitation. A microscope line was used to achieve suitable spatial
resolution. Excitations of 400 and 480 nm were reflected off a suit-
ably chosen dichroic mirror (LP435, LP510, BS50/50) before being
coupled into the objective of the microscope and focused onto the
sample obtaining an excitation spot diameter of about 30 µm and a
mean power of the laser from 0.5 to 200 µW. The light intensities
used in this study are presented in electronic supplementary
material, table S3.We also note thatChondrus crispus is an intertidal
species where light levels can be high, particularly in the spring
and summer [57], the time of the year when the gametophytes of
this alga are undergoing reproduction. C. crispus is also influenced
bywave actionwhich can create a phenomenon known as the ‘lens
effect’, wherein waves act as natural lenses, concentrating and
focusing light. As a result, light intensities in this context can be
enhanced, ranging from 300% to 500% compared to open-water
conditions [58]. Taking this into account, it is reasonable to con-
sider the first two intensity points in electronic supplementary
material, table S3 to be below the sunlight intensity, which is stan-
dardized sunlight reference at 2000 µmol photons m−2 s−1 [59].
To gain a more comprehensive understanding of the intensity-
dependent processes, we also included measurements under
conditions exceeding those of direct sunlight. To achieve high exci-
tation efficiency, a 20 × objective (Zeiss LD EC Epiplan Neofluar,
NA 0.22) was used to excite a section of the tip of gametophyte
and tetrasporophyte. A section of the tip of each sample of
ca 1 cm was selected for comparison due to the similarity in pig-
ment composition (electronic supplementary material, table S1).
Spectra of the tip, middle and bottom of the same organism
were different as shown for a gametophyte specimen in electronic
supplementary material, figure S11. Sample emission was col-
lected by the same objective and transmitted through the
dichroic mirror, and optical filters (LP455 and LP500) to remove
the residual excitation light. The microscope field of view (lateral
size of about 120 µm), was selected by a CMOS camera (ORCA-
Flash 2.8, Hamamatsu), allowing accurate positioning of the
sample relative to the excitation beam via a sample XYZ differen-
tial micrometer translation stage. The emission signal was focused
on the entrance slit of a spectrograph (Acton SP2300i, Princeton
Instrument) coupled to a streak camera (Hamamatsu C5680),
resulting in a spectral resolution of around 1 nm and temporal
resolution of 20 ps (for 2 ns time window).

The sample number for TRPLmeasurements (spectra and tem-
poral dynamics) is as follows: for 400 nm excitation and 5 µW, the
number of measurements were 23 for gametophyte tips (two tips
each from 10 samples and three tips from one sample; in total 11
gametophytes samples) and 23 for tetrasporophyte tips (three
tips each from five sample and four tips each from two samples;
in total seven tetrasporophytes); more than one tip were taken
from a specimen in order to ensure a large enough sample
numbers. For 480 nm excitation and 5 µW, five replicas of gameto-
phyte (five tips from five gametophyte samples) and five replicas
of tetrasporophyte (five tips from five tetrasporophyte samples).
For the intensity dependent at 400 nm and 480 nm, three replicas
(three tips from three different samples) at each intensity for both
gametophyte and tetrasporophyte.

The experimental temporal traces of each spectral band were
fitted using equation (5.1) for all the pigments (for both excitation
at 400 and 480 nm). The fitting equation shows a rising
component to model the energy transfer process.

f (t) ¼ ðA1e�t=t1 þ A2e�t=t2 Þ � (1� ae�t=t3 ): ð5:1Þ

The theoretical curves were convoluted with a Gaussian
instrument response function (IRF) with a full width at the half
maximum of 20 ps. The spectral curves integrated over the
time (2 ns window) were fitted by a linear combination of
the fluorescence spectra of each pigment. The results of the inde-
pendent temporal and spectral fitting were used as starting
parameter for a global fitting of the process by using the
model described by equation (5.2).

w(t,l) ¼
X4

i¼1
ci(t) � 1i(l), ð5:2Þ

where the spectral shape (1i(l)) of each spectrum was fixed to
the experimental values reported in the literature and only the
amplitudes are fitted. The temporal shape ci(t) is reported in
equation (5.1).

For comparing the temporal dynamics of each pigment, the
mean lifetime τ was calculated (equation (5.3)) by considering
the decay τ1 and τ2.

Average t ¼ (A1 � t1 þ A2 � t2)
(A1 þ A2)

: ð5:3Þ

5.1.2. Reflectivity measurements
Optical imaging and microspectrometry were performed using a
customized Zeiss Axio Scope A1 equipped with a 40× water
immersion objective (Zeiss,W N-Achroplan, NA 0.75) and using
a halogen lamp as the light source. Images were acquired with
a CMOS camera (Pixelink, PL-D725CU-T, calibrated against a
white standard) and reflectance spectrawere recorded by coupling
themicroscope to a spectrometer (Avantes, AvaSpec-HS2048)with
an optical fibre (Avantes, FC-UVIR200-2-SR, 200 μm core size).
Reflectance spectra were taken using a spectralon (AS-01159-060)
and normalized against a silver mirror (Thorlabs, PF10-03-P01).
Five different micrographs and reflectance spectra were collected
for each sample, and seven samples of gametophytes and seven
samples of tetrasporophytes were observed.

The reflectivity was monitored during the photolumines-
cence measurements with a similar set-up. A UV-Vis fibre light
source (Hamamatsu, L10290) was coupled into the microscope
line of the time-resolved photoluminescence set-up using a 50/
50 beam splitter and a 20× objective (Zeiss LD EC Epiplan
Neofluar, NA 0.22). Reflectivity spectra were collected using a
high-sensitivity spectrometer (Maya 2000 Pro) and normalized
against a silver mirror (Thorlabs, BB1-E02-10). The number of
replicas for reflectivity measurements is 35 gametophyte tips
from 11 samples and 35 tetrasporophyte tips from seven samples.

Time-resolved photoluminescence measurements and the
corresponding reflectivity spectra were recorded for 23 samples
of gametophyte and 23 samples of tetrasporophyte.

Ethics. This work did not require ethical approval from a human
subject or animal welfare committee.
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