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Résumé

Le shape from shading est un problème inverse mal posé pour lequel aucune méthode de résolution
complètement satisfaisante n’a encore été proposée. Dans ce rapport technique, nous ramenons le shape

from shading à un problème d’optimisation. Nous montrons d’abord que l’approche déterministe
fournit des algorithmes efficaces en termes de temps de calcul, mais est d’un intérêt limité lorsque
l’énergie comporte des minima locaux très profonds. Nous proposons comme alternative une approche
stochastique utilisant le recuit simulé. Les résultats obtenus dépassent largement ceux de l’approche
déterministe. La contrepartie est l’extrême lenteur du processus d’optimisation. Pour cette raison,
nous proposons une approche hybride qui combine les approches déterministe et stochastique dans un
cadre de multi-résolution.

Mots-clés : shape from shading, optimisation, recuit simulé, multi-résolution.

Abstract

Shape from shading is an ill-posed inverse problem for which there is no completely satisfactory
solution in the existing literature. In this technical report, we address shape from shading as an energy
minimization problem. We first show that the deterministic approach provides efficient algorithms in
terms of CPU time, but reaches its limits since the energy associated to shape from shading can
contain multiple deep local minima. We derive an alternative stochastic approach using simulated
annealing. The obtained results strongly outperform the results of the deterministic approach. The
shortcoming is an extreme slowness of the optimization. Therefore, we propose an hybrid approach
which combines the deterministic and stochastic approaches in a multiresolution framework.

Keywords : shape from shading, optimization, simulated annealing, multiresolution.
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1 Introduction

Shape from shading is a well-known problem in computer vision [1, 2], that consists in recovering
the 3D-shape of a scene through the analysis of the greylevels in a single image of this scene. Under
certain circumstances, the greylevel directly gives the slope of the shape and the difficulty is then to
find the direction of steepest descent. This problem is known to be ill-posed, that is, it cannot be
solved without some assumptions. For that reason, shape from shading suffers of a bad reputation
in the community, in comparison with other 3D-shape reconstruction techniques, such as shape from
stereopsis, photometric stereo (see [3] for an up-to-date presentation of reflectance based shape recov-
ery), shape from movement, etc., which require several images of the scene and are, for this reason,
more often well-posed1. In the case of shape from shading, well-posedness is dependent on a certain
number of assumptions, which can seem to be arbitrary.

1.1 Usual assumptions

The usual assumptions [2] which make the problem well-posed concern:

• The scene: it is supposed to have the same “reflectance map” at each point and the uniform
reflectance map has to be known. Most of the time, the surface is supposed to be Lambertian
with constant albedo.

• The light sources: it is supposed that there is a unique point light source, far from the scene, so

that the incident beam can be approximated by a uniform parallel beam
−→
S . Most of the time,

the interreflections are neglected.
• The camera: it is supposed to produce an orthogonal projection of the scene on the image

plane (up to a scale factor), that is, the perspective projection is neglected, as well as various
distorsions due to the camera. Moreover, the receiver is supposed to be linear, so that the
greylevel is proportional to the optical energy received.

1.2 The basic equations

Under these assumptions, and taking the optical axis as Oz (z increases when one goes closer to the
camera) completed with Ox and Oy in the image plane, so that Oxyz forms an orthogonal basis, the
visible part of the scene can be described by the equation:

z = h(x, y) (1)

where the unknown is the height function h, which can a priori be non derivable (if edges) and even
non continuous (if occlusions). At each point (x, y) where h is derivable, the basic equation of shape
from shading is the “image irradiance equation” [1]:

R(
−→
S , p(x, y), q(x, y)) = E(x, y) (2)

where E designates the greylevel, R the reflectance map, and p and q are the usual notations for

∂h/∂x and ∂h/∂y. In this equation, only
−→
S and h, by way of its first derivatives, are unknown.

1.3 Shape from shading with part of the usual assumptions

In some works, some of the assumptions cited above are not made:

• The Lambertian reflectance map, which is a very simple model, cannot occur for real materials.
More realistic models have been studied [4, 5].

1In this technical report, the definition of well-posedness is that of Hadamard: a problem is well-posed if it
admits a unique solution and if the solution is stable.
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• The lighting conditions are, most of the time, more complicated than a single infinite point
light source [6]. Even in the case of a simple lighting, the effects of secondary reflections are
important [7, 8].

• Some other works involve a cooperation between shape from shading and stereo, like in [9], or
in [10], allowing to deal, for instance, with perspective projection.

Even if these works are of great interest and give directions for future works, it seems that they
come too early, insofar as the existing shape from shading methods are not very satisfactory, even in
the best conditions.

1.4 Resolution of the image irradiance equation

There are a lot of ways of dealing with the image irradiance equation, which make it very difficult to
compare the different methods. In a recent work [11], Zhang et al. have implemented and tested six
existing algorithms on a common set of four synthetic images (a vase and a Mozart’s bust lighted from
two different directions) and three real images (another vase, peppers and Lena). Their conclusion is
clear-cut:

1. All the SFS algorithms produce generally poor results when given synthetic data,

2. Results are even worse on real images, and

3. Results on synthetic data are not generally predictive of results on real data.

The poorness of the results on real data can be explained, since the lighting vector
−→
S is preprocessed

thanks to existing specific methods which make additional assumptions [12, 13], the reflectance map is
supposed to be Lambertian, and this could be rather false, and, moreover, the albedo is not constant
(especially in the case of Lena!). However, it is much more difficult to justify the poorness of the
results for synthetic images, insofar as all the ideal assumptions cited before are perfectly verified.
Would that mean that, even under these assumptions, the problem remains ill-posed?

1.5 Existence and uniqueness of solutions to the image irradiance equation

Under the previous assumptions, and if one supposes that
−→
S is known, the problem of existence and

uniqueness for the solutions of (2) has been much studied [14, 15, 16, 17, 18, 19]. It depends, as ever
with PDEs, on the set in which the solutions are searched. If h is not necessary continuous, there
is always an infinity of solutions. Thus, it is usually admitted that h has to be continuous, but this
is not sufficient to make the problem well-posed [20]. Even if we suppose that h is analytical, it has
been proved that there can exist a family hc of solutions, where c can vary continuously [21]. At this
point, one has to add boundary conditions to make the problem well-posed, that is, one has to add
a knowledge on h on the boundary δΩ of the reconstruction domain Ω. The boundary conditions
can be Dirichlet conditions (knowledge of h on δΩ) or Neumann conditions (knowledge of p and q
on δΩ). Moreover, such pieces of knowledge can come either as additional data (for instance, for an
island observed from a satellite, the height is constant on the coast), or through two specific kind of
points [14]:

• Points of maximal greylevel (“singular points”). For such points, if the surface is known to be

Lambertian, the normal
−→
N to the surface is parallel to

−→
S .

• Points of the silhouette (occluding contour), where
−→
N is contained in the image plane and is

normal to the silhouette.

However, it has been proved [18, 20] that the silhouette is not as constraining as it could appear,
towards the well-posedness of the problem. In fact, the best way of making the problem well-posed is
firstly to add “constraints” on the solutions, so that usually the problem becomes over-constrained,
and secondly to solve it in the way of finding the best solution, with respect to a given criterion which
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is, most of the time, the least squares criterion [22]. Let us note, however, that other criteria have
been tested, which imply robust statistics [23].

1.6 Different methods of resolution

The resolution methods of SFS can be classified into three sets:

• The classical methods of resolution of PDEs: characteristic strips expansion [1], level sets meth-
ods [24], power series expansion [21] and viscosity solutions [16, 25, 26, 27]. While a power
series expansion does not lend itself to discretization, characteristic strips expansion and level
sets methods are propagation methods which are very sensitive to noise. The viscosity solu-
tions seem to be the most promising. Moreover, these solutions are very well adapted to images
containing edges.

• The second set contains the methods based on optimization. The problem is modeled by a
functional which has to be minimized [22]. The functional is defined by the sum of several
terms. The first term reflects the data and is minimal when equation (2) is satisfied everywhere
on the reconstruction domain Ω. To make the problem well-posed, some extra terms, reflecting
some a priori knowledge on the solution, are added. Some local deterministic algorithms have
been proposed to minimize the resulting functional [28, 29, 30, 31, 32, 33, 34, 23]. We have
obtained more costly but global solutions with a stochastic optimization technique: the simulated
annealing [35].

• The third set groups all other methods. Among them, the method by Tsai and Shah [36] gives
rather good results [37] and is surprisingly simple to implement. Furthermore, local methods [38],
as well as linear methods [39], do very strong additional assumptions, and for this reason, are a
little limited, regarding possible applications.

We can now explain the purpose of this technical report and describe its organization.

1.7 General organization of the technical report

In this technical report, our contribution is to present a new formulation of shape from shading in the
Bayesian framework, and a new algorithm of shape from shading using simulated annealing. Moreover,
we will show why boundary conditions are not necessary to make the problem well-posed (apart from
the classical concave/convex ambiguity). In section 2, we describe how optimization can be applied to
shape from shading. In section 3, we present a first new method, named M1, for which some results
are exhibited. In section 4, we present an alternative method, based on the classical algorithm of
simulated annealing, and this method, named M2, is shown to work better than M1 on a complex
image. In section 5, we show that the main problem with M2, i.e. slowness, can be diminished by
using a multiresolution version of M1, after having applied M2 to the image of the smallest resolution.
This leads to a third new method named M3. Conclusion and future work are covered in section 6.

2 Shape from shading as an optimization problem

In their survey [11], Zhang et al. concluded that the best results, in terms of accuracy, were given by
the optimization methods (we will often say “minimization” in the following), although they are also
the slowest. We address optimization for our new algorithms, not only because of the good reputation
it has in the shape from shading community, but also because it offers a general framework which is
very adaptable to various situations. As it would be too long, we are not going to comment here all
the existing methods of shape from shading which use optimization. This could constitute a paper
apart. We will only discuss some points, which will highlight the choices that we did for our new
methods M1, M2 and M3.
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2.1 Choice of the unknowns

From now on, and as most authors, we will suppose that
−→
S is known, thanks to preprocessing by

a specific method (some authors deal simultaneously with the recovery of the shape and that of−→
S [40, 12]). Thus, the unknown is the function h which appears in the image irradiance equation only
through its first derivatives p and q, which are two non independent functions, since, if h is of class
C2:

∂p/∂y = ∂q/∂x (3)

As equation (3) is a constraint on p and q, the most natural functional associated with equations (2)
and (3) is:

F1 (p, q, µ) =

∫∫

(x,y)∈Ω

[R(p(x, y), q(x, y)) − E(x, y)]2 dx dy

+

∫∫

(x,y)∈Ω

µ(x, y) [∂p/∂y(x, y) − ∂q/∂x(x, y)] dx dy (4)

where µ is a Lagrange multiplier. Horn and Brooks [22] have proved that the three Euler equations
associated with F1 can be reduced, for h being of class C2, to the Euler equation associated with the
following functional:

F2 (h) =

∫∫

(x,y)∈Ω

[R(∂h/∂x(x, y), ∂h/∂y(x, y)) − E(x, y)]2 dx dy (5)

which implies directly the height function. Dealing with F2 seems to be more tractable than with
F1 as, on the one hand, it contains only one unknown h which is the real unknown of the problem
and, on the other hand, F1 is the sum of two terms which are not homogeneous one with the other.
However, no author deals with F2. It seems that the reason for this apparent paradox is that it leads
to very slow algorithms (in [37], it is claimed that several hours of CPU are required for an image of
size 256 × 256!). As F1 and F2 have in fact the same minima, the most evident alternative to F1 is
the following functional [22]:

F3 (p, q) =

∫∫

(x,y)∈Ω

[R(p(x, y), q(x, y)) − E(x, y)]2 dx dy

+ λint

∫∫

(x,y)∈Ω

[∂p/∂y(x, y) − ∂q/∂x(x, y)]2 dx dy (6)

where λint is a positive constant named “integrability factor”. As we will see later, this factor poses
a problem, in the sense that the choice of its value is difficult to justify. This functional leads to
quite satisfactory results [33]. However, a serious problem with F3 is that it is generally non convex,
because of its first term. A way of partly solving this drawback is to add to F3 a third term [22]:

F4 (p, q) =F3 (p, q)

+ λsmo

∫∫

(x,y)∈Ω

[
|∇p(x, y)|2 + |∇q(x, y)|2

]
dx dy (7)

where λsmo is a positive constant named “smoothing factor”. The presence of a “smoothing term”, in
addition to the “integrability” and “data” terms, tends indeed to decrease the number of local minima
of the functional, as we will see in the next section.

Furthermore, it has been dealt simultaneously with the three unknowns (h, p, q) [31]. Finally, other
unknowns have also been used: among them, the stereographic coordinates (f, g) of the normal [28,
29, 41] present the great interest to be bounded on silhouettes, contrary to (p, q).
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2.2 Recovery of the height from p and q

Besides the problem of selecting adequate values for the constants λint and λsmo, the choice of (p, q) as
unknowns poses another important problem, that of the computation of h from (p, q). The equations
linking these functions being ∂h/∂x = p and ∂h/∂y = q, it is natural to introduce the other following
functional [22]:

F5 (h) =

∫∫

(x,y)∈Ω

[
(∂h/∂x(x, y) − p(x, y))2 + (∂h/∂y(x, y) − q(x, y))2

]
dx dy (8)

Now, let us discuss the different strategies to find the minimum of a functional.

2.3 Minimization of a functional

The two main strategies allowing to numerically find the minimum of a functional F appear in the
following figure, inspired by [33], where ε is the discrete approximation of F , and D is the set of pixels
contained in Ω:

Euler equation
in h(x, y) on Ω

system of equations Σ
in (hi,j)(i,j)∈D

variational
calculus

solution
(h∗

i,j)(i,j)∈D

functional F in
h(x, y) on Ω

energy ε in
(hi,j)(i,j)∈D

minimization resolution

discretization discretization

gradient

• On the one hand, one can directly minimize the functional, by means of its discrete formulation
ε, named an “energy”.

• On the other hand, it is possible to produce one Euler equation for each unknown function,
which characterizes the extrema of the functional. A discrete version of the Euler equations can
be obtained, either by discretizing them, or by differentiating the energy, as shown in [22], and
leads to a new system Σ.

It is surprising to find out that most of the algorithms of shape from shading use the second choice.
As quoted by Szeliski [33], solving the system of equations Σ coming from the Euler equations is not
strictly equivalent to minimize the energy, since all local minima and maxima (and inflexion points)
of the energy are solutions of Σ. Moreover, when the equations of Σ are non linear (as in shape
from shading), they have to be solved iteratively, and there exists no general proof of convergence
for the produced schemes (proofs of divergence have even been given for two such methods in [42]).
In [41], a proof of convergence for a method given in [28] is provided, but it has been shown in [37]
that the admissible values for λsmo, so that convergence is guaranteed, makes the method extremely
slow. A much more serious problem with the Euler equations is that a well-posed problem can become
ill-posed, if the “natural boundary conditions” [22] are not used. Let us focus on the crucial problem
of well-posedness, in relation to boundary conditions.
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2.4 Well-posedness and boundary conditions

We will deal with the functionals F4 and F5, for which the existence of one global minimum at
least holds [43]. Is there a unique global minimum? This question is easier to handle with for the
energies ε4 and ε5 associated with F4 and F5. As we will see later, the discrete approximation of a
functional F , i.e. its energy, is expressed through the use of forward finite differences. For instance,
the approximation of ∂h/∂x at a pixel (i, j) ∈ D involves the values hi,j and hi+1,j , that is, the values
of the unknown h at two neighbouring pixels (i, j) and (i + 1, j). If (i, j) is situated on the boundary
of D, then (i + 1, j) may be out of D. If we denote by D̃ the subset of D containing the pixels for
which the forward finite differences used in the energy imply only pixels of D, and if Ñ = card(D̃),
then:

• The energy ε4 is the least squares formulation of a set of N+5Ñ equations with the 2N unknowns
(pi,j , qi,j)(i,j)∈D. This system of equations is over-constrained, which makes the minimization of
ε4 well-posed, in the absence of additional knowledge on the boundary.

• The energy ε5 corresponds to a set of 2Ñ equations with the N unknowns (hi,j)(i,j)∈D so its
minimization is a well-posed problem as well.

For these reasons, no knowledge on the boundary δΩ is required to make the shape from shading
problem well-posed (neither Dirichlet nor Neumann conditions are required for this). In the algorithms
that we will propose, indeed, we will not put any additional knowledge on h, p or q.

When dealing with the discretization of the Euler equations, the obtained system Σ is always
under-constrained, because it consists in 2Ñ equations with 2N unknowns (or Ñ equations with N
unknowns), and Ñ < N . In fact, there exist, as mentioned by Horn and Brooks [22], “natural boundary
conditions”. To our knowledge, they have never been used in shape from shading. Therefore, this
would be useful, as it would add the exact number of equations necessary to make Σ well-constrained.

2.5 Direct minimization of an energy

A lot of problems can be reformulated through the minimization of an energy. The two energies
ε4 and ε5 that we have to minimize are fairly different, in the sense that ε5 is issued from linear
equations, and thus is convex, in the same time as ε4 is generally non convex, because of the image
irradiance equation, which is non linear. All the methods of minimization are iterative, that is, they
construct a series of configurations (ωk)k∈N, beginning from an initial configuration ω0, and hoping
that lim

k→+∞
ωk = ω?, where ω? is the absolute minimiser of ε. Two kinds of methods of minimization

can be distinguished:

• The first family of optimization methods are the deterministic methods. At each step k of the
iteration, the computation of the new configuration ωk+1 uses the gradient of ε (and, sometimes,
the Hessian matrix of ε) at the step k (and, sometimes, at the steps 0, · · · , k − 1) and needs,
most of the time, the search for a minimiser dk of the function φk(d) = ε(ωk − d vk), where vk is
a “descent direction”. The main problem is then to find dk. This problem is called “line search”
(see [44]). The conjugate gradient descent, used by Szeliski [33], is well adapted for energies
derived from linear systems, since in such cases, it can converge towards ω? in a finite number of
steps. Unfortunately, for an energy like ε4, no general proof of convergence exists. Nevertheless
the results obtained in [33] are good: the iteration seems to be stable and works faster than
other methods associated with the same energy. A convenient way to ensure convergence is to
stop the iteration if ε grows. The first method that we propose in this paper, named M1, uses,
on the one hand, the very classical optimal gradient descent and, on the other hand, a method
of line search based on parabolic interpolation: supposing that φk(d) can be approximated by a
parabola, find a value d̃ > 0 for which φk(d̃) > φk(0), and take dk at the “bottom” of the parabola
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passing through the three points (0, ε(ωk)), (d̃, φk(d̃)) and (d̃/2, φk(d̃/2)). The advantage of M1,
compared to the conjugate gradient descent, is that this method converges definitely.

• The second family of optimization methods are the stochastic methods, which allow to find a
global minimum of an energy, contrary to the other methods, for which the possibility of finding
a global minimum depends, for a non convex energy, on the initial configuration ω0. In section 4,
we will use the simulated annealing algorithm for the minimization of ε4, which will produce the
method M2.

3 Deterministic minimization for shape from shading

In this section, we will describe our first algorithm developped on the basis of the previous discussion.

3.1 General framework

From now on, we suppose that
−→
S is known and vertical (

−→
S = (0 0 1)T ) and that the surface is

Lambertian, so that the image irradiance equation (2) takes the particular form called the “eikonal
equation” [14]:

Emax√
1 + p(x, y)2 + q(x, y)2

= E(x, y) (9)

where Emax is the maximal value of E and is reached at points where ∇h = 0. The discrete form
of (9) is:

Emax√
1 + pi,j

2 + qi,j
2

= Ei,j (10)

For the synthetic images which will be used for the tests, the greylevels will be computed from
equation (10), with Emax = 255.

3.2 Description of the used energies

Let us introduce the distance δ between two neighbouring pixels. We decide arbitrarily that, for each
square scene, the side length is equal to 12.8, so that δ = 0.1 for a 128 × 128 image, δ = 0.2 for a
64 × 64 image, and so on. Using forward finite differences, the discretization of equation (3) gives:

pi,j+1 − pi,j

δ
=

qi+1,j − qi,j

δ
(11)

In the same way:

|∇p|2i,j ≈
(

pi+1,j − pi,j

δ

)2

+

(
pi,j+1 − pi,j

δ

)2

(12)

and idem for q, so that the energy ε4 corresponding to the functional F4 is:

ε4(ω4) = δ2
∑

(i,j)∈D

[
Emax√

1 + pi,j
2 + qi,j

2
− Ei,j

]2

+ λint

∑

(i,j)∈D̃

[(pi,j+1 − pi,j) − (qi+1,j − qi,j)]
2 (13)

+ λsmo

∑

(i,j)∈D̃

[
(pi+1,j − pi,j)

2 + (pi,j+1 − pi,j)
2 + (qi+1,j − qi,j)

2 + (qi,j+1 − qi,j)
2
]

where ω4 = (pi,j , qi,j)(i,j)∈D and where D̃ is the subset of D containing the pixels (i, j) such that
(i + 1, j) and (i, j + 1) are in D. It has been proved in [22] that this energy is essentially independent
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of the image resolution. This will be important when we will deal with multiresolution. In the same
way, the energy ε5 associated to F5 is:

ε5(ω5) =
∑

(i,j)∈D̃

[
(hi+1,j − hi,j − δ pi,j)

2 + (hi,j+1 − hi,j − δ qi,j)
2
]

(14)

where ω5 = (hi,j)(i,j)∈D.

3.3 First stage of the method M1

Given an image, a set of pixels D, one value for λint and another one for λsmo, and given an initial
configuration ω0

4 = (p0
i,j , q

0
i,j)(i,j)∈D, the first stage of the method M1 is an iterative process defined

by the following steps:

• Compute ∇ε4 at the current configuration ωk
4 .

• Find a local minimum dk of the function φk(d) = ε4(ω
k
4 − d∇ε4(ω

k
4 )).

• Compute the new configuration ωk+1
4 = ωk

4 − dk ∇ε4(ω
k
4 ).

The iteration is stopped at the first configuration ω?
4 for which |∇ε4(ω

?
4)| < β

√
2N (the threshold β

is taken equal to 1.0, in our tests). The factor
√

2N is necessary, in the previous inequality, as the
Euclidean norm of ∇ε4 is approximately proportional to its number of coordinates.

A configuration ω4 can be represented through a “needle diagram”, which consists in drawing the
vectors (pi,j , qi,j) by little arrows (when pi,j = qi,j = 0, no dot appears in the needle diagrams processed
by Matlab).

3.4 Second stage of the method M1

Given the result ω?
4 of the first stage (which is now the data for the second stage) and given an initial

configuration ω0
5 = (h0

i,j)(i,j)∈D, the second stage of M1 is an iterative process which is, in all points,

similar to the previous one. The final configuration ω?
5, verifying |∇ε5(ω

?
5)| < β

√
N , is the final result

of the method.

The energy ε5 is invariant when a constant value is added to all hi,j . This expresses the fact that
shape from shading can only reconstruct a shape up to a constant. In our tests, the height href of one
pixel of D has to be fixed. Therefore, if we want to measure the precision of the reconstructed shape
ω?

5 (when the real shape ω̃5 is known), the gap |ω?
5 − ω̃5|, in the sense of a certain norm, for instance

L2, is in fact a function of href. It would have no sense to fix arbitrarily href. So, we choose the value
of href which gives the best fitting between ω?

5 and ω̃5.

A configuration ω5 is a shape and can be represented in a more evident way than ω4.

3.5 Remarks on the computation of ∇ε

When computing the gradients of ε4 and ε5, a special care must be taken for the pixels lying on the
boundary of D. Let us illustrate this remark in the case of ε5. For almost all pixels (i, j) of D:

∂ε5
∂hi,j

= 2 [4hi,j − (hi+1,j + hi−1,j + hi,j+1 + hi,j−1) + δ (pi,j − pi−1,j + qi,j − qi,j−1)] (15)

This expression is not valid, for instance, for a pixel (i0, j0) of D having (i0−1, j0) as unique neighbour
contained in D. For such a pixel:

∂ε5
∂hi0,j0

= 2(hi0,j0 − hi0−1,j0 − δ pi0−1,j0) (16)
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There are in fact a certain number of special cases, which make the computation of these gradients
a little tedious. However, experiments have shown that an exact computation of the gradient is
absolutely necessary, in order to find the right solution. In fact, the interpretation of these special
cases is the following: the normal case (15) corresponds to the Euler equation associated with ε5, as
all special cases like (16) correspond to the natural boundary conditions, which have already been
quoted.

3.6 Experimental results

Before all, let us recall that no boundary condition is used in our tests. For the tests concerning the
method M1, λint is equal to 10, λsmo is equal to 50 and D contains all the pixels, except in one case
which will be discussed. In figure 1(b), a first test image of size 64 × 64 has been computed, which
corresponds to the simple shape represented in figure 1(a). Starting from the initial configurations
ω0

4 and ω0
5 corresponding to the shape in figure 2(a), the method M1 converges towards the shape

represented in figure 2(b) in about 3 sec. of CPU time on a 733 MHz PC. The L2-distance between
2(b) and the real shape 1(a), using the same scale as on the z axis, is equal to 0.015.
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Figure 1: (a) Spherical cap on a background and (b) 64 × 64 associated image.
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Figure 2: (a) Starting shape and (b) associated result by M1 (λint = 10 and λsmo = 50).

In the same way, the result obtained for ω0
4 and ω0

5 corresponding to the shape in figure 3(a) is
represented in figure 3(b).

As these two initial shapes are fairly similar to the real shape, one could be doubtful about the
robustness of the process. In figure 4(a), a third starting shape, which is not symmetrical with respect
to the center of the image (in contrast with 2(a) or 3(a)), gives even so a result as good as previously,
which is represented on figure 4(b).
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Figure 3: (a) Second starting shape and (b) associated result by M1 (λint = 10 and λsmo = 50).
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Figure 4: (a) Third starting shape and (b) associated result by M1 (λint = 10 and λsmo = 50).

As a proof for the necessity of using other terms than the “data term” in ε4, let us set λint and λsmo

to 0 simultaneously. The problem becomes thus under-constrained. However, the method M1 is able
to deal with such a situation. Starting from the configuration which corresponds to the shape 2(a) and
which is represented, through a needle diagram, in figure 5(a), the first step of M1 converges towards
the configuration represented in figure 5(b), which corresponds to a good solution. On the other
hand, starting from the configuration which corresponds to the shape 4(a) and which is represented in
figure 6(a), the first step of M1 converges towards the configuration represented in figure 6(b). This
configuration is not satisfactory because it is not symmetrical with respect to the center of the image,
unlike 5(b). One can observe that the orientations of the arrows in 6(b) are greatly induced by the
initial configuration 6(a): the problem is definitely ill-posed, in this case.

Now, what is the effect of tuning λint and λsmo? When setting λint to 10 and λsmo to 0, starting
from 3(a), the result is represented in figure 7(a), which seems to be a local minimum of the energy.
So, it appears that the smoothing term of ε4 reduces the number of local minima, since the shape 3(a)
has given a good solution when λint = 10 and λsmo = 50 (figure 3(b)). On the other hand, when setting
λint to 0 and λsmo to 50, starting from 3(a), the solution is represented in figure 7(b). There is no local
minimum anymore, but the ridge, at the bottom of the spherical cap, is smoothed, compared to the
shape 7(a). Another effect of tuning λint and λsmo can be seen when the method deals with a noisy
image, as that of figure 8(a), obtained by adding a Gaussian noise with variance 10 to the image 1(b).
With λint = 10 and λsmo = 50, starting from the shape 2(a), the solution is represented in figure 8(b).
When λint = 100 and λsmo = 0, the noise has obviously been interpreted as a rough texture of the
surface (figure 9(a)). When λint = 10 and λsmo = 200, the solution is smoothed (figure 9(b)).

Let us use the more complex (but still synthetic) 64×64 image shown in figure 10(b), which cor-
responds to a vase on a background (figure 10(a)). Starting from the shape 1(a), with λint = 10
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and λsmo = 50, the solution is represented in figure 11(a). It is not as satisfactory as the previous
results. Therefore, compared to 1(a), the shape 10(a) is much more complex, because there are sharp
edges at the top and at the bottom of the vase, as well as silhouettes on both sides. When a pixel
(i, j) is situated on the background and (i + 1, j) is situated on the vase, it makes no sense to keep
terms like (pi+1,j − pi,j)

2 or (hi+1,j − hi,j − δ pi,j)
2 in the energies ε4 or ε5, because h, p and q are not

differentiable there. A way of overcoming this difficulty consists in withdrawing, in ε4 and in ε5, the
terms which imply simultaneously pixels lying on the background and pixels lying on the vase. Making
so, each new energy can be separated into two parts: ε(ω) = εback(ωback) + εvase(ωvase), where ωback

contains the unknowns for the background pixels and ωvase the unknowns for the vase pixels, so that
ω = (ωback, ωvase). Therefore, the minimization of ε can be separated into two independent problems:
the minimization of εback, and that of εvase. The only additional problem, besides the knowledge of
the partition vase/background, with that way of processing is that ωback

5 and ωvase
5 will be known only

up to two independent constants, so we will have to join the two reconstructed shapes. After joining
ωback

5 and ωvase
5 , the final result is represented in figure 11(b). This result seems to be satisfactory.

The CPU time is equal to 20 sec. (on a 733 MHz PC). The L2-distance between 11(b) and the real
shape 10(a) is equal to 0.761.

Now, let us study a much more complex shape, named DEM and represented in 12(a), associated to
the 64×64 image shown in 12(b). The 3D interpretation of this image through human vision is quite
impossible! Starting from a shape “similar” to the real shape, represented in 13(a), M1 yields 13(b)
as solution, which is not totally satisfactory. Starting from 14(a), the result obtained (see 14(b)) is
not satisfactory at all, even from a qualitative point a view. On the other hand, when λint = 500 and
λsmo = 20, the results obtained from 13(a) and 14(a) are represented in figures 15(a) and 15(b). It is
obvious that 15(a) is excellent, in the same time as 15(b) is very bad. We can thus conclude that M1

has two residual disadvantages:

• The choice of λint and λsmo is relatively arbitrary and has a great effect on the solution (compare
13(b) and 15(a)).

• The choice of the starting shape is of great importance (compare 15(a) and 15(b)), as ever with
deterministic minimization.

In the next section, we address simulated annealing to overcome this second problem, and we let
the first problem for future work.
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Figure 5: (a) Needle diagram of 2(a) and (b) needle diagram of the associated result by M1 (λint = 0
and λsmo = 0).
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Figure 6: (a) Needle diagram of 4(a) and (b) needle diagram of the associated result by M1 (λint = 0
and λsmo = 0).
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Figure 7: Results obtained by M1 starting from 3(a): (a) λint = 10 and λsmo = 0; (b) λint = 0 and
λsmo = 50.

0
10

20
30

40
50

60

0

20

40

60
0

1

2

3

4

5

6

x
y

z

(a) (b)

Figure 8: (a) Noisy 64× 64 image of 1(a) and (b) result obtained by M1 starting from 2(a) (λint = 10
and λsmo = 50).
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Figure 9: Results obtained by M1 starting from 2(a): (a) λint = 100 and λsmo = 0; (b) λint = 10 and
λsmo = 200.
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Figure 10: (a) Vase on a background and (b) 64 × 64 associated image.
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Figure 11: M1 applied (a) to the whole image 10(b) and (b) to two subparts joined afterwards
(λint = 10 and λsmo = 50).
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Figure 12: (a) DEM and (b) 64 × 64 associated image.
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Figure 13: (a) Starting shape and (b) associated result by M1 (λint = 10 and λsmo = 50).
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Figure 14: (a) Second starting shape and (b) associated result by M1 (λint = 10 and λsmo = 50).

14



0
10

20
30

40
50

60

0

20

40

60

−0.5

0

0.5

1

x
y

z

0
10

20
30

40
50

60

0

20

40

60

−0.4

0

0.5

1

x
y

z

(a) (b)

Figure 15: When λint = 500 and λsmo = 20: results obtained by M1 starting (a) from 13(a) and
(b) from 14(a).
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4 A Bayesian approach for shape from shading

Shape from shading belongs to the class of ill-posed inverse problems which can be reformulated as an
optimization problem in a Bayesian framework. In this section, we recall the Bayesian approach and
rewrite the shape from shading problem into a stochastic framework. We then propose a simulated
annealing algorithm to optimize the derived model.

4.1 Markov Random Fields in a Bayesian framework

Let E denote the data, S ⊂ Z
2 the lattice (set of sites) and Λ ⊂ R

2 the set of states. A configuration
in Λcard(S) is denoted by ω and the state of the site s = (i, j) by ωs = (ps, qs). We want to find the
configuration which maximizes the a posteriori probability P (ω|E). Using the Bayes rule, we have:

P (ω|E) =
P (E|ω)P (ω)

P (E)
∝ P (E|ω)P (ω) (17)

The first term of the right hand side is the likelihood and represents the information provided by
the data. The second term P (ω) is referred to as the prior. This probability distribution embeds some
a priori properties, such as smoothness, which constrain the solution. The Markov Random Fields
(MRF) are common and efficient models in this framework [45].

MRF are discrete stochastic processes whose global properties are controlled by means of local
properties [46, 47, 48]. They are defined by local conditional probabilities which can model some
interactions between neighbour pixels.

Definition: A random field (ω, P ) is said to be Markovian if and only if:

{
∀ω ∈ Λcard(S), P (ω) > 0

∀ s ∈ S, ∀λ ∈ Λ, P (ωs = λ|ωt, ∀ t ∈ S\{s}) = P (ωs = λ|ωt, ∀ t ∈ Vs)
(18)

where Vs is the neighbourhood of s.
Let us denote by c any finite subset of S and call it a clique. The Hammersley-Clifford theorem

[46] allows us to write an MRF as a Gibbs field:

P (ω) =
1

Z
exp [−U(ω)] =

1

Z
exp

[
−
∑

c∈C

Vc(ωs, s ∈ c)

]
(19)

where U is the energy, Vc is a function from Λcard(c) onto R and Z is the partition function (normal-
ization constant). Here, Vc refers to the potential associated with the clique c. The set of cliques C,
which is included in the set of finite subsets of S, induces the neighbourhood system of the associated
MRF which is described by Vs = {t ∈ S\{s} : ∃c ∈ C, {s, t} ⊂ c}.

4.2 The simulated annealing

The Maximum A Posteriori (MAP) is then obtained by minimizing the so called energy which, if we
assume a conditional independency of the likelihood, is given by the following functional:

U =
∑

c∈C

Vc(ωs, s ∈ c) +
∑

s∈S

− log(π(Es|ωs)) (20)

where π denotes the local likelihood. The energy is usually not convex. To obtain the MAP criterion,
we run a simulated annealing scheme using a Metropolis-Hastings dynamic [49]. This algorithm allows
us to escape from the local minima of the energy function and has been proved to converge to the
MAP solution. It is expressed as follows:
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1. Initialize a random configuration ω0 = (ω0
s , s ∈ S), set T = T0 and k = 1.

2. For each site s (the sites being empirically numbered from 1 to card(S)):

2.a. Choose a random value new in Λ following a proposal distribution Q(ωk
s = cur → ωk+1

s =
new) where cur is the current state of s and new is the proposed state.

2.b. Compute the acceptation ratio:

R =

(
P (ωnew)

P (ωcur)

)1/Tk Q(ωk
s = new → ωk+1

s = cur)

Q(ωk
s = cur → ωk+1

s = new)
(21)

where ωvalue = (ωk+1
1 , · · · , ωk+1

s−1 , ωs = value, ωk
s+1, · · · , ωk

card(S)), for value = cur, new.

2.c. Accept the proposition with probability min(1, R). If the proposition is accepted set ωk+1
s

to new, else set ωk+1
s to cur.

3. If the stopping criterion is not reached, decrease the temperature Tk+1 = fdec(T0, k), increment
k and go to 2.

4.3 A Markov model for shape from shading

We derive a Markov Random Field, adapted to the shape from shading problem, which contains four
terms P (E|ω), P1(ω), P2(ω) and P3(ω). The first term refers to the data and defines the likelihood.
The three last terms define the prior and respectively define a smoothing constraint, an integrability
constraint and a prior on the (p, q) distribution.

In the previous section, we have derived an energy ε4 (see equation (13)) modelling the shape from
shading problem (in fact, the first part of the problem). This energy embeds the eikonal equation,
the integrability constraint and a smoothing constraint. Besides, this energy can be written as a sum
of local functions which depend only on neighbouring pixels. Therefore, ε4 can be considered as the
energy associated with a Gibbs field. We thus propose to write the three first terms as follows:

P (E|ω)P1(ω)P2(ω) =
1

Z
exp [−ε4(ω)] (22)

To define the prior on the (p, q) distribution, we consider the sites to be independent with respect to
this term, therefore we have the following:

P3(ω) =
∏

s∈S

π3(ωs) (23)

To define the prior probability density π3, we assume that the normal
−→
N of the surface is uniformly

distributed on the Northern hemisphere of the Gaussian sphere. We use the spherical coordinates (see
figure 16), so that the slope ρ =

√
p2 + q2 is equal to tan θ and:

{
p = ρ cosφ

q = ρ sin φ
(24)

On the Gaussian sphere, the surface of the crown (θ, θ + dθ) (see figure 16) is equal to 2π sin θ dθ. We
therefore consider the distributions πθ(θ) ∝ sin θ and πφ(φ) uniform on [0, 2π[ to define the prior on
(p, q). Since ρ = tan θ, we have sin θ dθ = ρ

(1+ρ2)3/2
dρ. The a priori distribution on ρ is then given by:

πρ(ρ) ∝ ρ

(1 + ρ2)3/2
(25)

In practice, we bound the state space associated with ρ to [0, 2ρmax], ρmax being the maximal value
of ρ. This value is computed by applying the eikonal equation (10) to the data (ρmax corresponds to
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the lowest greylevel). We obtain:

πρ(ρ) =

ρ

(1 + ρ2)3/2

∫ 2ρmax

0

ρ

(1 + ρ2)3/2
dρ

, ρ ∈ [0, 2ρmax] (26)

z

y

x

O

θ

φ

−→
N

Figure 16: The Gaussian sphere.

4.4 Acceptation ratio

To reduce the CPU time of the optimization, we have to reduce the time necessary to simulate the
proposal and the number of steps necessary to reach the convergence. To reduce the number of steps,
we have to consider a proposal similar to the considered model. In case of a model with interactions,
this leads to a proposal long to simulate. If we consider the data values in the proposal, we have to
compute a different proposal at each site. Therefore, we propose to only consider the non interacting
term of the prior model in the proposal distribution.

The proposal defined in the simulated annealing algorithm is as follows:

Q(ωk
s = cur → ωk+1

s = new) = Q(ωk+1
s = new) = π3(new) (27)

Denote ω\{s} = (ωnew
1 , ..., ωnew

s−1 , ωnew
s+1 , ..., ωnew

card(S)) = (ωcur
1 , ..., ωcur

s−1, ω
cur
s+1, ..., ω

cur
card(S)). The accepta-

tion ratio is then given by:

R =

(
P (ωnew)

P (ωcur)

)1/T Q(cur)

Q(new)

=

(
π(Es|ωnew

s )P1(ω
new
s |ω\{s})P2(ω

new
s |ω\{s})

π(Es|ωcur
s )P1(ωcur

s |ω\{s})P2(ωcur
s |ω\{s})

)1/T (π3(new)

π3(cur)

)1/T−1

(28)

where π(Es|ωs) ∝ exp

[
−δ2

(
Emax/

√
1 + ps

2 + qs
2 − Es

)2
]
.

So, using the Markov property, we have to compute:

R = exp

[
−F (pnew

s , qnew
s ) − F (pcur

s , qcur
s )

T

] (
ρnew

s (1 + (ρcur
s )2)3/2

ρcur
s (1 + (ρnew

s )2)3/2

)1/T−1

(29)

18



with:

F (ps, qs) = δ2

(
Emax√

1 + ps
2 + qs

2
− Es

)2

+ λsmo

∑

s′∈{s1,s2,s3,s4}

[
(ps′ − ps)

2 + (qs′ − qs)
2
]

+λint

{
[(ps1

− ps) − (qs2
− qs)]

2 + [(ps − ps3
) − (qs6

− qs3
)]2 + [(ps5

− ps4
) − (qs − qs4

)]2
}

where s1 = s+(0, 1), s2 = s+(1, 0), s3 = s+(0,−1), s4 = s+(−1, 0), s5 = s+(−1, 1), s6 = s+(1,−1).

4.5 Results on the DEM

In this subsection, we focus on the DEM for which the method M1 fails, and test it with the new
method called M2. The results on the sphere and on the vase are similar to those obtained with M1.
A crucial point to obtain the MAP estimator, using a simulated annealing scheme, lies in the definition
of the cooling scheme Tk = fdec(T0, k). From a theoretical point of view, the cooling scheme should
be of the form Tk = T0

log(k+1) (see [48]), where T0 is proportional to the maximal difference between

the energy of any two configurations. In practice, a geometrical scheme Tk = αkT0 is often used to
speed up the convergence. When applying this approach to image segmentation or image restoration,
the values of α reported in the literature lie between 0.95 and 0.99. The tests that we performed
have revealed that this cooling scheme is too fast for the shape from shading problem. Using this, the
simulated annealing algorithm converges to a local minimum which is far from the actual surface (see
the result obtained with α = 0.99 in figure 17(a)). This is due to very deep local minima of the shape
from shading functional. To actually converge to the global minimum we have to use α = 0.999998
which leads to 6.106 iterations. The result is shown in figure 17(b). The initial configuration has
no influence on the result. To obtain figure 17(b) we used a plane as initial configuration. We have
obtained similar results using a random configuration as initialization. Because of the stochastic
perturbations during the iterative scheme, the configuration has escaped from the local minima. The
result is very close to the true surface2. It has been obtained on an image of the DEM of size 32× 32
and has required about one hour of CPU time. The L2-distance between 17(b) and the real shape
12(a) is equal to 0.353.

It is interesting to compare the needle diagrams of this result (figure 18(a)) and of the real shape
(figure 18(b)). They are very similar but the arrows in the two diagrams are all oriented in opposite
directions. In fact, a shape has exactly the same energy as its opposite, and we have observed indeed
that M2 gives sometimes the shape 17(b) and sometimes its opposite. The shape 17(b) corresponds
to the needle diagram opposite to 18(a).

Apparently, we could consider the slopes as known since, from (10), ρ directly follows from E.
Under this assumption, we probably could have cooled the temperature with a greater value for α,
and then CPU time would have been shortened. However, since this remark does not hold anymore
for noisy images, it did not seem appropriate to use such a simplification.

To handle with images having a more realistic size than 32 × 32, it is needed to speed up the con-
vergence. The simulated annealing is helpful to escape from the local minima but, if the configuration
is in the region of attraction of the global minimum, the method M1 is much more efficient. This mo-
tivates the multiresolution approach M3 proposed in the next section. The idea is to run a simulated
annealing at a low resolution to obtain the global minimum at this resolution. We then compute M1

at higher resolutions taking the previous result as initial configuration. Therefore, we assume that
the global minimum at low resolution belongs to the region of attraction of the global minimum when
projected at higher resolutions.

2A movie corresponding to this processing can be found at the following address:
http://www.irit.fr/∼Jean-Denis.Durou/RECHERCHE/RECUIT/IMAGES/recuit.mpg
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Figure 17: M2 applied to image 12(b): (a) α = 0.99 and (b) α = 0.999998 (λint = 500 and λsmo = 20).
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Figure 18: Needle diagrams (a) of the shape opposite to 17(b) and (b) of the DEM.

5 A multiresolution hybrid method

As already said in the previous section, the main drawback of the simulated annealing is the slowness
of the computation. A solution consists in a hierarchical multiresolution approach that we are going
to describe in this section.

5.1 Multiresolution for shape from shading

Multiresolution has been already used in the context of shape from shading [50, 33, 51] in order to
accelerate the convergence of classical algorithms. Multiresolution techniques in image analysis are
generally based on the construction of an image pyramid. For each level, the image is obtained by
blurring then subsampling the image of the previous level. If the low pass filter used is the Gaussian
filter, the pyramid is called a Gaussian pyramid.

In the case of shape from shading, the relation between the data (the image) and the unknown (the
shape) is not linear. Consequently, reductions of the shape resolution and of the image resolution do
not product the same effects. For this reason, we use the non linear multiresolution algorithm proposed
in [51], which gives a better approximation of the shape resolution reduction. More precisely, the ideal
situation would be to reduce the resolution of the shape and then to calculate the corresponding images.
Unfortunately, the shape is the unknown of the problem, but the shape slopes ρi,j =

√
pi,j

2 + qi,j
2 can

be computed from the greylevels using equation (10). Peleg and Ron [51] have shown that blurring
the slopes is always a better approximation of blurring the shape than directly blurring the image.

If E0 denotes the initial image (finest resolution) and E l the image of size 2n × 2n at level l, the
coarser image El+1 is computed using the following steps:
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1. Calculate slopes ρl
i,j from greylevels using eikonal equation (10) at level l:

ρl
i,j =

√√√√Emax
2

El
i,j

2 − 1, (i, j) ∈ [0, 2n − 1]2 (30)

2. Blur the slope array using a Gaussian-like convolution mask.
3. Subsample the slope array by discarding every other row and column to form ρl+1 of size n×n.
4. Calculate the corresponding image using eikonal equation (10) at level l + 1:

El+1
i,j =

Emax√
1 +

(
ρl+1

i,j

)2
, (i, j) ∈ [0, n − 1]2 (31)

After the pyramid construction, a first result is obtained on the coarser level and this result is then
oversampled by interpolation and used as the starting configuration for the next level. This process
is repeated level after level until the result with the original resolution is obtained.

5.2 The hybrid method M3

The remaining question is to decide what method to use at each level to provide the starting configura-
tion for the next level. As said earlier, the method M1 can fail leading to local minima. On the other
hand, the method M2 overcomes this problem, but is not completely applicable in the multiresolution
scheme because its convergence speed does not depend on the starting configuration. Therefore, we
chose to use the method M2 at the coarser level of the pyramid in order to avoid local minima and
the method M1 at the other levels. The slowest method is then only used on a small image and, for
the other levels, the number of iterations are reduced because the starting configuration is close to the
final one.

5.3 Experimental results

In our experiments we used a linear interpolation for the result propagation of (p, q) between levels
and the following convolution mask (recommended in [51]) to blur the slope array during pyramid
construction: 


0 0.125 0

0.125 0.5 0.125
0 0.125 0




We tested M3 on the image 256 × 256 of the DEM represented in figure 19(a). The pyramid was
thus created with four different resolutions (256 × 256, 128 × 128, 64 × 64, 32 × 32). The result is
represented in figure 19(b). It is a little less satisfactory than 17(b) but the L2-distance between 19(b)
and the real shape 12(a) is equal to 0.471 only. Regarding the CPU time, it is almost totally due to
the simulated annealing (about one hour, as already said). If we had applied M2 to the image 19(a),
the CPU time would have been equal to something like 43 hours!

6 Conclusion

In this technical report, we have dealt with shape from shading expressed as a minimization problem.
The non linearity of the shape from shading equation leads to the minimization of a highly non convex
functional. In such a case, the deterministic approaches converge to a local minimum of the functional.
They provide accurate results in simple cases where the surface itself is convex or concave, as we have
shown on the spherical cap and on the vase, or when we can provide a good initial configuration, which
means a configuration lying in the region of attraction of the global minimum. An alternative is to
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Figure 19: (a) Image 256 × 256 of the DEM and (b) result by M3 using 4 levels (λint = 500 and
λsmo = 20).

consider a stochastic algorithm which allows to escape from local minima. We have shown on a shape,
referred to as DEM, which contains several convex and concave areas, that the simulated annealing
algorithm provides accurate results, even in this difficult case. The local minima of the functional
are very deep and we had to consider an unusually slow cooling scheme for the temperature. This
fact may be one reason explaining that, up to our knowledge, the literature does not report on the
association of shape from shading and simulated annealing. The counterpart of the good behavior
of the simulated annealing for minimizing such complex functionals is the slowness of this algorithm.
In order to combine the accuracy of the simulated annealing and the efficiency of the deterministic
algorithm, we have proposed a multiresolution approach for which the simulated annealing is used at
the lowest resolution and provide a good initial configuration for higher resolutions which are solved
deterministically.

The functional we defined is written as the sum of local constraints and can be interpreted as the
energy of a Markov Random Field. On each pixel, the acceptation ratio depends only on the four
nearest neighbours. Therefore, we are currently studying a parallel version of the simulated annealing
algorithm. In future work, we will also try to determine how the parameters, especially the factors
λint and λsmo, could be automatically estimated. Besides, we will address real images.
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