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Exact steady eastward moving vortex-dipole solutions, the equatorial modons, are constructed
in the asymptotic limit of low divergence and small temperature variations in the thermal
rotating shallow water (TRSW) model on the equatorial beta-plane. This regime is known
to be relevant for the tropical atmosphere. The model itself is a generalization, allowing
for horizontal temperature gradients, of the classical rotating shallow water model. The
asymptotic modons can carry a temperature anomaly and exist also on the inhomogeneous
temperature background. The modon configurations are then used to initialize numerical
simulations, in order to check whether such coherent structures can exist in the full TRSW
model. The results show that this is, indeed, the case. The parameter regimes and limitations
on the structure of the temperature anomaly inside, in order for the modons to persist, are
established. It is also shown that the modons keep their coherence even while evolving on
the background of meridionally inhomogeneous temperature fields, or while interacting with
sharp temperature fronts. A general scenario of disaggregation of the modons, if they are out
of the stability domain, is exhibited and analyzed.
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1. Introduction
Rotating shallow water (RSW) model on the equatorial beta-plane is a standard conceptual
tool for analyzing large-scale dynamics of the equatorial atmosphere and ocean. The use of
the model was initiated in the seminal works by Matsuno (1966), Lindzen (1967) and Gill
(1980), and has become widespread since then. Obvious advantages of the model are its
simplicity and, at the same time, its ability to capture essential elements of the dynamics,
which allows for in-depth analytic studies and, at the same time, for high-resolution numerical
investigations at low computational cost. For example, the response of the tropical atmosphere
to a localized heating, which was obtained semi-analytically by Gill (1980) using this model,
has become a folklore in tropical meteorology and climatology. In the same spirit, a full theory
of relaxation (adjustment) of zonally elongated pressure and velocity anomalies at the equator
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was developed and confirmed by high-resolution numerical simulations in LeSommer et al.
(2004).

In spite of the long history of applications of the model to the tropical atmosphere,
some of its important features were discovered only recently. Thus, it was shown (Rostami
& Zeitlin 2019a, 2021) that coherent eastward-moving dipolar structures, the equatorial
modons, exist in the model. Unlike previously known westward-moving dipolar solitons,
which were also called modons (Boyd 1985) and have a large zonal-to-meridional aspect
ratio (LeSommer et al. 2004), these modons have the aspect ratio of order one and the
opposite sense of propagation. It was also shown in (Rostami & Zeitlin 2019b) that scenario
of the equatorial adjustment is not universal, depending on the aspect ratio of the initial
perturbation, among other parameters. For aspect ratios close to one, and strong perturbations
accompanied by diabatic heating, equatorial modons arise in course of the adjustment
process. The equatorial modon solutions were first obtained analytically in the limit of
low divergence, which is pertinent for large-scale motions of the equatorial atmosphere, as
was first noticed by Charney (1963). This is why this dynamical regime was called Charney
regime in (Rostami & Zeitlin 2019a). In the leading order the equation of the model in this
regime are equivalent to the barotropic quasi-geostrophic (QG) equations on the mid-latitude
beta-plane, and the construction of the modon solutions straightforwardly follows the well-
known procedure pioneered in the geophysical fluid dynamics context by Larichev & Reznik
(1976). The corresponding analytic solution of the full RSW equations on the equatorial
beta-plane is unknown, but it was shown in Rostami & Zeitlin (2019a) that if high-resolution
numerical simulations are initialized with the low divergence regime solution, the latter
quickly adjusts, by emitting inertia-gravity waves, to a coherent dipolar vortex which is
steady moving eastward along the equator and is keeping its shape for very long times.
The situation here is similar to that with modon solutions of the full RSW equations on
the 𝑓 -plane, for which analytic solution is unknown but which can be shown to exist either
by semi-analytic computer-assisted calculations (Kizner et al. 2008), or by direct numerical
simulations initialized with the known QG modon which rapidly relaxes to a long-living
coherent dipole by emitting inertia-gravity waves (Ribstein et al. 2010).

In spite of the above-mentioned successful applications of the RSW on the equatorial beta-
plane, the model has an essential drawback as it does not allow for horizontal temperature
(or potential temperature) gradients. This difficulty is usually circumvented by considering
thickness in the RSW equations as a proxy for temperature. For example, the so-called weak
temperature gradients (WTG) approximation to forced-dissipative RSW (Sobel et al. 2001),
which is of use in the literature, becomes – in the absence of diabatic heating and dissipation,
and if considered on the equatorial beta-plane – the Charney-regime equations of (Rostami
& Zeitlin 2019a). Yet, there is no temperature variable as such in the model. This drawback
can be removed by using instead of the standard RSW the so-called thermal rotating shallow
water model (TRSW) which can be obtained, like the RSW model, from the primitive
equations by the same method of vertical averaging and mean-field approximation, but
relaxing the constraint of horizontal homogeneity of buoyancy. The TRSW model, which first
appeared in (O’Brien & Reid 1967) and since then was multiply rediscovered in the literature
(cf. e.g. Zeitlin 2018, Ch.14 for derivation and references), is a subject of growing interest
in recent years, both for studying observable phenomena in the ocean and atmospheres (e.g.
Cho et al. 2008; Warnerford & Dellar 2014; Lahaye et al. 2020; Holm et al. 2021; Kurganov
et al. 2021a), and as a test ground for numerical methods for atmospheric dynamics (e.g.
Zerroukat & Allen 2015; Kurganov et al. 2021b). A forced-dissipative version of the TRSW
model including the thermal effects of moist convection (mcTRSW) was constructed and
tested recently in Kurganov et al. (2020a). The TRSW model in the mid-latitude 𝑓 - or 𝛽-
plane approximation admits a well-defined quasi-geostrophic (TQG) approximation (Ripa



3

1996), (Warneford & Dellar 2013). It was recently shown by Lahaye et al. (2020) that the
mentioned before classical QG modon solutions can be generalized to give thermal modon
solutions of TQG. The latter can carry a thermal anomaly, in addition to vorticity anomaly of
the classical QG modons. If numerical simulations with full TRSW equations are initialized
with TQG modons, these latter rapidly adjust and provide long-living coherent vortex dipoles
with associated localized temperature anomalies, thus indicating, similarly to the “pure” RSW
case mentioned above, the existence of this kind of solutions in TRSW.

In the present paper we will follow the similar strategy, i.e. we will be looking for the
modon solutions of the asymptotic limit of the model, which we do find, and then will be
initializing numerical simulations with these solutions, in order to check the survival of
the asymptotic solutions in the full model. In this way we will demonstrate the existence
in the TRSW model on the equatorial beta-plane of coherent dipolar vortices, which are
moving eastward along the equator, are long-living, and are carrying (or not) temperature
anomalies. These solutions turn out to be very robust, decaying mainly due to dissipation,
and not because of intrinsic instabilities. They keep their coherence even propagating on the
background of inhomogeneous temperature field.

The paper is organized as follows. In Sec. 2 we recall the TRSW model, establish its
low-divergence/weak temperature variations limit and construct equatorial modon solutions
of the latter. In Sec. 3 we present results of numerical simulations initialized with thus
found modon configurations with various initial distributions of the temperature field. Sec. 4
contains a discussion of the obtained results and a sketch of the directions of further work.

2. TRSW model and its asymptotic modon solutions
2.1. The model and the scaling

The equations of the TRSW model on the equatorial beta-plane with zonal coordinate 𝑥 and
meridional coordinate 𝑦 read:{

𝜕𝑡𝒗 + 𝒗 · ∇𝒗 + 𝛽 𝑦𝒛 ∧ 𝒗 = −𝑏∇ℎ − ℎ

2
∇𝑏 ,

𝜕𝑡ℎ + ∇ · (𝒗ℎ) = 0 , 𝜕𝑡𝑏 + 𝒗 · ∇𝑏 = 0,
(2.1)

where ∇ = (𝜕𝑥 , 𝜕𝑦), 𝛽 is the meridional gradient of the Coriolis parameter, 𝒗(𝑥, 𝑦) = (𝑢, 𝑣)
is the horizontal velocity, 𝒛 is the unit vector in the vertical direction, ℎ(𝑥, 𝑦) is geopotential
height, and 𝑏(𝑥, 𝑦) is buoyancy. The latter is defined as 𝑏 = −𝑔 𝜃0−𝜃 (𝑥,𝑦)

𝜃0
in the atmospheric,

and as 𝑏 = 𝑔
𝜌0−𝜌(𝑥,𝑦)

𝜌0
in the oceanic context, where 𝜃 and 𝜌 are, respectively, potential

temperature and density perturbations, both directly related to temperature variations, and
the index 0 denotes the background value. Both buoyancy and thickness have positive means
𝐵0 and 𝐻0, respectively, defining an intrinsic velocity scale 𝑐 =

√
𝐵0𝐻0. As is well known,

there also exist an intrinsic length scale in the model, the equatorial deformation radius
𝐿𝑑 =

√︃√
𝐵0𝐻0
𝛽

.
The standard equatorial scaling consists in using 𝐿𝑑 and 𝑐 as spatial and velocity scales:

(𝑥, 𝑦) ∼ 𝐿𝑑 =
√︃

𝑐
𝛽

, (𝑢, 𝑣) ∼ 𝑐. The time-scale then is 𝑡 ∼ 𝐿𝑑/𝑐, and we introduce non-

dimensional deviations of thickness and buoyancy from their mean values: 𝑏 = 𝐵0(1 + �̃�),
ℎ = 𝐻0(1+ ℎ̃). The TRSW equations scaled in this way read, with non-dimensional variables
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marked by tilde:

𝜕 �̃�

𝜕𝑡
+ �̃� · ∇�̃� + 𝑦𝒛 ∧ �̃� = −(1 + �̃�)∇ℎ̃ − (1 + ℎ̃)

2
∇�̃�, (2.2a)

𝜕ℎ̃

𝜕𝑡
+ ∇ · ((1 + ℎ̃) �̃�) = 0, (2.2b)

𝜕�̃�

𝜕𝑡
+ �̃� · ∇�̃� = 0. (2.2c)

This system, with addition of dissipative terms, will be implemented in the numerical
simulations in Section 3. However, in order to construct the asymptotic regime and modon
solutions we will use, following Rostami & Zeitlin (2019a), another scaling: a single spatial
and a single velocity scales (𝑥, 𝑦) ∼ 𝐿 , (𝑢, 𝑣) ∼ 𝑈, and the eddy turnover time-scale 𝑡 ∼ 𝐿/𝑈.
With these scales being introduced, the non-dimensional parameters, the Froude and Burger
numbers can be defined in the standard way:

𝐹𝑟 =
𝑈

𝑐
, 𝐵𝑢 =

𝐿2
𝑑

𝐿2 . (2.3)

We also introduce the parameters 𝛾 and𝜆, measuring the amplitude of, respectively, buoyancy
and thickness perturbations: 𝑏 = 𝐵0(1 + 𝛾�̃�), ℎ = 𝐻0(1 + 𝜆ℎ̃). Thus scaled equations (2.1)
read:

𝜕 �̃�

𝜕𝑡
+ �̃� · ∇�̃� + 1

𝐹𝑟𝐵𝑢
𝑦𝒛 ∧ �̃� = − 𝜆

𝐹𝑟2 ∇ℎ̃ −
𝛾

2𝐹𝑟2 ∇�̃� −
𝛾𝜆�̃�

𝐹𝑟2 ∇ℎ̃ −
𝜆𝛾ℎ̃

2𝐹𝑟2 ∇�̃�, (2.4a)

𝜆
𝜕ℎ̃

𝜕𝑡
+ ∇ · ((1 + 𝜆ℎ̃) �̃�) = 0, (2.4b)

𝜕�̃�

𝜕𝑡
+ �̃� · ∇�̃� = 0. (2.4c)

2.2. Charney/weak-temperature-gradients regime
Following Rostami & Zeitlin (2019a) we now consider a dynamical regime where the
deviations of thickness are small: 𝜆 → 0. (It is probably worth noting that such regime
is called “long-wave” in oceanography (cf. Gill 1982).) We will suppose that buoyancy
variations are also small: 𝛾 → 0, which is consistent with the observed overall weak
temperature gradients in the equatorial region (cf. e.g. Sobel et al. 2001, and references
therein). We will suppose that 𝜆 and 𝛾 are of the same order of magnitude (although this
assumption is not crucial for what follows), and put 𝛾 = 2𝜆 without loss of generality. If we
suppose then, again following Rostami & Zeitlin (2019a), that 𝐹𝑟2 = O(𝜆), we get:

𝜕 �̃�

𝜕𝑡
+ �̃� · ∇�̃� + 𝛽𝑦𝒛 ∧ �̃� = −(1 + 2𝐹𝑟2�̃�)∇ℎ̃ − (1 + 𝐹𝑟2 ℎ̃)∇�̃�, (2.5a)

𝐹𝑟2 𝜕ℎ̃

𝜕𝑡
+ ∇ · ((1 + 𝐹𝑟2 ℎ̃) �̃�) = 0, (2.5b)

𝜕�̃�

𝜕𝑡
+ �̃� · ∇�̃� = 0, (2.5c)
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where we introduced the notation 𝛽 = 1
𝐹𝑟𝐵𝑢

. In the leading order in 𝐹𝑟2 this gives:

𝜕𝒗

𝜕𝑡
+ 𝒗 · ∇𝒗 + 𝛽𝑦 𝒛 ∧ 𝒗 = −∇ℎ − ∇𝑏, (2.6a)

∇ · 𝒗 = 0, (2.6b)
𝜕𝑏

𝜕𝑡
+ 𝒗 · ∇𝑏 = 0, (2.6c)

where we omitted tildes, for simplicity of notation. Equation (2.6b) allows to introduce a
streamfunction 𝑢 = −𝜕𝜓

𝜕𝑦
, 𝑣 =

𝜕𝜓

𝜕𝑥
and to rewrite the equations (2.6) as follows:

𝜕𝑡∇
2𝜓 + 𝐽 (𝜓,∇2𝜓) + 𝛽𝜕𝑥𝜓 = 0 (2.7a)

𝜕𝑡𝑏 + 𝐽 (𝜓, 𝑏) = 0. (2.7b)

2.3. Asymptotic modon solutions
Equation (2.7a) coincides with the equation for the streamfunction in Charney regime
obtained in Rostami & Zeitlin (2019a), and is not modified by the effects of variable
buoyancy. Thus, our derivation shows that in the asymptotic regime buoyancy behaves
as a passive scalar which is advected by the flow according to equation (2.7b). This means
that the equatorial modon solutions obtained in this regime in (Rostami & Zeitlin 2019a) are
also valid here and, whatever they are, the buoyancy is just advected by their velocity field.
We give below a brief description of the procedure of finding the modon solutions of (2.7a),
which literally follows Rostami & Zeitlin (2019a).

Looking for solutions of (2.7a) moving zonally with constant velocity𝑉 : 𝜓 = 𝜓(𝑥−𝑉𝑡, 𝑦),
we get:

𝐽

(
𝜓 +𝑉𝑦,∇2𝜓 + 1

𝐹𝑟𝐵𝑢
𝑦

)
= 0, ⇒ ∇

2𝜓 + 1
𝐹𝑟𝐵𝑢

𝑦 = 𝐹 (𝜓 +𝑉𝑦), (2.8)

where 𝐹 is an arbitrary function. The (𝑥, 𝑦) plane is divided by a circle of radius 𝑟0 into
interior and exterior domains, and 𝐹 in (2.8) is assumed to be a linear function 𝐹 (𝜓 +𝑉𝑦) =
const · (𝜓 + 𝑉𝑦), although with different constants (slopes), in each of them, which will
be denoted 𝛼2 and 𝑝2, respectively. The streamfunction in the interior domain is given by
solutions of the following linear inhomogeneous equation:

∇
2𝜓𝑖𝑛 + 𝛼2𝜓𝑖𝑛 = −

(
1

𝐹𝑟𝐵𝑢
+ 𝛼2𝑉

)
𝑦, (2.9)

with 𝛼 to be determined. Its solution is a superposition of a general solution of the
corresponding homogeneous equation, and of the particular solution of the inhomogeneous
equation which is proportional to 𝑦 = 𝑟 sin 𝜃, where (𝑟, 𝜃) are polar coordinates. The
homogeneous equation is solved in polar coordinates by the method of separation of variables,
assuming a dipolar structure ∼ sin 𝜃 for consistency with the inhomogeneous solution, which
results in the Bessel differential equation in 𝑟 . Only a regular at 𝑟 = 0 Bessel function is
physically acceptable as a solution.

A condition of decay at infinity allows to fix the constant in the exterior domain

∇
2𝜓𝑜𝑢𝑡 = 𝑝

2𝜓𝑜𝑢𝑡 , 𝑝
2 =

1
𝐹𝑟𝐵𝑢𝑉

. (2.10)

Solutions are sought in polar coordinates by the method of separation of variables, assuming
the same angular structure, for consistency, which leads to the equation for modified Bessel
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Figure 1: Streamfunction (𝜓) of a modon with 𝐹𝑟 = 0.1, 𝐵𝑢 = 1, 𝑉 = 0.5 and 𝑟0 = 0.5

functions. The solution in the whole plane is then given by

𝜓(𝑟, 𝜃) =


−𝑉𝑟0
𝐾1(𝑝𝑟0)

𝐾1(𝑝𝑟) sin(𝜃), 𝑟 > 𝑟0

1
𝛼2𝐹𝑟𝐵𝑢𝐽1(𝛼𝑟0)

𝑟0𝐽1(𝛼𝑟) sin(𝜃) −
( 1
𝐹𝑟𝐵𝑢

+ 𝛼2𝑉)
𝛼2 𝑟 sin(𝜃), 𝑟 < 𝑟0

(2.11)

where 𝐾1 and 𝐽1 are, respectively, the modified and the ordinary Bessel functions, and 𝑝 is
given by (2.10).

The last step consists in matching the inner and outer solutions across the separatrix
𝑟 = 𝑟0, in order to ensure the continuity of 𝜓 and its derivatives. This leads to the following
transcendental equation

1
𝑝

𝐾2(𝑝𝑟0)
𝐾1(𝑝𝑟0)

= − 1
𝛼

𝐽2(𝛼𝑟0)
𝐽1(𝛼𝑟0)

. (2.12)

This equation allows to determine the value of 𝛼 for each value of 𝑝, i.e. for each value of 𝑉 ,
𝑟0, 𝐹𝑟 , and 𝐵𝑢, and thus allows to completely determine the function 𝜓 in (2.11) in terms of
these four parameters. The equation (2.12) has multiples roots, with the first, strictly positive
one, giving a dipolar (modon) solution with righward (eastward) propagation. The zeros of
(2.12) were found numerically using SciPy optimize.fsolve routine (https://docs.
scipy.org/.) It uses the subroutine HYBRD of the MINPACK library, which determines
the roots of a function using an iterative method (a modification of the Powell hybrid method).
In the simulations below, 𝑉 and 𝑟0 are taken to be equal to 0.5 in dimensionless units. An
example of such solutions is presented in Figure 1.

Let us recall that the streamfunction of thus found modon solution is the same as in the
equatorial modons in RSW in Charney regime on the equatorial beta-plane (Rostami &
Zeitlin 2021), the difference between the modons in the two models residing in thickness and
buoyancy fields. Indeed, once the streamfunction of the solution is found, and the buoyancy
profile determined (see below), the distribution of the sum ℎ + 𝑏 can be determined by
solving the following Poisson equation for this quantity obtained by taking the divergence of
the equation (2.6a):

−∇2(ℎ + 𝑏) = 2(𝜓𝑦𝑥)2 − 2𝜓𝑥𝑥𝜓𝑦𝑦 − 𝛽𝑦∇2𝜓 − 𝛽𝜓𝑦 (2.13)

https://docs.scipy.org/
https://docs.scipy.org/
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An essential difference between the equations (2.7) and the TQG equations (Ripa
1996),(Warneford & Dellar 2013), which were used for constructing modon solutions by
Lahaye et al. (2020), is that the former are decoupled, and thus the modons exist for any
distribution of buoyancy. The only role of buoyancy in the solution is to determine the
corresponding thickness profile, as follows from (2.13): once a distribution of 𝑏 is chosen,
with 𝜓 corresponding to the modon, the solution of the resulting Poisson equation determines
ℎ, and therefore the complete structure of the modon, for any 𝑏. However, if we want to have
a buoyancy anomaly transported by the modon, i.e. moving with the same velocity, we then
have to suppose that

𝐽 (𝜓 +𝑉𝑦, 𝑏) = 0, ⇒ 𝑏 = 𝐺 (𝜓 +𝑉𝑦), (2.14)
where 𝐺 is an arbitrary function of the streamfunction in the co-moving frame. The simplest
choice is to take 𝐺 to be linear in the inner domain, and zero in the outer domain, although
more general distributions will be considered in Sec. 3.2.2 below. Both symmetric and
antisymmetric with respect to equator buoyancy anomalies inside the modon can be obtained
in this way by taking 𝐺 ∝ |𝜓 +𝑉𝑦 | or 𝐺 ∝ 𝜓 + 𝑉𝑦, respectively. We will mostly display
below the results for the more physically relevant sign-definite distribution:

𝐺 = 𝜎 |𝜓 +𝑉𝑦 | (2.15)

with different values of 𝜎.
Obviously, in the full TRSW model the decoupling of buoyancy and velocity is not

operational. Furthermore, the derivation of the asymptotic models discards, together with
inertia-gravity waves, Kelvin and Yanai (mixed Rossby-gravity) waves, which are ubiquitous
features of the large-scale equatorial dynamics. Therefore, in this context it is especially
important to check the evolution of the TRSW system initialized with asymptotic modon
solutions, in order to see if the modons survive in the presence of the full set of equatorial
waves. Such investigation is presented in the next section.

3. Equatorial modons as seen in numerical simulations with TRSW model
3.1. Numerical setup

Numerical simulations were performed with the Dedalus library (Burns et al. 2020) for
Python. Dedalus is a spectral (in spatial variables) code resolving partial differential
equations, with several possible choices for time integration. In our simulations, a split-
explicit fourth-order Runge-Kutta method has been used for this purpose. Periodic boundary
conditions were imposed in order to implement the Dedalus code, and the equations (2.2)
obtained with the standard equatorial scaling were used. However, the momentum equation
(2.2a) contains a non-periodic Coriolis term, which is a linear function of the meridional
coordinate. Periodic extension of the function 𝑦 entering this term is a discontinuous saw-
tooth function, which is not suitable for numerical treatment. That is why the jump at the zonal
boundaries of the computational domain was smoothed using a rapidly decreasing to zero at
the boundary smooth function, which ensures periodicity (see the details in Appendix A). The
modified 𝑦 function is denoted by �̂� below. In order to prevent numerical oscillations during
the simulations, dissipation in a form of hyper-viscosity in the momentum and diffusivity
in the buoyancy equation have been introduced. These terms were tuned to be sufficiently
large to prevent any numerical oscillations, but as small as possible to avoid a too rapid
dissipative damping. A nudging term 𝑁 , of relaxation to zero type, was also added for height
and buoyancy anomalies in the vicinity of the top and bottom boundaries, in order to damp
waves crossing these boundaries, and thus avoid wave reflection and interference with the
vortex centred at the equator (see Appendix A). The computational domain was chosen to
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Figure 2: Evolution of vorticity, in units of 𝑐
𝐿𝑑

, and height, in units of 𝐻0, during the
adjustment of an initial zonally elongated height anomaly with magnitude -0.1 𝐻0, Bu = 1.

Time in units of 1
𝛽𝐿𝑑

, length in units of 𝐿𝑑 . Notice the large difference between
meridional and zonal scales in all panels.

be wide enough to hold off as far as possible the effects of interpolation of the Coriolis term
and of the nudging. The system of equations implemented in the numerical scheme is thus
given by:

𝜕 �̃�

𝜕𝑡
+ �̃� · ∇�̃� + �̂�𝒛 ∧ �̃� = −(1 + �̃�)∇ℎ̃ − (1 + ℎ̃)

2
∇�̃� − (−1)𝑛𝜈Δ𝑛 (�̃�), (3.1a)

𝜕ℎ̃

𝜕𝑡
+ ∇ · ((1 + ℎ̃) �̃�) = −𝑁 ( ℎ̃, 𝑦), (3.1b)

𝜕�̃�

𝜕𝑡
+ �̃� · ∇�̃� = −𝜅Δ(�̃�) − 𝑁 (�̃�, 𝑦). (3.1c)

Here Δ denotes the Laplacian, 𝜈 and 𝜅 are viscosity and diffisivity coefficients, respectively,
and we performed simulations with various values of the integer 𝑛 defining the order of the
hyperviscosity operator, with 𝑛 = 1 corresponding to Newtonian viscosity.

3.1.1. Benchmarks and initializations
As a benchmark of the code, which is not specially designed for shallow water models, we
started our numerical investigations with the standard problem of adjustment of an elongated
thickness anomaly at the equator. The simulation was performed in a domain of 50 × 15
(𝐿𝑥 × 𝐿𝑦) with a resolution of 1280×384. The results, which are shown in Figure 2, confirm,
qualitatively and quantitatively, those of (LeSommer et al. 2004) which were obtained with
a dedicated RSW code. Our generic numerical code can not resolve shocks in shallow-water,
which are inherent e.g. to the propagation of equatorial Kelvin waves producing the so-
called Kelvin fronts (Fedorov & Melville 2000; LeSommer et al. 2004). Nevertheless, it does
reproduce the corresponding sharp gradients, as clearly seen in the Figure. We have also run
another benchmark test, the adjustment of a thermal anomaly at the equator, which is specific
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for TRSW, and again found qualitative and quantitative agreement with the results obtained
with a dedicated TRSW code (Kurganov et al. 2020a) (not shown).

3.1.2. Initial conditions for the simulations
In order to initialize the simulations following the evolution of the asymptotic modon
solution, we use the streamfunctions of the modon in the outer and inner regions in order to
determine the velocity field, then choose the initial buoyancy field, and perform numerically
the inversion in equation (2.13) in order to find the initial ℎ (see Appendix B). We should
emphasize that although the initialization with flat ℎ and the modon velocity field produces
a rapid adjustment to a coherent dipole, as was shown in (Rostami & Zeitlin 2019a), the
initialization with a pre-adjusted ℎ field drastically reduces the amount of emitted inertia-
gravity waves and speeds up the adjustment process, as we checked. We tested different
initial configurations of buoyancy, with positive and negative buoyancy anomalies inside the
modon’s radius 𝑟0, but also with positive and negative dipolar buoyancy anomalies inside
the modon, of the same form as modon’s streamfunction. We also tested the evolution of
the modon on the background of zonally homogeneous meridionally symmetric temperature
(buoyancy) field with a maximum at 𝑦 = 0, roughly mimicking the observed zonally and
time averaged temperature field at the Equator, and simulated an encounter of the modon
with a temperature front across the Equator. It should be emphasized that if a nontrivial mean
buoyancy field without a mean flow is introduced in the problem, it should be accompanied
by a compensating thickness field, in order to remain stationary and avoid its proper evolution
(adjustment) which would “pollute” the interaction with a modon. This means that the right-
hand side of the equation (2.2a) or, in the asymptotic regime, the right-hand side of the
equation (2.6a) should be zero. In all simulations presented below the spatial resolution was
256 × 256, and the size of the domain was 𝐿𝑥 = 𝐿𝑦 = 8. The simulations were being run for
very long times: several hundreds of non-dimensional units. The values of 𝐹𝑟 and 𝐵𝑢 in the
simulations presented below were 0.1 and 1, respectively, unless otherwise stated.

3.2. Results of numerical simulations
3.2.1. Modons in the absence of inhomogeneous buoyancy background
We start with the simulations with no background buoyancy field, initializing them , as
described above, with the velocity obtained from the streamfunction of the modon (2.11),
and buoyancy field proportional to the modulus of the streamfunction in the comoving frame.
We present in Figure 3 the initial and final stages of the evolution of the modon with negative
buoyancy anomaly of the form (2.15) with𝜎 = 10 (giving an initial buoyancy field of intensity
−.09). In this and subsequent illustrations we show only a part of the computational domain,
which is much larger in the meridional direction, as explained above. As already mentioned,
at the initial stages of the evolution an adjustment process with emission of inertia-gravity
waves and a weak signature of a Kelvin wave takes place (not shown). These waves are of
feeble intensity, are rapidly dissipated, and their interactions with the modon due to returns,
with periodic boundary conditions, are insignificant. As seen in the Figure, the modon keeps
running eastward without notable change of its vorticity, thickness, and buoyancy anomalies.
For comparison, the position of the separatrix at 𝑟 = 0.5 of the corresponding solution of
the asymptotic model (which, we recall, propagates at the velocity 𝐹𝑟/2 exactly preserving
its form) is indicated in this and subsequent Figures. It shows that the adjusted modon
propagates at a slightly reduced velocity compared to the asymptotic solution. In the course
of its evolution, the modon develops a multipolar divergence pattern of weak intensity, which
was also observed for mid-latitude RSW modons (Ribstein et al. 2010). Rather surprisingly,
no traces of the thermal instability, which is typical for TRSW vortices (Gouzien et al. 2017)
and was observed in mid-latitude TRSW modons (Lahaye et al. 2020), can be distinguished.
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Figure 3: Evolution of thickness, buoyancy, vorticity and divergence anomalies of the
modon with initial negative buoyancy anomaly of intensity 0.09 with hyperviscosity of the
order 𝑛 = 4 , and viscosity coefficient 𝜈 = 10−16. Left, right column: 𝑡 = 0, 290. The black
dashed line superimposed on the vorticity field indicates the position at 𝑟 = .5/

√
𝐵𝑢 of the

separatrix of the asymptotic modon solution which propagates with the speed 0.5𝐹𝑟.

The simulation with an initial modon with positive buoyancy anomaly of the same form and
intensity gives similar results, which are presented in Figure 4, although the lag with respect
to asymptotic solution is more pronounced. Simulations with the same initial conditions, but
with increasing dissipation (larger 𝜈 and/or smaller order of (hyper-)viscosity 𝑛) give very
close results until a threshold of sufficiently strong dissipation is reached (𝜈 ∼ 10−4 with
𝑛 = 1), when the evolution of the modon changes qualitatively: the intensity of its component
vortices diminishes, the distance between their centers increases, and the speed of propagation
of the whole system decreases until it stops and engages in the backward (westward) motion.
Such evolution can be easily explained by the fact that the mutual interaction between the
vortices weakens as their intensities decrease due to dissipation, allowing the phenomenon
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Figure 4: Same as in Fig. 3 but with initial positive buoyancy anomaly of intensity 0.09.

of beta-drift to affect the evolution of the vortices. We should recall that the beta-drift is due
to formation of beta-gyres, that is zones of opposite vorticity at the sides of the vortex, which
are pushing a cyclonic vortex in North-West (South-West) direction in Northern (Southern)
hemisphere, leaving a Rossby-wave tail behind, the fact which is well-known in quasi-
geostrophic models, e.g. (Reznik & Grimshaw 2001). In the shallow-water model emission
of inertia-gravity waves accompanies this non-stationary process. Thus, under the joint
influence of dissipation and Rossby and inertia-gravity wave emission, the pair of vortices
is being gradually transformed in a system of Rossby and inertia-gravity waves, as shown
in Figure 5 where beta-gyres are also visible in the lower-left panel. It is worth recalling
in this context that the very existence of the equatorial modon as a coherent structure in
the RSW model, which contains a plethora of equatorial waves, is due to the fact that
its propagation speed does not match that of westward-propagating equatorial Rossby waves
having a similar vorticity structure, nor that of eastward and westward propagating equatorial
inertia-gravity waves, so a resonance between the modon and linear waves is impossible.
(Fast eastward-propagating Kelvin waves having an orthogonal meridional structure, as well
as Yanai waves are standing apart.) Once the modon decelerates and stops due to dissipation,
its transformation into a wave system is inevitable, and this is what is observed in the Figure.

We finally discuss the evolution of the modon initialized with the antisymmetric buoyancy
anomaly inside, which is proportional to the co-moving streamfunction, and not to its
modulus. As follows from Figure 6, such a modon does not survive in the full TRSW model.
The dipole starts distorting and wiggling around its axis of propagation, which eventually



12

Figure 5: Thickness, buoyancy and vorticity anomalies at intermediate stages of the
simulation initialized withthe same configuration as in Fig. 4, with Newtonian viscosity
𝑛 = 1, and viscosity coefficient 𝜈 = 10−4. Left column: 𝑡 = 80, right column: 𝑡 = 140.

leads to the separation of the two poles of vorticity, a halt of the dipole, and a reverse
motion. An in-depth investigation of the mechanism leading to the destabilization of the
modon is beyond the scope of the manuscript. Nonetheless, we note that this destabilization,
unlike the one caused by strong dissipation as reported above, appears to be triggered by an
intrinsic instability mechanism. Indeed, below a certain value of hyperviscosity coefficient
(10−7 with an hyperviscosity of the order 2) – above which the above-reported dissipation-
induced destabilization dominates the evolution of the modon –, the rate of destabilization
of the modon accelerates slightly with decreasing hyperviscosity (the minimal value of
hyperviscosity tested is 10−9 – again for an hyperviscosity or the order 2). Moreover, we
checked that flipping the sign of the initial distribution of buoyancy with respect to the
Equator leads to the same, but mirror-symmetric destabilization of the modon, confirming
the decisive role of the antisymmetric nature of the buoyancy distribution.

To get some insight into this intrinsic destabilization mechanism, we calculated the
exchanges of the 𝑦-component of momentum density 𝑚𝑦 = (1 + ℎ̃)𝑣 across the axis of the
modon, by computing the various terms of the momentum equation, which reads (omitting
the dissipation and nudging terms):

𝜕𝑡𝑚𝑦 + ∇ · (𝒗𝑚𝑦) + 𝑦𝑚𝑥 + 𝜕𝑦
(
(1 + ℎ̃)2(1 + �̃�)

2

)
= 0. (3.2)
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Figure 6: Evolution of vorticity and buoyancy fields in a simulation initialized with a
modon with antisymmetric buoyancy

These terms, and in particular their evolution along the axis 𝑦 = 0, which diagnoses the
destabilization of the modon, are shown in Figure 7. Note that, by construction, the Coriolis
term vanishes on the axis 𝑦 = 0 and is not shown in the Figure. Both the initial antisymmetric
distribution of the buoyancy, and thus the asymmetric distribution of ℎ, are associated with
a non-zero pressure gradient term (last term in eq. 3.2). After the initial adjustment, the
different terms of this equation become non-zero and not zonally sign-definite, as well as
their sum. As seen in the Hovmöller diagram (Fig. 7, lower left panel), a wavelike perturbation
propagates along the 𝑦 = 0 axis, and amplifies in time. This reflects the fact that the modon
starts distorting and meandering about its initial axis of propagation, which ultimately leads
to its dislocation. This perturbation corresponds to the pattern of meridional momentum
tendency shown in the lower right panel of the Figure.

It should be stressed that, by construction, all the terms of the 𝑦-momentum in the case of
the modon with a symmetric buoyancy anomaly distribution are initially zero. We checked
that it remains very weak (below 10−9, compared to typical values of order 10−2 in Fig. 7)
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Figure 7: Various terms entering the 𝑦-momentum balance equation evaluated along the
axis at 𝑦 = 0, and 𝑡 = 0 (upper left panel), 𝑡 = 4 (upper right panel), as well as the sum of
these terms yielding the 𝑦-momentum tendency evaluated at 𝑦 = 0 (Hovmöller plot, lower

left panel) and in the (𝑥, 𝑦) plane at 𝑡 = 4 (lower right panel). In the former, the
displacement of the asymptotic modon (at speed 0.5𝐹𝑟) is indicated by the black dashed
line, while the green dashed line shows the propagation speed 𝑐 = 0.1, which agrees with

the apparent phase velocity of the disturbance. In the latter, the position of the modon
(dashed) is marked by the vorticity isoline at ±0.2.

during the propagation of the dipole, while the overall pattern of momentum tendency is
very similar to the one observed in the unstable configuration at early stages (Fig 7, lower
right panel).

A hint as to the intrinsic reason of the destabilization of the modon with antisymmetric
buoyancy distribution inside, which leads to the meridional momentum flux across the axis
as just illustrated, comes from the fact that the argument of non-resonance with equatorial
waves put forward above to explain the longevity of a symmetric modon does not hold here.
Indeed, as is well-known, (cf. e.g. Zeitlin 2018), there is a spectral gap between symmetric
in 𝑦 Rossby and inertia-gravity waves, which is filled in by the antisymmetric in 𝑦 Yanai
wave, which have in addition a maximum of the meridional velocity at the Equator. Thus,
while the development of a Yanai wave cannot occur in a modon with symmetric buoyancy
distribution, since all fields are symmetric in this case, such process is not forbidden anymore
in a modon with antisymmetric distribution of buoyancy.
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Figure 8: Initial and late stages of the evolution of the modon with positive buoyancy
anomaly inside, superimposed onto a zonally symmetric stationary background buoyancy
of the Gaussian form in the meridional direction. 𝑛 = 2, 𝜈 = 10−8. 𝑡 = 0 (left) and 𝑡 = 295

(right).

3.2.2. Modons in the presence of zonally homogeneous background buoyancy
As is well-known, the zonally and time-averaged potential temperature, and hence buoyancy,
has a maximum at the equator in the atmosphere. To consider the modon evolution in such
more realistic environment we added a background buoyancy distribution in a form of a
Gaussian function in 𝑦: 𝑏bg = 0.1𝑒−𝑦2 . As was explained above, the construction of the
modon solution in the asymptotic regime is possible for any buoyancy distribution. We
thus generalized the procedure of computation of the buoyancy distribution, as compared
to the previous case (2.15). Considering again the external (𝑟 ⩾ 𝑟0) and internal (𝑟 ⩽ 𝑟0)
subdomains, one has far away from the modon:

𝐺out(𝑉𝑦) = 𝑏bg(𝑦) ⇒ 𝐺out : 𝑥 ↦→ 𝑏bg(𝑥/𝑉), 𝑟 ⩾ 𝑟0.

In the interior, we keep a linear function of Ψ + 𝑉𝑦, ensuring continuity of the buoyancy
profile at 𝑟 = 𝑟0 where 𝜓 +𝑉𝑦 = 0, which gives:

𝐺 in(𝜓 +𝑉𝑦) = 𝜅 |𝜓 +𝑉𝑦 | + 𝑏bg(0).

We then computed the corresponding thickness of the initial configuration as explained
above. The simulation initialized in this way (with 𝜅 = −10, as in Fig. 3) shows that the
modon perfectly keeps its coherence, as follows from Figure 8.
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Figure 9: Initial configuration for the simulation of modon-front interaction.

3.2.3. Interactions of modons with a temperature/buoyancy front
An advantage of the TRSW model, as compared to the standard RSW, is a possibility to
treat temperature fronts, which are common in the oceans and in the atmosphere. We show
in this subsection how the TRSW modons interact with such fronts. As already explained,
the buoyancy anomaly, e.g. a front, in order to be stationary should be accompanied by
compensating thickness anomaly. So we take a straight buoyancy front, and put it at a
distance of the initial modon across the equator. In order to respect the periodic boundary
conditions in the zonal direction we take, in fact, a double front, i.e. a meridional band of
positive, or negative buoyancy. This initial configuration is shown in Figure 9

The eastward-propagating modon hits this double front after some time but, surprisingly,
remains coherent and practically intact, passing through, as follows from Figures 10, the only
sensible result of the encounter being a deformation of the front, but not of the modon, due
to the entrainment. The process then repeats itself, due to periodicity of the domain.

The interaction of the same modon with a meridional band of negative buoyancy of
the same width goes in the same way, and the same is true for a modon with negative
buoyancy inside interacting either with positive or with negative meridional buoyancy band
(not presented).

3.2.4. Dependence on Froude and Burger numbers
The derivation of the asymptotic modon solution in Section 2.3 was based on the smallness
of the Froude number 𝐹𝑟 , and the previously displayed results corresponded to 𝐹𝑟 = 0.1. We
checked, however, what happens if the Froude number of the initial configuration increases,
which corresponds to the increasing 𝑉 in the asymptotic modon solution. We found that
up to, and including 𝐹𝑟 = 0.3 the initializations with asymptotic modons with symmetric
buoyancy anomaly inside still give coherent long-living structures, as in the examples above,
although the initial adjustment produces stronger inertia-gravity waves, as clearly seen in
the divergence field in Figure 11. Beyond that value, the initial adjustment becomes very
intense and produces small-scale structures which engender numerical difficulties. We should
reiterate that our code is not specially designed to resolve shocks, which become ubiquitous
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Figure 10: Evolution of thickness and buoyancy anomalies during multiple encounters of
a modon with positive buoyancy anomaly of intensity 0.09 inside with a meridional
double temperature front. 𝑛 = 2𝜈 = 10−8. Top to bottom: 𝑡 = 70, 140, 210 and 280.

in shallow-water models at 𝐹𝑟 = O(1), including the TRSW model, as was shown in
(Kurganov et al. 2020b). In fact, the local Froude number 𝐹𝑙𝑜𝑐 = max(𝑣/𝑐) reaches the value
0.96 at 𝐹𝑟 = 0.4 (and even 1.11 using a local 𝑐 =

√︁
(1 + ℎ̃) (1 + �̃�)), which means that the
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Figure 11: Evolution of a modon with 𝐹𝑟 = 0.3 (without buoyancy anomaly), as seen in
the vorticity field (top) and divergence (bottom) fields. The left column shows the initial
adjustment at 𝑡 = 2 with strong inertia-gravity wave emission visible in the divergence

field, and the right column shows the adjusted state, to be compare with the modon with
𝐹𝑟 = 0.1 shown in Figure 3. Colours are saturated.

flow becomes supercritical (“supersonic”). In such type of regime the modons themselves
can couple with shocks and form so-called shock-modons (Lahaye & Zeitlin 2012). The
present code does not allow for reliable numerical investigation of such regimes which are,
in addition, not very realistic in the equatorial atmosphere, at least on Earth.

The Burger number enters the dynamical equations in the Charney/weak-temperature-
variations regime (2.7) only through the non-dimensional gradient of the Coriolis parameter
𝛽, which is, in fact, nothing else than the well-known Rhines parameter governing the
transition between Rossby-wave and vortex regimes on the beta-plane Rhines (1979). At a
fixed Froude number, smaller 𝐵𝑢 correspond to larger 𝛽, and vice versa. On this ground, we
can expect that at small 𝐵𝑢 the initial asymptotic modon would give rise to a Rossby-wave
packet. This is, indeed, what happens, as follows from Figure 12. As seen in the Figure,
the modon starts moving eastward, but slows down, with its poles undergoing meridional
separation, then stops and engages in a reverse westward motion being gradually transformed
in a Rossby wave-train. This scenario is reproduced, but accelerated, at 𝐵𝑢 = 0.1 and the
same value of 𝐹𝑟 (not shown), while at 𝐵𝑢 > 1 a coherent, but more compact modon
emerges.

4. Discussion and perspectives
We constructed asymptotic modon solutions of the thermal rotating shallow water equations
on the equatorial 𝛽-plane in the limit of low divergence and small temperature perturbations.
We showed that if these solutions are injected as initial conditions in the numerical simulations
with the full thermal rotating shallow water equations, they give rise to long-living coherent
dipolar vortices, steady moving along the equator and keeping their form, which remains
close to the asymptotic modons if their Froude number is sufficiently small, their Burger
number is of the order one, or larger, and viscosity and diffusivity are sufficiently small.
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Figure 12: Comparative evolution of the initial asymptotic modon (with no buoyancy
anomaly), as seen in vorticity field, at 𝐵𝑢 = 1 (left column) . and at 𝐵𝑢 = 0.25 (right

column). 𝐹𝑟 = 0.1.

Several features of these structures are worth emphasizing. First, their coherence and
longevity are not sensitive to the sign of the buoyancy anomaly they can carry, provided
it is symmetric with respect to the equator, and they can persist on the background of
meridionally inhomogeneous mean buoyancy. Moreover, the modons remain coherent even
after encountering sharp temperature (buoyancy) fronts. Second, a characteristic for TRSW
vortices, thermal instability, first described by Gouzien et al. (2017) on the mid-latitude
𝑓 -plane, and then studied e.g. by Beron-Vera (2021b) and Kurganov et al. (2021b), seems
to be suppressed, or at least much less pronounced, on the equatorial 𝛽-plane. Additional,
more detailed investigations, which are beyond the scope of the present work, are needed to
understand whether they are under-resolved in our generic numerical scheme, or genuinely
damped by the beta effect. Third, the initial modons, if they are too large – i.e. with sufficiently
small Burger numbers – or are subject to strong enough dissipation, disaggregate following
a seemingly universal scenario: the initially eastward-moving modon decelerates, and at
the same time its poles separate in the meridional direction, until it stops and engages in
the reverse, westward motion, gradually becoming an equatorial Rossby wave packet. If the
initial buoyancy distribution is not symmetric with respect to the Equator, deviations of the
zonal direction of propagation precede the separation of the poles, before the halt, reverse
motion, and dispersion.

As illustrated above, the TRSW model allows one to study interaction of vortices, the
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modons in the present case, with temperature fronts and other temperature anomalies. As
already mentioned in the Introduction, the TRSW is being used for modeling of planetary
atmospheres. The existence of the equatorial modons in TRSW can be exploited in this
context. It was recently shown that it allows one to capture such nontrivial elements as the
foehn effect (Kurganov et al. 2021a) if topography is included in the model. Inclusion of
topography is straightforward, and it would be instructive to study the interaction of the
thermal equatorial modons with topographic features which are abundant in the equatorial
region of the Earth (the Maritime Continent, various islands, and continental coasts).

Moreover, as TRSW modons (Lahaye et al. 2020) were successfully invoked for explaining
the observed surface vortex dipoles in the ocean in midlatitudes (Hughes & Miller 2017), the
present study suggests that similar structures may exist in the equatorial ocean. We should
recall in this context that, historically, the TRSW model was introduced in oceanography as
a model for the oceanic mixed layer McCreary et al. (1993); Young (1994).

The next steps in understanding the relevance of the discovered TRSW modons to the
dynamics of the tropical atmosphere will be checking the influence of moist convection upon
their evolution, as it was done in (Rostami & Zeitlin 2019a) with “non-thermal” modons. The
moist-convective TRSW model is built, and is ready for such investigation (Kurganov et al.
2020a). Understanding a tentative role of equatorial modons resulting from the equatorial
adjustment in a moist-convective environment (Rostami & Zeitlin 2020) as a dynamical core
of the Madden-Julian Oscillation (MJO) events necessitates inclusion of baroclinicity, that
is a passage from simplest one-layer TRSW to its multi- (at least two-) layer versions (Ripa
1993; Beron-Vera 2021a; Cao et al. 2023), and considering the baroclinic equatorial modons,
already known in “dry” and moist-convective RSW (Rostami & Zeitlin 2021).

Finally, the beta-plane approximation is rather restrictive in what concerns the tropics-
extratropics connections. It is worth recalling that modon solutions exist in the RSW model
on the full sphere (Verkley 1984; Tribbia 1984; Yano & Tribbia 2017) and were recently
investigated in one-and two-layer moist-convective RSW (Zhao et al. 2021). A multi-layer
TRSW on the sphere was recently implemented in (Rostami et al. 2022), which opens
possibilities to study baroclinic thermal modons on the entire globe.
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sectors.
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Appendix A. Details of the numerical implementation
A.1. Periodic Coriolis term

To enforce periodic conditions of the Coriolis term while working on the equatorial 𝛽-plane,
we modified this term by making it smoothly vanishing in a small region close to the top
and bottom boundaries. These regions correspond to the sponge layers where a nudging
toward zero is enforced, such that any spurious dynamics that may develop due the this
artificial variation of the Coriolis term is damped. Moreover, these regions are discarded
in the analysis of the results. We use a smooth approximation of the sawtooth based on
trigonometric functions:

�̂� = 𝐿𝑦swt(𝑦/𝐿𝑦 − 1/2),

https://gitlab.inria.fr/nlahaye/trsw_modon_equator
https://gitlab.inria.fr/nlahaye/trsw_modon_equator
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Figure 13: Nondimensional periodic Coriolis parameter �̂�(𝑦) and nudging coefficient
𝑊 (𝑦)/𝜏sp used in the simulations (for 𝑁𝑦 = 256 and 𝐿𝑦 = 8).

with

swt(𝑥) = 1
𝜋

(
1 − 2

𝜋
cos−1((1 − 𝛿) sin 2𝜋𝑥)

)
tan−1(sin 𝜋𝑥/𝛿).

Here, 𝛿 is a smoothing parameter, and the value we use is 4/𝑁𝑦 ,where 𝑁𝑦 is the number of
grid points in the discretization. The resulting nondimensional Coriolis parameter is plotted
in Figure 13.

A.2. Nudging in meridional sponge layers
The nudging used in the simulations (see eqs. 3.1b and 3.1c) is of the form:

𝑁 ( ℎ̃, 𝑦) = 𝑊 (𝑦)
𝜏𝑁

ℎ̃,

where 𝜏𝑁 is a nudging timescale taken at 1/4(𝛽𝐿𝑑)−1 and𝑊 (𝑦) follows a hyperbolic tangent
profile:

𝑊 (𝑦) =
(
1 + tanh

(
𝑎sp( |𝑦 | − 𝐿𝑦/2 + 𝑙sp)

) )
/2,

with sponge layer width 𝑎sp = 5 and transition width 𝑙sp = 0.25𝐿𝑑 . The corresponding profile
of𝑊 (𝑦) is shown in Figure 13.

Appendix B. Computing ℎ for the modon solution
To compute the thickness anomaly field of the modon ℎ, we first invert the Poisson equation
(2.13) for ℎ + 𝑏 in the Fourier domain and then subtract 𝑏 to obtain ℎ. Inversion of the
Poisson equation is performed as follows: the initial streamfunction on the numerical grid is
filled using the analytical solution. Then, the Fourier coefficients of the right-hand-side of
the Poisson equation, denoted 𝑆(𝜓) here, is evaluated numerically, allowing to compute:

ℎ̂ + �̂� = −𝑆/(𝑘2
𝑥 + 𝑘2

𝑦), 𝑘2
𝑥 + 𝑘2

𝑦 ≠ 0.

The value for 𝑘𝑥 = 𝑘𝑦 = 0 must be chosen such that the distribution of ℎ vanishes away from
the centre of the modon after taking the inverse discrete Fourier transform.
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