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In the early 1970s, measurements of rotation velocities in galaxies became increasingly 
precise. Vera Rubin published a series of papers, and by the end of the decade the 
conclusion was clear [6]: the rotational motions of galaxies were far from consistent with 
Kepler's law. Astrophysicists deduced that a very large quantity of matter produced the 
gravitational field opposing the centrifugal force linked to rotational motion. They gave it a 
name: dark matter. All possible models were then considered to clarify its nature, both 
observationally and with regard to new particles. Measurements of gravitational lensing 
effects in the vicinity of galaxies and clusters confirm, in the minds of theorists, that this 
matter does indeed exist. But half a century later, no credible model is available. In this 
second field, the neutron's sister particle, the neutralino, in a new theory based on 
supersymmetry, seems to be the most credible candidate. But it refuses to appear, whether 
in experiments conducted in large particle accelerators, in mines and tunnels, or aboard the 
International Space Station, in cosmic rays. This failure went hand in hand with the 
stagnation of observations in particle physics, as the existence of no particle of this new 
symmetry could be demonstrated.  Anyway, cosmologists modified their model, which 
became known as the CDM (cold dark matter) model. The term “cold” implies that this dark 
matter is driven by velocities that are  small with respect to the speed of light. From 1988 
onwards, new satellites made it possible to map the CMB, which has been refined over the 
years. The CMB now appears homogeneous to the nearest hundred thousandth. This raises a 
new paradox. Where could such homogeneity emerge from in a non-collisional 
environment? There are two possible interpretations. Either it is due to a fantastic expansion 
[7],  a new field to which a new particle is associated : the inflaton, either  it comes from a 
mechanism in which all constants vary jointly [8], [9] the secular variation of the speed of 
light making the cosmological horizon follow very exactly the evolution of the space scale 
factor of the universe. But thirty-six years later, there are as many inflaton models as there 
are researchers working on the subject. 
Finally, in 2011 ([10],[11],[12]), a Nobel Prize was awarded for a new discovery: the 
acceleration of the cosmic expansion. This phenomenon is attributed to the presence of the 
cosmological constant in the field equation, without being able to identify its physical 
nature. We simply introduce the additional term “dark energy”, also of an unidentified 
nature. By converting this energy into mass using the mc2 relation, we obtain a new 
distribution, where ordinary matter is the only one suitable for observations. The 
cosmological constant L is incorporated into the model, which is now called the Standard 
Model LCDM. 

 
 

Fig.1 : Matter distribution in LCDM model.  
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2 – The emergence of a crisis in cosmology and astrophysics. 
 
The	Einstein’s	model,	born	in		1915	survive	until	2017	with	:	
	

- An	inflation	field		
- Dark	matter.	
- Dark	energy.		

	
In	 2017,	 four	 researchers	 -	 Hélène	 Courtois,	 Daniel	 Pomarède,	 Brent	 Tully	 and	 Yeudi	
Hoffman	-	created	a	map	of	the	universe	[13]	in	a	cube	one	and	a	half	billion	light-years	
across,	 with	 the	 Milky	 Way	 at	 its	 center.	 The	 Doppler	 effect	 provides	 the	 escape	
velocities	 of	 galaxies,	 and	 thus	 the	Hubble	 velocity	 field.	 By	 subtracting	 this	 field,	 the	
authors	obtain	the	proper	velocities	of	the	objects.	The	result	is	a	dipolar	velocity	field.	
At	one	end	is	a	formation	containing	a	hundred	thousand	galaxies,	the	Shapley	attractor.	
At	 the	 other	 end,	 six	 hundred	million	 light-years	 from	 the	Milky	Way,	we	discover	 an	
immense	void	one	hundred	million	light-years	across,	the	Dipole	Repeller,	which	repels	
all	 surrounding	matter.	 Some	 astrophysicists	 have	 suggested	 that	 this	may	 reflect	 the	
presence	 of	 an	 equivalent	 void	 in	 the	 general	 distribution	 of	 dark	 matter.	 But	 this	
doesn't	provide	 the	solution,	as	gravitational	 instability	within	 this	positive-mass	dark	
matter	would	create	conglomerates,	not	voids.		
	

 
Fig.2 : The dipole repeller 

	
Today,	 in	 2024,	 observation	 has	 revealed	 the	 existence	 of	 a	 handful	 of	 similar	 large	
voids.	No	theory	has	been	proposed	to	explain	their	existence.	
	
A	few	years	later,	the	first	images	from	the	JWST	appeared.	They	caused	a	panic	among	
the	scientific	 community,	as	 the	 title	of	 the	reference	 [14]	 suggests.	Successive	 images	
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show	that	barred,	fully-formed	spiral	galaxies,	harboring	stars	that	are	already	old,	exist	
at	 an	 epoch	 (prior	 to	 the	 first	 five	 hundred	million	 years)	where	 the	 standard	model	
cannot	place	them.	Within	this	model	framework,	it	is	necessary	to	assign	parameters	to	
dark	matter	 that	 allow	us	 to	model	 the	 birth,	 first	 of	mini-galaxies,	 and	 then,	 through	
their	accretion,	of	galaxies	as	we	observe	them	today.	What	slows	down	this	formation	
by	gravitational	instability	is	the	fact	that	any	accretion	leads	to	the	heating	of	matter	by	
compression.	This	thermal	energy,	resulting	from	the	conversion	of	gravitational	energy,	
must	be	able	to	be	evacuated	by	radiation.	But	for	an	object	of	radius	R,	the	amount	of	
heat	to	be	evaluated	is	the	cube	of	this	radius,	while	its	radiator,	its	surface	area,	is	the	
square	of	R.	 So	cooling	 time	 increases	with	mass.	 So	 it	was	 thought	 that	mini-galaxies	
would	have	to	 form	first,	as	these	would	merge	to	produce	the	more	massive	galaxies.	
We	therefore	expected	to	find	a	mass	of	mini-galaxies,	not	 fully-formed,	adult	galaxies,	
for	the	youngest,	high-redshift	objects.	
	
By	focusing	on	the	analysis	of	the	weak	fluctuations	observed	in	the	CMB,	the	specialists	
had	 deduced	 a	 spectrum	 of	 these	 fluctuations,	 attributed	 to	 a	 gravito-acoustic	
mechanism.	 	 The	modeling	 of	 these	 fluctuations	 was	 based	 on	 a	 choice	 of	 numerous	
parameters	of	different	kinds,	linked	among	other	things	to	the	invisible	components	of	
the	 universe.	 Among	 these	 choices	 was	 the	 value	 assigned	 to	 Hubble's	 constant.	 The	
curve	 fit	 required	 a	 value	 of	 67	 kms-1	Mpc-1.	 However,	 the	 value	 deduced	 from	direct	
measurements	is	different:	70	kms-1	Mpc-1.	
	
Since	this	phenomenon	was	first	demonstrated,	it	has	been	known	as	Hubble	tension.	A	
new	element	of	disagreement.		

	
Observation	constantly	provides	new	elements	that	the	standard	model	cannot	account	
for.	 	 In	2022,	a	method	based	on	MgII	absoption	of	 the	 light	emitted	by	quasars	 in	the	
background	revealed	an	immense	arc	of	galaxies	[15]	and	galaxy	clusters	at	z	=	0.8,	at	a	
distance	 of	 three	 and	 a	 half	 billion	 light-years.	 In	 2024,	 these	 same	 researchers	
discovered	an	immense	ring	[16]	1.3	billion	light-years	in	diameter,	which	they	named	
the	 Big	 Ring,	 located	 9.2	 billion	 years	 away.	 No	 explanation	 for	 the	 existence	 of	 such	
formations	has	yet	been	found.	
	
When	the	scientific	community	is	confronted	with	a	problem,	it	 immediately	comes	up	
with	a	new	word.	Inflation	leads	to	the	word	inflaton.	A	very	good	example	can	be	found	
in	an	article	published	in	2021	by	the	prestigious	English	magazine	Monthly	Notice.	 In	
this	 article,	 the	 essential	 component	 of	 the	 hypermassive	 object	 at	 the	 center	 of	 the	
Milky	 Way	 is	 named:	 a	 compact	 mass	 of	 ...	 darkinos!	 This	 practice	 is	 actually	 quite	
common.	In	1964,	when	the	mathematician	proposed	extending	the	cosmological	model	
to	 a	 five-dimensional	 space	 [18],	 his	 work	 revealed	 an	 unknown	 scalar.	 It	 was	
immediately	given	a	name.	It's	the	dilaton!	
	
Today,	we're	faced	with	a	wide	range	of	problems.		
	

We	pointed	out	the	conflicts	between	the	Standard	Model		
and	observations	with	the	color	brown.	
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Some	suggest	that	the	laws	of	physics	are	different	in	these	great	empty	regions.	Voices	
are	beginning	to	be	raised	suggesting	a	possible	paradigm	shift.	If	we	are	to	opt	for	such	
a	change,	the	new	model	must:		
	

-	 Provide	 alternative	 explanations	 for	 all	 the	 phenomena	 for	 which	 the	
standard	model	provided	an	explanation.	We	indicate	these	points	in	blue.		
	
-	Account	for	phenomena	that	defeat	the	standard	model.	We'll	mark	these	
points	with	red.		

	
Let's	list	them:	
 

- The absence of observations of cosmological antimatter 
- The nature of the invisible components of the universe 
- The reason for the non-observation of these same components 
- The explanation for the existence of large cosmic voids.  
- The early birth of stars and galaxies 

 
Add: an explanation, other than inflation, for the extreme uniformity of the CMB.  
 
 
3 – A system of two coupled field equations.  
 
The geometric paradigm of general relativity assimilates the universe to a hyperbolic 
manifold, endowed with a metric . This universe contains curvatures that are reflected in 

the existence of a tensor field . Particles with mass then follow the non-zero geodesics 

derived from this metric  . Photons follow zero-length geodesics. The whole is the 

solution of a field equation: 
 

(1)                                                         

 
Its origins lie in an action: 
 

(2)                                                             

 
   is then the Ricci scalar and  the matter Lagrangian. By differentiating, , we 

introduce the matter tensor  through : 

 

(3)                                                      

 

 
gµν

 
Rµν

 
gµν

 
Rµν − 1

2
R gµν + Λgµν = χTµν

 
A = R + Lm( ) −g

D4∫ d4x

 R  Lm  δA = 0

 
Tµν

 

1
−g

δ( −g Lm )
δgµν = − χ Tµν
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In the Janus model, the manifold is equipped with two metrics  and  . Its points are 

identified by coordinates  common to both populations.  

The action is: 
 

(4)                                        

 
With   . The différenciation gives : 
 (5)  

 

 
 We see that we have two Lagrangians of matter, and therefore a priori two types of matter. 
Posing :  

(6)                                                    

 

(7)                                                     

 

  (8)                                                    

 
 

(9)                                                       

  Whence the system :  
 

(10a)                                                        

 

(10b)                                                        

 
   and  are the determinants of the two metrics and . The tensors and 

translate the way these two materials m and   behave under the effect of the gravitational 

 
gµν  

gµν

	 x°,u ,θ ,ϕ{ }

 
A = R + Lm + λ( ) −g + R + κLm + κλ( ) −g⎡

⎣
⎤
⎦D4∫ d4x

	κ = ±1

 

δA = δR
δgµν +

R

−g

δ −g
δgµν + 1

−g

δ( −g Lm )
δgµν + 1

−g

δ( −g λ)
δg(+ )µν

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥D4∫ −g δgµνd4x

+ δR
δgµν +

R

−g

δ −g
δgµν + κ

−g

δ( −g Lm )
δgµν + κ

−g

δ( −g λ)
δgµν

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥D4∫ −g δgµνd4x

 

1
−g

δ( −g Lm )
δgµν = − χ Tµν

 

1
−g

δ( −g Lm )
δgµν = − χ Tµν

 

1
−g

δ( −g λ )
δgµν = χ τµν

  

1
−g

δ( −
!
g λ )

δgµν = χ τµν

 
Rµν −

1
2

R gµν = χ Tµν +
g
g
τµν

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
Rµν −

1
2

R gµν = χκ Tµν +
g
g
τ µν

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 g  g  
gµν  

gµν  
Rµν  

Rµν

 m
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field acting on them. The second members of both equations represent the sources of these 
fields.  
 
The gravitational field acting on the particles of matter will be the sum of two source terms:  
 
-  will be the source of the field acting on these particles, emanating from particles of the 

same nature.  
 
In fact, we know that the source of the field is not the volume density of matter, but the 
volume density of energy . Added to this is a second density, pressure . In mixed 
notation, adding the assumption that this medium behaves like a perfect fluid, this tensor 

 is written as 

(11)                                                      

with :  

(12)                                                                       

 
Where the thermal agitation velocity  <v>  <<  c  in a Newtonian approximation. 
 

The second term  represents the contribution of the masses to the 

gravitational field acting on the masses . The tensor  will be referred to as an 

interaction tensor, and the scalar  will reflect an apparent mass effect. It will be 

assumed that :  
(13)                                                                         
 
Similar situation for terms  and  with :   

(14)                                                                          
 
 
4 – Laws of force.  
 
We will now assume that the masses  are of the ordinary type and that the masses  are 
negative. 
 
Let's consider a region of space where there is a concentration of masses of type , to the 
exclusion of masses of type . The system becomes : 

 
Tµν

 ρc2
 p

	T µ
ν

	

T µ
ν =

ρc2 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

	
p= ρ<v2 >

3

 
Tµν +

g
g
τµν

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	m τµν

 

g
g

	τ o
o = ρ c2

	T µ
ν τµ

ν

	τ o
o =ρc2

	m 	m

	m
	m
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(15a)                                                        

 

(15b)                                                        

 
Equation (15a) can then be identified with Einstein's equation, without the cosmological 
constant. As  the conclusion is that positive masses attract positive masses.  

 
The direction of the force translating the action of the masses  on a test-mass  

will depend on the sign of . As , if :  
 
- Positive masses attract negative masses.  
 
- Positive masses repel negative masses.  
 
 Now consider a region where the field is created by a concentration of negative mass. The 
system becomes : 

(16a)                                                        

 

(16b)                                                        

 
Equation (16a) confirm us to the conclusion that negative masses repel positive ones.   Since

  the direction of action of one mass  on another   depends on the 
sign of .  
 
- Negative masses repel negative masses.  
 
- Positive masses attract negative masses.  
 
If we opt for and put two masses  and and together, the positive mass 
runs away, pursued by the negative mass. Both masses accelerate uniformly, but without 
energy input, since the kinetic energy of the negative mass is itself negative. This is a 
violation of the action-reaction principle. This is the runaway effect. 

 
Rµν −

1
2

R gµν = χTµν

 
Rµν −

1
2

R gµν = χκ g
g
τ µν

	T00 =ρc
2 >0

	m >0 	m <0
κ 	τ o

o =ρc2 >0

	κ = +1 →

	κ = −1 →

 
Rµν −

1
2

R gµν = χ g
g
τµν

 
Rµν −

1
2

R gµν = χκ Tµν

	τ o
o = ρ c2 <0 	m <0 	m <0

κ

	κ = +1 →

	κ = −1 →

	κ = +1 	m >0 	m <0
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Fig.3 : Runaway effect. 
 
 
This same paradox was encountered when we tried to introduce negative masses into the 
general relativity model [15], which had a single metric. But in this new, bimetric model, the 
choice  allows us to eliminate it, thus obtaining the system of two coupled field 
equations of the Janus Cosmological Model (JCM).  
 

(17a)                                                        

 

(17b)                                                        

 
 
5 – Bianchi conditions.  
 
From the metrics  and  we can create the two covariant derivation operators: 

 
(18)                                                                           
We get :  

(18a)                                                                   

 

(18b)                                                                   

Thus we must have  : 
(19a)                                                                      

 

	κ = −1

 
Rµν −

1
2

R gµν = χ Tµν +
g
g
τµν

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
Rµν −

1
2

R gµν = − χ Tµν +
g
g
τ µν

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

	gµν 	gµν

∂ν ∂ν

 
∂ν Rµν −

1
2

R gµν

⎛
⎝⎜

⎞
⎠⎟
≡ 0

 
∂ν Rµν −

1
2

R gµν

⎛
⎝⎜

⎞
⎠⎟
≡ 0

 
∂νTµν = 0
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(20b)                                                                

 
(21a)                                                                      

 

(21b)                                                                

 
 
 6 – Time dependent exact homogeneous and isotropic solution.  
 
In this case, the covariant derivations are reduced to the derivation with respect to the 
chronological variable x°. 

(22)                                                                

 
Our symmetries lead to two FLRW metrics:  
 

(23a)                                 

 
 

(24b)                                   

 
The variable u is dimensionless.  and  are the space scaling factors of the two sectors. 
The ratios of the determinants then boil down to the function of the chronological variable 
x°:  
 

(25)                                                               

 
By introducing the metrics (23a) and (23b) into the system (17a) and (17b) we obtain an 
exact solution [19] such that:  
 
(26)                                                                     
 
The compatibility condition then appears:  
 
(27)                                                                 
 
This is nothing more than a generalized condition of energy conservation: 

 
∂ν g

g
τµν

⎛

⎝
⎜

⎞

⎠
⎟ = 0

 
∂νTµν = 0

 
∂ν g

g
τµν

⎛

⎝
⎜

⎞

⎠
⎟ = 0

	
∂ν = ∂ν = d

dx°

 
gµν = dx°2 − a 2 du2

1− ku2 + u2dθ2 + u2 sin2 θdϕ2⎡

⎣
⎢

⎤

⎦
⎥

 
gµν = dx°2 − a 2 du2

1− ku2 + u2dθ2 + u2 sin2 θdϕ2⎡

⎣
⎢

⎤

⎦
⎥

	a 	a

 
φ = g

g
= a3

a 3

	k = k = −1

	a
3ρc2 + a3ρ c2 =Cst
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(28)                                                             
 
And the exact solutions, for phases dominated by matter are:  
 

(29a)                                                  

 
 

(29b)                                                  

 
Here we find a way of conforming to an observational datum. All we have to do is assume 
that the overall energy of the system is predominantly negative. Under these conditions, 
equation (29a) accounts for the acceleration of the cosmic expansion. This is an alternative 
interpretation to that given by the model, which attributes the phenomenon to the presence 
of the cosmological constant. There is, however, an important difference: the standard 
model leads to an exponential acceleration, whereas in the interpretation provided by the 
Janus model, the acceleration tends towards zero at infinity. The expansion becomes linear 
at infinity. This solution has been successfully confronted with observational data [20].  
 
The Janus model is therefore profoundly asymmetrical. This has immediate consequences. 
At the moment of decoupling, the Jeans time characteristic of negative mass will be shorter: 
 

(30)                                                 

 
Under these conditions, this population will give rise to a regular set of spheroidal 
conglomerates that will confine the positive mass to the remaining space, giving it a lacunar 
structure. 
 
à The locations of these conglomerates will be marked by huge voids, the dipole repeller 
being one of them.  
 
à When this very large-scale structure is formed, the material will be compressed by the 
adjacent negative-mass conglomerates and will heat up.  But its geometry will allow 
radiative cooling to take place just as rapidly. Destabilized, the positive mass will 
immediately give rise to first-generation stars, clusters and galaxies, predating the first 
hundred million years. This phenomenon is consistent with the early presence of fully-
formed galaxies.   
 
 

 ρc 2a 3 + ρc 2a 3 = E = Cst

 
a2 d2a

dx°2 = − 4πG
c2 E

 
a 2 d2a

dx°2 = + 4πG
c2 E

 

tJ =
1

4πG ρ
<< tJ =

1
4πGρ
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Fig.4 : Rapid star and galaxy formation.  

 
Infiltrating between galaxies, the negative mass will exert a counter-pressure on the 
galaxies, ensuring their confinement. This explains the flatness of the rotation curves at the 
periphery, as well as the strong gravitational lensing effects, hitherto attributed to the 
presence of a dark matter halo.  
 
This negative mass replaces both dark matter and dark energy, giving us the following 
equivalent distribution:  
 
 

 
 

Fig.5 : Comparative mass distribution. 
 
 
7 – Stationary solutions in SO(3) symmetry and in the Newtonian approximation. 
 
The force laws we have obtained show a mutual exclusion of masses of opposite signs. This 
allows us to restrict ourselves to situations where only one of the two mass populations is 
present.  
 
 
7a – When only positive mass is present.  
 
The system becomes :  

(31a)                                                        

 
 
Rµν −

1
2

R gµν = χTµν
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(31b)                                                        

 

The coefficient  is a simple positive constant, which can be integrated into the 

interaction tensor .  The two conditions to be satisfied are 

(32)                                                                 

 
(33)                                                                 

 
Conditions (32) and (33) are obviously satisfied in a vacuum, outside the mass, where 

. With regard to the geometry inside this mass, we'll start by restricting 

ourselves to the case where velocities are low compared to the speed of light and curvature 
remains low, which corresponds to the Newtonian approximation. 
 

(34)                                                       

Posing : 
 
(35)                                                  
In other words:  
(36)                                                                             

 
where  is the Lorentz metric. Series expansion of the equation yields the Poisson 

equation.  
(37)                                                                             

 
and the TOV equation ([21] , [22], Tolman-Oppenheimer-Volkoff).  
 

(38)                                          

With :  

(39)                                                                     
 

  

We get : 

(40)                                                    
 

 
Rµν −

1
2

R gµν = − χ g
g
τ µν

 

g
g

τ µν

 
∂νTµν = 0

 
∂ν τµν = 0

 
Tµν = τµν = 0

	

εT µ
ν =

ερc2 0 0 0
0 −ε2p 0 0
0 0 −ε2p 0
0 0 0 −ε2p

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 ds2 = e(1+εν)dx°2 − e(1+ελ )dr2 − r2dθ2 − r2 sin2 θdϕ2

	gµν = ηµν + ε γ µν

ηµν

	εΔγ oo = − εχρ

 

εdp
dr

= − ( ερ + ε2 p / c2 )( εm + 4πεG ε2pr3 / c4 )c2

r ( r − 2ε2 G m / c2 )

 
εm(r) = 4 π r3ε ρ

3

 

ε2dp
dr

= − ε 2ρ mc2

r2 = − ε 2 Gρ
r2

4 π r3ρ
3
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In other words, the Euler equation, translating the equilibrium between the force of 
pressure and the force of gravity. 
Equation (33) then determines the form of the interaction tensor  .

 
We express it as a limited development corresponding to the Newtonian approximation: 
 Newtonienne : 
 

(41)                                              

 
We'll give the metric the form:  
 
 (42)                                   
 
The calculation then leads to a compatibility equation: 
 

(43)                               

 
 
which is not identical to (38), but is the same as Euler's equation (40) in the Newtonian 
approximation, i.e. when the terms in  are neglected. Bianchi's condition is therefore 
satisfied asymptotically.  
 
à Note that this Newtonian approximation corresponds to the vast majority of astrophysical 
phenomena.  
 
The geodesics outside the masses, the only ones that fall within the scope of our physics, i.e. 
that lead to measurements, are given by : 

(44)                                                                     

 

(45)                                      

We cannot measure the geodesics followed by negative-energy objects. But, in the case of 
this Newtonian approximation, these would derive from the metric :  
 

τµν

 

ε τ µ
ν =

ερc2 0 0 0

0 +ε2 p 0 0
0 0 +ε2 p 0
0 0 0 +ε2 p

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 ds 2 = e(1+εν )dx°2 − e(1+ελ )dr2 − r2dθ2 − r2 sin2 θdϕ2

 

ε2 dp
dr

= − ( ερ − ε2 p / c2 )( εm − 4πε2 G pr3 / c4 )c2

r ( r + 2εG m / c2 )

	ε2

	
εrs =

2εGM
c2

 

ds2 = 1−
ε rs
r

⎛
⎝⎜

⎞
⎠⎟

c2 dt2 − dr2

1−
εrs
r

− r2dθ2 − r2 sin2 θdϕ2
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(46)                                     

This confirms the fact that positive mass repels negative mass and negative-energy photons.  
 
This is the case of the solar system. The first equation is then identified with Einstein's, with 
no cosmological constant. In this way, the model satisfies the classic verifications of general 
relativity: Mercury's perihelion is advanced, and light rays are deflected by the mass of the 
Sun.  
 
But there are objects that fall outside this approximation. These are :  
 
- Neutron stars 
- Hypermassive objects located at the center of galaxies. 
 
In these cases, a Newtonian solution is not appropriate. The conditions of mathematical 
compatibility only apply to geometries inside masses. A The metric then has the non-
linearized form:  
 

(47)                                           

 
With :  

(48)
                                                              

 

It gives the  TOV equation:  

(49)                                            

 
with : 

(50)                                                                 

 
The metric giving the geodesics outside this hyperdense positive mass is the classical 
Schwarzschild outer metric:  
 

(50)

                               

 

 
We are then under no obligation to provide the expression of the interaction tensor . This 

form, after applying Newtonian approximation, should simply tend to the Euler equation 
(40). We can thus conclude that the system of field equations (10a) , (10b) can be used to 
describe the geometry inside and outside a positive mass, even a hyperdense one. 
 

 

ds 2 = 1+
ε rs
r

⎛
⎝⎜

⎞
⎠⎟

c2 dt2 − dr2

1+
ε rs
r

− r2dθ2 − r2 sin2 θdϕ2

 ds 2 = eνdx°2 − eλdr2 − r2dθ2 − r2 sin2 θdϕ2

 
m(r) = 4 π r3ρ

3

 

dp
dr

= − ( ρ + p / c2 )( m + 4πGpr3 / c4 )c2

r ( r − 2G m / c2 )

	
Rs =

2GM
c2

 

ds2 = 1−
Rs

r
⎛
⎝⎜

⎞
⎠⎟

c2 dt2 − dr2

1−
Rs

r

− r2dθ2 − r2 sin2 θdϕ2

τµν
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7b – When only negative mass is present.  
 

By integrating the constant  into the interaction tensor , the system of field 

equations becomes : 

(51a)                                                        

 

(51b)                                                        

 
This corresponds to the geometry of the dipole repeller, which is linked to the presence of a 
negative-mass spheroidal object. These are the first objects to form, immediately after 
decoupling. This phenomenon leads to spheroidal objects, which then heat up. The 
constituent atoms ionize, stopping the contraction. These objects can then be compared to 
immense protostars, whose cooling time exceeds the age of the universe..  
 
Objects at the center of large voids, of which the dipole repeller is an example, are immense 
spheroidal masses of atoms which, when brought to the ionization temperature of the 
medium, radiate in the red and infrared. These structures do not evolve. They constitute the 
objects of the negative world, which is devoid of stars, galaxies and planets.  
 

à Life is therefore absent from this negative world. 
 
These structures, on the other hand, fall within the Newtonian approximation. We'll need to 
construct the metric which alone lends itself to observation. To do this, we need to produce 
tensors that satisfy Bianchi's conditions for asymptotically zero covariant derivatives. We 
propose:  
 

(52)                                             

 

(53)                                             

 
Equation (51b) gives rise to the relationship:  
 

 

g
g

τµν

 
Rµν −

1
2

R gµν = χτµν

 
Rµν −

1
2

R gµν = − χTµν

 

ε T µ
ν =

ε ρc 2 0 0 0

0 +ε2 p 0 0
0 0 +ε2 p 0
0 0 0 +ε2 p

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 

ε t µ
ν =

ε ρc 2 0 0 0

0 −ε2 p 0 0
0 0 −ε2 p 0
0 0 0 −ε2 p

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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(54)                                 

 
while equation (51a) gives:  
 

(55)                                 

 
In the Newtonian approximation, these equations become compatible. We must then 
finalize the calculation of the metric . It comes with: 

(56)                       

 
We've used a lower-case letter to designate the Schwarzschild length , which, in the 
Newtonian approximation of weak curvatures, is small in front of r. On the other hand, the 

characteristic quantity  associated with the inner metric is larger than r. The outer metric 
is : 

(57)                                      

And the interior metric:  
 

(58)       

 
Since we are dealing with low curvatures, both can be extended into a series.:  
 

(59)                                      

  

(60)       

  
These two metrics are connected to the surface of the star  (assimilated to a sphere of 
constant density ). A prediction can be deduced from these two metrics. Sooner or later, 
astronomers will create a map showing the magnitudes of light emitted by objects located in 
the background of this dipole repeller zone.  
 
A weak but measurable negative lensing effect should then be apparent. The drawing below 
is for illustrative purposes only, and is an exaggeration of the effect.  
 

 
ε2 dp

dr
= − ( ερ + ε2 p / c 2 )( εm + 4πε2 G pr3 / c 4 ) c 2

r ( r − 2εG m / c 2 )

 

dp
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Fig.6 : Negative lensing due to negative mass 
 
As can be seen, the effect is greatest when the photons' trajectory skims the surface of the 
negative-mass star. It then tends towards zero when this trajectory passes through the 
center of the object.  
 
 à  The effect of magnitude attenuation on the shape of a ring is therefore significant, giving 
an indication of the diameter of this invisible object. 
 

 
 
 

Fig.7 : Prediction of the ring attenuation effect of the  
magnitude of background objects 

 
 
8 – Primordial antimatter 
 
We know that there is currently no model to account for the absence of observed primordial 
antimatter. Let's take up the idea proposed by Andrei Sakharov in 1967 ([23], [24] ,[25]). 
Starting from the violation of CP symmetry, he hypothesized the existence of a second 
universe, which he described as a Twin, linked to our own by the Big Bang singularity. 
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Fig.8 : 2D didactic image of the Sakharov universe. 
 

 
In this second universe, the violation of CP symmetry would be inverse. Overall, he proposes 
a CPT twin universe symmetrical with our own. In our own universe, matter is synthesized 
from quarks, while antimatter is synthesized from antiquarks. Sakharov therefore suggests 
that in our universe, the synthesis of matter from quarks would have been slightly faster 
than the synthesis of antimatter from antiquarks. The situation is reversed in the second 
universe.  
 
The composition of our universe would therefore be : 

 
- Matter 
- A corresponding remnant of antiquarks in the free state 
- Photons from annihilations. 
 

And in a second universe:  
 
- Antimatter  
- A corresponding remnant of quarks in the free state 
- Photons from annihilations. 
 

This is the only proposal currently in existence. In the Janus cosmological model [19], we 
begin by exploiting one of the essential results of [26], chapter XIV, equation (14.66): the 
inversion of time goes hand in hand with the inversion of mass and energy. In the Janus 
cosmological model, we begin by identifying the contents of the Sakharov twin universe as 
negative-mass antimatter, associated with a corresponding remnant of negative-energy 
quarks and a population of negative-energy photons. This negative-mass antimatter is 
merely the image of our own, with mass changing sign. We can therefore say:  
 
à The invisible components of the universe are negative-mass antihydrogen and antihelium. 
Their invisibility is explained by the fact that they emit photons of negative energy, which 
cannot be captured by our observational instruments.  
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à The use of dynamical group theory [19], applied to the Janus model (Janus group), 
indicates that there are two types of antimatter.  
 
- An antimatter with positive mass C-symmetrical to our own matter, which we can produce 
in the laboratory. 
 
- A second type of antimatter, PT-symmetrical to our own matter, found between galaxies 
and in immense conglomerates of negative mass.  
 
à As predicted by the Janus model, and confirmed by experience, antimatter created in the 
laboratory behaves like ordinary matter, in the Earth's gravity field, and “falls down”. 
 
 
9 – Quantum mechanics and negative energy states.  
 
à As already pointed out in [19] , the non-existence of negative energy states is just one of 
the postulates of quantum field theory. We translate this by assuming a priori that the time-
reversal operator T must be antilinear and antiunitary. By freeing itself from this constraint, 
the Janus model suggests a necessary extension of Quantum Mechanics to these negative 
energy states, as outlined in ([27], [28]).  

 
à This “contradicts the CPT theorem”. But this is not a theorem, but an assertion based on 
the assumption that the T operator does not invert energy. The CPT motion symmetrical to 
that of a matter particle corresponds to the motion of its antimatter, affected by a time 
inversion..  
 
All attempts to quantify the gravitational field have so far been failures. Although no 
graviton model exists, this has not prevented legions of researchers from taking it for 
granted. Thus, in reference [17], the authors report, in addition to a mass spectrum of these 
gravitons, the existence of a gap between light and heavy gravitons.   

 
We conjecture that the key to quantifying the gravity field lies in integrating negative masses 
into the model. When we set out to quantize the electromagnetic field, a process that gives 
rise to the photon as an exchange particle, we take into account the shielding effect 
associated with the reaction of the vacuum, assimilated to a mixture of matter and 
antimatter. There's an analogy with kinetic plasma theory. The latter is managed using the 
Boltzmann equation, which has something in common with quantum mechanics in that it 
admits the existence of particles, but refrains from locating them individually, insofar as the 
velocity distribution function f is a probability of presence. The formalism involves integro-
differential operators whose eigenvalues are the effective cross-sections of collisions. To 
calculate these effective cross-sections, the force law is given as a function of the distance 

between the particles. Thus, a law in  leads to a constant value, which fits quite well with 

a “billiard ball” model of electrically neutral particles. Introducing an electric potential in , 

Newtonian, early theorists were in for a nasty surprise: the effective cross-section became 
infinite. 

	
1
r5

	
1
r
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It was the Dutch physicist P. Debye who provided the key. By acting on its environment, a 

charged particle caused a shielding effect, the potential becoming   where d is the 

Debye distance. Since then, the calculation of the integral giving the effective collision cross-
section has been limited to this d value.  With regard to the field created by an electrically 
charged particle, Quantum Mechanics also takes into account a shielding effect linked to the 
reaction of the vacuum to it. A vacuum then assimilated to a mixture of matter and 
antimatter. By analogy, we conjecture that managing a vacuum made up of a mixture of 
masses of both signs would lead to a similar shielding effect, with the characteristic length 
becoming the Jeans length, and that the infinities encountered in any attempt to quantize 
the gravity field with a single type of mass would then disappear.   
 
 
10 – Topology of the Janus Model.  
 
In the Janus Cosmological Model (JCM) [19], these two types of matter are made to interact, 
folding the Sakharov universe in on itself..  
 

 
 

Fig.9: Didactic 2D image of the Janus model. 
 
At this point, the singularity can be replaced by a tube connecting the two universe folds. 
 

	
1
r e

−r/d
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Fig.10 : Same thing without the « initial » singularity.  
 
 

à In this way, the Janus model makes the initial cosmological singularity disappear. 
 
But we could do more, i.e. start from a closed space-time, whose didactic 2D image is a 
sphere S2:  
 

 
Fig.11 : 2D didactic image of a closed universe 

 
à In this case, the space-time hypersurface, having the topology of an S4 sphere, is 
configured according to the two-sheet covering of a P4 projectf, which creates this PT-
symmetry between adjacent sheets. The Big Bang and Big Crunch singularities then coincide, 
and once again, by replacing them with a tube, these singularities disappear and the object 
becomes the two-sheet covering of a four-dimensional Klein bottle. The universe undergoes 
a moment of maximum extension, then contracts.  
 
à This topology does away with the question of a “pre-Big Bang” and “post-Big Crunch” 
universe. The universe is not “created”, it “is”. 
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11 – Galaxy model. 
 
Galaxies are collections of masses orbiting both in their own gravitational field and in the 
field produced by their negative-mass surroundings.  
 
To date, only semi-empirical models of galaxies exist. A mathematically correct model should 
be based on an exact solution of the Vlasov equation. In this respect, we only have 
S.Chandrasekhar's exploitation [31]	of the solution represented by the spherical Maxwell-
Boltzmann distribution function, where Log f is a spherical polynomial as a function of the U, 
V, W components of the residual velocity, the astrophysical analogy of the thermal agitation 
velocity. This model has been proposed to describe spheroidal objects such as globular 
clusters. But one of the difficulties is that the mass of such structures is infinite. An exact 
elliptical solution was proposed in the 1970s ([29],[30]), also leading to infinite mass. The key 
assumption concerned the shape of the velocity ellipsoid, hereafter in an axisymmetric 
system.   

 

 
 

Fig.12 : Extract from reference [30]. Velocity ellipsoid. 
 
The Maxwell Boltzmann solution, with C denoting the residual velocity vector, is: 
 

(61)                                                        

 
In steady state, the elliptical solution is: 
 

(62)                                 

 
Constructing the solution then involves determining the functions H ,  and . In the 
diametral plane, the major axis of the ellipsoid points to the center of the system. At this 
point, the ellipsoid becomes a velocity sphere. The solution shows the evolution of the 
ellipsoid's axes as a function of position. We find that the major axis is constant, while the 
transverse axes, which are equal in the diametral plane, tend towards zero at infinity.  Thus, 
in this plane, at a distance r from the center, we obtain a velocity ellipsoid whose major axis 

	
Logf =ϕ(r)− mC
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2kT
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points towards the center of the galaxy. Details of these calculations can be found in [29]. 
This aspect is consistent with the only measurement available, namely the determination of 
the velocity ellipsoid for the population of stars in the vicinity of the Sun, whose major axis 
tends approximately towards the galactic center and whose equal transverse axes have 
values half that of the galactic center.   
 

This is the beginning of the confirmation of the model.  
 
The density is then obtained by solving Poisson's equation numerically. But with a single 
population, the galaxy's total mass tends towards infinity. This mass becomes finite if the 
galaxy is surrounded by a distribution of negative mass, obeying a second Vlasov equation, 
where the distribution function is assumed to be of the Maxwell Boltzmann type. This work 
is currently under development.  
 
There is another aspect of galactic dynamics. Specialists in spiral structure are still looking for 
the mechanism that would allow it to maintain itself.  The Janus model shows that perennial 
spiral structures can be obtained, reflecting the way galaxies continuously transfer energy 
and angular momentum to their negative-mass surroundings. In collisional environments, 
transport occurs from close to close, via collisions. This type of dissipative phenomenon 
cannot arise in a non-collisional system. Instead, it takes place via gravity waves, which 
manifest themselves both within the galaxy and in its negative-mass environment. 
Simulations have shown that barred spiral formations can be maintained for up to 40 
revolutions [16]. 
 

 
 

Fig.13 : Loss of angular momentum. Numerical simulation [20] 
 
à The Janus model is therefore the only one that explains the origin of the galactic spiral 
structure as the manifestation of a dissipative density-wave phenomenon. 
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12 – Conclusion.  
 
Cosmology and astrophysics are currently facing a major crisis. Over the last five decades, 
specialists have attempted to integrate new observational data by adding two ad hoc 
components of unknown nature to the model - dark matter and dark energy - to form a new 
standard model. In recent years, however, other elements have emerged that the standard 
model is no longer able to account for. Essentially, the existence of huge voids in the large-
scale structure, and the early appearance of galaxies and first-generation stars. Perhaps it's 
time, not to reject a new creation that has enabled mankind to take a fresh look at the 
universe, bringing with it so much richness, but to deploy it even more widely, opening the 
way to even more enlightening discoveries.. 
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