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Abstract9

Bacteriophages, or phages (viruses of bacteria), play significant roles in shaping the diversity of
bacterial communities within the human gut. A phage-infected bacterial cell can either immediately
undergo lysis (virulent/lytic infection) or enter a stable state within the host as a prophage (lysogeny)12

until a trigger event, called prophage induction, initiates the lysis process. We develop an approach
based on a model structured in terms of time since bacterial infection. We derive important threshold
parameters for the asymptotic dynamics of the system and demonstrate that the model’s qualitative15

behavior can range from the extinction of all bacterial strains to the persistence of a single strain
(either lysogen or non-lysogen bacteria) or the coexistence of all strains at a positive steady state. We
highlight the existence of critical induction rate values that lead to the coexistence of all states through18

periodic oscillations. We also conduct a global sensitivity analysis for an effective bacterial clearance. In
scenarios where antibiotics are not sufficiently effective, we identify four key phage parameter traits: (i)
the phage induction probability, describing the capacity of prophages to be induced, (ii) the probability21

of absorption, describing the phages’ ability to invade susceptible bacteria, (iii) the reproduction number
of susceptible bacteria in the absence of antibiotics, and (iv) the latent period, describing the time since
absorption. The obtained results emphasize the effective therapeutic potential of selected phages.24

Keywords: Within-host age structured model; Nonlinear dynamical systems; Antibiotic-phage
combination treatments; Bifurcation analysis.

1 Introduction27

Antimicrobial resistance (AMR) is a worldwide major crisis [1]. The lack of effective treatments to
control pathogenic vibrios resistant to antibiotics has led to the exploration of new alternatives. One of
the most promising options is the antibiotic-phage combination treatment. Indeed, including antibiotics in30

experimental phage treatments could be relevant for reasons of expediting regulatory approval for phage
therapy and phages have been used in combination with antibiotics in various published clinical case
studies [4, 32, 37]. Phage infections can lead to lysis and death of the infected bacteria, and new infections33

by progeny virus particles can drive down bacterial populations leading to endogenous oscillations in
population densities [21]. However, for many bacteriophages, lysis is not the only possible infection
outcome, because beside lytic phages, there is another type refer to as temperate phages. Infection by36

temperate bacteriophages such as phage λ, µ, and P22 can lead to cell lysis or lysogeny. Lysogenic
conversion refers to the integration of a temperate phage into the bacterial genome and forms a prophage.
As a genetic material, prophage might constitute up to 20% of the bacterial genome, with variation39

between species and strains. These prophages propagate vertically together with bacterial cell division
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and induce spontaneously to enter the lytic cycle to form new bacteriophage particles either spontaneously
or under the influence of various inducers. These new phages can then lyse or lysogenize other susceptible42

non-lysogens, thereby restarting the process and impacting the competition between lysogens and non-
lysogens [5].

Small intestines are highly polluted by phages. One estimates that 1015 phages reside in the human45

gut, which accounts for approximately 108-1010 phages per gram of human stool depending on the
extraction method used [8, 23]. In the human gut, phages are capable to eradicate bacterial populations
by lysis (virulent infection), but can also carry out horizontal gene transfer (HGT) through prophage48

integration (lysogenic infection). The acquisition of new genes provided by prophage can be favourable
to the bacterial host with benefits including improved colonization of the gut, virulence factors, improved
stress tolerance, biofilm formation, motility, or immunity in the case of prophages [10, 13]. Whenever gut51

commensals acquire genes conducive to virulence, they can evolve to become pathogens, thus, phages can
contribute to the spread of virulence and disease development in the human gut. Indeed, prophages or
phage genes have been detected in many pathogens. A classic example of this is some nonpathogenic E.54

coli strains residing in the human gut, but, which through the acquisition of phage-encoded Shiga toxins,
can evolve into pathogens [13, 15, 25, 27]. These complex relationships between phages and their bacterial
hosts in the human gut urge us to investigate the following research questions: (i) What could be the57

impact of lysogeny on the success of antibiotic-phage synergy therapy? (ii) If antibiotics are ineffective,
what could be the most influential phage quantitative traits parameters to eradicate the infection ?

Several models have been developed to study the dynamic of phages and bacteria in the presence of60

the antibiotic and phage therapies (eg., [12, 19, 28]). In [28] authors developed a nonlinear population
dynamics model of combination therapy that accounts for the system-level interactions between bacteria,
phage, and antibiotics for in vivo application given an immune response against bacteria. In [19], authors63

derived a phage–antibiotic model to study the competition synergy between temperate and chronic phages.
We extend previous works by explicitly tracking the ”age” of the infected cell to accurately account for
the delayed lysis and burst phenomenon of infected bacteria. The model proposed here includes two66

types of bacterial strains: susceptible bacteria (non-lysogens), which are not infected by a phage, and
lysogens, which are infected by a temperate phage and transmit the prophage to their offspring through
vertical transmission. Furthermore, an in-depth asymptotic analysis of the model’s steady states has69

been conducted based on several threshold parameters, including the reproduction number of susceptible
bacteria (TS), the reproduction number of lysogen bacteria (TL), the reproduction number of phages
within an entirely susceptible bacterial population (RS

0 ), and the reproduction number of phages within72

an entirely lysogen bacterial population (RL
0 ). Through a precise analysis, we additionally highlight the

existence of a Hopf bifurcation, which gives rise to periodic solutions around the positive steady state
(ie., with the persistence of both bacterial strains). A global sensitivity analysis has been conducted to75

identify the most influential phage and antibiotic quantitative traits for effective bacterial clearance.
The manuscript is organized as follows. The model description as well as parameters are presented

in Section 2. In Section 3, we introduce the main results of the manuscript. These include the existence78

of a globally defined semiflow of the proposed model, the asymptotic stability of the model’s stationary
states, an analysis of the Hopf bifurcation around the positive stationary state, and the sensitivity analysis
results. Those results are then discussed in Section 4. Finally, Section 5 is devoted to the detailed proof81

of the main results of the manuscript.

2 The mathematical model

We derive in this work a dynamical model of pathogen bacteria within the host taking into account84

the ingestion of both phages and antibiotics for therapeutic purposes. The basic model of phages and
bacteria has been studied in several studies (eg., [5, 11, 26, 27, 31]) without considering the effect of
external interventions. Additionally, we assume that the antibiotic dynamics occur rapidly and reach a87

steady-state concentration denoted by C.
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At all time t, P (t) is the density of phages within the body. During the antiobitic-phage therapy,
bacterial population splits into three classes, namely: Susceptible/non-lysogen bacteria (S(t)), lysogen90

bacteria (L(t)) and lytic fated infected bacteria (I(t, ·)). Additionally, we track the time since phage
absorption using the continuous variable τ , such that I(t, τ) represents the population size of lytically
infected bacteria, which have been infected by phages since time τ . Therefore, at any time t, the quantity93 ∫∞
0 θµ(τ)I(t, τ)dτ represents the total number of phages produced in lytic-fated cycle, where θ denotes

the average number of phages produced after the burst and µ(τ) represents the mortality rate of infected
bacteria τ -time post infection. In our modeling framework, the action of antibiotics occurs at the level of96

bacterial replication (growth of bacteria). We then set by, r(C) the growth rates of susceptible bacteria
and lysogen bacteria, such that r(0) > 0, and as the antibiotic concentration increases, the reproduction
rate approaches 0. Consequently, the antibiotic’s effect is bacteriostatic. Similarly, susceptible, lysogen99

and lytic fated bacteria are eliminate by immune system at the rate ν. Susceptible bacteria are infected by
phages at rate β (absorption rate). A proportion (π) of absorbed bacteria moves to the lytic-fated bacteria
class, while the remainder (1 − π) moves to the lysogens class. We denote α as the rate at which lysogen102

bacteria are induced into lytic fated bacteria. Overall, phages are characterized by several quantitative
traits introduced above through parameters β, α, θ, and µ. We then denote the phage quantitative traits
parameters by P = (β, α, θ, µ). Finally, we schematically illustrate the phage-bacteria interactions in105

Figure 1. The model within the human host reads as :

Ṡ(t) = r(C)S(t)W (S(t) + L(t)) − βS(t)P (t) − νS(t),

L̇(t) = r(C)L(t)W (S(t) + L(t)) + (1 − π)βS(t)P (t) − (ν + α)L(t),

(∂τ + ∂t)I(t, τ) = −(ν + µ(τ))I(t, τ),

I(t, 0) = πβS(t)P (t) + αL(t),

Ṗ (t) =

∫ ∞

0
θµ(τ)I(t, τ)dτ − βS(t)P (t) − δP (t).

(2.1)

The function W accounts for the regulation factor of the bacteria growth. We assume that W is continuous
and decreasing. We assume that W is continuous, decreasing and there exists w0 (either a positive constant108

or +∞) such that
W([0, w0)) = (0, 1]. (2.2)

Such a function encompasses the classical logistic growth,

W(x) = 1 − κx, (2.3)

or functions of the form111

W(x) = (1 + x)−κ , (2.4)

with κ a positive constant.

3 Main results

3.1 Preliminary remarks and assumptions114

This section is devoted to some preliminaries including the abstract formulation of Model (2.1). We will
make use of the following quite general assumption.

Assumption 3.1 The function W satisfies (2.2). Parameters π ∈ (0, 1), and δ, θ, β, ν, r, α are positive117

constants. The function µ ∈ L∞
+ (0,∞).
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State variables Units

S: Susceptible/non-lysogen bacteria density CFU/g
L: Lysogen bacteria density CFU/g
I: Lytic fated infected bacteria density CFU/g
P: Phages density CFU/g

Variable parameters Range Value Source

Aeff : Antibiotics efficiency 0-1 {0.01, 0.15, 0.75, 0.95}
Pind : Induction probability 0-1 {0.01, 0.15, 0.75, 0.95}
Pab : Phage absorption probability 0-1 {0.01, 0.15, 0.75, 0.95}
θ : Burst size of phage 5-400 {60, 200, 400} [19, 38]
T 0
S : Bacteria reproductive number without any intervention 1 − 100 {10, 50, 100} [14, 20]

π : Proportion of virulent cycle 0-0.9 {0.01, 0.15, 0.75, 0.95} [2, 19]
τ : Latent period 10-100 min {5, 10, 30} [2, 19]
β : Phage absorption rate calculated by (3.15)
ν : Bacteria elimination rate calculated by (3.15)
α : Induction rate calculated by (3.15)
C: Antibiotic steady-state calculated by (3.15)

Fixed parameters

r0 : Bacteria growth rate without antibiotic 0.1 − 3 1h−1 [14, 20]
C0 : Reduction rate of bacteria growth rate without
antibiotic effects by 50% 4mg/L Assumed
δ : Phages decay 0.1-3 1 h−1 [19]
1/κ : Bacteria carrying capacity with (2.3) 104 − 1010 107CFU/g [14, 20]
S(0) : Initial size of sensitive bacteria 104CFU/g [20]
L(0) : Initial size of lysogen bacteria 104CFU/g [20]
P (0) : Phage initial density 107CFU/g [20].

Parameter to be analysed Unit

Top: Time to achieve both non-lysogen
and lysogen clearance

CFU= colony-forming unit, ie., the number of cells.

Table 1: Variables and parameters for Model (2.1).
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S(t)

L(t)

I(t, τ ) P (t)

r(C)

r(C)

(1− πβS(t)P (t)

πβS(t)P (t)

α

∫ ∞

0
θµ(τ)I(t, τ)dτ δ

βS(t)P (t)

ν

ν

ν

Figure 1: Phage-bacteria interaction with both horizontal and vertical transmissions during antibiotic
phage combination therapy. The figure illustrates interactions, at any time t, between: susceptible or non-
lysogen bacteria, S(t), lysogen bacteria, L(t), lytic-fated infected bacteria since time τ , I(t, τ), phages,
P (t).

Next, let us denote by
X := R2 × L1(0,∞,R) × R,

the Banach space endowed with its usual product norm ∥ · ∥X. Let

X+ := R2
+ × L1

+(0,∞,R) × R+,

be the positive cone of X. Let’s rewrite (2.1) in the following form

Ṡ(t) = r(C)S(t)W(S(t) + L(t)) − βS(t)P (t) − νS(t),

L̇(t) = r(C)L(t)W(S(t) + L(t)) + (1 − π)βS(t)P (t) − (ν + α)L(t),

0 = −I(t, 0) + πβS(t)P (t) + αL(t),

∂tI(t, τ) = −∂τI(t, τ) − (ν + µ(τ))I(t, τ),

Ṗ (t) =
∫∞
0 θµ(τ)I(t, τ)dτ − βS(t)P (t) − δP (t).

(3.1)

Set A : D(A) ⊂ X −→ X the linear operator defined by D(A) = R2 × {0} ×W 1,1(0,∞,R) × R and120

A(φ(t)) =



−νS(t)

−(ν + α)L(t)

−I(t, 0)

−∂τI(t, .) − (ν + µ(τ))I(t, .)

−δP (t)


(3.2)
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Set G : D(A) −→ X a non-linear application defined by

G(φ(t)) =



r(C)S(t)W(S(t) + L(t)) − βS(t)P (t)

r(C)L(t)W(S(t) + L(t)) + (1 − π)βS(t)P (t)

πβS(t)P (t) + αL(t)

0L1∫ ∞

0
θµ(τ)I(t, τ)dτ − βS(t)P (t)


.

We also set X0 = D(A) and X+
0 = X0 ∩ X+. The abstract Cauchy problem associated to (3.1) is the

following 
dφ(t)

dt
= Aφ(t) + G(φ(t))

φ(0) = φ0 ∈ X+
0 .

(3.3)

3.2 Global well-posedness, dissipativity and positivity123

The abstract Cauchy problem (3.3) generates a unique globally defined and positive semiflow as follows.

Theorem 3.2 Let Assumption 3.1 be satisfied. There exists a unique strongly continuous semiflow{
Ψ(t) : X+

0 −→ X+
0

}
t≥0

such that, for all φ0 ∈ X+
0 , the map φ ∈ C([0,∞),X+

0 ) defined by φ = Ψ(.)φ0 is

a mild solution of (3.3) and satisfies for all t ≥ 0∫ t

0
φ(s)ds ∈ D(A), φ(t) = φ0 + A

∫ t

0
φ(s)ds +

∫ t

0
G(φ(s))ds.

Moreover, setting Ψ(t, φ0) = (S(t), L(t), 0, I(t, ·), P (t)), for all φ0 ∈ X+
0 . The semiflow {Ψ(t)}t≥0 is

such that126

(i) The following integrated formulation holds:

I(t, τ) =

(πβS(t− τ)P (t− τ) + αL(t− τ))D(τ), τ < t,

I(0, τ − t) D(τ)
D(τ−t) , τ > t,

(3.4)

where D(τ) = e−
∫ τ
0 (ν+µ(σ))dσ, is the probability of a bacteria to remain alive τ -time after infection.

(ii) The semiflow {Ψ(t)}t≥0 is bounded dissipative and asymptotically smooth in the sens that129

Bounded dissipative: there exists a bounded set B ⊂ X0 such that for any bounded set C ⊂ X0,
there exists ξ = ξ(C,B) ≥ 0 such that Ψ(t, C) ⊂ B for t ≥ τ .

Asymptotically smooth: for any nonempty, closed, bounded set C ⊂ X0, there exists a nonempty132

compact set J = J(C) such that J attracts the set {φ ∈ C : U(t, φ) ∈ C, ∀t ≥ 0}.

Recall that a nonempty set J ⊂ X is said to attract a nonempty set C ⊂ X if δX (U(t, C), J)) → 0 as
t → +∞, where δX (C, J) = supu∈C infv∈J ∥u− v∥X is a semi-distance on X .135

The existence and uniqueness of a semiflow associated with System (2.1) stated above is a quite
standard result and can be specifically addressed using an integrated semigroup approach and Volterra
integral formulation (eg., see [17, 24, 33, 36] and references therein). We refer to Section 5.1 for the138

detailed proof of Theorem 3.2.
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3.3 Stationary states and asymptotic behavior

This section is devoted to the threshold dynamics of the System (2.1). We show that Model (2.1) has141

many trivial stationary states as opposed to a positive stationary state where all the variables are positive.
Those stationary states lead to many stability regions that are precisely determined. Moreover, we show
that Model (2.1) exhibits a Hopf-bifurcation around the positive stationary state (the coexistence of all144

state variables) with the induction rate α as the bifurcation parameter.
Notice that the average number of susceptible (ie., non-lysogen) and lysogen bacteria produced by a

single bacterium during its entire lifespan are respectively quantified by

TS(C) =
r(C)

ν
, and TL(C) =

r(C)

ν + α
,

where we highlight the effect of the antibiotic concentration C. Let us also introduce the quantity

K =

∫ ∞

0
θµ(τ)D(τ)dτ.

Note that K is the total number of phages produced after the burst of infected bacteria.
We then have the following proposition147

Proposition 3.3 Let Assumption 3.1 be satisfied.

i) When TS(C) < 1, the bacteria free steady state O = (0, 0, 0, 0) is the unique steady state of Model
(2.1).150

ii) When TS(C) > 1, Model (2.1) has a purely susceptible steady state QS = (S0(C), 0, 0, 0) , with

S0(C) = W−1

(
1

TS(C)

)
. (3.5)

iii) When TL(C) > 1, Model (2.1) has a purely lysogen steady state QL = (0, L0(C), I0(τ), P0) , with

L0(C) = W−1

(
1

TL(C)

)
, I0(τ) = αD(τ)L0(C), P0 =

αKL0(C)

δ
. (3.6)

When W is a logistic function (2.3), we precisely have

S0(C) =
1

κTS(C)
(TS(C) − 1), and L0(C) =

1

κTL(C)
(TL(C) − 1).

In the case of a function of the form (2.4), we obtain

S0(C) = (TS(C))1/κ − 1, and L0(C) = (TL(C))1/κ − 1.

We refer to Section 5.2 for the proof of Proposition 3.3.153

By the next-generation operator approach (see, [6, 18]) we compute the average number RS
0 of phages

produced by one phage in an entirely susceptible bacterial population S0(C), given by (3.5), as (see Section
5.3 for details)

RS
0 (C,P) =

βS0(C)

βS0(C) + δ
K.

Here, we also emphasize the influence of phage quantitative traits through the set of parameter P =
(β, α, θ, µ) introduce previously. In the above expression of RS

0 , a total number of K phages is produced
by a single phage during its lifespan, and those phages are absorbed, by a susceptible bacteria population156

of size S0(C), with the probability βS0(C)/(βS0(C) + δ).
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Similarly, the average number RL
0 of new phages produced by an entirely lysogen bacterial population

L0(C), given by (3.6), reads

RL
0 (C,P) =

βKL0(C)

δ
.

Next, we provide the stability results of above steady states.

Theorem 3.4 Let Assumption 3.1 be satisfied. Then,159

i) The steady state O is is globally asymptotically stable when TS(C) ≤ 1, an unstable elsewhere.

ii) When TS(C) > 1, the steady state QS is locally asymptotically stable if and only if RS
0 (C,P) < 1.

iii) When TL(C) > 1, the steady state QL is locally asymptotically stable if and only if RL
0 (C,P) > 1.162

The prove of Proposition 3.4 is based on analyzing the spectral properties of the linearized semiflow
at steady states of System (2.1). We refer to Section 5.5 fore more details.

We now focus on the existence of positive steady state of Model (2.1). The following result holds.165

Proposition 3.5 Let Assumption 3.1 be satisfied. Then, Model (2.1) admits a unique positive steady
state, denote as Q∗ = (S∗, L∗, I∗(τ), P ∗), if and only if

TS(C) > 1, RS
0 (C,P) > 1, and RL

0 (C,P) < 1. (3.7)

Furthermore, we explicitly have

S∗ =

(
1

TL(C) −W∗
)
r(C)

βK
(
πr(C)

(
1

TL(C) −W∗
)

+ α(1 − π)
) , L∗ =

(
W∗ − 1

TS(C)

)
(1 − π)r(C)

βK
(
πr(C)

(
1

TL(C) −W∗
)

+ α(1 − π)
) ,

and

I∗(τ) =

(
W∗ − 1

TS(C)

)
r(C)

βK
D(τ), P ∗ =

(
W∗ − 1

TS(C)

)
r(C)

β
,

where W∗ := W(S∗ + L∗) ∈
(

1
TS(C) ,

1
TL(C)

)
is the unique solution of the equation below :

βK
(
πr(C)

(
1

TL(C) −W∗
)

+ α(1 − π)
)

((
1

TL(C) −W∗
)

+ (1 − π)
(
W∗ − 1

TS(C)

))(
1

W−1(W∗)

)
δr(C)

= 1.

The proof of the above proposition is appended in Section 5.2.168

We now turn to the local asymptotic behaviour of Model (2.1) around the positive steady state Q∗. In
this regard, we more precisely define the mortality rate µ of infected bacteria. Denote by ς > 0, the time
delay between phage adsorption and lysis. We assume that the rupture function µ(·) takes the following171

form

µ(τ) =

{
0 for ς < τ,

µ0 for ς ≥ τ.
(3.8)

For any spectrum point λ (with Re(λ) > −min{ν, δ}) of System (2.1), linearized around the positive
steady state Q∗, one has the following characteristic equation.174

p(λ, α) + q(λ, α)e−λς = 0, (3.9)
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where p(λ, α) and q(λ, α) are of the form

p(λ, α) = λ4 +

3∑
k=0

pkλ
k, q(λ, α) =

2∑
k=0

qkλ
k.

Moreover, pk(α) = p0k + TL(C)p1k, and qk(α) = q0k + TL(C)q1k, with coefficients pjk,s in R. Finally, any
solution of the form λ = iω (ω ∈ R) of the characteristic equation (3.9) around Q∗ is characterized by
any pairing (ω, α) satisfying177

Γ(ω, α) := ω8 + a6ω
6 + a4ω

4 + a2ω
2 + a0 = 0, (3.10)

and
Γ1(ω, α) := cosως −Q(ω, α) = 0, (3.11)

where Q = Q(ω, α) is a rational function defined by (5.21) and, ak,s in Section 5.6 together with the
coefficients depending (only) on pk,s and qk,s. We then have the following result :180

Theorem 3.6 Let Assumption 3.1 be satisfied. Assume that condition (3.7) for the existence of the
positive steady state Q∗ holds. Let (ωc > 0, αc > 0) such that condition (3.10)-(3.11) holds. Then, Model
(2.1) undergoes a Hopf bifurcation, at the positive steady state Q∗, for the critical value αc, whenever we
have

M :=(−3p3ω
2
c + p1)

[
p10 − p12ω

2
c + (q10) cosωcς + (q11ωc) sinωcς

]
+ (4ω3

c + 2p2)
[
p11ω0 + p13ω

3
c + (q11ωc) cosωcς − (q10) sinωcς

]
̸= 0.

Note that above condition ensures the transversality condition of the Hopf bifurcation theorem. We refer
the interested reader to Section 5.6 for the proof of Theorem 3.6.

Remark 3.7 In Theorem 3.6, the induction rate α is used as the bifuration parameter. However, one183

may equivalently used the delay parameter ς as a bifurcation parameter. Indeed, let ω0 a positive solution
of (3.10). By the equality (3.11), we can find a sequence (ςk)k=0,1,2... such that ∀α > 0,

ςk =
1

ω0
(arccos (Q(ω0, α)) + 2kπ) , k = 0, 1, 2..., (3.12)

and with the following transversality condition:186

4ω3
0 + k

3∑
k=0

akω
k−1
0 ̸= 0. (3.13)

Thus, under condition (3.13), there exist ςk defined in (3.12) such that Model (2.1) undergoes a Hopf
bifurcation around the positive steady state Q∗.

Figure 2 summarizes the qualitative analysis of Model (2.1) when TS(C) > 1. For the configuration189

where TS(C) ≤ 1, O is the unique steady state of Model (2.1) and is globally asymptotically stable.

3.4 Typical model simulation

For illustration purpose, we assume that the growth r(C) is such that

r(C) = r0

(
1 − C

C + C0

)
,

9



1

Figure 2: Qualitative analysis of Model (2.1) when TS(C) > 1. In the (RS
0 ,RL

0 )-plane the positive orthant
is divided into several regions. In each of them, plausible stationary states are illustrated, and stable
steady states are in red. The region (Ω0) is for the bistability of QS and QL.

where positive constants r0 and C0 represent the bacteria growth rate without antibiotic effects and192

the antibiotic concentration that reduces bacteria growth rate by 50%, respectively. Bacteria growth
regulation follows a logistic function as described in (2.3).

We now introduce the following quantitative parameters195

T 0
S =

r0
ν
, Aeff =

C
C + C0

, Pab =
βS(C)

βS(C) + δ
, and Pind =

α

α + ν
. (3.14)

The parameters mentioned above facilitate model parameterization. Specifically, T 0
S ∈ (1,∞), Aeff ∈

(0, 1), Pab ∈ (0, 1), and Pind ∈ (0, 1) respectively represent (i) the reproductive number of bacteria
without any intervention, (ii) the proportion of reduction in bacterial growth due to antibiotics, (iii) the198

probability of phage absorption by susceptible bacteria of size S(C) as introduced in Equation (3.5), and
(iv) the probability of prophage induction into the lysogenic cycle. With these parameters at our disposal,
which are of significant biological interest, (3.14) yields201

ν =
r0
T 0
S

, C =
C0Aeff

1 − Aeff
, β =

δPab

S(0)(1 − Pab)
, and α =

νPind

1 − Pind
. (3.15)

For simulated scenarios, while all other model parameters are assumed constant with their reference
values given in Table 1, parameters T 0

S , Aeff , and (ς, π, θ,Pind,Pab) are assumed to be variables. T 0
S

represents the initial bacterial growth capacity before any intervention, Aeff signifies the effectiveness of204

antibiotics, and the parameter set (ς, π, θ,Pind,Pab) are related to the phage therapy.
As indicated by Proposition 3.3 and Theorem 3.4, Model (2.1) can exhibit local asymptotic stability

around the bacteria-free steady state O, the purely susceptible steady state QS , or the purely lysogenic207

steady state QL. However, here we focus on the numerical simulations illustrating the Hopf bifurcation
phenomenon around the positive steady state Q∗ (Theorem 3.6). Figure 3 illustrates a possible critical
pairing (ωc > 0, αc > 0) given by the intersection of the level sets Γ(ω, α) = 0 and Γ1(ω, α) = 0. We210

then highlights the first bifurcation threshold value αc ∈ (0.557, 0.563). By (3.14), such a threshold
value αc of induction rate α is associated to a threshold value Pind

c ∈ (0.848, 0.849) of the probability of
prophage induction Pind. Finally, Figures 4 illustrate a transcritical Hopf bifurcation, ie., the appearance213

of a limit cycle which is stable for values Pind = 0.849 > Pind
c (Figure 4, B) and unstable for values

Pind = 0.848 < Pind
c, giving rise to the stable positive steady state Q∗ (Figure 4, A).
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Figure 3: This figure illustrates a possible critical pairing (ωc > 0, αc > 0) given by the intersection
of the level sets Γ(α, ω) = 0 and Γ1(α, ω) = 0. It highlights the first bifurcation threshold value αc ∈
(0.557, 0.563). Here, T 0

S = 10, Aeff = 0.3, (ς, π, θ,Pab) = (10, 0.1, 60, 6.6e−05), and other fixed parameters
are given in Table 1.
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Figure 4: Illustration of the Hopf bifurcation around the positive steady state Q∗. (A) Asymptotic
stability of the steady state Q∗ for Pind = 0.848 < Pind

c. (B) The appearance of periodic solution for
Pind = 0.849 > Pind

c. Here, T 0
S = 10, Aeff = 0.3, (ς, π, θ,Pab) = (10, 0.1, 60, 6.6e − 05), and other fixed

parameters are given in Table 1.

3.5 Global sensitivity analysis216

When treating bacterial infections with a combination of antibiotics and phages, one may wish to know the
situations in which using above interventions, as single or in combination, is effective in clearing bacteria
load. The model proposed here allow to quantitatively assess key parameters that should be controlled
to achieved effectiveness of interventions. Those parameters are T 0

S (the initial bacterial growth capacity
before any intervention), Aeff (the effectiveness of antibiotics), and the set of parameters related to the
phage therapy (ς, π, θ,Pind,Pab). We then perform a global sensitivity analysis of those parameters with
respect to the quantitative parameter Top defined as

Top : the minimum time from which, max(S(t),L(t)) < 10−20, for all t > Top.

Note that, Top represents the time for effective clearance of both susceptible (S) and lysogen (L) bacteria.
Global sensitivity analysis, as described by [29], quantifies the relative importance of parameters T 0

S ,
Aeff , and (ς, π, θ,Pind,Pab), by partitioning the variance of output variable Top, into those resulting from219

11



the main effects of the parameters and their higher-order interactions. The variation ranges for these
parameters are provided in Table 1. Sensitivity indices were estimated by fitting an ANOVA (Analysis of
Variance) linear model, which includes fourth-order interactions, to the simulation data. This ANOVA222

model fit well by explaining 98% of the variance. Overall, the sensitivity analysis results on the time
for effective clearance of both susceptible and lysogen bacteria (Top) indicates that (Pind, T 0

S ,Pab,Aeff)
are the fourth main parameters in this order (Figure 5). Those parameters are follows by parameters225

(ς, θ) accounting for the burst of infected bacteria. Finally, the parameter π have marginal effect on the
variability of Top.

π
θ

ς
Aeff

Pab

TS
0

Pind

% of variance explained

0 20 40 60 80 100

Main effect
Other interactions

Figure 5: Sensitivity indices of the time for effective clearance of susceptible and lysogen bacteria, Top.
The colored portions of the bars represent the main indices, indicating the effect of each factor alone. In
contrast, the full bars, which include both the colored and white parts, represent the total indices. The
white sections of the bars illustrate the effect of each factor in interaction with all other factors.
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Figure 6: Model dynamics without any antibiotics effect. Phage therapy is introduced at the model
positive steady state at time t = 0. Here we have, T 0

S = 10, Aeff = 0, (ς, π, θ) = (5, 0.5, 60), and other
fixed parameters are given in Table 1.

4 Conclusion and discussion228

We address the role of antibiotic-phage combination treatment on within host bacteria growth and the
influence of lysogeny on the success of phage therapy. Our approach is based on an age-structured
mathematical model accounting for the time since infection (Model (2.1)). Such a modeling framework231

allows a refined description of the cell lysis phenomenon. We first handle the global well-posedness of the
semiflow associated to System (2.1). We identify key threshold parameters for the asymptotic dynamics
of the system and demonstrate that the model’s qualitative behavior ranges from the extinction of all234

bacterial strains, to the persistence of a single strain, and the coexistence of all strains at a positive steady
state (Figure 2). These threshold parameters include: the reproduction number of susceptible bacteria
(TS), the reproduction number of lysogen bacteria (TL), and the reproduction number of phages (RS

0 , and237

RL
0 ). Moreover, when the rupture phenomenon of infected bacteria is as in (3.8), System (2.1) undergoes

a Hopf bifurcation around the positive steady state for some critical values of the induction rate (Figure
3 and 4).240

For parametrization purpose, we introduce quantitative parameters T 0
S ∈ (1,∞), Aeff ∈ (0, 1), Pab ∈

(0, 1), and Pind ∈ (0, 1) respectively representing (i) the reproductive number of bacteria without any
intervention, (ii) the proportion of reduction in bacterial growth due to antibiotics, (iii) the probability243

of phage absorption by susceptible bacteria, and (iv) the probability of prophage induction. A global
sensitivity analysis then highlights the main parameters impacting the time of effective bacterial clearance
Top (Figure 5). The sensitivity analysis indicates that (Pind, T 0

S ,Pab,Aeff) are the fourth main parameters.246

13



0 200 400 600 800

−
20

−
10

0
5

10

P
ab

 =
5%

D
en

si
ty

 (
# 

ce
lls

)

Pind =5%
(A)

S
L
P

0 200 400 600 800

−
20

−
10

0
5

10

Pind =50%
(B)

S
L
P

0 200 400 600 800

−
20

−
10

0
5

10

Pind =95%(C)

S
L
P

0 200 400 600 800

−
20

−
10

0
5

P
ab

 =
50

%
D

en
si

ty
 (

# 
ce

lls
)

(D)

S
L
P

0 200 400 600 800
−

20
−

10
0

5
10

(E)

S
L
P

0 200 400 600 800

−
20

−
10

0
5

10

(F)

S
L
P

0 200 400 600 800

−
20

−
10

0
5

P
ab

 =
95

%
D

en
si

ty
 (

# 
ce

lls
)

time (hour)

(G)

S
L
P

0 200 400 600 800

−
20

−
10

0
5

10

time (hour)

(H)

S
L
P

0 50 100 150

−
20

−
10

0
5

10

time (hour)

(I)

S
L
P

Figure 7: Same as in Figure 7 but with ς = 10.

The type of phages, whether purely lytic (π = 1) or temperate (π < 1), to be recommended for
effective phage therapy can also be discussed. For instance, purely lytic phages are strongly recommended
for phage therapy in [34]. However, the global sensitivity analysis shows that the parameter π (proportion249

of absorbed bacteria moving to the lytic-fated class) has a marginal effect on the variance of the time of
effective bacterial clearance Top (Figure 5). Therefore, the type of phage may not be crucial and allows
for the use of temperate phages. This result aligns with findings in [3], where the authors recommend252

temperate phage-antibiotic synergy to eradicate bacteria through depletion of lysogen bacteria.
Optimizing quantitative traits such as the probability of phage absorption by susceptible bacteria (Pab)

and the probability of prophage induction into the lysogenic cycle (Pind) can ensure effective bacterial255

clearance even without traditional antibiotic pressure. Consider a scenario where bacterial dynamics have
reached a positive steady state before any treatment. At time t = 0. a phage therapy is implemented in
the absence of any antibiotic effect (ie., Aeff = 0). When the time delay between phage adsorption and258

lysis is relatively short (ς = 5), Figure 6 illustrates that combining an intermediate effect of Pab with a
strong effect of Pind is sufficient to ensure effective bacterial clearance without any antibiotics (Figure 6,
F,I). With a relatively long delay between phage adsorption and lysis, a strong effect of both parameters,261

Pab and Pind, is necessary to ensure effective bacterial clearance (Figure 7). Moreover, increasing the
phage absorption probability (Pab) significantly reduces the growth capability of susceptible bacteria,
even when the induction probability (Pind) is marginal (Figure 6, A,D,G). However, when Pab is relatively264

low, moderate values of Pind can significantly decrease the growth of susceptible bacteria (Figure 6, A, B,
D, E). In contrast, if low Pab values are combined with high Pind values, there will be a slight reduction
in lysogenic bacteria growth. This slight decrease, however (which is not enough to ensure effective267

lysogenic bacterial clearance), can promote the persistence of both susceptible and lysogenic bacteria due
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to resource competition (Figure 6, C). The configuration remains unchanged when the time delay between
phage adsorption and lysis increases from 5 (as shown in Figure 6) to 10 (as shown in Figure 7).270

The above results emphasize the importance of selecting appropriate phages for therapeutic purposes.
The selected viruses should have a good absorption capacity, which primarily contributes to the reduction
of non-lysogen density (Figures 6A, D, G, and 7A, D, G). This aligns with findings from various studies273

in the field. For instance, in [2, 19], the results suggest that for effective phage therapy, phages with a
broader host range are desired to infect and kill the widest range of pathogen strains or related species
possible. Moreover, the time delay should be considered when developing phage protocols for controlling276

bacterial growth. Case F of Figures 6 and 7 clearly illustrates the importance of time delay. For short
delays, the strong effect of Pind and the intermediate effect of Pab clear the infection, whereas a long time
delay results in limit cycles around the positive steady state.279

Lysogens may persist when the induction probability is small. Since lysogen bacteria are already
infected by temperate phages (and thus immune to a second phage infection), ingestion of selected phages
with good absorption capacity and short time delay may not be sufficient for treatment. In Figures 6 and282

7, increasing Pab from 5% to 95% may not be enough to control the infection, even when the time delay
time is short. Achieving the non-persistence of lysogen bacteria is therefore a key target for treatment
success. Fortunately, in such a configuration, the infection can be effectively under control by increasing285

the induction probability (Figures 5, 6F, I, and 7F, I). This aligns with results from [3], which suggest
the use of inducers (such as acyl-homoserine lactones) to trigger the burst of lysogen bacteria.

The initial bacterial growth capability (T 0
S ) is essential when planning a phage therapy strategy. For288

instance, assume a configuration where the antibiotic effect is absent, and the phage quantitative traits
are very strong with Pab = Pind = 0.95%. In such a scenario, the outcome of the phage therapy will
depend on the initial bacterial size (Figure 8). While the designed therapy is successful for some values291

of T 0
S (Figure 8A, B), it fails for higher values (Figure 8C). Therefore, when designing a phage therapy,

either alone or in combination with antibiotics, it is important to take into account the initial bacterial
growth capability (or size).294

One limitation of the model proposed here is the absence of resistant bacteria to antibiotic and phage
prey. Our next challenge is to investigate on the impact of mutations due to resistance during antibiotic-
phage treatments. Some previous studies (eg. [16]) indicated that induction could be mainly associated297

with high temperature within the gut (intestine) environment. Consequently, induction is a random
phenomenon that can be considered a stochastic process. Another potential limitation is the lack of
the human immune system effect on the overall dynamics. A complete round-up will be to address the300

challenging modelling framework by combining antibiotics and phage-bacteria dynamics and the human
immune system in a single within-host mathematical model. This is particularly important within the
context of phage therapy as an alternative approach to reduce the emergence of antibiotic resistance.303

Furthermore, we assume that infected bacteria does not compete with non-lysogen and lysogen bacteria
for resources. Such assumption is questionable particularly in a configuration where lytic and infected
bacteria resist for an appreciable time before releasing phages.306

5 Proof of Main results

5.1 Proof of Theorem 3.2

The existence and uniqueness of a semiflow associated with System (2) is a quite standard result (eg.,309

[24, 33]), as well as the Volterra formulation (eg., [17, 36]).
For estimate (ii), let φ0 ∈ X0+; then

d

dt
(S(t) + L(t)) ≤ r(C)(S(t) + L(t))W(S(t) + L(t)) − ν(S(t) + L(t)),
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Figure 8: Model dynamics without any antibiotics effect and variable values of T 0
S . Phage therapy is

introduce at the model positive steady state at time t = 0. Here we have, Aeff = 0, (ς, π, θ) = (5, 0.5, 60),
and other fixed parameters are given in Table 1.

Recalling that W(w) ∈ (0, 1] for all w ∈ [0, w0), it follows that

S(t) + L(t) ≤

max
(
S(0) + L(0),W−1

(
ν

r(C)

))
if ν

r(C) ≤ 1

S(0) + L(0) if ν
r(C) > 1

that is

S(t) + L(t) ≤

max (S(0) + L(0), S0(C)) if TS(C) ≥ 1

S(0) + L(0) if TS(C) < 1

that is
S(t) + L(t) ≤ max

(
S(0) + L(0),W−1 (δ⋄)

)
,

with δ⋄ := min
(

1, 1
TS(C)

)
. Next, by setting B = S + L +

∫
I(τ)dτ , it comes312

Ḃ(t) ≤ η − νB(t),

with η = max
(
S(0) + L(0),W−1 (δ⋄)

)
. From where

B(t) ≤ max
{η
ν
,B(0)

}
. (5.1)

Finally, we similarly find that

P (t) ≤ max

{
θ∥µ∥∞

δ
max

(η
ν
,B(0)

)
, P (0)

}
. (5.2)

Therefore, the bounded dissipativity of the semiflow
{
U(t) : X+

0 → X+
0

}
t≥0

is a consequence of estimates315

(5.1) and (5.2).
To prove the asymptotic smoothness, let C be a forward invariant bounded subset of X0+. By the

results in [30], it is then sufficient to show that the semiflow U is asymptotically compact on the subset
C. Let us introduce a sequence of solutions (Sn, Ln, In, Pn)n that is equibounded in X0+ and a sequence
{tn}n such that tn → +∞. Since the sequences Sn, Ln, Pn, are uniformly bounded in the Lipschitz norm,
the Arzela-Ascoli theorem implies that, possibly along a subsequence, we can assume that the above
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sequence is such that Sn(t + tn) → S̃(t), Ln(t + tn) → L̃(t), In(t + tn) → Ĩ(t), and Pn(t + tn) → P̃ (t)
locally uniformly for t ∈ R. For the sequences {In}n, Denote Ĩn(t, ·) = In(t + tn, ·). Then, the Volterra
formulation (3.4) gives

Ĩn(t, τ) =

(πβSn(t− τ + tn)Pn(t− τ + tn) + αLn(t− τ + tn))D(τ), τ < t + tn

I(0, τ − t− tn) D(τ)
D(τ−t−tn)

, τ > t + tn

Since (Sn(t − τ + tn)Pn(t − τ + tn) + Ln(t − τ + tn))D(τ) converges locally and uniformly towards the
function (S̃(t− τ)P̃ (t− τ) + L̃(t− τ))D(τ) as tn → +∞, it comes

In(tn, ·) = Ĩn(0, ·) → (S̃(t− ·)P̃ (t− ·) + L̃(t− ·))D(·) in L1(0,∞,R).

From where the asymptotic smoothness of the semiflow Ψ holds. Finally, the above estimates show that
the semiflow Ψ is bounded dissipative, eventually bounded on bounded sets, and asymptotically smooth.318

5.2 Existence of steady states

At any steady state Q = (S∗, L∗, I∗(τ), P ∗) one has:

r(C)S∗W(S∗ + L∗) − βS∗P ∗ − νS∗ = 0, (5.3)

r(C)L∗W(S∗ + L∗) + (1 − π)βS∗P ∗ − (ν + α)L∗ = 0, (5.4)

dI∗(τ)

dτ
= −(ν + µ(τ))I∗(τ), (5.5)

I∗(0) = πβS∗P ∗ + αL∗,∫ ∞

0
θµ(τ)I∗(τ)dτ − βS∗P ∗ − δP ∗ = 0. (5.6)

Solving (5.5) gives
I∗(τ) = I∗(0)D(τ) = (πβS∗P ∗ + αL∗)D(τ). (5.7)

Putting (5.7) into (5.6) gives321

P ∗ =
K (πβS∗P ∗ + αL∗)

βS∗ + δ
. (5.8)

Set
W∗ = W(S∗ + L∗) then S∗ + L∗ = W−1(W∗).

From (5.3), if S∗ = 0, then (5.4), gives L∗ = 0 or L∗ = L0(C) = W−1
(

1
TL(C)

)
. From the properties of the

function W, the last equality holds only il TL(C) > 1.
If L∗ = S∗ = 0, then (5.7) and (5.8) give I∗(τ) = P ∗ = 0. Then the first steady state of (2.1) is324

O = (0, 0, 0, 0).
if S∗ = 0, and L∗ = L0(C), then (5.8) gives P ∗ = P0 = αKL0(C)/δ, (5.7) gives I∗(τ) = I0(τ) =

αL0(C)D(τ).327

Assume now that S∗ > 0, if L∗ = 0, then P ∗ = I∗(τ) = 0, and S∗ = W
(

1
TS(C)

)
. The latter holds only

if TS(C) > 1. For L∗ > 0,

P ∗ =
r(C)

β

(
W∗ − 1

TS(C)

)
, if W∗ >

1

TS(C)
. (5.9)

Putting (5.9) into (5.4) gives

(1 − π)S∗
(
W∗ − 1

TS(C)

)
=

(
1

TL(C)
−W∗

)
L∗

17



under the condition330

1

TS(C)
< W∗ <

1

TL(C)
. (5.10)

Looking for the existence of X∗ such that (5.10) holds,

S∗ =

(
1

TL(C) −W∗
)
L∗

(1 − π)
(
W∗ − 1

TS(C)

) . (5.11)

Putting (5.11) into (5.6) gives

L∗ =

(
W∗ − 1

TS(C)

)
(1 − π)r(C)δ

βπKr(C)
(

1
TL(C) −W∗

)
+ αβK(1 − π)

(5.12)

Putting (5.12) into (5.11), one has

S∗ =

(
1

TL(C) −W∗
)
r(C)δ

βπKr(C)
(

1
TL(C) −W∗

)
+ αβK(1 − π)

and

S∗ + L∗ =
r(C)δ

((
1

TL(C) −W∗
)

+ (1 − π)
(
W∗ − 1

TS(C)

))
βπKr(C)

(
1

TL(C) −W∗
)

+ αβK(1 − π)
.

Since, S∗ + L∗ = W−1(W∗) we have
Φ(W∗) = Ψ(W∗).

Where

Ψ(W∗) =

(
1

W−1(W∗)

)
r(C)δ

and

Φ(W∗) =
βπKr(C)

(
1

TL(C) −W∗
)

+ αβK(1 − π)(
1

TL(C) −W∗
)

+ (1 − π)
(
W∗ − 1

TS(C)

) .
Note that

Ψ′(W∗) = −

((
W−1(W∗)

)′
(W−1(W∗))2

)
r(C)δ,

since W−1 is decreasing, then Ψ is increasing. Moreover,

Φ′(W∗) =
−πKβ(ν + α)((

1
TL(C) −W∗

)
+ (1 − π)

(
W∗ − 1

TS(C)

))2 .
Thus Φ is decreasing. Note that

Φ(W∗
0 ) = 0 ⇔ W∗

0 =
1

TL(C)
+

αK(1 − π)

r(C)(πK)
>

1

TL(C)
.

Then there exists a unique positive steady state if and only if:333

Φ

(
1

TL(C)

)
< Ψ

(
1

TL(C)

)
, and Ψ

(
1

TS(C)

)
< Φ

(
1

TS(C)

)
. (5.13)
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i) If TL(C) < 1, we have

Φ

(
1

TL(C)

)
= βKr(C), Ψ

(
1

TL(C)

)
< 0.

and

Ψ

(
1

TL(C)

)
− Φ

(
1

TL(C)

)
< 0

We also have

Φ

(
1

TS(C)

)
= r(C)β(K − 1), Ψ

(
1

TS(C)

)
=

r(C)δ

S0(C)

and

Ψ

(
1

TS(C)

)
− Φ

(
1

TS(C)

)
=

r(C)(δ + βS0(C)
(
1 −RS

0 (C,P)
)

S0(C)

Therefore when TL(C) < 1, Condition (5.13) is equivalent to: RS
0 (C,P) > 1.

ii) If TL(C) > 1, then we have:

Φ

(
1

TL(C)

)
= βKr(C), Ψ

(
1

TL(C)

)
=

r(C)δ

L0(C)
.

and

Ψ

(
1

TL(C)

)
− Φ

(
1

TL(C)

)
=

r(C)δ
(
1 −RL

0 (C,P)
)

L0(C)
.

Similarly,

Ψ

(
1

TS(C)

)
− Φ

(
1

TS(C)

)
=

r(C)(δ + βS0(C)
(
1 −RS

0 (C,P)
)

S0(C)
.

Therefore for TL(C) > 1, Condition (5.13) is equivalent to:

RL
0 (C,P) < 1, and RS

0 (C,P) > 1.

This achieves the proof.

5.3 The basic reproduction number of phages336

Let N(t) be the number of newly produced phages at time t. We have

N(t) =

∫ ∞

0
θµ(τ)I(t, τ)dτ .

By the Volterra formulation (3.4) linearized at the purely susceptible steady state QS , we find that

N(t) =

∫ t

0
θµ(τ) (πβS0(C)P (t− τ) + αL(t− τ))D(τ)dτ +

∫ ∞

t
θµ(τ)I(0, τ − t)

D(τ)

D(τ − t)
dτ. (5.14)

Moreover, we have

L̇(t) =

(
r(C)

TS(C)
− ν − α

)
L(t) + (1 − π)βS0(C)P (t) = −αL(t) + (1 − π)βS0(C)P (t).

Therefore,

L(t) = βS0(C)(1 − π)

∫ t

0
e−α(t−s)P (t− s)ds + L(0)e−αt,
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and consequently

N(t) =

∫ t

0
πβS0(C)P (t− τ)D(τ)dτ + αθ(1 − π)βS0(C)

∫ t

0

∫ τ

0
µ(s)D(s)e−α(t−τ−s)dsP (t− τ)dτ + N0(t),

(5.15)
where N0 accounts for the initial condition.339

Next, the P -equation of (2.1) linearized at QS lead to

P (t) =

∫ t

0
e−(βS0(C)+δ)(t−s)N(s)ds + e−(βS0(C)+δ)tP (0),

Therefore, (5.14) and (5.15) respectively give

N(t) = πβS0(C)

∫ t

0

(∫ t−τ

0
e−(βS0(C)+δ)(t−τ−s)N(s)ds

)
µ(τ)D(τ)dτ

+ αθ(1 − π)βS0(C)

∫ t

0
Λ(τ)

(∫ t−τ

0
e−(βS0(C)+δ)(t−τ−s)N(s)ds

)
dτ + N0(t),

with Λ(τ) =
∫ τ
0 µ(σ)D(σ)e−α(τ−σ)dσ. That is

N(t) = πθβS0(C)

∫ t

0
N(t− τ)

(∫ τ

0
e−(βS0(C)+δ)(τ−s)µ(s)D(s)ds

)
dτ

+ αθ(1 − π)βS0(C)

∫ t

0
N(t− τ)

(∫ τ

0
e−(βS0(C)+δ)(τ−s)Λ(s)ds

)
dτ + N0(t),

As t → ∞, the basic reproduction number RS
0 is calculated as

RS
0 = πθβS0(C)

∫ ∞

0

(∫ τ

0
e−(βS0(C)+δ)(τ−s)µ(s)D(s)ds

)
dτ+αθ(1−π)βS0(C)

∫ ∞

0

(∫ τ

0
e−(βS0(C)+δ)(τ−s)Λ(s)ds

)
dτ,

Integrating above equality by parts, the basic reproduction number is

RS
0 =

πβS0(C)K
(βS0(C) + δ)

+
α(1 − π)βS0(C)K

(βS0(C) + δ)α
=

βS0(C)K
βS0(C) + δ

5.4 Spectral properties of the linearized system

Let φ∗ = (S∗, L∗, 0, I∗(τ), P ∗) ∈ X+
0 any steady state of problem (3.3). The derived linearized system at

φ∗ reads as:
dφ

dt
= (A + G[φ∗])φ(t),

where A is the linear operator defined by (3.2), and G[φ∗] is linear given by:

G[φ∗]φ(t) =



r(C)[
(
W∗ + S∗W∗′

)
S(t) + S∗W∗′L(t)] − βP ∗S(t) − βS∗P (t)

r(C)[L∗W∗′S(t) + (W∗ + L∗W∗′)L(t)] + (1 − π)βS∗P (t) + (1 − π)βP ∗S(t)

πβS∗P (t) + πβP ∗S(t) + αL(t)

0L1(0,∞,R)∫∞
0 θµ(τ)I(t, τ)dτ − βS∗P (t) − βP ∗S(t)


,

with W∗ = W(S∗ + L∗), and W∗′ = W ′(S∗ + L∗).
We now focus on the spectral properties of the linearized semiflow at any steady state. We have the342

following result :
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Lemma 5.1 Let us set Ω = {λ ∈ C : Re(λ) > −γ}, with γ = min{ν, δ}. Then, the spectrum σ(A +
G[φ∗]) ∩ Ω ̸= ∅ only consists of the point spectrum. Moreover, we have

σ(A + G[φ∗]) ∩ Ω = {λ ∈ Γ : det ∆(λ, φ∗) = 0},

where the matrix ∆(λ, φ∗) is defined as

∆(λ, φ∗) =


1 − r(C)[W∗+S∗W∗′ ]−βP ∗

λ+ν
r(C)S∗W∗′

λ+ν
βS∗

λ+ν

− r(C)L∗W∗′+(1−π)βP ∗

λ+α+ν 1 − r(C)[W∗+L∗W∗′ ]
λ+α+ν − (1−π)βS∗

λ+α+ν

βP ∗(1−πK(λ))
λ+δ −αK(λ)

λ+δ 1 + βS∗(1−πK(λ))
λ+δ

 , (5.16)

with K(λ) =
∫∞
0 θµ(τ)e−

∫ τ
0 (λ+ν+µ(σ))dσdτ.345

Proof. We denote as A0 : D(A0) ⊂ X0 → X0 the part of A in X0 = D(A), ie.,

A0φ = Aφ, ∀φ ∈ D(A0) = {φ ∈ D(A) : Aφ ∈ D(A)}.

A0 is the infinitesimal generator of a C0−semigroup on X0 denoted by {SA0(t)}t≥0 . Let φ = (S,L, 0, I(τ), P ) ∈
X0, then we have,

SA0(t)φ(τ) =


(
e−νtS, e−(ν+α)tL, 0,D(τ − t)I(τ − t), e−δtP

)
, τ ≥ t(

e−νtS, e−(ν+α)tL, 0, 0L1(0,∞,R), e
−δtP

)
, τ < t.

Moreover, for t ≥ t0, we have

||SA0(t− t0)φ||X ≤ e−γ(t−t0) ||φ||X , t ≥ t0,

with γ = min(ν, δ). We then deduce that the growth rate ω0(A0) of the semigroup {SA0(t)}t generated

by A0 satisfies : ω0(A0) = limt→∞
ln
(
||SA0

(t)||L(X )

)
t ≤ −γ. The compactness of the operator G[φ∗] gives

that, the essential growth rate ω0,ess(A+G[φ∗]) of the C0-semigroup
{
S(A+G[φ∗])(t)

}
t≥0

generated by the348

part of (A+G[φ∗]) in X0 satisfies (eg., see [7]), ω0,ess(A+G[φ∗]) ≤ ω0,ess(A0) < ω0(A0) ≤ −γ. Thanks to
[9, 35], the above inequality gives that Ω ∩ σ(A + G[φ∗]) ̸= ∅, and it is only composed of point spectrum
of (A + G[φ∗]).351

We end the proof of Lemma 5.1 by computing the characteristic equation. Let λ ∈ ρ (A + G[φ∗]),
where ρ (A + G[φ∗]) stands for the resolvent of (A + G[φ∗]). Let φ = (S,L, 0, I, P ) ∈ D(A) and φ̃ =
(S̃, L̃, w̃, Ĩ, P̃ ) ∈ X . We have (λI −A−G[φ∗])φ = φ̃, that is (λI −A)φ−G[φ∗]φ = φ̃. Therefore,354

φ− (λId −A)−1G[φ∗]φ = (λId −A)−1 φ̃. (5.17)

Since
(λId −A)−1 φ̃ =

(
S̃

λ+ν ,
L̃

λ+ν+α , 0, Dλ(·)w̃ +
∫ ·
0 Dλ(· − η)Ĩ(η)dη, P̃

λ+δ

)
,

it comes

(λId −A)−1G[φ∗]φ =



(λ + ν)−1
(
r(C)[

(
W∗ + S∗W∗′

)
S + S∗W∗′L] − βP ∗S − βS∗P

)
(λ + ν + α)−1

(
r(C)[L∗W∗′S + (W∗ + L∗W∗′)L] + (1 − π)βS∗P + (1 − π)βSP ∗

)
0

Dλ(·) (πβS∗P + πβP ∗S + αL)

(λ + δ)−1 ((πβS∗P + πβP ∗S + αL)K(λ) − βS∗P − βP ∗S)


,
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where Dλ(τ) = e−
∫ τ
0 (λ+ν+µ(σ))dσ and K(λ) =

∫∞
0 θµ(τ)e−

∫ τ
0 (λ+ν+µ(σ))dσdτ .

Setting (λId −A)−1 φ̃ = (S̃λ, L̃λ, 0, Ĩλ, P̃λ), (5.17) leads to

I(·) = (πβS∗P + πβP ∗S + αL)Dλ(·) + Ĩλ(·).

Therefore, we can successfully isolate (S,L, P ), and so (S,L, I(·), P ) if and only if

det∆(λ, φ∗) ̸= 0,

where ∆(λ, φ∗) is the matrix defined by (5.16).

5.5 Proof of Theorem 3.4357

The proof of this result is based on the spectral properties of the linearized semiflow at any steady state
of (2.1). The associated characteristic equation is provided by Lemma 5.1.

(i) From (5.16), and the fact that W(0) = 1, we have:360

∆(λ,O) =



λ + ν − r(C)

λ + ν
, 0 0

0
λ + ν + α− r(C)

(λ + ν + α)
0

0 −αK(λ)

λ + δ
1


,

such that, by Lemma 5.1,

σ (A + G[O]) ∩ Ω = {ν (TS(C) − 1) , (ν + α) (TL(C) − 1))} .

Hence, O is locally asymptotically stable if and only if max{TS(C), TL(C)} = TS(C) < 1.
For the global stability of the steady state O, we use a Lyapunov function approach. Let c the function

such that

c : τ →
∫ ∞

τ
θµ(s)e−

∫ τ
s (ν+µ(σ))dσds.

Then, c′(τ)−(ν+µ(τ))c(τ)+θµ(τ) = 0, and lim
τ→∞

c(τ) = 0. Let t ∈ R 7→ φ(t) = (S(t), L(t), 0, I(t, τ), P (t))

be a complete orbit in the global attractor B ⊂ X+
0 provided by Theorem 3.2. We introduce the following

Lyapunov function,

L[φ](t) = c(0)S(t) + c(0)L(t) +

∫ ∞

0
c(τ)I(t, τ)dτ + P (t).

Differentiating L along the trajectories gives :

L̇[φ](t) = c(0)Ṡ(t) + c(0)L̇(t) +

∫ ∞

0
c(τ)∂tI(t, τ)dτ + Ṗ (t)

Adding up the S− and L−equation of (2.1) gives,

L̇[φ](t) = c(0)r(C)(S(t) + L(t))W(S(t) + L(t)) − c(0)πβS(t)P (t) − νc(0)(S(t) + L(t)) − αc(0)L(t)

+

∫ ∞

0
c(τ)∂τI(t, τ) − (ν + µ(τ))I(t, τ)dτ +

∫ ∞

0
θµ(τ)I(t, τ)dτ − (βS(t) + δ)P (t).
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Integrating the term
∫∞
0 c(τ)∂τI(t, τ)dτ by parts, it comes

L̇[φ](t) =c(0) [r(C)W(S(t) + L(t)) − ν] (S(t) + L(t)) − c(0)αL(t) − πc(0)βS(t)P (t)

− [c(τ)I(t, τ))]∞0 +

∫ ∞

0
[∂τ c(τ) − c(τ)(ν + µ(τ)) + θµ(τ)] I(t, τ)dτ − (βS(t) + δ)P (t)

=c(0)ν [TS(C)W(S(t) + L(t)) − 1] (S(t) + L(t)) − βS(t)P (t) − δP (t). (5.18)

If TS(C) < 1, then,

L̇[φ](t) ≤c(0)ν [W(S(t) + L(t)) − 1] (S(t) + L(t)) − βS(t)P (t) − δP (t)

=c(0)ν(S(t) + L(t)) [W(S(t) + L(t)) −W(0)] − βS(t)P (t) − δP (t)

Since W is a decreasing function, we have, L̇[φ](t) ≤ 0, when TS(C) < 1. Therefore, the map t → L[φ](t) is
decreasing along the entire solutions of the semiflow generated by (3.3) as soon as TS(C) < 1. Furthermore,363

by (5.18), we have L̇[φ](t) = 0 if and only if φ(t) = O. Then, the largest invariant set in {φ : L̇[φ] = 0}
is {O}. From where, the global attractor B is such that B = {O}, which leads to the global stability of
O in X+ when TS(C) < 1.366

(ii) From (5.16), we have

∆(λ,QS) =



λ− r(C)S0(C)W ′(S0(C))

λ + ν

r(C)S0(C)W ′(S0(C))

λ + ν

βS0(C)

λ + ν

0
λ + α

λ + α + ν
−(1 − π)βS0(C)

λ + α + ν

0 −αK(λ)

λ + δ
1 +

βS0(C)(1 − πK(λ))

λ + δ

 .

Let λ ∈ σ (A + G[QS ]) ∩ Ω. By Lemma 5.1, we then have λ = λ0 := r(C)S0(C)W ′(S0(C)) or that λ is the
solution of the following equation :

H(λ) = 1, (5.19)

with H(λ) = α(1−π)βS0(C)K(λ)
(λ+α)(λ+βS0(C)+δ) + πβS0(C)K(λ)

(λ+βS0(C)+δ) . Since W is a decreasing function, λ0 < 0. Moreover,369

∀λ ∈ R, lim
λ→−∞

H(λ) = +∞, lim
λ→+∞

H(λ) = 0, H′(λ) < 0. Therefore, there exists a unique λ̄ ∈ R

satisfying (5.19), and such that sign(λ̄) = sign(H(0) − 1). Consequently, if H(0) = RS
0 (C,P) > 1, then

the steady state QS is unstable.372

Next, we show that equations (5.19) has no complex solutions with non–negative real part whenever
RS

0 (C,P) < 1 (equivalently H(0) < 1). By contradiction, assume that we can find λ0 ∈ σ (A + G[QS ])∩Ω
such that, ℜ(λ0) ≥ 0. Set λ0 = x + iy, with x > 0, y ∈ R. Therefore,

1 =|H(λ0)| ≤
α(1 − π)βS0(C)

∫∞
0 θµ(τ)D(τ)e−τxdτ

(x + α) (x + (βS0(C) + δ))
+

πβS0(C)
∫∞
0 θµ(τ)D(τ)e−τxdτ

(x + βS0(C) + δ)

= H(x) ≤ H(0) = 1.

A contradiction holds. Consequently, any solution of (5.19) has negative real part as soon as RS
0 (C,P) < 1.

Thus QS is locally asymptoticallys stable if and only if RS
0 (C,P) < 1.

(iii) From (5.16), one has

∆(λ,QL) =



λ− α
(
1 −RL

0 (C,P)
)

λ + ν
, 0 0

−r(C)L0W ′(L0) + (1 − π)βP0

λ + ν + α
,

λ− r(C)L0W ′(L0)

λ + ν + α
0

βαKL0 (1 − πK(λ))

δ(λ + δ)
−αK(λ)

λ + δ
1


,
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and Lemma 5.1 gives

σ (A + G[QL]) ∩ Ω =
{
r(C)L0W ′(L0);α

(
1 −RL

0 (C,P)
)}

.

Since W is a decreasing function, we find that QL is locally asymptotically stable if and only if RL
0 (C,P) >375

1.

5.6 Hopf bifurcation around the positive steady state

The proof of the bifurcation Theorem 3.6 is mainly based on the results in [22]. Let λ ∈ σ (A + G[Q∗])∩Ω.
By Lemma 5.1, and recalling the rupture functions µ given by (3.8), then det ∆(λ,Q∗) takes the form:

det ∆(λ,Q∗) =
p(λ, α) + q(λ, α)e−λς

(λ + ν)(λ + ν + α)(λ + δ)(λ + ν + µ0)

where
p(λ, α) = λ4 + p3λ

3 + p2λ
2 + p1λ + p0 and q(λ, α) = q2λ

2 + q1λ + q0.

with the coefficients pk, qk, k = 1, 2, 3, 4 in the form: pk = p0k + p1kTL(C), k = 1, 2, 3, 4. , with coefficients378

pjk,s in R.

det ∆(λ, E∗) = 0 ⇔ Z(λ, α) = p(λ, α) + q(λ, α)e−λς = 0 (5.20)

Set λ = iω, (ω > 0), be a pure imaginary root of Z, then (5.20) become:

p(iω, α) + q(iω, α)e−iως = 0,

implies that,

cosως =

(
−ω4 + ω2p2 − p0

) (
q0 − q2ω

2
)

+
(
ω3p3 − ωp1

)
q1ω

(q0 − q2ω2)2 + (q1ω)2
. (5.21)

Moreover, |p(iω, α| = |q(iω, α|; gives381

ω8 + a6ω
6 + a4ω

4 + a2ω
2 + a0 = 0 (5.22)

with

a6 = (p3)
2 − 2p2, a4 = (p2)

2 − (q2)
2 + 2 (p0 − p1p3) , a2 = (p1)

2 − (q1)
2 − 2 (p0p2 − q0q2) , .

and
a0 = (p0)

2 − (q0)
2 = (p00)

2 − (q00)2 + 2(p00p
1
0 − q00q

1
0)TL(C) + ((p10)

2 − (q10)2)(TL(C))2

Setting ∆ the discriminant of the polynomial a0, some computations give:

∆ = −4
[
p00q

1
0 + q00p

1
0

]2
Assume

(p00)
2 − (q00)2 < 0 (5.23)

Since ∆ < 0, the polynomial a0 < 0, for any positive value of TL(C). Thus fixing a positive value T c
L

(ie fixing a critical values αc), under condition (5.23), (5.22) has positive solutions ωc. Thus (5.22) has a
positive root zc = ω2

c . More over, for the fixed value of ς,

cosωcς =

(
−(ωc)

4 + (ωc)
2p2 − p0

) (
q0 − q2(ωc)

2
)

+
(
(ωc)

3p3 − (ωc)p1
)
q1(ωc)

(q0 − q2(ωc)2)
2 + (q1(ωc))2
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Transversality condition. Assume that (5.23) is satisfied, and let λ(α) = x(α) + iω(α) be the root of

Z(λ, α) = 0 satisfying x(αc) = 0, ω(αc) = ωc. Let’s prove that ℜ
(

dλ(αc)

dα

)
̸= 0. Taking the derivative

with respect to α on Z(λ, α), we get

p10 + p11λ + p12λ
2 + p13λ

3 +
(
q10 + q11λ

)
e−λς =

(
4λ3 + 3p3λ

2 + 2p2λ + p1
) dλ

dα

+
(
−ς
(
q0 + q1λ + q2λ

2 + q3λ
3
)

+ 2q2λ + q1
)
e−λς dλ

dα

then (
dλ(α)

dα

)−1

=
4λ3 + 3p3λ

2 + 2p2λ + p1 +
(
−ς
(
q0 + q1λ + q2λ

2 + q3λ
3
)

+ 2q2λ + q1
)
e−λς

p10 + p11λ + p12λ
2 + p13λ

3 +
(
q10 + q11λ

)
e−λς

Then substitute λ = iωc to obtain that

ℜ

{(
dλ(αc)

dα

)−1
}

=
M[

p10 − p12ω
2
c + (q10) cosωcτ + (q11ωc) sinωcτ

]2
+
[
p11ωc + p13ω

3
c + (q11ωc) cosωcτ − (q10) sinωcτ

]2
with

M =(−3p3ω
2
c + p1)

[
p10 − p12ω

2
c + (q10) cosωcτ + (q11ωc) sinωcτ

]
+ (4ω3

c + 2p2)
[
p11ωc + p13ω

3
c + (q11ωc) cosωcτ − (q10) sinωcτ

]
Moreover,

sign

(
ℜ
(

dλ(αc)

dα

)−1
)

= sign

(
ℜ
(

dλ(αc)

dα

))
.

The transversality condition holds if
M ≠ 0.
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S. Djebara, M. Merabishvili, P. Soentjens, and J.-P. Pirnay. Bacteriophage-antibiotic combination474

therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplan-
tation in a toddler. Nature Communications, 13(1):5725, Sept. 2022.

27



[35] G. F. Webb. An Operator-Theoretic Formulation of Asynchronous Exponential Growth. Transactions477

of the American Mathematical Society, 303(2):751–763, 1987.

[36] G. F. Webb and WEBB. Theory of Nonlinear Age-Dependent Population Dynamics. CRC Press,
Jan. 1985.480

[37] A. Wright, C. H. Hawkins, E. E. Angg̊ard, and D. R. Harper. A controlled clinical trial of a therapeutic
bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a
preliminary report of efficacy. Clinical otolaryngology: official journal of ENT-UK ; official journal483

of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery, 34(4):349–357, Aug.
2009.

[38] X. Yu, Y. Xu, Y. Gu, Y. Zhu, and X. Liu. Characterization and genomic study of “phiKMV-Like”486

phage PAXYB1 infecting Pseudomonas aeruginosa. Scientific Reports, 7:13068, Oct. 2017.

28


