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Abstract -
In recent years, there has been a growing interest in au-

tomated indoor construction progress monitoring (ICPM) to
maximize precision and reduce human intervention. Com-
puter vision approaches, especially based on deep learning
(DL) methods, have shown great potential in this task. How-
ever, training DL models require large-scale datasets, which
are often costly and laborious to obtain, specifically for in-
door construction environments. This study proposes an
automated approach to generate real-world-like synthetic
data of indoor construction by combining building informa-
tion modeling (BIM) and a photorealistic graphics engine.
The approach was validated by efficiently producing anno-
tated synthetic datasets of mechanical, electrical, and plumb-
ing components from various BIM models. A state-of-the-
art instance segmentation network was trained using those
datasets alongside real manually annotated data and transfer
learning methods to assess the results. Preliminary experi-
ments using an on-site augmented reality device demonstrate
the promising efficiency of DL for ICPM.

Keywords -
Building Information Modeling; Computer Vision; Deep

Learning; Progress Monitoring; Indoor Construction; Aug-
mented Reality.

1 Introduction
Progress monitoring of construction sites is essential

because it gives managers the information needed to act
quickly and wisely. Ineffective progress monitoring leads
to a loss of control, causing time and cost overruns. The
manual data entry required by conventional progress moni-
toring techniques is laborious, time-consuming and prone
to human error [1]. Inspections of interior work — for
example, mechanical, electrical, and plumbing (MEP) in-
stallation — can be even more difficult for inspectors due
to the level of detail and interdependence of tasks [2].
Therefore, it becomes desirable to automate these tasks.

The use of computer vision (CV) has been studied on a
wide range of construction applications, such as site safety
inspection [3], localization, navigation [4], and 3D recon-

struction [5, 6], among others. Several studies on vision-
based construction progress monitoring have also been
reported [7]. Deep learning (DL) techniques excel in nu-
merous CV tasks and is increasingly used in this field [8].
Although DL models are capable of powerful feature rep-
resentation, they rely heavily on large-scale, high-quality
training datasets. Three methods can be found commonly
in the literature to acquire such datasets (1) using pre-
existing datasets, (2) using web crawling techniques, and
(3) by capturing the data manually [9].

Regarding (1), the CV community has produced a num-
ber of publicly available datasets, including ImageNet
[10], S3DIS [11], MS COCO [12], and ADE20K [13].
Although a handful of datasets such as MOCS (moving
objects in construction sites) [14] and CIS (construction
instance segmentation) [15], targets the construction do-
main, they mainly focus on outdoor environments, leaving
indoor environments underexplored.

The second and third data collection techniques present
a unique set of challenges that hinder the creation of large-
scale, high-quality real-world datasets. On one hand,
data collection through web crawling requires manual re-
view for quality, privacy regulations, intellectual property
rights, and consistency. On the other hand, capturing data
in the real world involves tedious work, access to con-
struction sites, and specialized expertise [16]. The data
annotation step, arguably the most time-consuming task
due to the dataset’s large scale, follows the data collection
process. Crowdsourcing services like Amazon SageMaker
and Google Cloud Vertex AI can significantly reduce the
manual labor involved, but they remain costly and prone
to error [17].

Because the acquisition of real-world datasets is a chal-
lenging and resource-intensive endeavor, researchers have
also explored the generation of synthetic data from con-
trollable and computable virtual environments as a cost-
effective and efficient alternative [18]. In the realm of
synthetic image data generation in construction, there have
been a number of virtual environments constructed using
3D modeling and computer graphics software such as Re-
vit, Blender, Unreal and Unity [19, 20, 21]. DL models
trained on synthetic or mixed datasets have been shown to
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outperform or achieve comparable performance to models
trained solely on real images [22].

One emerging source of data over the past decade comes
from the building information modeling (BIM). BIM is
a set of interacting policies, processes and technologies
aimed at managing the essential data of a construction
site, in digital form, throughout its life cycle [23]. BIM
models have become an appropriate data source for gen-
erating synthetic images of indoor building scenes due to
the inclusion of accurate geometry and sometimes appear-
ance information (i.e., material and texture). BIM author-
ing tools can provide virtual cameras and several studies
have leveraged their capabilities to generate synthetic data
[24, 25]. However, the potential of BIM models combined
with computer graphics software has not been fully ex-
plored and there is no universal approach to generate data
automatically.

This paper proposes a procedural approach to generate
synthetic datasets from BIM models to address the data
collection and availability drawbacks mentioned above.
To test this approach, three synthetic datasets were gener-
ated from three different BIM models (i.e. Figure 1) and
used to train and test a state-of-the-art instance segmen-
tation model. Lastly, a preliminary approach is presented
that compares the prediction of the trained neural network
model with the BIM model view through an augmented
reality (AR) device.

Figure 1. Snapshots of three BIM projects imported
in the graphic engine.

This article is structured as follows: Section 2 delves
into the technical aspects of synthetic image generation
and annotation. Section 3 presents an experimental pro-
cedure to evaluate the framework performance, followed
by a concise experimental study showcasing its practical

application. Finally, Section 4 summarizes the findings
and outline directions for future research.

2 Methodology
The objective of this study is to develop an automated

approach that generates photorealistic synthetic RGB im-
ages of indoor building scenes with comprehensive anno-
tations using BIM and a computer graphics engine. Figure
2 illustrates the workflow of the approach, each step is fur-
ther described in the following.

Figure 2. Framework to generate annotated
photorealistic images from a BIM model.

2.1 Synthetic image generation

Since the study focuses on indoor construction sites,
the first step is to acquire BIM models of such projects. A
BIM model for a building is typically created by a team of
professionals from various trades, each contributing their
expertise to the development of the model. These trades
can be broadly categorized into the following groups: ar-
chitecture, structural engineering, MEP and interior de-
sign. The MEP trade, representing the construction phase
with the most dynamic and complex changes throughout
a project’s life cycle, is a critical area for progress mon-
itoring automation. Therefore, we focus on generating a
synthetic dataset in this field.

NVIDIA Isaac Sim is a robotics simulation toolkit for
the NVIDIA Omniverse platform that provides researchers
and practitioners with the tools and workflows they need
to create robust, physically accurate simulations and syn-
thetic datasets. With the use of a Revit plugin, one can
directly import construction projects into Isaac Sim, mak-
ing it a viable tool for synthetic dataset generation using
BIM. For each physical object, the following information
is obtained: object class, instance ID, and triangular mesh.
However, the projects lack materials and textures, which
we need to add through Isaac Sim to create a photorealistic
environment.

The application of true-to-life textures to each object
class within the BIM environment can be achieved through
the utilization of the application programming interface
(API) and the Omniverse material library. By leveraging
the unique IDs associated with each object instance, it is
possible to efficiently apply a variety of textures to specific
object classes, such as pipes, for enhanced realism. For
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example, red and blue metal textures can be applied to rep-
resent warm and cold currents, respectively, while black
foam textures can be used to depict insulation. Addition-
ally, the ability to create or import custom texture packs
from external platforms, along with the incorporation of
3D models of specific elements, such as fan coils, further
enhances the realism of the BIM environment. Moreover,
the accurate representation of lighting, including both in-
door and natural illumination, is crucial for achieving a re-
alistic virtual representation. Artificial lighting should be
meticulously tailored to match the lighting fixtures speci-
fied within the BIM model, while additional light sources
may need to be strategically placed to compensate for the
absence or non-functional state of lighting fixtures at the
actual construction site. Various rendering parameters
can be adjusted to optimize the depiction of light behav-
ior, its interaction with objects, their reflectivity, colors,
and transparency/absorption of materials. To achieve the
highest level of fidelity, we use the interactive path trac-
ing mode instead of approximation methods that prioritize
performance while sacrificing accuracy.

The camera sensor simulation provides granular control
over parameters like lens properties, aperture, shutter, clip-
ping, and fisheye distortion, replicating real-world camera
behavior. Key parameters include focal length, field of
view, output resolution, and focus distances. It is impor-
tant to note that digital cameras may produce radial and
tangential distortions due to manufacturing imperfections
in their lenses. The virtual camera supports various dis-
tortion models, with popular options including rational
polynomial, brown conrady, and fisheye. Post-processing
enhancements, including exposure adjustment, tone map-
ping, color grading, color correction, depth of field, mo-
tion blur, bloom, and others, further refine the simulated
camera feed. We target a low-end camera simulation mim-
icking a laptop webcam for embedding compatibility.

After configuring the virtual camera, the next step is to
determine its possible positions within each scene. This
involves defining routes that mimic the movement of a
worker inspecting the construction site. The API provides
a tool for manually creating these routes. While grid-based
viewpoints could be used, manually drawn routes provide
a more natural representation of an inspector’s movement.

2.2 Instance segmentation annotation

We use the semantics schema API to associate semantic
data to each object class in our dataset. The synthetic data
recorder options are RGB, depth, semantic and instance
segmentation, 2D tight and loose bounding box. For this
dataset, we only select RGB and instance segmentation
data, capturing one image per half second along the pre-
defined route.

So far, valid photorealistic synthetic images have been

generated. We now need to translate the semantic data
to a DL model annotation format. We chose to use the
Darknet text format compatible with the YOLOv8 in-
stance segmentation model, one of the latest iteration of
the popular YOLO model [26] released in January 2023
by Ultralytics. The architecture of YOLOv8 combines a
convolutional neural network (CNN) backbone with a self-
attention mechanism to achieve high accuracy and speed
for object detection. This CNN model’s high-speed in-
ference makes it ideal for real-time applications on edge
devices. Additionally, a segmentation head is added to
predict the binary segmentation masks for each object de-
tected.

Each line in a Darknet text file corresponds to a sin-
gle object annotation. We create a Python script to at-
tribute to each pair of RGB and semantic image a text
file containing each object’s class IDs, bounding box co-
ordinates, and the mask coordinates, determined using
the Ramer–Douglas–Peucker (RDP) algorithm. The RDP
algorithm is a curve-fitting algorithm that simplifies the
contours of an object by reducing the number of points
that describe it while preserving its shape. By configuring
the spatial resolution, minimum surface, and the number
of points describing a contour, we can eliminate objects
that are too small.

3 Experimental study
3.1 The generated synthetic dataset

We perform a series of experiments to evaluate the
proposed approach. All experiments are run on a lap-
top equipped with an Intel Core i7-10750H CPU, 32 GB
of RAM, and a NVIDIA Quadro RTX 3000 GPU. SPIE
Building Solutions, a subsidiary of SPIE, provides access
to three construction projects for the experiment (see Fig-
ure 1). The first project is an eight-story tower that will be
used as an office, the second is an extension to a scientific
university laboratory, and the third is a completely new
site for a business school, making them an excellent sam-
ple of tertiary construction projects. Prior to importing
the geometry into Isaac Sim, filters are applied to the BIM
model in Revit to eliminate all interior design elements and
architectural components that obstruct the MEP compo-
nents. A route is created within each building, traversing
each floor and alternating the viewpoints.

The dataset generated in this study is named MEP-SEG.
By capturing one image every half a second of the created
route, we collected 8,751 samples from the BIM projects,
with a rendering time of approximately 9 hours. The
distribution of assets for each of the 13 classes is shown
in Table 1. Examples of the generated samples are
depicted in Figure 3. As shown, some classes are
severely under-represented compared to others. This
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Table 1. Distribution of assets among the 13 classes
in the generated dataset.

Class No. of assets
Wall 90801
Pipe 44998
Floor 44266
Circular duct 34973
Rectangular duct 26227
Framework 11627
Air vent 8585
Pole 5131
Fan coil 4286
Radiant panel 3031
Ceiling 2431
Pipe accessory 1449
Climatic equipment 1309

will have to be taken into account when using this
dataset. The entierety of the data is publicly available at
: https://datasets.liris.cnrs.fr/mep-seg-dataset-synthetic-
images-generated-building-information-modeling-bim-
v1.

Figure 3. Three synthetic images generated on the
left column and their corresponding semantic

segmentation image on the right column.

3.2 Evaluation procedure

3.2.1 Evaluation of synthetic pre-trained models on
small real datasets

For this initial evaluation, we compare transfer learning
(TL) using two different pre-trained models of the same
YOLOv8 architecture. The first model is pre-trained on
the COCO image dataset [12], the second model on our
MEP-SEG dataset. The objective is to determine whether

using a synthetic dataset in the targeted domain can yield
better performance compared to a generic but more com-
prehensive public dataset. We focused on detecting only
three classes: circular ducts, rectangular ducts, and pipes.
These objects are among the most challenging to detect in
images of the MEP domain due to their various shapes,
textures, and sizes. We extracted these three classes from
our MEP-SEG dataset, resulting in a duct and pipe dataset
named D&P-SEG. A blank YOLOv8 neural network was
trained using the API of YOLOv8. All available images
are distributed 70% for training, 20% for validation and
10% for testing. The training strategy included a batch
size of 6, learning momentum of 0.937, weight decay of
0.0005, learning rate (LR) of 0.01, width and height of 640
for 1000 epochs. Training took approximately 8 hours on
an RTX 3000 GPU.

Real-world images were collected from inside five con-
struction sites: the three used for the MEP-SEG dataset
and two new projects: a residential building for Olympic
athletes and a new corporate headquarters. Two distinct
devices were used for data collection: a smartphone and
the Microsoft HoloLens 2 AR glasses. A total of 217
images were acquired and manually labeled. Then, two
datasets of varying dimensions are created: (1) the first
small (S) dataset included 45 images for training and 19
images for validation. (2) The second medium (M) dataset
contained 131 images for training and 43 images for val-
idation. Both pre-trained models are fine-tuned on those
real-world datasets with the same strategy, adding a pa-
tience of 50 for early stopping. The two models obtained
their lowest validation loss in around 200 epochs, for a
training time of 20 minutes. For testing, 40 additional
images are selected. Table 2 summarizes the test results.

Table 2. Performances on COCO vs. synthetic TL
on small (S) and medium (M) real datasets.

Metrics COCO TL Synthetic TL
S dataset box mask box mask
Precision (%) 43 51 66 64
Recall (%) 43 34 47 46
mAP50 (%) 42 38 53 49
mAP50 95 (%) 26 19 37 30
M dataset box mask box mask
Precision (%) 52 52 69 63
Recall (%) 45 42 40 38
mAP50 (%) 43 41 47 43
mAP50 95 (%) 29 24 30 24

The performance metrics used on both the predicted
boxes and masks are precision, recall, mean average pre-
cision at an intersection-over-union (IoU) threshold of 0.5
(mAP50), and mean average precision at IoU thresholds
ranging from 0.5 to 0.95 (mAP50 95). As we can see on
the S dataset, the pre-trained model on our synthetic data
outperforms the one pre-trained on COCO in every metric.
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Additionally, the gap between box and mask on precision
and recall is lower using the synthetic TL method, sug-
gesting that the model better detects the edges of objects.
Looking at the results on the M dataset, we observe a less
significant difference between the two methods, indicating
that the more real data available, the less relevant is using
a synthetic dataset for a pre-trained model. In conclusion,
using a synthetic pre-trained model showed promising re-
sults for transferring knowledge onto a small real dataset.

3.2.2 Evaluation of augmented datasets for MEP ob-
ject detection

For the second evaluation, we constructed two sets of
training datasets, one comprising 142 real images and the
other 500 synthetic images. Secondly, we prepared a real
test dataset containing 50 real images. This time, we fo-
cused on five classes: duct (encompassing circular and
rectangular ducts), pipe, radiant panels, fan coil, and dif-
fuser. The real training images were carefully selected
from the MEP-SEG dataset to ensure they were the most
representative. Thirdly, to explore the effectiveness of
augmenting synthetic data with a small amount of real
data, we prepared two additional training datasets:

• A mixed training dataset with 550 images, containing
90% synthetic images and 10% real images.

• A mixed training dataset with 600 images, containing
80% synthetic images and 20% real images.

In each training dataset, 80% of the images were used
for training, and the remaining 20% were used for val-
idation. The YOLOv8 model pretrained on the COCO
image dataset served as the foundation and the same train-
ing strategy as in the previous evaluation was employed.
The evaluation on the 50 real test images of the precision
metric across all training datasets is provided in Table 3.

Table 3. Performance of the YOLOv8 model trained
on different datasets.

Training dataset Precision (%)
box mask

Real 77 75
Synthetic 30 29
Synthetic +10% real 71 69
Synthetic +20% real 80 79

The purely synthetic dataset exhibited inferior perfor-
mance compared to the same dataset enhanced with 10%
real images, which itself performed less effectively than
that augmented with 20% real images. To achieve perfor-
mance that is comparable or even superior to that of the
real image dataset, it appears that at least 20% of real im-
ages are needed. This indicates that augmenting a dataset
of real images with synthetic images holds promise for
effectiveness and efficiency.

3.3 Preliminary validation of effectiveness.

This section presents a preliminary work towards the
automation of progress monitoring in the construction in-
dustry using the Hololens 2 AR glasses. The work in-
volves the use of an YOLOv8 model, pre-trained on our
MEP-SEG dataset and fine-tuned on a real dataset to ac-
curately detect and segment diverse MEP objects within
images. The NEXT-BIM application serves as a founda-
tion for this work, which already enables the visualiza-
tion of BIM models using AR glasses as well as a semi-
automatic alignment of the user view. Post-alignment,
the BIM view is superimposed onto the real-world view
in real-time, enabling a seamless comparison between the
two. A prototype tool for visual progress monitoring has
been developed on top of NEXT-BIM’s application. The
tool is capable of assessing the MEP work progress in a
real on-site scenario.

Figure 4 provides an example of the method used to
assess MEP work progress.

Figure 4. Captured versus BIM comparison.

The process starts with the capture of the real-world
scene (1) using the integrated webcam. Subsequently, the
corresponding view within the BIM model (2) is extracted
based on the webcam sensor’s coordinates and orienta-
tion. The captured on-site image is run through our in-
stance segmentation model (3), resulting in a prediction
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mask that categorizes and labels each pixel with a unique
color corresponding to its respective class. For instance,
ventilation ducts are represented in cyan, while piping is
depicted in green. In parallel, semantic extraction is ap-
plied to the BIM model image (4) to generate the ground
truth mask. This involves transforming each material com-
ponent within the view frustum to its corresponding class,
followed by color filtering and shape estimation. The
two generated segmentation masks, namely the prediction
mask and the ground truth mask, are then superimposed
(5), with adjustments made to ensure alignment. Finally, a
comparison of the superimposed masks yields the result-
ing discrepancy mask (6), where red represents the ground
truth, blue represents the prediction, and green represents
the overlapping pixels.

To ensure the robustness of our AR-based progress mon-
itoring system, a rigorous validation methodology will be
employed. Success criteria for detection, segmentation,
alignment, and processing speed will be defined first. The
next step involves using the Hololens glasses to collect
diverse pairs of real-world images and ground truth seg-
mentation masks, deliberately targeting challenging edge
cases. Iterative evaluation metrics will be utilized to pin-
point weaknesses, which will guide the refinement of our
model and data. The final stage involves designing a real-
life progress assessment scenario, where the efficiency
and user experience of our method will be compared to
traditional alternatives.

This innovative approach, enabled by AR technology,
will empowers inspectors to visualize and interact with the
BIM model in real time, enhancing their understanding of
the physical environment and enlighten informed decision-
making. This automatic segmentation makes it easier to
assess the presence or absence of MEP objects, calculate
the possible difference between the as-planned and as-
built, and facilitate ICPM in the end.

4 Conclusion and future work
We presented a promising solution towards the automa-

tion of indoor construction progress monitoring (ICPM)
using synthetic data and deep learning (DL). We proposed
a procedural building information modeling (BIM) based
synthetic image generation approach to address the data
scarcity of real-world data, particularly for indoor con-
struction environments. Our experimental study show-
cases the successful implementation of the proposed ap-
proach in three real-world construction projects, and the
preliminary validation of effectiveness using augmented
reality (AR) glasses further demonstrates the potential
practical applications of the developed tool.

However, our current method has limitations related
to the differences between the real and synthetic worlds.
Building scenes represented by BIM models are often

cleaner or more well organized than real-world scenes,
where random objects can be found, and the locations of
movable objects can be arbitrary. Also, it relies heavily on
the quality of the BIM models, which frequently contain
labeling errors, geometric clashes, or an absence of object
geometry.

Future work will address these limitations to make the
captured images more scene-realistic. Furthermore, we
now focus on exploiting instance segmentation models for
ICPM. We investigate comparison methods to compute
more information between as-planned and as-built seg-
mentation masks. Additionally, to improve the model per-
formance, we consider running it through a live video feed
instead of a still image and adding temporal and tracking
methods to reduce the imprecision of the model.
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