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Abstract

This paper presents a study of the acoustic radiation from a ribbed plate
with inner resonance. Based on explicit design rules and homogenized model
for flexural waves, it reminds that bending wave propagation significantly
differs from classical models in case of strong contrast between constituents,
resulting into inner resonance. In order to demonstrate that this model ad-
vantageously supplements the Timoshenko orthotropic plate model, it links
the atypical structural response on common vibroacoustic indicators, which
are of value to discuss on different levels of abstraction. In either infinite or
finite cases, the resulting indicators obtained from the homogenized model
matches with classical trends outside frequency bands associated with lo-
cal resonance, however inner resonance yields additional frequency ranges in
which acoustic radiation is either strongly reduced or enhanced. For both
mechanical and acoustic quantities, key indicators are successfully compared
with classical theory for either poorly and highly contrasted ribbed plates in
order to confirm the diversification of acoustic behaviors encompassed by the
homogenized model.
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Highlights1

• Homogenized model of ribbed plates discussed versus Timoshenko or-2

thotropic model3

• Benefit of homogenized model over classical model for highly contrasted4

plates5

• Theoretical influence of the locally resonant behavior on vibroacoustic6

indicators7
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Introduction8

The use of ribbed panels in aerospace or automotive engineering is wide9

and the current trends associated with sound and vibration control have been10

a vector of development of new models and methods. Indeed the coupled11

problem of a vibrating plate in a fluid medium is related to fluid-structure12

interaction for which assumptions can be made either on the dynamic be-13

havior of the plate, the properties of the fluid governing the radiated field,14

the nature of the coupling between the plate and the fluid.15

The acoustic field radiated by a plate is known from its vibratory re-16

sponse [1, 2]. The simple case of an infinite thin isotropic plate radiating in an17

infinite fluid domain shows the existence of a critical frequency below which18

the plate vibrates without radiating acoustic waves (subsonic regime with19

evanescent waves), and above which the plate radiates plane waves whose di-20

rection of propagation depends on the frequency (supersonic regime). While21

the infinite case has some analytical solutions for both regimes, the determi-22

nation of the acoustic field radiated in finite case requires the implementation23

of the Rayleigh integral based on the Green kernel available for given set of24

geometries. It is outlined that although the structural response of the plate25

can be determined or approached analytically using Rayleigh-Ritz method,26

virtual works principle, or by finite element or finite difference schemes, the27

acoustical response is only accessible through the resolution of the Rayleigh28

integral, that might be computationally expensive. For a complete review of29

structure-borne acoustics of rectangular panels and comprehensive review of30

numerical techniques to assess the low frequency radiation, one may respec-31

tively refer to the papers from [3, 4]. This overview of methods provides a32

reading grid for various experimental works in the scope of this paper, such33

as those of [5, 6].34

A key point of this paper is the aspect of contrast, which can be either35

geometric or mechanical in nature. The modeling of this specific feature mod-36

ifies the structure of the bi-laplacian operator (classical Kirchhoff’s descrip-37

tion) by introducing additional bending stiffness coefficients associated with38

orthotropy. The most common model for orthotropic plate was developed39

by Timoshenko [7] and applies to unidirectionally and orthogonally ribbed40

plates, beam grids, corrugated plates through the calculation of equivalent41

bending stiffness terms.42

Focusing on ribbed plates, for which the orthotropic nature arises from43

the arrangement of stiffeners on a bare plate, it appears that the stiffeners44
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significantly affect its dynamic characteristics. One must cite the pioneering45

works of [8] who demonstrated that the radiation efficiency is increased below46

the critical frequency by assuming stiffeners as regularly spaced supports. A47

physical interpretation was introduced later in [9] and describes how the ribs48

may bring wavenumbers from the subsonic regime to the supersonic regime.49

Among the different theories to describe the dynamic behavior of periodic50

stiffened panel, one may refer to the wavenumber based method [10], the51

space-harmonic analysis [11], wave finite element method [12–14], and some52

analytical approaches [15–17], among which homogenization is a relevant53

theoretical framework for the construction of analytical models.54

However, most of these works consider structures in which the mechanical55

properties of the constituents are poorly contrasted. Particularly, these stud-56

ies give either analytical results on weakly contrasted structures, or numerical57

results on contrasted structures.58

Among the analytical approaches, a benefit of periodic homogenization59

is to upscale the physics from to micro-scale to the macro-scale without as-60

sumption about the nature of the model to be found [18]. Also, giving that61

the resonant nature at the macroscopic scale comes from the contrast be-62

tween the constituents, the transition from weakly to strongly contrasted, i.e.63

non-resonant to resonant, can be assessed. Indeed, the asymptotic homoge-64

nization is capable of precisely describe this transition of behavior through65

the scaling of geometrical and mechanical contrasts directly into the deriva-66

tion process. In this way, on may cite the derivation of models of contrasted67

frames [19], plate-type structures such as laminated plates [20, 21], unidirec-68

tional ribbed plate [22], and orthogonally ribbed plates [23].69

Although this analytical method is intrinsically limited to low frequen-70

cies, it is sufficient to capture the first eigenmodes of the structure while71

incorporating the effect of local resonance. As an example, the locally reso-72

nant nature of an infinite unidirectional ribbed plate was briefly introduced73

in [24] and showed that it brings additional frequency bands of radiation74

below the critical frequency, as well as evanescent waves below the critical75

frequency. Also, explicit design rules could allow to tune local resonance76

onto the coincidence frequency as in [25] and thus make it possible to reach77

improved sound insulation as already known for locally resonant mechanical78

or acoustical metamaterials, and recently demonstrated by [26–28].79

Although numerous study bring meaningful phenomenological interpreta-80

tions on the radiation of resonant panels, only little attention has been paid81

to draw a parallel between an analytical model of contrasted ribbed and its82
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acoustic radiation compared to classical model.83

In this paper, the acoustic radiation of a contrasted orthotropic plate is84

reported in the infinite case and finite case. The paper is organized into three85

sections. A preliminary description of the structure under study is introduced86

in section 1, together with the underlying physics and associated mechanisms.87

The models introduced will be exploited in the case of an infinite plate,88

then of finite dimensions. Particularly, section 2 presents the outputs of89

the model on common vibroacoustic indicators such as radiation efficiency,90

acoustic impedance, and transmission loss. The section 3 deals with finite91

plate analysis, and compares the response of the contrasted model with that92

of Timoshenko, in terms of mean square velocity and sound transmission93

loss.94

1. Physical insight of ribbed plate models95

1.1. Structure under study96

The periodic orthogonally ribbed plate hereafter called 2D-ribbed plates97

under study is depicted in Fig. 1. It comprises identical "micro"-plate ele-98

ments (denoted P) connected to an orthogonal beam grid (denoted G), both99

made of isotropic elastic materials. The beams of the grid are assumed signif-100

icantly stiffer than the internal plates. We focus on the dynamic range such101

that the size of the cell (or the width of P) is small compared to the wave-102

length in the beam grid. The referential frame of unit vectors (ex, ey, ez) is103

such that ex and ey are the in-plane vectors along the orthogonal ribs, while104

ez is the out-of-plane vector. The beam grid G is defined by perpendicular105

beams. The stiffeners oriented along x (resp. y) are identical and regularly106

spaced by the length `y (resp. `x).107

Each segment of stiffeners between two consecutive nodes is modeled as an108

Euler-Bernoulli beam (denoted Bx, By). The geometrical parameters of Bj,109

with j = x, y, are (`j, hj, bj, Aj) which stand respectively for their length, ez-110

thickness, width with bj = O(hj) and section area Aj = hjbj. The mechanical111

parameters (Ej, Ij = bjh
3
j/12, Gj, Ij, ρj,Λj = ρjAj, ρjJj) denote respectively112

the Young Modulus, the bending inertia, the torsional modulus and torsional113

inertia, the density, the linear mass, and the polar moment. The dimensions114

of the sections
√
Aj are assumed small with respect to the lengths `j so115

that the behavior of the inter-node elements can be effectively modeled as116

Euler-Bernoulli beams. It is further assumed that the geometrical and the117
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Figure 1: Orthogonally ribbed plate with with beams constituting the beam grid G, and
focus on the unit cell Ω made of micro-beams B and internal micro-plate P

mechanical parameters of both types of beams Bj are of the same order of118

magnitude.119

The material of the micro-plates P of area `x`y and thickness d, have a120

Young’s modulus Ep, a Poisson’s ratio νp and a density ρp. The corrected121

plate modulus is E ′p = Ep/(1 − ν2p). The plate bending inertia is denoted122

I ′p = d3/12 and the surface mass Λ′p = ρpd.123

124

According to the ribbed plate illustrated in Fig. 1, two models are pre-125

sented in the following : a poorly contrasted ribbed plate in section 1.2 and126

a highly contrasted plate model in section 1.3.127

1.2. Summary of the 2D ribbed plate model without contrasts128

As introduced previously, numerous studies dealing with orthogonally129

ribbed plates are based on Timoshenko description [7]. This description is130

originally given in statics and is commonly extended in the dynamic regime131
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by introducing −ω2Λu on the right hand side of the equation. For an or-132

thotropic plate defined in the (x, y) plane, the equation governing its trans-133

verse displacement u takes the form of Eq. (1) with coefficients Eq. (2).134 (
Dx

∂4

∂x4
+Dy

∂4

∂y4
+ 2Dxy

∂4

∂x2∂y2

)
u = ω2Λu (1)

where the bending rigidities and mass are135

Dx =
ExIx
ly

+E ′pIp ; Dy =
EyIy
lx

+E ′pIp ; Dxy = E ′pIp ; Λ =
Λx

`y
+

Λy

`x
+Λ′p (2)

From the original description in statics, the expressions of respective136

bending stiffness suggest that the plate contributes to the global rigidity137

of the plate. This is understood since same order of magnitude, one cannot138

neglect the effect of the plate to the beam grid. Also, introducing −ω2Λu on139

the right hand side of the equation without prior investigation might not be140

fully appropriated to capture all the frequency dependent phenomena.141

Moving to the case of contrasted plate would require a decoupling of the142

beam grid and the plate, so that contrast is introduced in the plate either143

with geometrical or mechanical parameters. The next section introduces the144

contrast between the beam grid and the internal plates, and discusses how145

contrast enriches Timoshenko description.146

1.3. Summary of the homogenized ribbed plate model with contrasts147

This subsection defines favorable conditions for inner resonance and sum-148

marizes the derivation of the homogenized model. The homogenization pro-149

cess is carried out according to the following steps : i) the homogenization of150

periodic discrete media method enables to derive the dynamic model describ-151

ing the transverse vibration of the beam grid only, ii) the coupling between152

the beam grid and the internal plates is then introduced considering that153

the grid is loaded by efforts and moments exerted by the plates attached to154

it, iii) the calculation of the dynamic contribution of the resonant internal155

plates driven by the motion of the grid.156

1.3.1. Contrasts definition and design rules157

Inner resonance is defined so as the stiff orthogonal beam grid conveys158

the large wavelength, while the soft internal plate experiences a local reso-159

nance. Such a mixed regime within the cell results into i) an inhomogeneous160
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kinematics where the plate and grid displacements differ at the leading order161

and ii) an asymmetrical coupling where the grid forces the soft plate.162

First, as for the co-dynamic condition, the beam grid G and P-plate163

fundamental resonances are of same order i.e., O(ωG) = O(ωp), so that :164

O

(
E ′pI

′
p

Λ′p`
4

)
= O

(
EI

ΛL4

)
i.e.

E ′p
E

ρ

ρp
= O

(
h2

d2
`4

L4

)
= O

(
ε4
h2

d2

)
(3)

This relation highlights the significant contrasts of mechanical properties of165

the constituting materials of the beam grid G and P-plate.166

Second, as for the asymmetric coupling, the grid acts as the forcing system167

that imposes its displacement to the internal plate which bring forces back on168

the grid. Such a coupling between the transverse balance of the grid loaded169

by the internal plates requires :170

div(TG) = O(Tp) (4)

where TG relates to the transverse shear force (unit kN) in the grid G and171

Tp is the transverse linear shear force in the internal P-plate (unit kN/m).172

Thus, from Eq. (4) and recalling that bk = O(hk) one deduces the follow-173

ing requirement174

O

(
E
bh3

L4

)
= O

(
E ′p
d3

`3

)
i.e.

E ′p
E

= O

(
`3

d3
`4

L4

)
= O

(
ε4
h2

d2

)
(5)

In practice, ρ/ρp = O(1) and the two conditions Eq. (3) and Eq. (5)175

reduce to E′
p

E
= O

(
ε4 h

2

d2

)
. For ribbed plate made of a single material E ′p =176

E, and the inner-resonance arises when d/h = O(`2/L2), i.e. for plates P177

significantly thinner than the beams of the grid G. If the plates material178

is much softer that the grid material, namely E ′p = O(ε4E) then d/h =179

O(`/L) enables the inner-resonance to occur. Note that in these realistic180

cases, the bending stiffness of the plate is much smaller than that of the grid,181

in accordance with the asymmetry of the coupling. The case of inverted182

material properties so that the plate exhibits stiff properties and beam grid183

soft properties is not assessed here.184

1.3.2. Homogenized formulation of the flexural behavior185

Starting with the beam grid, the up-scaling process is performed through186

HPDM method (namely Homogenization of Periodic Discrete Media). The187
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developments proceed into three steps, namely, the discretization of the dy-188

namic balance, then the homogenization procedure itself through scale sepa-189

ration assumption and normalization, leading to the continuous model from190

the discrete pattern. This method applies under the key assumption of scale191

separation. This means that the wavelength O(L) is much larger than the192

period size O(l) and consequently ε = l/L << 1. The macroscopic descrip-193

tion of the grid, valid at the dominant order, is the limit behavior reached194

for ε = `/L → 0. After these few steps, we are left with the following195

macroscopic description of the grid at the leading order :196



div(TG) + ω2ΛGu = 0 ; ΛG =
Λx

`y
+

Λy

`x

div(MG)−TG − ω2JG.grad(u) = 0

MG = −

(
ExIx
`y
∂2xu

GyJy
`x

∂x∂yu
GxJx
`y

∂y∂xu
EyIy
`x
∂2yu

)
; JG =

(
ρyJy 0

0 ρxJx

) (6)

The governing equation Eq. (6) may be written under condensed form197

ExIx
`y

∂4u

∂x4
+
EyIy
`x

∂4u

∂y4
+

(
GxIx
`y

+
GyIy
`x

)
∂4u

∂x2∂y2

+ ω2

(
ρyJy
`x

∂2u

∂x2
+
ρxJx
`y

∂2u

∂y2

)
= ω2

(
Λx

`y
+

Λy

`x

)
u (7)

The governing equation Eq. (6) shows the coupling between the flexural198

and torsional behaviors. Note that in statics (ω → 0), this model already199

differs to that of Timoshenko Eq. (1). Note also that the inertial term con-200

taining the polar moments JG may be neglected in regards to those related to201

the linear masses ΛG. Note finally that an additional inertial effect following202

comment made in section 1.2.203

The action of internal plates is than introduced in the beam grid model204

in the form an external loading constituted by a shear force F and a couple205

C resulting from the contact forces. The rigorous calculation of these terms206

is detailed in [23]. Calculating analytically these terms yield the effective207

model of the 2D ribbed plate that describes the grid behavior enriched by208
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for the locally resonant internal plates:209 div(TG) + ω2(ΛG + Λ′p〈φω〉)u = 0

div(MG)−TG − ω2JG.grad(u) = 0
(8)

with MG and JG as defined in Eq. (6). Note also that the description could210

be improved by considering the correction factors constituted by the higher211

order terms of the asymptotic process. These could be relevant in case scale212

separation is not fulfilled. The inner resonance effect appears in Eq. (8)213

through the frequency dependent effective parameter 〈φω〉, associated with214

the dynamic motion of the internal plate. This results into a non conventional215

apparent mass term whose determination is performed by integrating the216

transverse displacement of the internal plate over its surface. Since there217

is no analytical expression of this quantity for a square clamped plate, the218

latter is approximated by that of a clamped circular plate. This provides an219

approximated value, denoted 〈φcω〉, for a square plate of side l by matching220

its first eigenfrequency with that of an equivalent circular plate of radius a.221

The corresponding approximation reads:222

〈φω〉 ≈ 〈φcω〉 =
4

δa

I1(δa)J1(δa)

I1(δa)J0(δa) + I0(δa)J1(δa)
(9)

where a ≈ 0.53l is the equivalent radius, Jk and Ik are the Bessel and modified223

Bessel functions of the first/second kind, δ is the wavenumber such that224

δ4 = Λ′pω
2/E ′pIp. The denominator of Eq. (9) is the transcendental equation225

whose roots δa are used to calculate the eigenfrequencies of the circular plate.226

The matching is performed on the first mode, and determines the radius of227

the equivalent circular plate, that is a = 0.53l. Although this reasoning is228

empirical and based on the resemblance of the first mode shapes of a square229

and circular plate, this estimate perfectly fits the first resonance but over-230

predicts the eigenfrequency of the second mode with an error of 5%. (see231

[23]).232

The properties of 〈φω〉 are such that 〈φω〉 → 1 as δ → 0 which means that233

the effective mass is the real static mass, and 〈φω〉 → ±∞ as I1(δa)J0(δa) +234

I0(δa)J1(δa) = 0, which roots corresponds to the plate’s eigenfrequencies.235

236
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1.3.3. Dispersion features237

Assuming an harmonic bending wave in the form u(x) = exp(ikθnθ.x)238

propagating in the direction nθ = cos θex + sin θey. Taking into account the239

facts that the terms associated with polar moments JG are of weak magnitude240

compared to the translational inertia, this term can be disregarded at the241

leading order. Consequently, the bending wavenumber kθ(ω) is given by :242

k4θ

(
ExIx
`y

cos4 θ +
EyIy
`x

sin4 θ +

(
GxIx
`y

+
GyIy
`x

)
cos2 θ sin2 θ

)
− ω2(ΛG + Λ′p〈φω〉) = 0 (10)

The inner resonance contained in 〈φω〉 leads to dispersion features that differs243

distinctly from the classical bending case in which k ∝
√
ω in the whole244

frequency range. Significant changes are expected in the neighborhood of the245

internal plate’s eigenmodes. Wavenumbers will be the subject of a special246

discussion in the section 2.1.247

1.4. Concluding remarks248

As an extension to the classical orthotropic plate equation Eq. (1) with249

coefficients Eq. (2) proposed by Timoshenko, homogenization introduces a250

dynamic description taking into account contrast between the beam and251

internal plates. Such an extended formulation is found as :252

ExIx
`y

∂4u

∂x4
+
EyIy
`x

∂4u

∂y4
+

(
GxIx
`y

+
GyIy
`x

)
∂4u

∂x2∂y2

+ ω2

(
ρyJy
`x

∂2u

∂x2
+
ρxJx
`y

∂2u

∂y2

)
= ω2(ΛG + Λp〈φω〉)u (11)

Remarking that the terms associated with polar moments are of weak253

magnitude compared to the inertia, this term can be neglected at the leading254

order, so that Eq. (11) degenerates into255 (
Dx

∂4

∂x4
+Dy

∂4

∂y4
+ 2Dxy

∂4

∂x2∂y2

)
u = ω2(ΛG + Λp〈φω〉)u (12)

where the bending stiffness and mass are256

Dx =
ExIx
`y

; Dy =
EyIy
`x

; Dxy =
GxIx
`y

+
GyIy
`x

; ΛG =
Λx

`y
+

Λy

`x
(13)
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From Eq. (11) with coefficients Eq. (13), two important observations are257

made. First, the structure of the differential operation changes in such a258

way it still contains the bi-laplacian operator and includes additional terms259

of bending and torsional stiffness with rotational inertia. Second, the refer-260

ence equation Eq. (1) with coefficients Eq. (2) no longer considers the plate261

contribution in the elastic part, but in the inertial part. The plate is no262

longer contained in the bending stiffness. This is fully consistent with the263

fact that a contrasted ribbed plate will exhibit a dynamic behavior mostly264

governed by the grid, and the internal plates will affect the global response265

only around frequency bands in which their dynamic behavior differs from266

that of the grid.267

From this introduction on the mechanical part, the sound radiation from268

plates can be modeled assuming it is either infinite or finite. The next two269

sections 2 and 3 are respectively dedicated to infinite and finite cases.270

2. Acoustic radiation - Infinite case271

This section presents an investigation onto a infinite ribbed plate. In272

anticipation of an experimental investigation, the dimensions of the internal273

plates are calculated so as to correspond to a feasible plate. Two designs274

are obtained : first is denoted R∞1 , and is associated with geometrical and275

mechanical contrast between the grid and internal plate considering the ribs276

are identical in the two directions, second is denoted R∞2 , and introduces277

stiffeners of different dimensions in the two directions, in order to better ex-278

hibit the orthotropic nature of the plate. According to the indicators defined279

in section 2.1, as well as the geometrical parameters and mechanical proper-280

ties given in Table 1, Table 2, the investigation will be expanded in terms of281

radiation efficiency (section 2.2) and transmission loss (section 2.3).282

2.1. Methods and chosen sets of parameters283

As for the methods, let consider an infinite plate with incident acous-284

tic plane wave, as illustrated in Fig. 2. The expressions the transmission285

coefficient is derived from i) the acoustic pressure of the incident, reflected286

and transmitted waves, ii) the pressure difference on both face of the plate287

combined with iii) the continuity of pressure and velocity at the fluid-solid288

interface.289
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Figure 2: Notations used for the sound radiation investigation : ribbed plate in the (x, y)
plane, angle of incident plane wave φ, azimuth angle θ of wave propagating in the plate.
Location of point force xF and observation point xv for calculation of structural response.
Elementary radiating surface dS with normal direction n towards receiver point.

Let us consider an infinite orthotropic plate driven by an incident pressure290

p(x, y, z) which governing equation is :291 (
Dx

∂4

∂x4
+Dy

∂4

∂y4
+ 2Dxy

∂4

∂x2∂y2

)
u− ω2Λu = p(x, y, z) (14)

When the pressure field is supposed of the form of an incident plane wave292

with a wavenumber k = ω/c0, an incidence angle φ and an azimuth angle293

θ. In this case, the incidence angle φ is the angle between the wave vector294

and the normal direction to the plate, and the azimuth angle θ gives its295

orientation in the plane of the plate. As for the incident plane wave, we state296

p(x, y, z) as:297

p(x, y, z) = p0 exp(−i(kxx+ kyy + kzz)) (15)

with kx = k sinφ cos θ, ky = k sinφ sin θ, kz = k cosφ are the acoustic298

wavenumbers in the different directions.299

On the surface of the plate, p(x, y, z = 0)=p0 exp(−i(kxx+ kyy)), the300

transverse displacement on the plate, solution of the equation Eq. (14) is301

searched with the form:302

u(x, y) = U exp(−ik sinφ(cos θx+ sin θy)) (16)
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The ratio between the acoustic pressure to the velocity of the plate is intro-303

duced as the surface impedance Zs = p/v = p/iωu.304

The forms of the pressure and the displacement are the same as for the305

infinite isotropic plate but in case of orthotropic plate, due to the angle306

dependence of the flexural wavenumber kp, the relation becomes307

(Dx cos4 θ +Dy sin4 θ + 2Dxy cos2 θ sin2 θ)(k4 sin4 φ− k4p(θ))u = p (17)

and therefore, the surface impedance is defined by:308

Zs(θ, φ) =
−i
ω

(
Dx cos4 θ +Dy sin4 θ + 2Dxy cos2 θ sin2 θ

)
(k4 sin4 φ− k4p(θ))

(18)
Due to the orthotropic nature of plate, and thus the existence of two309

critical frequencies, the coincidence frequency band exhibiting a typical gap310

becomes broader and smoother. A relatively small difference between the311

bending rigidity of stiffeners produces a small difference between their respec-312

tive critical frequencies. As the difference of stiffness increases, the critical313

frequencies might be separated by one or two orders of magnitude.314

From this observation, the usual expression of surface impedance Zs in-315

cludes these two critical frequencies, whose depend not only on the angle of316

incidence φ of the incident plane wave, but also on the azimuth angle θ in317

the plane of the plate (see Fig. 2). The surface impedance of the orthotropic318

plate is thus :319

Zs = jωΛ

(
1−

(
f

fc,x
cos2 θ +

f

fc,y
sin2 θ

)2

sin4 φ

)
(19)

For a given angle of incidence φ, the transmission coefficient τ is defined320

by :321

τ(φ,θ) =
1∣∣∣ Zs

2Z0
+ 1
∣∣∣2 (20)

with Z0 = ρ0c0/ cosφ the normal impedance of the fluid and Zs the surface322

impedance of the plate. The calculation of this transmission coefficient in323

diffuse field conditions is performed by integrating Eq. (20) over all angles324

of incidence. Assuming plane wave incidence uniformly distributed over all325

angles, the statistical transmission factor is :326

τd =
2

π

∫ π/2

0

(
2

∫ π/2

0

τ(φ,θ) cosφ sinφ dφ

)
dθ (21)
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Introducing finally τ as Eq. (20), the diffuse field transmission coefficient327

is formulated as :328

τd =
2

π

∫ π/2

0

∫ 1

0

d(sin2 φ) dθ∣∣∣ Zs

2Z0
+ 1
∣∣∣2 (22)

In the following, the evaluation of this term is performed numerically. In329

addition to the transmission coefficient, the reduction index R is introduced330

as R = −10 log(τd).331

332

According to the design rules favorable to inner resonance presented above333

and considering a feasibility criterion, two designs are obtained : first is de-334

noted R∞1 , and is associated with geometrical and mechanical contrast be-335

tween the grid and internal plate considering the ribs are identical in the336

two directions, second is denoted R∞2 , and introduces stiffeners of different337

dimensions in the two directions. The geometrical parameters and mechan-338

ical properties are respectively given in Table 1 and Table 2. The models339

use hysteretic damping ratio introduced as an imaginary part of the Young’s340

modulus E = E(1 + iη), with η =1% for aluminium and 5% for perspex.341

Table 1: Geometrical parameters and mechanical properties associated with the 2D infinite
ribbed plate R∞1 .

nx = ny =∞ E (GPa), ν ρ (kg/m3) Dimensions (m)

Beam grid Eb=69; νb = 0.3 ρb=2700 hx = hy = 1.5.10−2

bx = by = 1.5.10−2

Internal plates Ep=2; νp = 0.37 ρp=1200 lx = ly = 7.10−2

d = 3.10−3

Following the design R∞1 in Table 1, the exact critical frequency is the342

same in both directions fc,j = c2

2π

√
λj+λpD〈φω〉

Dj
. The first resonance frequency343

of the internal plate is f r1 = 1386 Hz.344

Following the design R∞2 in Table 2, the exact critical frequencies in345

both directions fc,j = c2

2π

√
λj+λpD〈φω〉

Dj
could be estimated numerically. As346

an approximation, out of the inner resonance frequency bands, this critical347
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Table 2: Geometrical parameters and mechanical properties associated with the 2D infinite
ribbed plate R∞2 .

nx = ny =∞ E (GPa), ν ρ (kg/m3) Dimensions (m)

Beam grid Eb=69; νb = 0.3 ρb=2700 hx = 1.10−2, hy = 0.75.10−2

bx = by = 1.10−2

Internal plates Ep=2; νp = 0.37 ρp=1200 lx = ly = 7.6.10−2

d = 3.10−3

frequency is bounded by that of a simple plate radiating in half-space f−c =348

c2

2π

√
λb
Dx

, that is f−c = 1613 Hz as the lower bound, and will not be greater349

than that of the rib and internal plate at rest f+
c,j = c2

2π

√
λj+λp
Dj

, that is350

f+
c,x = 2520 Hz as the upper bound. This can be systematically verified. The351

same observation is valid for the other direction, respectively f−c,y = 2520 Hz,352

and f+
c,y = 3323 Hz. Also, the first resonance frequency of the internal plate353

is f r1 = 1190 Hz, and the second resonance frequency is f r2 = 3261 Hz.354

The effective mass 〈φω〉 associated to internal for both design is plotted355

in Fig. 3 for both designs. The trends observed is consistent with the be-356

havior with the comment provided along Eq. (9), where the two resonance357

frequencies clearly appear.358

From Fig. 4, it can be shown that due to inner resonance, the flexu-359

ral wavenumber, calculated from Eq. (10), can significantly vary below and360

above the critical frequency. Classical results of acoustic radiation below and361

above the critical frequency can be obtained for 60 Hz and 900 Hz respec-362

tively. However, in case of inner resonance, the flexural wavelength can be363

significantly greater than acoustic wavelength below the critical frequency,364

giving rise to unconventional acoustic radiation. Alternatively, the flexu-365

ral wavelength can be significantly lower than acoustic wavelength above366

the critical frequency, giving rise to unconventional generation of evanescent367

acoustic waves.368

2.2. Radiation efficiency369

An usual indicator to evaluate if a vibrating surface is a good sound370

radiator is the radiation efficiency denoted σ defined in terms of wavenumbers371
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Figure 3: Dimensionless effective mass φω associated with one single internal plate : real
part (−), imaginary part (− −), modulus (−+−), normalized static mass y = 1 (· · ·).
For plate R∞1 (a) and plate R∞2 (b).

as σ = 1/
√

1− k2p/k2. In this formula, we assume kp < k ; when the flexural372

wavelength in the plate increases with respect to the acoustic wavelength in373

air, the radiation efficiency tends to 1. The radiation efficiency is illustrated374

in Fig. 5 for both designs introduced above. As for the plate R∞1 , for which375

stiffeners are identical in both directions, σ is the same for θ = 0 or π/2,376

and the tuning of the inner resonance frequency onto the critical frequency377

decreases significantly the radiation factor in this region where the plate378

is known to be acoustically transparent. As for the plate R∞2 , for which379

stiffeners are different in both directions, σ is illustrated for θ = 0 and θ = π/2380

and the influence of resonance frequencies is exhibited.381

Radiation efficiency is an indicator for observing a preliminary manifes-382

tation of the local resonance effect. It gives an indication of the behavior in383

the main directions of orthotropy. A global description obtained from an in-384

tegration on all angles, in the plate and in the air is proposed in the following385

section.386

2.3. Sound transmission loss387

2.3.1. Results for a single incidence angle388

Two incidence angle are considered here for the acoustic wave reaching389

the plate : normal incidence condition φ = 0, oblique incidence condition390

φ = π/3.391
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Figure 4: Flexural wavenumber in the x− and y− direction without inner resonance (resp.
(−+−) and (−�−)) and with inner resonance (resp. (−), (−)), acoustic wavenumber in
air (· · ·), and vertical dotted lines located at crossings indicated critical frequencies. For
plate R∞1 (a) and plate R∞2 (b).

As for the normal incidence condition, Eq. (18) simplifies so as elastic ef-392

fects vanish and only inertial effect remain, that is consistent with the mass393

law approximation, which gives a quite appropriate description for frequen-394

cies lower than the critical frequency. The normal incidence transmission loss395

is illustrated for the two design in Fig. 6.396

As for the oblique incidence, an arbitrary angle for the propagating wave397

in the plate is chosen as θ = π/3. After passing the coincidence frequency,398

the transmission loss exhibits strong frequency dependence and the bending399

stiffness (elastic effects) becomes predominant over the mass law. This ef-400

fect is illustrated in Fig. 7 for 3 values of incidence angle, which shows that401

the classic trends are correctly recovered, i.e. the coincidence frequency de-402

creases as the angle of incidence get closer to the grazing incidence, and that403

the introduction of local resonance is perceptible in specific interval without404

modified the change of slope below and above the coincidence frequency.405

To extend these results to diffuse field, one may integrate over all possi-406

ble incidence angles φ of the acoustic wave in air and possible directions of407

propagation θ of bending wave in the plate. The limits of the domains of408

integration are withdrawn since they correspond to grazing incidences and409

can give numerical errors.410
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Figure 5: Radiation efficiency of orthotropic plate with inner resonance for θ = π/2
(−5−), θ = 0 (· · · 5 · · ·), equivalent isotropic plate in x− direction (−+−) and y−
direction (−�−). For plate R∞1 (a) and plate R∞2 (b).

2.3.2. Results in diffuse field conditions411

The transmission loss is now calculated for the two designs. For each412

design, the transmission loss of the plate considering inert internal plates and413

the plate with the dynamic of the internal plates is plotted to best evidence414

the local resonance.415

As for the design of the ribbed plate R∞1 given in Table 1, the diffuse field416

transmission loss clearly shows the coincidence frequency of the equivalent417

isotropic plate in the x− direction and the plate at rest. The small shift418

in coincidence frequency is due to the increase of mass. However the most419

noticeable effects lies in the increase of transmission loss around the coinci-420

dence frequency. Minor fluctuations visible at high frequency are due to the421

discretization of the angle interval and are not related with inner resonance.422

As for the design of the ribbed plate R∞2 given in Table 2. Several quan-423

tities are illustrated, namely, the transmission loss associated with the equiv-424

alent isotropic plate along x− and y−, that associated with the orthotropic425

plate without inner resonance (disabling the frequency dependent term in426

Eq. (11), that is 〈φω〉 = 1), and that including the local resonance. Compar-427

ison is shown in Fig. 8 and shows the two critical frequencies associated with428

the equivalent isotropic plates along −x and −y, since these have different429

bending stiffness in the two directions. A relatively small difference between430

rigidities produces a small difference between critical frequencies. The ribs431

increase the bending stiffness but lowers the critical frequency. This may432
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Figure 6: Normal incidence transmission loss of orthotropic plate with inner resonance
(−5−), plate at rest (−©−), equivalent isotropic plate in x− direction (−+−) and
y− direction (−�−). For plate R∞1 (a) and plate R∞2 (b).

lead to an increased transparency in the useful frequency range. However,433

the locally resonant nature can be put to good use since it provides an addi-434

tional mechanism of attenuation in some frequency bands. In this way, the435

transmission loss of the orthotropic plate exhibits a dip between the afore-436

mentioned critical frequencies. When introducing the resonance of internal437

plates, additional fluctuations related to eigenmodes of the vibrating inter-438

nal plates contribute to the increase or decrease of transmission loss at their439

corresponding frequencies.440

2.4. Concluding remarks on infinite case441

This section introduced the relevant quantities to look at when investi-442

gating the radiation of plates Two realistic designs are obtained : first is443

associated with geometrical and mechanical contrast between the grid and444

internal plate, second introduces different stiffeners in the two directions, in445

order to better exhibit the orthotropic nature of the plate, still with inner446

resonance. Preliminary examination of wavenumbers suggests that in case447

of inner resonance, the flexural wavelength can be greater than the acous-448

tic wavelength below the critical frequency, giving rise to acoustic radiation,449

and alternatively, it can be lower than acoustic wavelength above the criti-450

cal frequency, giving rise to unconventional generation of evanescent acoustic451

waves. This is then confirmed by the observation of radiation efficiency,452

which shows that tuning the inner resonance frequency around the critical453
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Figure 7: Oblique incidence transmission loss of orthotropic plate with inner resonance
(−), plate at rest (· · ·), for φ = 0, π/5, π/3, from light to dark grey. For plate R∞1 (a) and
plate R∞2 (b).

frequency leads to significant attenuation. Finally, exploring the trends of454

transmission loss in either single incidence angle or diffuse field shows that455

the locally resonant nature of the plate bring additional attenuation in the456

coincidence region where the plate is known to be acoustically transparent.457

3. Acoustic radiation - Finite case458

The previous designs R∞1 and R∞2 are supplemented by finite dimensions459

Lx = Ly = 0.7 m, and are denoted R1 and R2. R1 has nx = ny = 8 cells, R2460

has nx = ny = 7 cells. For explanatory purposes and in order to demonstrate461

the effect of locally resonant nature of the plate on the sound transmission462

loss, the simply supported case is chosen since it offers an analytical solution463

in the form of a double summation of sine terms. The location of point force464

and observation point for calculation of structural response are sketched in465

Fig. 2. From this setup, structural frequency response functions are assessed466

in section 3.1, then mean square velocity is commented in section 3.2. The467

behaviors identified make it possible to better understand the shape of the468

transmission loss curve in section 3.3.469

3.1. Comparison of Timoshenko and homogenized model470

This section briefly presents the structural response of the orthogonally471

ribbed plate modeled either with Timoshenko equation Eq. (1) or homog-472
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Figure 8: Diffuse field transmission loss of orthotropic plate with inner resonance (−5−),
plate at rest (−©−), equivalent isotropic plate in x− direction (−+−) and y− direction
(−�−). For plate R∞1 (a) and plate R∞2 (b).

enized model with inner resonance Eq. (11). For this purpose, a struc-473

tural point force is located at coordinates xF = (Lx/2, Ly/2) and the trans-474

verse velocity is calculated at a virtual observation point with coordinates475

xv = (Lx/3, Ly/3). In this way, the structural frequency response func-476

tion defined as the ratio of velocity versus input force, namely mobility477

M(ω) = iωu/F , is calculated analytically. For the sake of simplicity,478

plates with simply supported boundary conditions all around are consid-479

ered since there are distinct solutions for the wavenumbers kx and ky and480

it provides an analytical solution. The solution for the transverse displace-481

ment field u(x, y, ω) is formulated as the infinite sum of all possible solutions482

u(x, y, ω) =
∑∞

m=1

∑∞
n=1 um,n(ω)Ψm,n(x, y), where Ψm,n(x, y) is the (m,n)483

mode shape function and wm,n(ω) the associated amplitude. In case of a484

plate supported along all four edges, the modal functions are Ψm,n(x, y) =485

sin(mπx/Lx) sin(nπy/Ly). This modal summation technique can be approx-486

imated as a finite sum as u(x, y, ω) ≈
∑M

m=1

∑N
n=1 um,n(ω)Ψm,n(x, y), where487

M and N are the number of modes considered. Considering 50 modes, the488

computational time is about 4 seconds and associated results are given for489

both designs on Fig. 9. The structural mobility is calculated as490

491

Apart from the inner resonance frequencies specific to each design, the492

very low frequency behavior is well captured by the homogenized model, as493

well as the trend in rather high frequency domain. In addition, the response494
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from homogenized model exhibits proper drops of amplitude at the frequen-495

cies identified as inner resonance frequencies, which makes it possible to rely496

on its ability to predict local phenomena.497
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Figure 9: Structural mobility (ref:1m/s/N) of simply supported orthotropic plate with
inner resonance computed analytically from homogenized model (−) and Timoshenko
model (· · ·). For plate R1 (a) and plate R2 (b).

3.2. Effect on mean square velocity498

The mean square velocity is a structural indicator of the radiation per-499

formance, it is defined as the quadratic normal component of the structural500

velocity integrated over the surface of the plate S as ṽ =
√

1/S
∫
S
|iωu|2.501

The mean square velocity is calculated from this expression for both designs502

with same location of excitation point as in the previous section 3.1.503

As illustrated in Fig. 10, the global modes are correctly predicted by the504

two models, especially in the low frequency region. However, strong disparity505

appears around the inner resonance frequencies, and the homogenized model506

shows better capability in predicting the gap induced by local resonance.507

Indeed, it is derived as a beam grid enriched by local motion of internal508

plates. As contrast between beam grid and plate constituents increases, the509

amplitude of motion experienced by internal plates becomes much different510

than that of the beam grid, leading to a poorer accuracy of Timoshenko511

model and giving advantage to the homogenized model.512
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Figure 10: Mean square velocity (ref:1m/s/N) of orthotropic plate with inner resonance
computed analytically from homogenized model (−) and Timoshenko model (· · ·). For
plate R1 (a) and plate R2 (b).

3.3. Effect on transmission loss513

The transmission loss is here investigated by supplementing the previous514

model with simply supported plate. As for the structural part, the input515

vibratory field is the the same as the one calculated in section 3.1. As for the516

acoustic part, the notations are indicated in Fig. 2. The Rayleigh integral517

is implemented as it is known to be an efficient basis to calculate sound518

radiation from finite sized plane surface set into an infinite rigid baffle. The519

infinite baffle simplifies the general Helmholtz formulation so that only one520

integral is left, and the acoustic pressure is :521

p(r, ω) =
jωρ

2π

∫∫
S

vn(rS) exp(−ikR)

R
dS (23)

where vn(rS) is the normal velocity field over the surface, k is the acoustic522

wavenumber and R = ‖rS−r‖ =
√

(x− x′)2 + (y − y′)2 + z′2 is the distance523

between each elementary source point on the plate rS = (x, y, 0) and the re-524

ceiver point r = (x′, y′, z′). The sources are defined by subdividing the plate525

into a regular grid of 100 × 100 elementary sources. For the calculation of526

transmission loss, z′ << 1.527

528

The results in terms of sound transmission loss are represented in Fig. 11.529

Since our phenomenon occurs in a narrow interval, the choice is made not530

to adopt the classical representation in third octave bands. For both plates,531
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we see that inner resonance introduces additional loss in the sound trans-532

mission To best emphasize the locally resonant feature, it is compared as in533

Fig. 10 with the Timoshenko model to show the interval of differences. The534

homogenized model is also used with internal plates at rest, which does not535

correspond to a physical case but associated with a asymptotic behavior.536
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Figure 11: Transmission loss estimated analytically in case of finite plate, from homoge-
nized model with resonant plates (−), homogenized with plates at rest (− −), and from
Timoshenko model (· · ·). For plate R1 (a) and plate R2 (b).

Conclusion537

Based on explicit design rules and homogenized plate model, this paper538

brings phenomenological interpretation on the radiation of ribbed plates, and539

specifically focuses on the parallel between an homogenized analytical model540

of contrasted ribbed and its acoustic radiation compared to the Timoshenko541

orthotropic plate model. For ribbed plates with strong contrasts between542

constituents, it is firstly demonstrated that this model supplements Timo-543

shenko model. The latter is suitable for ribbed plates in which the rigidity544

of the plate is introduced in the bending stiffness of the ribs, whereas the545

homogenized model can be seen as a beam grid whose dynamic behavior is546

corrected by the motion of vibrating internal plates. Investigations of the547

acoustic radiation from an infinite and finite orthogonally ribbed plate are548

based on two designs associated with strong and low contrast between con-549

stituents, in order to better exhibit the orthotropic nature of the plate.550
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As a preliminary comprehensive study case, the infinite plate case is pre-551

sented. The limit behavior of equivalent isotropic plates in the two directions552

of orthotropy are successfully identified. The radiation efficiency exhibits the553

transition from non-radiating to radiating domains marked out by the criti-554

cal frequency. The effect of the local resonance is also evidenced and results555

in an unconventional increase or reduction of the radiation below or above556

the critical frequency.557

As a complementary case, analytical predictions of mean square veloc-558

ity and transmission loss are commented for finite plates. It comes out that559

the homogenized provides enhanced estimation of behavior in inner frequency560

ranges compared to Timoshenko model. The examination of the sound trans-561

mission loss demonstrates the attenuation in the neighborhood of inner res-562

onance.563

Although the homogenization process could be further applied on various564

cell geometries, this paper specifically outlines the relevancy of the homog-565

enized model and demonstrates its ability to predict acoustic radiation of566

contrasted plates. The large amount of possible setups suggest adjustable567

resonant properties of the panel behavior, and offers the possibility of either568

broadband or narrow band attenuation.569
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