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Abstract 

The zwitterionic dicarboxylate 1,1′-[(2,3,5,6-tetramethylbenzene-1,4-diyl)bis(methylene)]bis(pyridin-1-ium-4-

carboxylate) (L) has been reacted with uranyl nitrate under solvo-hydrothermal conditions and in the presence of 

KReO4 to give the complex [UO2(L)(OH)(H2O)](ReO4) (1). This compound crystallizes as a cationic, 

monoperiodic coordination polymer with ReO4
– as a simple counterion. The daisy-chain polymer is based on 

dinuclear rings built by the convergent zwitterionic ligands, these rings being linked to one another by double 

hydroxide bridges. In addition to a Coulombic interaction with a pyridinium ring, ReO4
– is involved in one 

OH(water)O and four CHO interactions, and it is thus nestled in a cavity formed by three chains, seemingly 

with some selectivity over nitrate and chloride anions also present in the reaction mixture. This result illustrates 

the interest of zwitterionic dicarboxylates in building cationic assemblies able to trap ReO4
–, a surrogate for the 

radioactive TcO4
–, an anion of environmental relevance. 
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Introduction 

Coordination polymers formed by uranyl ion with polycarboxylate ligands [1–5] very 

commonly have an anionic form and therefore can be regarded as potential cation exchange 

materials, a property which has in fact been demonstrated in several instances [6–12], if not 

always with evidence that the polymer form is retained in the process. Possible environmental 

remediation or nuclear waste treatment applications have nonetheless been foreshadowed 

[5,13]. Nuclear waste contains not only cationic radioactive species such as 137Cs+ but also 

radioactive anions such as the long-lived (half-life, 2.13 × 105 yrs) 99TcO4
– (pertechnetate), and 

cationic polymers have been widely investigated as a means of removing this highly mobile 

anion from wastes, coordination polymer systems showing particular promise [14–21]. To 

optimize the design of cationic coordination polymers for this purpose, it is essential to 

understand the solid state interactions of the anion and an approach to this which avoids the 

difficulty of handling highly radioactive material consists of replacing pertechnetate by the 

structurally essentially identical but non-radioactive perrhenate anion ReO4
–. Both are anions 

expected to have some parallel with ClO4
– in being weak ligands in aqueous solution [22]. 

However, DFT molecular dynamics simulations of their binding to uranyl ion in particular 

[23,24] have indicated that this may be much stronger in non-aqueous solvents, and there is 

spectroscopic proof of TcO4
– coordination to UVI in CH2Cl2 [25]. In the solid state, structural 

proof of coordination is available for a wide range of metal ions [22] and, in the particular case 

of the uranyl ion, examples of coordination (most often monodentate) by both pertechnetate 

[26,27] and perrhenate [22,25,27–32] have been reported. ReO4
– is, however, a simple 

counterion in the case of a monoperiodic coordination polymer formed by the uranyl ion with 

cucurbit[7]uril [33], while several occurrences of its encapsulation within cucurbit[n]uril (n = 

6 or 7) molecules associated with uranyl, thorium or lanthanide ions are known [30,31,34,35]. 

Examples of perrhenate and/or pertechnetate encapsulation in azacryptands, metallacages or 
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helicates have also been reported, these being examples of where the binding step must be 

accompanied by a further selective extraction step in order to isolate the anions [36–46]. 

A simple way of generating cationic uranyl-based coordination polymers suitable for the 

inclusion of TcO4
– or ReO4

– anions consists of using neutral, zwitterionic polycarboxylate 

ligands [47]. Some of the monomeric uranyl ion complexes known to trap these anions involve 

zwitterionic, monocarboxylate donors [27,32], and an example of a polymeric system involving 

a uranyl ion complex with a zwitterionic dicarboxylate ligand threading cucurbit[6]uril 

molecules is also known [48]. Some coordination polymers based on other metal ions also 

involve zwitterionic ligands [18]. This approach is not unlike that using zwitterionic molecular 

capsules for sequestering of anions, although the host is neutral in these cases [49–51]. There 

is also a novel example of an anionic uranyl ion polymer where the countercation is a protonated 

trizwitterion encapsulating a bromide ion [52]. We have thus extended our studies of uranyl ion 

coordination polymers incorporating zwitterionic ligands to the complex formed in the presence 

of perrhenate anions by 1,1′-[(2,3,5,6-tetramethylbenzene-1,4-diyl)bis(methylene)]bis(pyridin-

1-ium-4-carboxylate) (L, Scheme 1), which has been characterized by its crystal structure. This 

ligand has previously been shown to give uranyl ion complexes of periodicity varying from 0 

to 3 when associated with other anionic donors [52,53]. 

 

Scheme 1 The zwitterionic dicarboxylate ligand L. 

 

Experimental section 

Synthesis 

Caution! Uranium is a radioactive and chemically toxic element, and uranium-containing 

samples must be handled with suitable care and protection. Small quantities of reagents and 
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solvents were employed to minimize any potential hazards arising both from the presence of 

uranium and the use of pressurized vessels for the syntheses. 

Dioxouranium(VI) nitrate hexahydrate, [UO2(NO3)2(H2O)2]·4H2O (RP Normapur, 99%), 

was purchased from Prolabo and KReO4 was from Aldrich. 1,1′-[(2,3,5,6-Tetramethylbenzene-

1,4-diyl)bis(methylene)]bis(pyridin-1-ium-4-carboxylic) acid dichloride (LH2Cl2) was 

synthesized as previously described [52]. 

 

[UO2(L)(OH)(H2O)](ReO4) (1). LH2Cl2 (24 mg, 0.05 mmol), [UO2(NO3)2(H2O)2]·4H2O (25 

mg, 0.05 mmol), and KReO4 (29 mg, 0.10 mmol) were dissolved in a mixture of water (0.6 mL) 

and N,N-dimethylacetamide (DMA, 0.2 mL). The solution was placed in a 10 mL tightly closed 

glass vessel and heated at 140 °C in a sand bath, under autogenous pressure. A few yellow 

crystals of complex 1 were deposited under the reaction conditions (and not from subsequent 

cooling and depressurization) within two days. 

 
Crystallography 

The data were collected at 100(2) K on a Bruker D8 Quest diffractometer equipped with an 

Incoatec Microfocus Source (IS 3.0 Mo) and a PHOTON III area detector, and operated 

through the APEX3 software [54]. The data were processed with SAINT [55], and absorption 

effects were corrected for empirically with SADABS [56,57]. The structure was solved by 

intrinsic phasing with SHELXT [58] and refined by full-matrix least-squares on F2 with 

SHELXL [59], using the ShelXle interface [60]. All non-hydrogen atoms were refined with 

anisotropic displacement parameters. The hydrogen atoms bound to oxygen atoms were found 

on residual electron density maps and they were refined with geometrical restraints. All other 

hydrogen atoms were introduced at calculated positions and were treated as riding atoms with 

an isotropic displacement parameter equal to 1.2 times that of the parent atom (1.5 for CH3). 

Drawings were made with ORTEP-3 [61,62] and VESTA [63]. 
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Crystal data for 1: C24H27N2O12ReU, M = 959.70, triclinic, space group Pī, a = 9.7130(4), b = 

11.3658(5), c = 13.3665(6) Å,  = 97.6896(15),  = 91.2930(14),  = 111.4858(12)°, V = 

1356.61(10) Å3, Z = 2. Refinement of 377 parameters on 8261 independent reflections out of 

72060 measured reflections (Rint = 0.043, max = 30°) led to R1 = 0.027, wR2 = 0.066, min = 

–1.85, max = 1.96 e Å–3. 

 

Results and discussion 

The complex [UO2(L)(OH)(H2O)](ReO4) (1), a product of partial hydrolysis of the uranyl 

cation, was obtained by reacting uranyl nitrate, LH2Cl2 and KReO4 under solvo-hydrothermal 

conditions. The unique uranium atom is bound to two carboxylate donors from two different 

ligands, two hydroxide anions and one water molecule (Fig. 1), and its environment is thus 

pentagonal-bipyramidal [U–O(oxo), 1.779(3) and 1.794(3) Å; U–O(carboxylato), 2.367(3) and 

2.419(3) Å; U–O(hydroxo), 2.287(3) and 2.320(3) Å; U–O(water), 2.513(3) Å]. The ligand L 

is bridging with both carboxylate groups monodentate, a coordinating mode quite frequent with 

this and other zwitterionic dicarboxylates [52,53,64–66], and a possible indication of a decrease 

of donor strength with respect to anionic dicarboxylates which is also suggested by 

photoluminescence properties [67]. The coordination polymer formed is monoperiodic and 

directed along [011], and it has the shape of a daisychain where the zwitterion has a convergent 

conformation supporting the formation of diuranacyclic units linked by dihydroxido bridges. 

Despite the presence of one aqua ligand on uranium which might be considered susceptible to 

substitution, the perrhenate anion is not coordinated. It does, however, exclude the presence of 

other anions (nitrate, chloride, or hydrolysis products) in the deposited crystals. This selective 

trapping of perrhenate over nitrate or chloride is possibly related to the reduced hydration of 

the former due to its larger radius and lower charge density [14,38] (“Hofmeister bias” [68–
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70]), although the different weak interactions formed by these anions in the solid state may have 

an effect too. 

 
 

Fig. 1 (a) View of complex 1 with displacement ellipsoids shown at the 50% probability level. Carbon-bound 

hydrogen atoms are omitted and the hydrogen bonds are shown as dashed lines. Symmetry codes: i = 2 – x, 1 – y, 

1 – z; j = 2 – x, 2 – y, 2 – z. (b) View of the monoperiodic polymer down the chain axis with included perrhenate 

anions; uranium coordination polyhedra are in yellow and rhenium atoms are shown as green spheres. (c) The 

chain viewed side-on. (d) Packing with chains viewed sideways. 

 

The hydroxide anion forms an intrachain hydrogen bond with the uncoordinated 

carboxylate oxygen atom O4 [OO, 2.745(5) Å; O–HO, 159(6)°], thus forming a ring with 

the graph set descriptor R1
1(6) [71,72]. The coordinated water molecule is hydrogen bonded to 

the other uncoordinated carboxylate atom O6 [2.629(5) Å, 164(7)°] in another R1
1(6) ring, and 
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to the perrhenate oxygen atom O9 [2.760(5) Å, 165(6)°]. No solvent molecule is present and 

the packing of chains leaves no significant free space (Kitaigorodsky packing index evaluated 

with PLATON [73], 0.72). The aromatic rings are not involved in -stacking interactions, all 

centroid···centroid distances being larger than 4.3 Å, but, as usual, several CH···O hydrogen 

bonds are present, which involve oxygen atoms from the uranyl and perrhenate ions [CO, 

3.184(6)–3.238(6) Å; C–HO, 124–156°]. 

The nearly planar, dinuclear ring has a large size (⁓15 Å between facing 

tetramethylbenzene rings and ⁓10 Å in the transverse direction), and one perrhenate anion is 

located in each half of it. Examination of short contacts with PLATON and of the Hirshfeld 

surface (HS) [74,75] of the anion clearly shows the involvement of O9 as a bridge through one 

OHO and one CHO hydrogen bond, that of O10 also as a bridge through two CHO bonds 

with the same chain, and of O11 in only one CHO bond with another chain, while O12 acts 

as a donor to a CN bond of a pyridinium unit in a third chain [ON, 2.913(6) Å; OC, 2.947(6) 

Å] (Fig. 2). Since the latter contact is between two charged species, its origin is Coulombic (ion 

pair), so that it does not strictly qualify as a so-called anion interaction, these generally 

involving neutral electron-depleted aromatic rings [76–83]. However, the anion-binding ability 

of nitrogen-containing heterocycles has been shown to be strongly increased by protonation 

[84,85], which produces a situation comparable to that observed here. Overall, each perrhenate 

ion is thus involved in weak interactions with three polymeric chains, forming a weakly bonded 

triperiodic array. Hydrogen bonding interactions are largely dominant and represent 89.4% of 

the fingerprint plot of the HS (bulk and peak associated with the shortest distances in Fig. 2d), 

whereas the OC and ON interactions account for only 5 and 1.3%, respectively (secondary 

peak in Fig. 2d). Out of the six weak interactions formed by ReO4
–, four involve the same 

polymeric chain, with one of the curved zwitterionic ligands encircling the anion (at bottom 

right in Fig. 2a). The two other chains fill most of the remaining space, the  
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Fig. 2 (a) Interactions of ReO4
– with three polymeric chains (only part of the L ligand is shown for two of them 

for clarity); OHO and CHO hydrogen bonds are shown as dashed lines and the OC/N interaction as a dotted 

line. (b) Space-filling representation of the same motif with the same orientation (U, yellow; Re, green; O, red; N, 

purple; C, blue; H, black). (c) HS of ReO4
– mapped with dnorm showing four of the hydrogen bonds. (d) Fingerprint 

plot of the HS. 

 

anion being encapsulated in the cavity thus formed (Fig. 2b). The formation of anionic 

uranacycles by convergent dicarboxylate donor ligands is rather common and well illustrated 

in the structures of complexes of phenylenediacetates [86–89], where in some instances 

diuranacycles are also assembled into daisy-chains and enclose countercations held in place by 

hydrogen bonds. In the present structure, the two anions located in the ring are quite well 

separated, so that any selectivity in their binding does not seem to be associated with their 

pairwise presence. 
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 The luminescence properties of 1 in the solid state have been investigated, but this 

complex proved to be non-emissive under excitation at 420 nm. The reasons for this quenching 

of uranyl luminescence are unclear, and may not be closely related to those invoked in the cases 

of fluorescent Re/TcO4
– sensing systems of very different nature such as silver(I) or 

zirconium(IV) cationic coordination polymers [18,21] or cryptands [41]. Complete quenching 

of uranyl ion emission in coordination polymers is infrequent but certainly not exceptional, as 

is the observation of emission with the characteristics of an organic luminophore, and the two 

phenomena may both be a reflection of excitation energy transfer to ligand sites within the solid 

that themselves may either emit or undergo rapid deactivation. 

 

Conclusions 

We have reported the synthesis and crystal structure of a cationic uranyl ion complex with a 

zwitterionic dicarboxylate ligand crystallizing as a monoperiodic, daisy-chain polymer 

incorporating ReO4
–, a surrogate for the environmentally hazardous TcO4

–, as counteranion. 

The anions are held in cavities built by one diuranacyclic ring and parts of ligands pertaining to 

two additional chains by one OHO and four CHO hydrogen bonds, and one interaction with 

an N–C bond of a pyridinium ring. It is notable that perrhenate anions are sequestered 

selectively in the solid formed, in preference to the chloride and nitrate anions also present in 

the reaction medium. This result shows that, besides other methods used to generate cationic 

metal–organic frameworks [19], the use of a zwitterionic dicarboxylate with a large separation 

between the bonding sites allows for the building of a cationic coordination polymer able to 

encapsulate ReO4
–. In particular, compared with neutral nitrogen donors, these ligands are quite 

strong and well suited to the complexation of metal ions with a marked affinity for oxygen 

donors such as the uranyl cation. The cavity in complex 1 is formed from three polymeric chains 

which are assembled around the perrhenate anion, the latter probably acting as a structure-
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directing agent. An obvious further step would be to devise a cationic uranyl-based triperiodic 

framework with zwitterionic ligands displaying built-in cavities with a size suitable for selective 

trapping of perrhenate anions, our observations with a trizwitterionic ligand [52] providing 

some prospect for success. 

 

Supplementary Information 

Crystallographic data for the structure reported in this paper have been deposited with the 

Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-2311986 

(for 1). Copies of the data can be obtained free of charge on application to CCDC, 12 Union 

Road, Cambridge CB2 1EZ, UK [Fax (internet.) + 44-1223/336 − 033; E-mail: 
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