
HAL Id: hal-04588744
https://hal.science/hal-04588744

Submitted on 27 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Polyglot Program Testing
Philémon Houdaille, Djamel Eddine Khelladi, Benoît Combemale, Gunter

Mussbacher

To cite this version:
Philémon Houdaille, Djamel Eddine Khelladi, Benoît Combemale, Gunter Mussbacher. On Polyglot
Program Testing. FSE 2024 - 32nd ACM International Conference on the Foundations of Software
Engineering, Jul 2024, Porto de Galinhas, Brazil. pp.1-5, �10.1145/3663529.3663787�. �hal-04588744�

https://hal.science/hal-04588744
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


On Polyglot Program Testing
Philémon Houdaille

Djamel Eddine Khelladi
CNRS - Univ. Rennes - IRISA - INRIA

Rennes, France
{name.surname}@irisa.fr

Benoit Combemale
Univ. Rennes - IRISA - CNRS - INRIA

Rennes, France
benoit.combemale@irisa.fr

Gunter Mussbacher
McGill University / INRIA

Montréal / Rennes, Canada / France
gunter.mussbacher@mcgill.ca

ABSTRACT
In modern applications, it has become increasingly necessary to use
multiple languages in a coordinated way to deal with the complex-
ity and diversity of concerns encountered during development. This
practice is known as polyglot programming. However, while execu-
tion platforms for polyglot programs are increasingly mature, there
is a lack of support in how to test polyglot programs. This paper is
a first step to increase awareness about polyglot testing efforts. It
provides an overview of how polyglot programs are constructed,
and an analysis of the impact on test writing at its different steps.
More specifically, we focus on dynamic white box testing, and how
polyglot programming impacts selection of input data, scenario
specification and execution, and oracle expression. We discuss the
related challenges in particular with regards to the current state of
the practice. We envision in this paper to raise interest in polyglot
program testing within the software engineering community, and
help in defining directions for future work.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Interoperability; Software development techniques.

KEYWORDS
polyglot programming, white box testing

1 INTRODUCTION
As complexity of software increases, developers have to face more
and more challenges when developing applications. One of these
challenges is the diversity of concerns encountered: a single pro-
gram might present a variety of different concerns to achieve its
end goal, such as machine learning algorithms, network communi-
cations, video encoding, user interface, etc.

One solution to help developers manage this diversity of con-
cerns is the use of multiple programming languages in conjunction,
which has been defined as polyglot programming [27]. Different
concerns are not always best answered in the samemanner, and one
factor determining the ease of implementation is the programming
language being used. For example, Python is well suited for data
management due to its library ecosystem, while high performance
video encoding would be better realized in a language with lower-
level control of memory such as C. Polyglot programming exploits
this concept with the idea that for the best possible language to
be used in answer to a specific concern, the part of the program
written in this language needs to be able to freely interact with parts
written in other languages that will solve different problems in the
same program. In this paper, we use the term polyglot platform to

refer to an environment where parts of a program written in multi-
ple languages are able to execute and interoperate, exchange data,
or pass messages. We henceforth name these parts written in differ-
ent languages sub-programs. It is worth noting that sub-programs
are not micro-services: the definition of polyglotism [27] we use
focuses on the programmer’s interaction with multiple languages,
which does not happen in a micro-service based architecture where
the interaction with another service (presumably written in another
language) is separated by a well defined API, and different services
are often handled by different development teams. Polyglotism
could still occur within a single micro-service.

Examples of polyglot platforms include MetaCall [4], Foreign
Function Interfaces [3] (FFI), GraalVM [37] and its Truffle [36]
language framework, or WebAssembly [13]. However, the scope
of this work focuses on platforms that allow some notion of data
exchange between languages, allowing to naturally share variables
within the program. For instance, MetaCall andmost FFIs focus only
on making functions available across languages, and thus, would
not be included in our scope. On the other hand, WebAssembly
modules let programmers call functions but also directly access
memory from programs written in other languages, while GraalVM
has dynamic code evaluation and a global memory space shared
between sub-programs. We focus on such platforms that support
both language mixing, i.e., the ability to call code from a foreign
language, and data sharing, i.e., the ability to naturally exchange
data between languages. The underlying implementation of the
execution platform is irrelevant so long as these operations are
supported.

While efforts towards high quality polyglot execution platforms
are promising and gaining attraction [10, 28–31, 33], we argue that
development tools of the same quality as non-polyglot program-
ming also need to be investigated. In particular, tools to write tests
are crucial for any software release and to the best of our knowl-
edge have not yet been envisioned for the specific case of polyglot
programs. As such, this paper represents the first step and a vision
towards the establishment of tools to better test polyglot programs,
and an attempt to anticipate problems that may arise from this
practice.

More specifically, we explore polyglot program testing in the
context of dynamic testing where input data, scenario specification
and execution, and the oracle are the main steps. We focus on white
box testing with unit and integration testing, where the test writer
has knowledge of the coordination of sub-programs, in contrast to
system testing where the system is considered as black box.

Our contributions are as follows. We first propose an appropriate
decomposition of polyglot programs in Section 2, describing the
base structure cases and their combination. We then provide an
analysis of the impact of each polyglot structure case on every step
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(a) Forward call (b) Returning call

(c) Concurrent data ex-
change

Figure 1: Polyglot program structure cases

of writing tests in Section 3. Section 4 briefly reviews related work
and Section 5 concludes the paper and provides perspectives.

2 STRUCTURE OF POLYGLOT PROGRAMS
This section provides an overview of how polyglot programs are
structured. Section 2.1 describes the base cases. Section 2.2 then
discusses how they can be composed.

2.1 Base cases
This section will discuss the possible scenarios in which polyglot
sub-programs can be mixed and interoperate as a whole.

Fundamentally, programs can be coordinated either through
control-flow or data-flow. Control-flow can be expressed with a
variety of means, such as function calls, conditionals, loops, jumps.
Data-flow is often controlled through variables, and with concepts,
such as visibility or scopes. We consider the case where the polyglot
platform is able to both mix code and exchange data between sub-
programs. In other words, we consider two primitives: execution of
foreign code as if calling a function, and exchange of data between
parts of the program written in different languages. The former
serves as the control-flow polyglot primitive, while the latter is a
data-flow polyglot primitive. In our scope, the execution of foreign
code is akin to a function call, meaning there is also implicit polyglot
data-flow in the form of arguments (from the caller to the callee)
and return value (from the callee to the caller).

For instance, WebAssembly uses the concept of modules written
in any language. These modules can export functions and data. One
can then use the WebAssembly API in another language to access
these modules and their exports: this lets the programmer both call
code (through exported functions) and directly manipulate exported
data. The original WebAssembly module inclusion statement can
be seen as a code execution that only declares all of the module’s
exports. With GraalVM and Truffle, the same two primitives are
more clearly split into two constructs: the polyglot.eval function,
and the polyglot.export and polyglot.import twin functions.
These respectively let programs evaluate code from another lan-
guage, and manipulate a global polyglot memory space.

Based on these two types of primitives available, we can derive
the possible patterns of sub-program coordination. We name these
structure cases and show a visual representation in Figure 1.

The first case shown in Figure 1a depicts the basic use of the code
execution primitive. A given sub-program PL1 ends its execution by
calling code written in another language L2, and this sub-program
PL2 continues the execution. There is no data returned from the
foreign called code in this case, meaning PL1 never interacts with
data from PL2 (but PL2 may manipulate PL1 data given through
function parameters). When concurrency is supported, PL1 can
spawn threads for any number of sub-programs, represented by the
PLn box. On the diagram, a white circle represents the entry point
of the structure case, while a black circle represents its exit point.

In the event where the foreign code call does return a value as
in Figure 1b, the program written in L1 can be split into two parts:
before the call PL1a, and after the call PL1b where the return value
of the foreign code call may be used. As with the previous structure
case, this can appear with any number of threads.

Finally, while all foreign code calls are implicit data exchanges,
the data exchange primitives can also be used between concurrent
threads. This translates to Figure 1c, where two concurrent threads
from different sub-programs have no calls to each other, but still
exchange data. While different execution platforms may have dif-
ferent concepts of scope and visibility, we simplify by assuming
a single global space, where any thread can both use data from
and send data to any other threads. How the threads synchronize
these concurrent data exchanges depends on the languages and
their available synchronization primitives. This last case does not
have entry and exit points, and cannot be instantiated on its own;
it requires another structure case that spawns at least two threads
as shown in Figure 1a and Figure 1b with the PLn box.

2.2 Composability
Each structure of Figure 1 is aminimal polyglot program that we can
reason on. Any other more complex polyglot program construction
is simply a composition of the three identified base cases. We intuit
that properties over these three base cases still hold when they are
composed to form more complex programs if the following rules
are enforced during composition.

The first rule to compose polyglot programs is that if any two
threads of different sub-programs are running concurrently, they
may exchange data as shown in Figure 1c. The second rule states
that any box on the diagram can be replaced with any base structure
case or composition of structure cases, provided that the replace-
ment has a single entry point and at least one exit point. Note that
PL1a and PL1b are considered as two distinct boxes for this rule.

Figure 2 gives a composition example for a program with two
concurrent threads and five different languages. We first start from
the base structure case of Figure 1a, where PL1 creates two threads
in different languages: PL2 and PL3. Then, we can transform the PL3
box into an instance of the structure case of Figure 1b (by applying
the second rule), with PL3a, PL3b, and a matching new sub-program
PL4. We can then specialize the box PL4 into another instance of
Figure 1a with PL4 and PL5 (by applying the second rule again).
Finally, because PL2 and PL3 are concurrent threads, we can specify
that PL2 and PL3b exchange some data (by applying the first rule).
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Figure 2: Example of a composition of base structure cases

We argue that while quality unit testing of the sub-programs
is a good starting point for a quality test suite covering the whole
polyglot program, quality testing of the occurrences of structure
cases appearing in the program is also needed. The next section
discusses various impacts and challenges that may arise from the
presence of these structure cases.

3 IMPACT OF POLYGLOT SITUATIONS ON
TEST WRITING

This section describes the impact that polyglot programming us-
age may have on the task of writing tests. We focus on the three
major parts of dynamic, white-box testing, known as 1) input data
selection, 2) scenario specification and execution, and 3) oracle ex-
pression. We discuss differences with standard practices and the
challenges that may arise when testing a polyglot system.

3.1 Input data selection
In dynamic testing, input data selection refers to the problem of
selecting inputs for the program under test. In white box testing,
input data is often selected with the goal to improve test suite
metrics (e.g., code coverage). When considering polyglot programs,
there are a few ways input data selection can be impacted.

First, when polyglot code is being tested, there may be multiple
levels of sub-programs being nested in calls. This means the test
writer needs to select input data that is relevant to all sub-programs
of each language (e.g., in case of Figure 1b, testing PL1 may imply
testing PL2). In the case of manual test writing, this requires the
test writer to be proficient in understanding each programming
language present in the system. This is different from the implemen-
tation of polyglot code, where details of the nested sub-programs
may be hidden behind well-defined interfaces. If the input data se-
lection is automated or semi-automated through white box analysis,
the analysis tool needs to be adapted to handling polyglot code.

The construction of input data can also be impacted. Suppose a
case similar to Figure 1b where PL2 is reusable code called many
times in the program. One may want to write tests for this code in
isolation, as if testing a function. However, the "arguments" would
then be data from the calling sub-program PL1a. If L1 is Java and
L2 is Python, using Pytest to test PL2 as a unit may pose difficulties
in constructing the appropriate Java objects within Python tests.

Both of these impacts are illustrated in Listing 1. First, to properly
test the sum method of the Java part, it is necessary for the test
writer to read the code written in a different programming language

1 public class Point {
2 public Point(String name, int x, int y) { ... }
3 public int sum() {
4 return polyglot.eval("python", foo(this));
5 }
6 }

1 @polyglot_export
2 def foo(p):
3 if len(p.name) > 0:
4 return complex_math(p)
5 return -1
6
7 def complex_math(p):
8 return p.x + p.y

Listing 1: Pseudo-code of a Java-Python polyglot program,
where the Python computation function is not directly ac-
cessible in the Java program.

(i.e., take into account the code of the Python foo function). Second,
the Python function foo cannot be tested easily in isolation as a
standalone function, as it takes a Java Point instance as argument
which cannot be built from a Python test framework alone.

3.2 Scenario specification and execution
Whenwriting a test, the scenario refers to the specification of which
code will be called as part of the test. In other words, the scenario
specifies which part of the program is under test. In the case of a
polyglot program, specifying the scenario can pose some issues.

An immediate issue is the problem of testing foreign parts of a
program. Many modern white box test frameworks (e.g., JUnit [2],
Pytest [5], Catch2 [1]) rely on being overlayed on top of a specific
language. This is practical in a single-language case, as it allows
to specify a scenario at the same abstraction level as the program,
making it easy to specify exactly which parts are under test.

However in a polyglot environment, the tests being written
in a single language may limit the specification of scenarios. For
instance, in Listing 1, the function complex_math cannot be tested
from a Java test framework, since it is not exported in the global
memory space (i.e., accessible from Java code). However, this might
be an important function reused multiple times in the program that
requires individual testing. This complements the earlier problem
of constructing input data: using Pytest we cannot test the method
with appropriate inputs, but using JUnit we cannot necessarily test
the appropriate scenario. It is then needed to use many different
test frameworks, which complicates test suite organization.

Another type of impact polyglot situations may have on scenario
specification is when the polyglot calls are directly visible to the
test writer. In many cases, we infer that polyglot interoperability
will be mostly hidden behind utility functions in each language,
where the retrieved data will be adapted to suit the local language’s
type system (e.g., a JavaScript number gets converted to a Java int
as appropriate). In those cases, the test writer does not have to
manipulate polyglot values. However, there may also be situations
where the test writer does have to directlymanipulate the primitives
of the platform if data is retrieved as-is, such as for more complex
object types. This requires the test writer to be familiar with how
the polyglot platform operates to specify the intended scenario, as
mixing language semantics can sometimes be a source of errors [25].
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While not directly test related, proper interfacing of the different
languages [32] in the program may lessen this impact.

After specification, the next step is the execution of this scenario.
In many cases, this is simply a matter of ensuring the test runner
uses the polyglot execution platform. In fact, platforms using a
common representation as underlying implementation for polyglot
capabilities (such as .NET or the JVM) already provide foreign
code execution capabilities with their standard test frameworks.
However, despite their execution capabilities, these frameworks
still lack flexibility when it comes to mixing languages in test suites.

3.3 Oracle expression
The last step of writing a test is expressing an oracle, or a condition
that determines whether the program has successfully passed the
test, or if it has failed [7]. In the context of a polyglot program, the
oracle may need to be polyglot itself. If the oracle needs to cover
multiple values across languages (e.g., after the interaction of two
objects originating from different languages), there may be a need
to adapt the comparison operators to the polyglot nature of the
operands. For instance, the ’==’ sign in a given assertion may not
be the usual Java operator, but a polyglot version. This polyglot
operator may already exist in some form in the execution platform
(e.g., GraalVM has built-in type conversion between languages), in
which case it simply needs to be reused for assertions.

Additionally, the expression of an oracle becomes more complex
when the values are linked, but not accessible from other languages.
This could happen for instance in a web computation application,
where a user computes results but has a limited amount of daily
tokens: we can imagine a case where the result is displayed in a
JavaScript front-end, but the token counter is stored in a Python
back-end, making it difficult to test properties over both variables
in one test framework for a given scenario.

In this case, current technologies may require splitting the test
case into two test cases, one in each language, repeating the same
scenario over the same data but with different parts of the oracle
while losing the information that this is in fact the same test (i.e.,
the same oracle property). This split would lead to maintainability
and clarity issues, as a single conceptual test case is then duplicated
into two actual tests. Whenever one test evolves the other has to co-
evolve without any provided automation. In the absence of polyglot
test frameworks, additional test suite "metadata" would then be
required to keep track of the duplicated test cases.

4 RELATEDWORK
Some research showcases the potential of polyglot development [31].
There are also concerns about the issues it brings and the lack of
tooling [25]. The latter has started being answered with work on
both static [14, 26] and dynamic [18, 19, 35] analysis of polyglot
programs. Polyglot platforms have also been the subject of research,
both from the angle of performance [12, 38] and definition [16].

Software testing has been extensively studied [6, 8, 17, 21]. How-
ever to the best of our knowledge, while test frameworks and
methodologies geared toward specific application domains (includ-
ing web applications [11], big data [22], deep learning [15, 39], crash
resilient programs [24]...) exist, there is no work focusing on poly-
glot program testing. However, there is previous work on building

a language-agnostic and extensible test coverage framework [34],
although not taking into account polyglot interactions. Our work is
in line with the theme of domain-specific test approaches as defined
by Bertolino [9], tackling the domain of polyglot applications.

5 CONCLUSION & PERSPECTIVES
We presented research work towards the goal of testing polyglot
programs. As a first step to establish better tools for testing polyglot
programs, we gave an appropriate decomposition of how polyglot
programs are built. Then, based on this decomposition, we per-
formed an analysis of how polyglot situations may impact test
writing. This analysis highlights several potential problems that
may arise when testing polyglot programs w.r.t. input data selec-
tion, scenario specification, and oracle expression. These problems
both relate to the difficulty of mixing multiple languages (e.g., the
test writer needs to understand the polyglot semantics) and to the
lack of supporting tools that would help with test writing (e.g.,
single-language oriented test frameworks or test analysis tools).

Thus, we have laid the groundwork for future research aiming
to tackle these problems. We envision several directions. As men-
tioned, some impact of polyglot programming on writing test is
due to the lack of appropriate tooling. Hence, one possibility is to
tackle the adaptation of many existing test tools to fit polyglot test-
ing purposes. This ranges from relatively simple test suite analysis
tools, to a fully dedicated polyglot test framework. We also envision
and call for research work on how polyglot platforms themselves
can be built in a way that facilitates understanding polyglot pro-
grams without a deep expertise in all of the languages present. This
could help test writers grasp the code under test, and thus write
more relevant test cases. Lastly, another contribution we envision
is on how to configure the execution of polyglot tests, and build
an adapted polyglot test runner based on the execution platform.
Overall, we envision that this contribution will raise more interest
towards the problem of testing polyglot programs. In particular,
future work should focus on addressing the identified challenges.
This will support developers in the crucial activity of testing and
also contribute to further promote the adoption of polyglot pro-
gramming and further research around its testing (e.g., polyglot
test generation, fuzzing [23], co-evolution [20], etc.).
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