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ABSTRACT: The increasing frequency and magnitude of viral outbreaks in recent decades, epitomized by the
COVID-19 pandemic, has resulted in an urgent need for rapid and sensitive diagnostic methods. Here, we present a
methodology for virus detection and identification that uses a convolutional neural network to distinguish between
microscopy images of fluorescently labeled intact particles of different viruses. Our assay achieves labeling, imaging,
and virus identification in less than 5 min and does not require any lysis, purification, or amplification steps. The
trained neural network was able to differentiate SARS-CoV-2 from negative clinical samples, as well as from other
common respiratory pathogens such as influenza and seasonal human coronaviruses. We were also able to
differentiate closely related strains of influenza, as well as SARS-CoV-2 variants. Additional and novel pathogens can
easily be incorporated into the test through software updates, offering the potential to rapidly utilize the technology
in future infectious disease outbreaks or pandemics. Single-particle imaging combined with deep learning therefore
offers a promising alternative to traditional viral diagnostic and genomic sequencing methods and has the potential
for significant impact.
KEYWORDS: SARS-CoV-2, influenza, viral diagnostics, fluorescence microscopy, machine learning

INTRODUCTION
The SARS-CoV-2 betacoronavirus has infected hundreds of
millions of people since its emergence, resulting in numerous
deaths and causing worldwide social and economic disruption.
The emergence of a number of variants of concern (VOCs)
that pose an increased risk to global public health by affecting
transmission, associated disease severity, or vaccine efficacy has
further complicated response efforts.
Current SARS-CoV-2 diagnostic methods include nucleic

acid amplification tests, antigen detection, and serology tests.1

Reverse transcriptase polymerase chain reaction (RT-PCR) is

considered the gold standard for diagnosis; however, RT-PCR
takes several hours to provide a result, is restricted to
specialized laboratories (as it requires viral lysis and RNA
extraction), and can be limited by supply chain issues.
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Isothermal nucleic acid amplification methods, such as loop-
mediated isothermal amplification (RT-LAMP), offer a
promising alternative that does not require thermal cycling
and can provide results within an hour;2−7 however, these
methods are still subject to supply chain issues, similar to RT-
PCR. Lateral-flow immunochromatographic assays using gold
nanoparticles as a colorimetric label to detect SARS-CoV-2-
specific antigens provide a rapid platform for point-of-contact
virus detection but can have lower sensitivities.8 Viral strain, or
variant, identification largely relies on sequencing of the viral
genome. There is thus an urgent need for new viral detection
approaches, particularly ones that can be deployed in non-
laboratory settings.

In previous published work we described a robust method to
rapidly label enveloped virus particles using a solution of a
divalent cation (such as Ca2+), short DNAs of non-specific
sequence, and a particle with a negatively charged lipid bilayer,
and we suggested that the cations facilitate an interaction
between the negatively charged polar heads of the viral lipid
membrane and the negatively charged phosphates of the
nucleic acid.9 By including a fluorophore on the DNAs, we
have been able to easily generate bright fluorescent particles for
any enveloped virus tested to date (multiple strains of
Influenza A, Influenza B, baculovirus, respiratory syncytial
virus (RSV), Infectious Bronchitis Virus (IBV), human
coronaviruses OC43, HKU1 and NS63, and SARS-CoV-2).
We have previously characterized the labeling method to show

Figure 1. A fluorescent labeling and imaging strategy to detect viruses. (A) Overview: (i) Viruses were labeled and imaged. Individual signals
were isolated, and a convolutional neural network (CNN) was trained to exploit differences in the features of different viruses to identify
them. (ii) Signals from unknown samples can then be fed into the trained CNN to allow (iii) virus classification. (B) Representative fields of
view (FOVs) of infectious bronchitis virus (CoV (IBV)). 1 ×104 PFU/mL virus was labeled with 0.23 M SrCl2, 1 nM Cy3 (green) DNA, and
1 nM Atto647N (red) DNA before being imaged. Green DNA was observed in the green channel (top panels) and red DNA in the red
channel (middle panels); merged red and green localizations are shown in the lower panels. Scale bar, 10 μm. A negative control where DNA
was replaced with water is included. (C, D) Zoomed-in images from (B); white boxes represent examples of colocalized particles. Scale bar, 5
μm. (E) Segmentation process: (i) Cropped FOV from the red channel. (ii) Intensity filtering applied to (i) to produce a binary image. (iii)
Area filtering applied to (ii) to include only 10−100 pixel objects. (iv) Location image associated with (i). (v) Colocalized signals in the
location image. (vi) Bounding boxes (BBXs) found from (iii) drawn onto (v). Non-colocalized objects (cyan) are rejected. (vii) Colocalized
objects (red) are drawn over (i). Scale bar, 10 μm. (F) Plot of mean number of BBXs per FOV for labeled CoV (IBV) and the negative
controls. Error bars represent the standard deviation of 81 FOVs from a single slide. Statistical significance was determined by one-way
ANOVA, *P = 6.01 × 10−22.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.2c10159
ACS Nano 2023, 17, 697−710

698

https://pubs.acs.org/doi/10.1021/acsnano.2c10159?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.2c10159?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.2c10159?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.2c10159?fig=fig1&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.2c10159?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


that virus-specific signals were only observed when the cation,
virus, and fluorescent DNA were all present (with signals being
absent in controls where any one of these major components
were excluded), that we could co-stain cation-labeled virus
particles with virus-specific antibodies, and that the size of the
labeled particles correlated perfectly with that observed in
electron microscopy images of the virus,9 providing us with
confidence that we can specifically label viruses with this
method.
To address the need for new viral detection approaches, we

have used this labeling method to develop a diagnostic test that
relies on the detection of intact virus particles using wide-field
fluorescence imaging. Our method starts with the near-
instantaneous fluorescence labeling of viruses in a sample;
we subsequently surface-immobilize labeled particles, collect
diffraction-limited images containing thousands of labeled
particles, and finally use image analysis and machine learning
to identify different viruses in biological and clinical samples
(Figure 1A). Our approach exploits the fact that distinct virus

types and strains have differences in surface chemistry, size,
and shape, which in turn affect the fluorophore distribution
and density over the surface of different viruses. Such
differences can be captured by convolutional neural networks
(CNNs),10,11 which have been used previously to classify
super-resolved microscopy images of heterogeneous virus
populations into particle classes with distinct structural
features,12 and to detect virus particles in transmission electron
microscopy images.13

We have shown that we can use this methodology to
differentiate a range of viruses in oro- and nasopharyngeal
swabs, with high overall sample accuracies of 98.0% (using 51
clinical samples on multiple different versions of the trained
network) and 97.1% (using 104 clinical samples on a single
trained network). The use of universal, non-specific chemistry
to fluorescently label all viral particles in a sample, combined
with general-use widefield microscopy, means that the assay
can be extended to additional pathogens using a simple
software upgrade, without changes to the labeling reaction or

Figure 2. Design of a convolutional neural network to classify imaged viruses. (A) Representative FOVs of fluorescently labeled coronavirus
(CoV (IBV)), two strains of H3N2 influenza (A/Udorn/72 (Udorn) and A/Aichi/68 (X31)), an H1N1 influenza strain (A/PR8/8/34 (PR8),
and a negative control where virus was substituted with allantoic fluid. The samples were immobilized and labeled with 0.23 M SrCl2, 1 nM
Cy3 (green) DNA, and 1 nM Atto647N (red) DNA before being imaged. Merged red and green localizations are shown; examples of
colocalizations are highlighted with white boxes. Scale bar, 10 μm. (B−D) Normalized frequency plots of the maximum pixel intensity, area,
and semimajor-to-semiminor axis ratio within the BBXs of the four different viruses. Values taken from 81 FOVs from a single slide for each
virus. Statistical significance was determined by one-way ANOVA, P values depicted above graphs. (E) Illustration of the 15-layer shallow
convolutional neural network. Following the input layer (inputs comprising BBXs from the segmentation process), the network consists of
three convolutions (stages 1−3). Stages 1 and 2 each contain a ReLU layer to introduce non-linearity, a batch normalization layer (not
shown), and a max pooling layer, while stage 3 lacks a max-pooling layer. The classification stage has a fully connected layer and a softmax
layer to convert the output of the previous layer to a normalized probability distribution, allowing the initial input to be classified.
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hardware. We therefore see an opportunity for our testing
platform to potentially make an impact not only during
pandemics but also in the future as a surveillance platform for
new emerging pathogens.

RESULTS AND DISCUSSION
Labeled Virus Particles Can Be Efficiently Detected

with TIRF Microscopy. To demonstrate our ability to label,
immobilize, and image virus particles, we initially used
infectious bronchitis virus (IBV), an avian coronavirus
(CoV). We labeled IBV using a divalent cation (here, Sr2+,
which performs very similarly to Ca2+; see below) and a
mixture of green and red fluorescent DNAs (labeled with Cy3
or Atto647N fluorophores, respectively), immobilized particles
on a chitosan-coated glass slide, and imaged particles using
total-internal-reflection fluorescence microscopy (TIRF)
(Sup.Figure 1A). Fluorescent labeling was achieved within
seconds via a single-step addition of labeling mixture (see
Experimental Methods), after which the viruses were
immediately immobilized. The resulting images contained
particles with either single green or red fluorescence signals
(shown as green and red particles), as well as colocalized green
and red fluorescence signals (shown as yellow particles)
(Figure 1B−D). Efficient virus labeling was achieved using
either CaCl2 (Sup.Figure 1B,C) or SrCl2 (Figure 1B−D),
although both solutions resulted in a number of colocalized
signals in the virus-negative controls, likely due to random
coincidence or cation-mediated clustering of DNAs on the
surface. Omission of DNAs resulted in complete loss of the
fluorescent signal (Figure 1B, right panels).
Prior to use for machine learning, the virus images were pre-

processed to isolate individual image signals into bounding
boxes (BBXs) using segmentation of the field of view (FOV)
through adaptive filtering (Figure 1E). The BBX-based
approach is preferred over the use of full FOVs for
classification, since the former is immune to features such as
virus concentration or variability in the background and
illumination pattern. The raw FOVs from the red channel
(Figure 1E-i) were converted into a binary format (Figure 1E-
ii), and area filtering was used to disregard objects with a total
area (i.e., width × length) smaller than 10 pixels (1170 nm;
single fluorophores) or larger than 100 pixels (11 700 nm;
aggregates, cells, or cell fragments) (Figure 1E-iii). At the same
time, to enrich our sampling for viruses and exclude signals not
arising from virus particles, the location image (showing the
green, red, and yellow signals from both channels; Figure 1E-
iv) was used to identify colocalized signals (Figure 1E-v). This
information was then combined with the signals identified in
the filtered binary image (Figure 1E-iii) to reject signals not
meeting the colocalization condition (Figure 1E-vi; cyan
boxes) and retain signals meeting the colocalization condition
(Figure 1E-vi−vii; red boxes). The segmentation was fully
automated, allowing each FOV to be processed in ∼2 s. In this
experiment, the mean number of colocalized BBXs per FOV
obtained when IBV was present was ∼6-fold higher than when
the virus was absent (Figure 1F), confirming that virus-specific
images are being captured in our preprocessing step.

Positive and Negative Virus Images Can Be Distin-
guished Using Deep Learning. Having shown that we
could efficiently image virus samples and isolate the resulting
signals into BBXs, we hypothesized that we could use a
custom-built CNN to differentiate between signals observed in
virus-positive and virus-negative samples, as well as between

images of different viruses. To explore this, we fluorescently
labeled and imaged IBV, three laboratory-grown influenza A
strains�H3N2 A/Udorn/72 (Udorn), H3N2 A/Aichi/68
(X31), and H1N1 A/PR8/8/34 (PR8)�and a virus-negative
control consisting of virus-free cell culture media (Figure 2A).
The viruses are similar in size and shape and cannot be
distinguished by the eye in diffraction-limited microscope
images of fluorescently labeled particles (Sup.Figure 2). After
image segmentation and examination of the properties of the
resulting BBXs, however, we observed that the four viruses
exhibited small, yet statistically significant, differences in
maximum pixel intensity, area, and semimajor-to-semiminor
axis ratio within the BBXs (Figure 2B−D); e.g., IBV appears
brighter than influenza, whereas Udorn occupies a larger area
than the other viruses.
This was further supported by super-resolution imaging of

cation-labeled virus particles. Fluorescence-based super-reso-
lution microscopy allowed us to take both diffraction-limited
and high-resolution images of the same fields of view,
providing a direct comparison between the signals isolated
into BBXs for the machine learning and their super-resolved
versions. We immobilized biotinylated viruses on pegylated
coverslips before labeling them with CaCl2 and a DNA
conjugated to a photoswitchable Alexa647 dye. When imaged,
the fluorescent signals from the Alexa647 DNAs on the virus
particles were recorded, and each resulting localization was
precisely fitted to reconstruct a super-resolved image. Cluster
analysis of the super-resolved localizations revealed that the
fluorescent signals observed in the diffraction limited images of
labeled samples correspond to particles of the correct size and
shape of virions, and that different virus classes appear to have
subtle differences in their labeling density, area, and shape
(Sup.Figure 3). These small differences, as well as more
abstract image features such as pixel correlations, can be
exploited by deep learning algorithms to classify the viruses.
To classify the different samples, we constructed a 15-layer

CNN (Figure 2E, see legend for details). We started by
imaging IBV and a virus-negative control consisting of only
SrCl2 and DNA. The two samples were independently imaged
four times each over a three-day period. Imaging over 3 days
allowed any potential heterogeneity in the image procurement
process (such as small differences in temperature on different
days) to be captured, in order to enhance the ability of the
trained models to classify data from future datasets. The
resulting BBXs obtained for each sample were then randomly
divided into a training dataset (70%) and a validation dataset
(30%). The training dataset was used to train the CNN to
differentiate IBV from negative signals, using ∼3000 BBXs per
sample.
The trained network was validated using the remaining 30%

of the data (that the network had never seen before). The first
data point in the network validation session was at 50%
accuracy (as expected for a completely random classification of
objects into two categories), followed by an initial rapid
increase in validation accuracy as the network detected the
most obvious parameters, followed by a slower increase as the
number of iterations increased (Sup.Figure 4A). This was
accompanied by a similar decrease in the Loss Function
(Sup.Figure 4B). The entire training and validation process
took 12 min to complete (Sup.Figure 4C).
Results of the network validation are shown as a confusion

matrix, commonly used to visualize performance measures for
classification problems (Figure 3A). The rows correspond to
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the predicted class (output class), the columns to the true class
(Target Class), and the far-right, bottom cell represents the
overall validation accuracy (hereafter, accuracy) of the model
for each classified particle. For IBV vs negative, the trained
network was able to differentiate positive and negative samples
with high accuracy (91.4%), sensitivity (91.9%), and specificity
(90.9%) (Figure 3B). Of note, these probabilities refer to the
identification of single virus particles in the sample and not the
whole sample; the probability of correctly identifying a sample
with hundreds or thousands of virus particles will therefore
increase (see later).

Efficient Classification of Different Virus Strains
across Optical Systems Using Deep Learning. Next, we
tested the network’s ability to distinguish between different

virus types and strains by training the network on BBXs
obtained (as described above) from images of IBV and
influenza Udorn, X31, PR8, and H1N1 A/WSN/33 (WSN)
strains. The network easily distinguished between the
coronavirus and influenza, with a validation accuracy of
95.5% for IBV vs Udorn (Figure 3C) and 94.3% for IBV vs
PR8 (Figure 3D). The network was also able to differentiate
between closely related strains of influenza (WSN vs PR8),
albeit with a slightly lower accuracy of 79.6% (Figure 3E),
perhaps reflecting the greater homogeneity between H1N1
strains of the same virus. The ability to distinguish between
different influenza viruses that were grown in the same cell line
(i.e., WSN and PR8 were both grown in MDCK cells)
established that our classification is not host-cell dependent.

Figure 3. Network validation results for laboratory-grown virus strains. (A) Network validation results shown as a confusion matrix: rows,
predicted class (output class); columns, true class (target class); right column, positive and negative predictive values (percentages of BBXs
that are correctly and incorrectly predicted); bottom row, sensitivity and specificity. (B) Confusion matrix of CoV (IBV) positive and
negative samples. (C, D) Confusion matrices of CoV (IBV) vs influenza Udorn or PR8. (E) Confusion matrix of influenza PR8 vs influenza
WSN. (F) Confusion matrix of CoV (IBV) vs a pooled dataset of the virus-negative control and three influenza A strains. (G) A trained
network is robust over significant time. The network was trained on data from images of the virus IBV and allantoic fluid as a negative
control. Each data point (orange for sensitivity; green for specificity) corresponds to the classification result for signals detected at different
dates over a period of 135 days. Error bars represent standard deviation. (H) Defining the limit of detection for accurate machine learning
classification. Increasing concentrations of IBV were labeled and imaged, the resulting images were fed into the trained network. The
number of normalized positive particles (positive particles/all particles) increased linearly with increasing virus concentration. Error bars
represent standard deviation. The limit of detection (LOD) was defined as 6 × 104 PFU/mL, with 99.85% certainty.
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Figure 4. A deep learning network can differentiate viruses in clinical samples. (A) Workflow for training and validation of clinical samples.
Samples were collected from 33 patients, labeled, and imaged on a microscope over three different days. The images were processed to
isolate the individual signals into BBXs. 70% of the BBXs were used to train a convolutional neural network (CNN), resulting in a trained
model. The remaining 30% of the BBXs were used to validate the trained model, providing the result in a confusion matrix. (B) Confusion
matrix showing that a trained network could differentiate positive (Alpha variant) SARS-CoV-2 and negative clinical samples. (C) Confusion
matrix showing that a trained network could differentiate influenza A (Flu A) positive clinical samples from negative samples. (D) Confusion
matrix showing that a trained network could differentiate SARS-CoV-2 samples (original Wuhan variant) from seasonal human coronavirus
(hCoV) samples.
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The network was also able to distinguish between IBV and a
pooled dataset consisting of the virus-negative control and
three influenza strains (92.2%) (Figure 3F) and, importantly,

was able to distinguish three viruses from each other in a multi-
classifier experiment (the coronavirus IBV and two influenza
strains, PR8 and WSN; 81.9%) (Sup.Figure 5).

Figure 5. Independent testing of the trained network with clinical samples. (A) Schematic of workflow of independent testing. Previously
unseen samples are imaged, the images are processed into BBXs which are fed through a trained network. When necessary, a chi-squared
statistical test is performed to test the null hypothesis that the sample is negative. If the p-value is smaller than a pre-set confidence
threshold, the null hypothesis is rejected and the sample is classified as positive. If the p-value is greater than the threshold, the sample is
classified as negative. (B) Summary of independent testing results using multiple trained models. 51 patient samples that were not used for
network training or validation were run through different trained versions of the network, detailed on the bottom of the plot. Some samples
were tested in multiple versions of the network, for further details see Sup.Table 2. Chi-squared tests were carried out to classify the samples
(see Sup.Figure 8 and Table 2; samples with a p-value smaller than a preset confidence threshold were classified as positive) and the results
compared to RT-PCR. 50 out of 51 samples were classified correctly (incorrect classification shown in black), giving an overall sample
accuracy of 98.03%. Results were obtained using two different microscopes (see Experimental Methods). (C) Summary of independent
testing results using a single trained network. 104 patient samples were analyzed as in B), but tested in a single trained network (SARS-CoV-
2 vs negative). (D) Variant classification of clinical samples identified as positive in (C). The BBXs from images of the clinical samples
classified as positive by the first network were passed through a second trained model (Wuhan + Alpha SARS-CoV-2 vs Delta SARS-CoV-2).
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To demonstrate the general applicability of our approach,
we performed similar experiments using a second optical
system (a Zeiss Elyra 7 with a 63× objective rather than an
ONI Nanoimager with a 100× objective). We compared two
strains of influenza (WSN and Udorn) with negative samples
lacking virus, and with each other, and found that we were able
to distinguish the samples with accuracies ranging from ∼74 to
78% (Sup.Figure 6), thus establishing that virus classification is
independent of the imaging conditions (e.g., exposure,
illumination) and microscope type (e.g., magnification,
numerical aperture). We also showed that a neural network
returned robust results over significant time without requiring
re-training, with no decrease in sensitivity or specificity over a
period of 135 days (Figure 3G).
We estimated the limit of detection (LOD) of our assay by

testing the ability of the network to accurately detect
decreasing IBV, WSN, and SARS-CoV-2 concentrations
(Figure 3H and Sup.Figure 7). Training was performed on
laboratory propagated virus samples of known titer, followed
by normalization of the number of BBXs in each class by the
total number of BBXs in the sample (to counter variations
between samples). Images were analyzed by the trained
network, and the number of particles classified as positive was
fitted with increasing virus concentration, giving estimated
LODs of 6 × 104, 4.6 × 104, and 5.4 × 104 PFU/mL for the
three virus strains tested. This sensitivity, as expected, was
lower than that of amplification-based methods like RT-PCR
(∼102 PFU/mL14), however is still within a clinically useful
range; SARS-CoV-2 viral loads have been demonstrated to be
between 104 and 107 copies per mL in throat swab and sputum
samples.15

Classification of Clinical Samples with High Accuracy.
Having demonstrated our assay on laboratory-grown viruses,
we next assessed clinical samples (workflow in Figure 4A).
Throat swabs from 33 patients negative for virus (as
determined by RT-PCR) or positive for SARS-CoV-2, seasonal
hCoVs (OC43, HKU1, or NL63), or human influenza A (as
determined by RT-PCR) were inactivated with formaldehyde
before being labeled and immobilized (see Experimental
Methods). Robust and reproducible labeling of viruses in
clinical samples was achieved (Sup.Figure 8). Images of the
samples captured over three different days were used to train
and validate the network to answer a variety of paired
questions (e.g., SARS-CoV-2 vs negative, or SARS-CoV-2 vs
hCoVs; details of clinical samples used for network training
and validation are described in Table S1), and similarly to
above, the results of the network validation were depicted as
confusion matrices.
Our initial results with SARS-CoV-2 clinical samples showed

a lower validation accuracy than that achieved with laboratory-
grown virus strains (∼70% at the BBX level, Sup.Figure 9A).
However, the accuracy was substantially improved by perform-
ing labeling at a higher pH (pH 8), likely due to the higher
isoelectric point (pI; the pH at which the net charge of the
particle is zero) of SARS-CoV-2 relative to influenza (pI of ∼9
compared to ∼6).16−18 As the virions are more negatively
charged at higher pH, they are more efficiently labeled using
the cationic solution and more efficiently captured by the
charged chitosan surface on the glass slide, leading to more
efficient SARS-CoV-2 detection and improved detection
accuracy. Using the optimized protocol, the trained network
was able to distinguish between virus-positive and virus-
negative clinical samples with excellent accuracy, distinguishing

between SARS-CoV-2-positive and negative BBXs with a
validation accuracy of ∼93% (Figure 4B).
We could also distinguish between Flu A and negative BBXs

with a validation accuracy of ∼84% at the BBX level (Figure
4C), and between seasonal hCoV and negative samples with an
accuracy of ∼78% (Sup.Figure 9B). The network could also
distinguish SARS-CoV-2 from seasonal hCoVs with a
validation accuracy of ∼73% (Figure 4D) and SARS-CoV-2
from Flu A with a validation accuracy of ∼70% (Sup.Figure
9C), potentially useful in diagnosing cocirculating infections.
Lastly, the network was able to distinguish between negative
samples and combined data from two variants of SARS-CoV-2,
the original Wuhan strain (SARS-CoV-2) and the Alpha
variant, with an accuracy of ∼75% (Sup.Figure 9D), and
between the two variants with an accuracy of ∼70%
(Sup.Figure 9E).

Testing of Trained Networks on Independent Clinical
Samples. Next, we tested the trained network’s ability to
diagnose independent clinical samples never seen before for
either network training or validation. A total of 51 samples
(from a different set of patients to those used for network
training/validation), comprised of negative samples or samples
positive for SARS-CoV-2, Flu A, or seasonal hCoVs, were
imaged on a fourth day and assessed by the trained networks
described in the section above within a few seconds. By
comparing the results to RT-PCR and carrying out chi-squared
tests where necessary (Figure 5A and Sup.Figure 10, Steps 1
and 2), we showed that 50 out of 51 clinical samples tested
were classified correctly, giving an excellent overall sample
accuracy of 98.0% (Figure 5B and Sup.Table 2). For the
negative samples, 11 out of 11 were classified correctly, giving a
perfect sample specificity of 100%, and for the positive
samples, 39 out of 40 were classified correctly, giving a very
high sample sensitivity of 97.5%. We observed that the single
incorrectly classified sample provided a much lower number of
BBXs than the other samples (Sup.Table 2), suggesting that
the viral load in this sample may have been close our limit of
detection and thus explaining the misclassification.
Within this analysis, we also tested whether we could

differentiate different SARS-CoV-2 variants. The BBXs from
images of seven clinical samples that had been classified as
positive by a SARS-CoV-2 vs negative network were passed
through a second trained network to test whether it was the
original Wuhan variant or the Alpha variant that first arose in
the UK in 2020 (Sup.Figure 10, Steps 3 and 4). All seven
variant samples were classified correctly (Figure 5B).
Given the potential clinical relevance of a test that can

diagnose different SARS-CoV-2 variants without the need for
sequencing, we decided to explore this further using an
additional 104 clinical samples, 68 of which were determined
to be virus-negative and 36 of which were determined to be
SARS-CoV-2 positive by RT-PCR (Sup.Table 3). The samples
were taken from patients from November 2020 to July 2021,
and of the positive samples, 14 were the original Wuhan
variant, 12 were the Alpha variant (as suggested by a spike
gene target failure in RT-PCR), and 10 were the Delta variant.
Samples were labeled, immobilized, and imaged as normal,
followed by processing of the images into BBXs. In the first
step of the analysis the 104 samples were classified as either
SARS-CoV-2-positive or negative (results of the network
validation in Sup.Figure 11A). Two of the negative samples
were inconclusive due to a low number of BBXs (less than the
5 needed for the chi-squared test). Of the remaining 102
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samples, all but three of the samples were classified correctly
(Figure 5C). Of the three samples that were misclassified, one
was a negative sample and two were positive samples (Figure
5C), providing us with an overall sample accuracy of 97.1%, a
sensitivity of 94.4%, and a specificity of 98.5%.
For the subsequent variant classification step, the BBXs from

images of the clinical samples classified as positive by the first
network (35 samples in total) were passed through a second
trained model (Wuhan + Alpha SARS-CoV-2 vs Delta SARS-
CoV-2) (Sup.Figure 11B). Two samples gave inconclusive
results as the resulting p-values were closer than 3 orders of
magnitude (Sup.Figure 10, Steps 3 and 4). The single negative
sample that had been incorrectly classified as positive by the
first trained model was classified as Delta, while six remaining
positive samples were misclassified (two Delta, two Alpha, and
2 Wuhan variant), giving an overall sample accuracy of 77.1%,
inconclusive rate of 5.7%, and misclassification rate of 17.1%
(Figure 5D and Sup.Table 4). While our variant classification
accuracy is lower than our overall positive vs negative test
accuracy, we believe that this may still be of use in the context
of a rapid variant screening assay in the absence of sequencing
facilities.

CONCLUSIONS
In summary, we have shown a proof of principle for the use of
single-particle fluorescence microscopy and deep learning to
rapidly detect and classify viruses, including coronaviruses. We
have carried out two clinical tests of our method using 155
patient samples in total, which provided high overall sample
accuracies of 98.0% and 97.1%. We note that these results were
obtained with samples collected over a significant time period,
using a range of different collection kits containing different
volumes of viral transport media, and stored at different
temperatures for varying periods of time. Given these sampling
inconsistencies, which could potentially impact the number of
intact virus particles in each sample, the results of these small-
scale clinical trials are extremely encouraging, demonstrating
the potential of our method as a viable diagnostic test.
Our initial proof-of-principle experiments, carried out using

viruses grown in cell culture, demonstrated that the CNN can
distinguish not only between samples with and without virus,
but also between the avian coronavirus IBV and various strains
of influenza with high accuracies of >90% per particle (e.g.,
IBV vs Udorn, IBV vs PR8). We confirmed our approach using
multiple stocks of cell-grown viruses and different microscopes.
A truly independent validation of the trained network using
samples that have not been used in either training or validation
was not possible using cell grown viruses, however, as all stocks
are essentially the same virus, grown in the same cell line and
similar conditions, even when grown at different times.
Importantly, this was possible using clinical samples though,
as novel samples could be obtained from new patients that
were entirely independent of those used for training/
validation. The accurate classification of completely independ-
ent clinical samples served as clear proof that our network
could use image information to accurately classify samples
never seen before.
We also accounted for any other potential confounding

factors such as sample preparation (by only comparing samples
prepared and inactivated in the same way), as well as
differences in virus concentration and differences in imaging
quality, by classifying the isolated signals only from individual
viruses and not full fields-of-view. This approach renders the

network completely agnostic to virus concentration, signal
density, or small day-to-day imaging differences such as uneven
illumination, which means that virus classification is solely
dependent on the fluorescent images of the virus. We have
even shown that related H3N2 virus strains, prepared in the
same way in the same cells, could be reliably distinguished
from each other, establishing that classification is independent
of the host cell in which the virus samples were grown. All of
this, together with our finding that clinical samples that
produced different CT values in RT-PCR were correctly
classified independently of their concentration, provides
several lines of strong evidence that our network can truly
differentiate between different viruses.
The power of our method comes from the ability to rapidly

and universally label enveloped viruses in a sample and swiftly
image them using diffraction-limited microscopy. We have
shown that even with the limited information present in the
low-resolution images, a trained CNN can very effectively
differentiate between virus strains. This is based on our
findings that different virus families, and even different virus
strains, exhibit small differences in their distributions of size,
shape, and labeling efficiency when labeled using the cation-
mediated method (Figure 2 and Sup.Figure 3). The labeling is
an electrostatic interaction between the phosphate backbone of
the DNA and the lipid membrane of the virus.9 Different
viruses will therefore exhibit differences in labeling efficiency
and coverage due to their different isoelectric points (the pH at
which a virus has a neutral surface charge), e.g., WSN: 4.7,
PR8: 5.3, IBV: 7.2, and SC2: 8.5.16−19 The surface charge of
virus strains is also likely to be affected by mutations in the
surface glycoproteins, thus explaining our ability to effectively
differentiate variants.
This hypothesis is supported by measurements to assess zeta

potential (the surface potential of a nanoparticle in solution).
Zeta potential measurements on three different influenza
strains were carried out in triplicate at a range of pH values,
showing that, as expected, the negativity of the zeta potential
increases with increased solution pH (Sup.Figure 12A).
Interestingly, we also observed differences in the zeta potential
for different viruses at the same pH, even for closely related
viruses of the same subtype, i.e., H1N1, WSN, and PR8. This
suggests that even at higher pH, the labeling efficiency, which
relies on charge, will be different for each of the chosen viruses.
This, in combination with our documented size and shape
differences between viruses, can create features (intensity, label
density, semimajor−semiminor axis, size) in the images that
the network can learn. We propose that it is these differences,
among others, that allow the network to distinguish viruses.
We also explored the patterns “seen” by two different networks
using the DeepDreamImage function in Matlab,20 which
suggests that a network trained to differentiate between
negative and positive SARS-CoV-2 samples may see positive
signals as rounded shapes with high intensity in the center of
the BBX, whereas the pixels have much lower values in the
center of the BBX for a negative sample, supporting our theory
that virus signals are brighter than the signals observed in a
negative sample (Sup.Figure 12B,C). Comparison of the
patterns observed by a network trained to differentiate between
two variants of SARS-CoV-2 is harder to interpret; however,
there are higher intensity pixels in both than in the negative
sample (Sup.Figure 12D,E).
The results of our independent testing of the network with

clinical swabs did not provide 100% accuracy in results,
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suggesting that further improvements to our method may be
beneficial. During our second clinical validation that initially
tested for SARS-CoV-2-positive or negative, followed by
variant classification, two samples did not provide enough
BBXs for us to accurately conclude a result using the chi-
squared test. Interestingly, both of the inconclusive samples
were negatives (validated by RT-PCR); further testing of more
samples may establish that this can happen only for negative
samples, in which case it may be a useful indicator for a
negative diagnosis. The small number of positive samples that
were misclassified may have been due to low viral load, which
can be improved through further optimization of the protocol,
such as by improving virus immobilization, concentrating the
sample, or limiting the time the sample is stored before being
imaged. It is possible that the single negative sample that was
misclassified may have contained another virus that was not
SARS-CoV-2; in further iterations of the test we will use multi-
classifier networks (as demonstrated in Sup.Figure 5) to
recognize all the major families of circulating respiratory
viruses (e.g., influenza, HCoVs, SARS-CoV-2, and RSV),
providing a multi-pathogen testing platform. We will also need
to further investigate the ability of the network to classify
mixed samples and the potential to use labeling solutions at
different pH values, hypothesized to result in different labeling
efficiencies�a property that could be exploited to potentially
multiplex the test and provide further features for classification.
This may in turn offer improvements upon the reported
sensitivity and specificity.
The current gold standard for viral diagnostics is RT-PCR,

which requires a time-consuming (∼30 min) RNA extraction
step, followed by the main assay (which can take several
hours). In this article, we describe a laboratory-based proof-of-
principle assay that involves (i) instantaneous sample labeling,
(ii) 10 s for sample mounting, (iii) 40 s for focusing, (iv) 2 min
for image acquisition (81 FOVs), and (v) 20 s for analysis, thus
easily providing a result within just 5 min. Our assay requires
no RNA extraction, but in order to easily work with clinical
samples in a containment level 2 laboratory, we initially
inactivated samples with a low concentration of formaldehyde
(4%) for 30 min prior to sample preparation, which has been
shown to maintain virus particle shape while rendering them
non-infectious.21 In later experiments presented here, we
moved to working with samples inactivated with 1% form-
aldehyde in just 5 min (having used plaque assays to show that
this lower concentration and time were still sufficient to fully
inactivate samples), rendering the entire test complete from
start to finish within just 10 min. In order to further develop
the assay, which currently requires a research microscope in a
laboratory environment, into a potential point-of-care tool, we
require further development. Our envisaged commercial
version of the test will not require inactivation at all through
use of a bio-contained sample capsule in which the labeling
takes place, and will use a small, simplified version of a
fluorescence microscope custom-built to perform our assay
measurements.
Despite the need for further development, our approach may

offer some potential advantages over existing diagnostic
technology in the future. Our approach avoids the need for
viral lysis or amplification, and in comparison to RT-PCR,
which may still return a positive result due to RNA fragment
detection for several weeks after an individual is no longer
infectious, our assay only reports on intact viral particles, which
may be useful as a readout of infectivity (although this was not

evaluated here). It may also offer a potential testing window
from the time that virus particles start to be produced in the
airways until the infected individual is no longer infectious, and
hence may be useful in the pre-symptomatic disease phase.
A further key advantage of our test over enzyme-based

methods is that the reagents are very affordable. The most
expensive component is the fluorescent DNA, which we
typically use at 1 nM concentration in a very small sample
volume (20 μL); even in the small volumes that we order
DNA, the cost amounts to ∼2.7 pence to run 10 000 labeling
reactions, demonstrating the scalability of our test. Finally, the
ease with which the network can be retrained to detect a novel
virus suggests that it could be useful in detecting new and
emerging pathogens during pandemic situations.

EXPERIMENTAL METHODS
Laboratory-Grown Virus Strains and DNAs. The influenza

strains (H1N1 A/Puerto Rico/8/1934 (PR8), H3N2 A/Udorn/72
(Udorn), H1N1 A/WSN/33 (WSN), and H3N2 A/Aichi/68 (X31))
used in this study have been described previously.9 Briefly, WSN,
PR8, and Udorn were grown in Madin−Darby bovine kidney
(MDBK) or Madin−Darby canine kidney (MDCK) cells, and X31
was grown in embryonated chicken eggs. The cell culture supernatant
or allantoic fluid was collected, and the viruses were titered by plaque
assay. Titers of PR8, Udorn, WSN, and X31 were 1 × 108 plaque
forming units (PFU)/mL, 1 × 107 PFU/mL, 2 × 106 PFU/mL, and
4.5 × 108 PFU/mL, respectively. The coronavirus IBV (Beau-R
strain)22 was grown in embryonated chicken eggs and titered by
plaque assay (1 × 106 PFU/mL). Influenza and IBV were inactivated
by the addition of 2% formaldehyde before use. SARS-CoV-2 was
grown in Vero E6 cells and titered by plaque assay (1.05 × 106 PFU/
mL). The virus was inactivated by addition of 4% formaldehyde
before use.
Single-stranded oligonucleotides labeled with either red or green

dyes were purchased from IBA (Germany). Our main criteria for oligo
selection were length (DNAs need to be longer than 20 bases) and
fluorophore modification (selection for bright and stable dyes) rather
than sequence, as robust labeling occurs regardless of sequence if the
other two conditions are met.9 The “red” DNA used in this
manuscript was modified at the 5′ end with ATTO647N (5′
ACAGCACCACAGACCACCCGCGGATGCCGGTC -
CCTACGCGTCGCTGTCACGCTGGCTGTTTGTCTTCCTGCC
3′), and the “green” DNA was modified at the 3′ end with Cy3 (5′
GGGTTTGGGTTGGGTTGGGTTTTTGGGTTTGG -
GTTGGGTTGGGAAAAA 3′). The DNA used for super-resolution
imaging was modified at the 5′ end with Alexa647 (5′ TCCGCTCT-
CACAATTCCACACATTATACGAGCCGAAGCATAAAGTGTC-
AAGCCT 3′).

Clinical Samples. Ethical approval was obtained for the use of
anonymized oro- or nasopharyngeal specimens from patients for the
diagnosis of influenza and other respiratory pathogens, including
SARS-CoV-2 (North West-Greater Manchester South Research
Ethics Committee [REC], REC ref:19/NW/0730). Specimens were
maintained in Copan Universal Transport Medium (UTM) before
being inactivated in 4% final concentration of formaldehyde (Pierce)
for 30 min at room temperature, or 1% formaldehyde for 5 min at
room temperature for the 104 samples used in the second clinical
trial.21 Samples were confirmed as SARS-CoV-2-positive or negative
using either the Public Health England 2019-nCoV real-time RT-PCR
RdRp gene assay or RealStar SARS-CoV-2 RT-PCR Kit (Altona
Diagnostics). Testing for other respiratory pathogens and sub-typing
of seasonal human coronavirus (hCoV) samples as OC43, HKU1, or
NL63 strains was conducted using the BioFire FilmArray Respiratory
Panel (Biomerieux, Marcy-L’Etoile, France) and Cepheid Xpert
Xpress Flu/RSV (Cepheid, Sunnyvale, CA, USA).
We used 213 clinical samples in total, taken from patients from

November 2020 to July 2021. In order to train the network, we
imaged samples from different patients over 3 days (different sample
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prep from the same patient samples on each day). We used 70% of
the BBXs isolated from all the images taken over the 3 days to train
the network, leaving the remaining 30% of the BBXs for network
validation, the results of which are shown in the confusion matrices.
Each confusion matrix corresponds to an individually trained model.
In total, 58 clinical samples were used for training and validation of
the network.
We then carried out two independent tests of the trained networks

using clinical samples not used for either training or validation. The
first test used 51 patient samples comprised of negative samples, or
samples positive for SARS-CoV-2, Flu A, or seasonal hCoVs. The
second test used 104 patient samples comprised of negative samples
or samples positive for SARS-CoV-2. Of the positives, 14 were the
original Wuhan variant, 12 were the Alpha variant (indicated by a
spike gene target failure in RT-PCR [TaqPath Covi-19 combo kit,
ThermoFisher]),23 and 10 were the Delta variant (confirmed through
RT-PCR [Taqman SARS-CoV-2 mutation panel [ThermoFisher]).

Sample Preparation. Both positive and negative samples were
prepared in the same way (e.g., inactivated in the same concentration
of formaldehyde or labeled in the same buffer), and only samples
similarly prepared were compared with each other. Glass slides were
treated with 0.015 mg/mL chitosan (a linear polysaccharide) in 0.1 M
acetic acid for 30 min before being washed thrice with Milli-Q water
or with 0.01% poly-L-lysine (Sigma) for 15 min (Figure 3A,
Sup.Figure 6, and Sup.Figure 10C). While both of these reagents
gave some background in the negative controls they resulted in very
rapid virus immobilization, an important factor in preventing virus
aggregation. Unless otherwise stated, virus stocks (typically 10 μL)
were diluted in 0.23 M CaCl2 or SrCl2 (as described in the figure
legends) and 1 nM of each fluorescently labeled DNA in a final
volume of 20 μL, before being added to the slide surface. For SARS-
CoV-2 imaging, the cationic labeling solution was buffered with 20
mM Tris, pH 8. Virus labeling with CaCl2 has been described
previously;9 SrCl2 provides similar results (Figure 1). For laboratory
grown virus stocks, negatives were taken using virus-free Minimal
Essential Media (Gibco) or allantoic fluid from uninfected eggs in
place of the virus.

Imaging. Images were captured using three wide-field Nanoimager
microscopes.9 “Microscope 1” was equipped with a Hamamatsu Flash
4 LT.1 sCMOS camera, and “Microscopes 2 and 3” were equipped
with a Hamamatsu Flash4 V3 sCMOS camera; in all other respects,
the systems were identical. The sample was imaged using total
internal reflection fluorescence (TIRF) microscopy and a 100× oil-
immersion objective. The laser illumination was focused at a typical
angle of 53° with respect to the normal. Movies of 5 frames per field
of view (FOV) (measuring 75 × 49 μm) were taken at a frequency of
33 Hz and exposure time of 30 ms, with laser intensities kept constant
at 0.78 kW/cm2 for the red (640 nm) and 1.09 kW/cm2 for the green
(532 nm) laser. To automate the task and ensure no bias in the
selection of FOVs, the whole sample was scanned using the multiple
acquisition capability of the microscope; 81 FOVs were imaged in 2
min. Defocusing was carefully controlled using an automated
autofocus mechanism to bring the sample to a pre-defined axial
position before each field of view was exposed to the excitation lasers.
This was achieved by imaging the reflection of a near-IR laser off the
glass/sample medium interface and matching the image to a pre-
recorded reference image.
Data in Sup. Figure 6 was acquired using a Zeiss Elyra 7

microscope equipped with two pco.edge sCMOS (version 4.2 CL
HS) cameras. TIRF images were acquired using the alpha Plan-
Apochromat 63×/1.46 oil objective. A laser intensity of 10% for the
641 nm laser was used for imaging Atto647N. Laser intensities of 6%
for the 561 nm and 3% for the 488 nm laser were used for imaging
Cy3. The exposure time was 50 ms.

Super-resolution Imaging. For super-resolution imaging,
passivated microscope slides were prepared by washing in acetone
and Vectabond solution (Vector Laboratories) before being incubated
with NHS-PEG:Biotin-NHS-PEG in an 80:1 ratio. 0.5 mg/mL
neutravidin was incubated for 10 min at room temperature on the
slide shortly before virus was added. Viruses were biotinylated by

incubation in a 1 mg/mL Sulfo-NHS-LC-Biotin (ThermoFisher) for 3
h at 37 °C before being labeled with 0.23 M CaCl2 and 1 nM
Alexa647-labeled DNA in a final volume of 20 μL, before being added
to the slide surface. After incubation for 30 min at room temperature
the slide was washed thrice in 1× PBS before imaging in 50 mM MEA
and an enzymatic oxygen scavenging system consisting of 1 mg/mL
glucose oxidase, 40 μg/mL catalase, and 1.0% (wt/vol) glucose.
Super-resolution localizations were extracted using the built-in
Nanoimager software and analyzed further in Matlab. Localizations
were clustered with DBScan using a minimum cluster size of 50 and
an epsilon of 30 nm, followed by computing the convex hull to find
the area of the clustered points.

Data Segmentation. Each FOV in the red channel was turned
into a binary image using MATLAB’s built-in imbinarize function
with adaptive filtering sensitivity set to 0.5. Adaptive filtering uses
statistics about the neighborhood of each pixel it operates on to
determine whether the pixel is foreground or background. The filter
sensitivity is a variable which, when increased, makes it easier to pass
the foreground threshold. The bwpropfilt function was used to
exclude objects with an area outside the range 10−100 pixels (1 pixel
= 117 nm), aiming to disregard free ssDNA and aggregates. We
imaged single fluorophores and found that they did not exceed 10
pixels in area, giving us a lower limit, and we arbitrarily chose 100
pixels as the upper limit to exclude very large aggregates or cellular
debris. The regionprops function was employed to extract properties
of each found object: area, semi-major to semi-minor axis ratio (or
simply, axis ratio), coordinates of the object’s center, bounding box
(BBX) encasing the object, and maximum pixel intensity within the
BBX.
Accompanying each FOV is a location image (LI) summarizing the

locations of signals received from each channel (red and green);
colocalized signals in the LI image were shown in yellow. Objects
found in the red FOV were compared with their corresponding signal
in the associated LI. Objects that did not arise from colocalized signals
were rejected. The qualifying BBXs were then drawn onto the raw
FOV, and images of the encased individual viruses were saved.

Machine Learning. The CNN used only the red channel as input,
as analysis using both channels was not found to improve the overall
accuracy. No normalization of the images was carried out, however
the bounding boxes (BBXs) from the data segmentation had variable
sizes (never larger than 17 pixels in any direction due to the size
filtering). Thus, all the BBX were resized such that they had a final
size of 17×17 pixels by means of padding (adding extra pixels with 0
gray-value until they reach the required size).
The resized images were used as the input for the 15-layer CNN.

The network was built using Matlab 2020b and trained using the
computer’s GPU (specifications: NVIDIA 2080Ti, 32 GB RAM, i7
processor). The network had 3 convolutional layers in total, with
kernels of 2×2 for the first two convolutions and 3×3 for the last one.
The learning rate was set to 0.01, and the learning schedule rate
remained constant throughout the training. The hyperparameters
remained the same throughout the training process for all models; the
mini batch size was set to 1000, the maximum number of epochs to
100, and the validation frequency to 20 iterations.
In the classification layer, trainNetwork took the values from the

softmax function and assigned each input to one of K mutually
exclusive classes using the cross entropy function for a 1-of-K coding
scheme,24

=
= =

t yloss ln( )
i

N

j

K

ij ij
1 1 (1)

where N is the number of samples, K is the number of classes, tij is the
indicator that the ith sample belongs to the jth class, and yij is the
output for sample i for class j, which in this case is the value from the
softmax function. That is, it is the probability that the network
associates the ith input with class j.25 A stochastic gradient descent
with momentum set to 0.9 was used as the optimizer.

Zeta Potential Measurements. The Zetasizer Nano S with
disposable folded capillary cells (DTS1070) was used for all zeta
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potential measurements. The temperature was set at 25 °C and
equilibration time for the system to 120 s. For pH 4−5 the samples
were diluted in 20 mM sodium acetate, for pH 6−7 in 20 mM
HEPES, and for pH 9 20 mM Tris. For each pH the buffer
information was used to fill in the dispersant information in the
software to calculate the viscosity and dielectric constant. For the
material sample type, 50% lipid and 50% protein was used to calculate
the absorption and refractive index, and the analysis model was set to
“auto” mode. The measurement duration was determined by the
software with a minimum of 10 runs and a maximum of 100 runs.
Three measurements were taken for every sample at each pH.

Statistical Analysis. Confusion Matrices. The results of each
network validation are shown as a confusion matrix, which make used
of the following terms:

• True positive (TP): BBXs correctly identified as positive,
• False Positive (FP): BBXs incorrectly identified as positive,
• True negative (TN): BBXs correctly identified as negative, and
• False negative (FN): BBXs incorrectly identified as negative.
Sensitivity refers to the ability of the test to correctly identify

positive BBXs. It can be calculated by dividing the number of true
positives over the total number of positives.26

=
+

Sensitivity
TP

TP FN (2)

Specificity refers to the ability of the test to correctly identify
negative BBXs. It can be calculated by dividing the number of true
negatives over the total number of negatives.26

=
+

Specificity
TN

TN FP (3)

The percentages of BBXs that are correctly and incorrectly
predicted by the trained model are known as the positive predictive
value (PPV) and negative predictive value (NPV), respectively.

=
+

PPV
TP

TP FP (4)

=
+

NPV
TN

FN TN (5)

The overall balanced validation accuracy of the model is given by

= +
Balanced Accuracy

Sensitivity Specificity
2 (6)

Limit of Detection. In order to calculate the limit of detection
(LOD), increasing concentrations of the CoV IBV (dilutions in
allantoic fluid) were labeled and imaged, the resulting images were
pre-processed, and the individual signals were fed into the trained
network. The normalized average of TP (TP/TP + FP) and standard
deviation (STD) were calculated and plotted against the correspond-
ing concentrations as a scatter plot. The plot was fitted as a linear
regression, as given by

= +y ax b (7)

where the virus concentration was treated as the independent variable
and a represents the LOD. For the final value of the LOD a + (3STD)
= 6 × 104 PFU/mL was used, which corresponds to a 99.85%
confidence interval assuming a normal distribution. Experiments with
the influenza strain AWSN/33 were carried out in a similar way.
In order to calculate the LOD of SARS-CoV-2, experiments were

carried out in a similar way, however the plot was fitted as a sigmoid,
as given by

=
+

+y
L

b
1 e k X(Conc. )0 (8)

where L is the maximum normalized positive value (considered as the
sensitivity of the model), b adds bias to the output and changes its
range from [0,L] to [b,L+b], k scales the input, and X0 is the point at
which the sigmoid should output the value L/2.

Chi-Squared Test. In order to go from single BBX classification to
calling the result of a clinical sample as a whole the Chi-squared test
was used, which takes into consideration the total number of
bounding boxes, the number of BBXs that were classified as positive
or negative, and the specificity of the trained model (i.e., the
probability of classifying a negative signal as such). By taking into
account the specificity of each trained model and the total number of
signals in a sample, we account for the variability in the number of
detected signals between samples. The test also considers that
statistically a number of the bounding boxes will be misclassified. The
Chi-squared test is a statistical hypothesis test that assumes (the null
hypothesis) that the observed frequencies for a categorical variable
match the expected frequencies for the categorical variable and can be
calculated from the equation below:

=
=

O E
E

( )

i

n
i i

i

2

1

2

(9)

where χ2 = chi squared, Oi is the observed value, Ei is the expected
value,, and n is the number of labels. The threshold p-value for a test
can vary depending on the trained model but in general is smaller
than p-value = 0.01 which corresponds to a confidence of greater than
99%. In this paper the Null hypothesis is that the sample is negative
and it is only rejected when the p-value is below the threshold in
which case the sample is classified as positive.
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