
HAL Id: hal-04588622
https://hal.science/hal-04588622v1

Preprint submitted on 27 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Projected gradient descent accumulates at Bouligand
stationary points

Guillaume Olikier, Irène Waldspurger

To cite this version:
Guillaume Olikier, Irène Waldspurger. Projected gradient descent accumulates at Bouligand station-
ary points. 2024. �hal-04588622�

https://hal.science/hal-04588622v1
https://hal.archives-ouvertes.fr


ar
X

iv
:2

40
3.

02
53

0v
1 

 [
m

at
h.

O
C

] 
 4

 M
ar

 2
02

4

PROJECTED GRADIENT DESCENT ACCUMULATES AT

BOULIGAND STATIONARY POINTS∗

GUILLAUME OLIKIER† AND IRÈNE WALDSPURGER‡

Abstract. This paper concerns the projected gradient descent (PGD) algorithm for the problem
of minimizing a continuously differentiable function on a nonempty closed subset of a Euclidean vector
space. Without further assumptions, this problem is intractable and devoted algorithms are only
expected to find a stationary point. PGD is known to generate a sequence whose accumulation points
are Mordukhovich stationary. In this paper, these accumulation points are proven to be Bouligand
stationary, and even proximally stationary if the gradient is locally Lipschitz continuous. These are
the strongest stationarity properties that can be expected for the considered problem.

Key words. projected gradient descent, stationarity, tangent and normal cones, Clarke regu-
larity
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1. Introduction. Given a Euclidean vector space E , a nonempty closed subset
C of E , and a function f : E → R that is differentiable on C, this paper considers the
problem

(1.1) min
x∈C

f(x)

of minimizing f on C. In general, without further assumptions on C or f , prob-
lem (1.1) is intractable and devoted algorithms are only expected to find a stationary
point of this problem. A point x ∈ C is said to be stationary for (1.1) if −∇f(x) is
normal to C at x. Several definitions of normality exist. Each one yields a definition
of stationarity provided that, possibly under mild regularity assumptions on f , every
local minimizer of f |C is stationary for (1.1). In particular, each of the three notions
of normality in [42, Definition 6.3 and Example 6.16], namely normality in the general
sense, in the regular sense, and in the proximal sense, yields an important definition
of stationarity. The sets of general, regular, and proximal normals to C at x ∈ C

are respectively denoted by NC(x), N̂C(x), and
̂̂
NC(x). These sets are reviewed in

Section 2.2. Importantly, they are nested as follows: for every x ∈ C,

(1.2)
̂̂
NC(x) ⊆ N̂C(x) ⊆ NC(x),

and C is said to be Clarke regular at x if the second inclusion is an equality. The
definitions of stationarity based on these sets are given in Definition 1.1, and the
terminology is discussed in Section 3.

Definition 1.1. For problem (1.1), a point x ∈ C is said to be:
• Mordukhovich stationary (M-stationary) if −∇f(x) ∈ NC(x);

• Bouligand stationary (B-stationary) if −∇f(x) ∈ N̂C(x);
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• proximally stationary (P-stationary) if −∇f(x) ∈ ̂̂NC(x).

There are many practical examples of a set C for which at least one of the in-
clusions in (1.2) is strict, especially the second one. This is notably shown by the
four examples studied in [35] and Section 7, where the second inclusion is strict at
infinitely many points. The three notions of stationarity are therefore not equivalent.
Actually, as explained next, B-stationarity and P-stationarity are the strongest nec-
essary conditions for local optimality under different sets of assumptions on f , while
M-stationarity is a weaker condition.

As pointed out in [10, §5], for problem (1.1) without additional assumptions on C
or f , B-stationarity is the strongest necessary condition for local optimality. The
same is true if f is assumed to be continuously differentiable on E . Indeed, by [42,
Theorem 6.11], for all x ∈ C,

N̂C(x) =

{
−∇h(x)

∣∣∣ h : E → R is differentiable at x,
x is a local minimizer of h|C

}
,(1.3)

=

{
−∇h(x)

∣∣∣ h : E → R is continuously differentiable,
x is a local minimizer of h|C

}
.(1.4)

The inclusion ⊇ in (1.3) shows that every local minimizer of f |C is B-stationary

for (1.1). Thus, N̂C(x) is sufficiently large to yield a necessary condition for local

optimality. The inclusion ⊆ in (1.3) shows that replacing N̂C(x) with one of its
proper subsets would yield a condition that is not necessary for local optimality. The
equality (1.4) shows that these observations also hold if f is continuously differentiable
on E .

P-stationarity is the strongest necessary condition for local optimality if f is
differentiable on E and ∇f is locally Lipschitz continuous. Indeed, by Theorem 2.5,
for all x ∈ C,

(1.5)
̂̂
NC(x) =



−∇h(x)

∣∣∣∣∣
h : E → R is differentiable,
∇h is locally Lipschitz continuous,
x is a local minimizer of h|C



 .

The inclusion ⊇ in (1.5) shows that, if f is differentiable on E and ∇f is locally
Lipschitz continuous, then every local minimizer of f |C is P-stationary for (1.1). The

inclusion ⊆ in (1.5) shows that replacing
̂̂
NC(x) with one of its proper subsets would

yield a condition that is not necessary for local optimality.
In comparison, M-stationarity is a weaker notion of stationarity which is con-

sidered as unsatisfactory in [19, §4] and [24, §1]. This is especially true when prob-
lem (1.1) is the main problem to be solved, and not merely a subproblem to be solved
at every iteration of an algorithm like the augmented Lagrangian method proposed
in [21, Algorithm 4.1]. Furthermore, as explained in [24], distinguishing convergence
to a B-stationary point from convergence to an M-stationary point is difficult (a phe-
nomenon formalized by the notion of apocalypse in [24]).

Projected gradient descent, or PGD for short, is a basic algorithm aiming at
solving problem (1.1); see [21, Algorithm 3.1], [22, Remark 2.1 and Algorithm 4.1],
or Algorithm 4.2 for a definition. To the best of our knowledge, the first article
considering PGD on a possibly nonconvex closed set was [5]. Given x ∈ C as input,
the iteration map of PGD (Algorithm 4.1), called the PGD map, performs a projected
line search along the direction of −∇f(x), i.e., computes a projection y of x−α∇f(x)
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onto C for decreasing values of α ∈ (0,∞) until y satisfies an Armijo condition. In the
simplest version of PGD, called monotone, the Armijo condition ensures that the value
of f at the next iterate is smaller by a specified amount than the value at the current
iterate. Following the general setting proposed in [14], the value at the current iterate
can be replaced with the maximum value of f over a prefixed number of the previous
iterates. This version of PGD is called nonmonotone. By [22, Theorem 3.1], monotone
PGD accumulates at M-stationary points of (1.1) if f is continuously differentiable
on E and bounded from below on C. By [22, Theorem 4.1], the same holds for
nonmonotone PGD if f is further uniformly continuous on the sublevel set

(1.6) {x ∈ C | f(x) ≤ f(x0)},
where x0 ∈ C is the initial iterate given to the algorithm. However, as pointed out in
[24, §1], it is an open question whether the accumulation points of PGD can fail to
be B-stationary for (1.1).

This paper answers negatively the question by proving Theorem 1.2.

Theorem 1.2. Let (xi)i∈N be a sequence generated by PGD (Algorithm 4.2) when
applied to problem (1.1).

• If ∇f is continuous on C, then all accumulation points of (xi)i∈N are B-
stationary for (1.1).

• If f is differentiable on E and ∇f is locally Lipschitz continuous, then all
accumulation points of (xi)i∈N are P-stationary for (1.1).

Under the assumption that ∇f is globally Lipschitz continuous, for some sets C,
it has already been proven that every local minimizer of f |C is P-stationary for (1.1)
and that PGD with a constant step size smaller than the inverse of the Lipschitz
constant accumulates at P-stationary points of (1.1). The case where C satisfies a
regularity condition called proximal smoothness—which none of the four examples
studied in Section 7 satisfies—is considered in [2, Proposition 1 and Theorem 1]. The
case where C is the set Rn

≤s of vectors of Rn having at most s nonzero components
for some positive integer s < n is considered in [4, Theorems 2.2 and 3.1].

This paper is organized as follows. The necessary background in variational analy-
sis is introduced in Section 2. The literature on stationarity is partially surveyed in
Section 3. The PGD algorithm is reviewed in Section 4. It is analyzed under the
assumption that ∇f is continuous on C in Section 5 and under the assumption that
f is differentiable on E and ∇f is locally Lipschitz continuous in Section 6. Four
examples of a set C for which the first inclusion in (1.2) is an equality for all x ∈ C
and the second is strict for infinitely many x ∈ C are given in Section 7. Concluding
remarks are gathered in Section 8.

When we were finishing writing this paper, we became aware of the independent
work [39], which proves a theorem very close to the second item in Theorem 1.2.
Our result applies to a more general version of PGD than [39], since we allow for
(monotone or nonmonotone) backtracking line search, while [39] considers PGD with a
constant step size only (which has the consequence that ∇f must be globally Lipschitz
continuous, while it is only locally Lipschitz continuous in our work). On the other
hand, [39] deduces the result from a more general theorem about the proximal gradient
algorithm, which we do not consider in this work. It also states an explicit quadratic
lower bound on f − f(x̄) at any accumulation point x̄.

2. Elements of variational analysis. This section, mostly based on [42], re-
views background material in variational analysis that is used in the rest of the pa-
per. Section 2.1 concerns the projection mapping onto C and its main properties.
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Section 2.2 reviews the three notions of normality on which the three notions of sta-
tionarity provided in Definition 1.1 are based.

Throughout the paper, for every x ∈ E and ρ ∈ (0,∞), B(x, ρ) := {y ∈ E |
‖x − y‖ < ρ} and B[x, ρ] := {y ∈ E | ‖x − y‖ ≤ ρ} are respectively the open and
closed balls of center x and radius ρ in E . Following [42, §3B], a nonempty subset K
of E is called a cone if x ∈ K implies αx ∈ K for all α ∈ [0,∞). By [42, 6(14)], for
every cone K ⊆ E , the set

K∗ := {w ∈ E | 〈v, w〉 ≤ 0 ∀v ∈ K}

is a closed convex cone called the polar of K.

2.1. Projection mapping. Given x ∈ E , the distance from x to C is d(x,C) :=
miny∈C ‖x − y‖ and the projection of x onto C is PC(x) := argminy∈C ‖x − y‖. By
[42, Example 1.20], the function E → R : x 7→ d(x,C) is continuous and, for every
x ∈ E , the set PC(x) is nonempty and compact. Proposition 2.1 is invoked frequently
in the rest of the paper.

Proposition 2.1. For all x ∈ C, v ∈ E, and y ∈ PC(x− v),

‖y − x‖ ≤ 2‖v‖,(2.1)

2 〈v, y − x〉 ≤ −‖y − x‖2,(2.2)

and the inequalities are strict if x /∈ PC(x− v).

Proof. By definition of the projection, ‖y − (x − v)‖ ≤ ‖x − (x − v)‖ = ‖v‖ and
the inequality is strict if x /∈ PC(x− v). Thus, on the one hand,

‖y − x‖ = ‖y − (x− v)− v‖ ≤ ‖y − (x − v)‖+ ‖ − v‖ ≤ ‖v‖+ ‖v‖ = 2‖v‖,

and, on the other hand, ‖y − (x− v)‖2 ≤ ‖v‖2, which is equivalent to (2.2).

2.2. Normality and stationarity. Based on [42, Chapter 6], this section re-
views the three notions of normality on which the three notions of stationarity given
in Definition 1.1 are based.

Following [42, Definition 6.1], a vector v ∈ E is said to be tangent to C at x ∈ C
if there exist sequences (xi)i∈N in C converging to x and (ti)i∈N in (0,∞) such that
the sequence (xi−x

ti
)i∈N converges to v. The set of all tangent vectors to C at x ∈ C is

a closed cone [42, Proposition 6.2] called the tangent cone to C at x and denoted by
TC(x). Following [42, Definition 6.3 and Proposition 6.5], for every x ∈ C, the polar

N̂C(x) := TC(x)∗

is called the regular normal cone to C at x. Following [42, Definition 6.3], a vector
v ∈ E is said to be normal to C at x ∈ C if there exist sequences (xi)i∈N in C

converging to x and (vi)i∈N converging to v such that, for all i ∈ N, vi ∈ N̂C(xi). The
set of all normal vectors to C at x ∈ C is a closed cone [42, Proposition 6.5] called
the normal cone to C at x and denoted by NC(x). Following [42, Example 6.16], a
vector v ∈ E is called a proximal normal to C at x ∈ C if there exists α ∈ (0,∞) such
that x ∈ PC(x + αv), i.e., α‖v‖ = d(x + αv,C), which implies that, for all α ∈ [0, α),
PC(x + αv) = {x}. The set of all proximal normals to C at x ∈ C is a convex cone

called the proximal normal cone to C at x and denoted by
̂̂
NC(x). As stated in (1.2),
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for all x ∈ C,

̂̂
NC(x) ⊆ N̂C(x) ⊆ NC(x).

Following [42, Definition 6.4], C is said to be Clarke regular at x ∈ C if N̂C(x) =
NC(x). Thus, M-stationarity is equivalent to B-stationarity at a point x ∈ C if and
only if C is Clarke regular at x, which is not the case in many practical situations,
as shown by the four examples given in [35]. For those examples, however, regular
normals are proximal normals, as established in Section 7. Note that there exist a set
C and a point x ∈ C such that both inclusions in (1.2) are strict, as illustrated by
Example 2.2.

Example 2.2. Let E := R2 and C :=
{(

x,max
{

0, x3/5
})
| x ∈ R

}
(inspired by

[42, Figure 6–12(a)]). Then,

̂̂
NC(0, 0) ( N̂C(0, 0) ( NC(0, 0).

As pointed out in Section 1, the regular and proximal normal cones enjoy gradient
characterizations which imply that B- and P-stationarity are the strongest necessary
conditions for local optimality under different sets of assumptions on f . Those given
in (1.3)–(1.4) come from [42, Theorem 6.11]. That given in (1.5) comes from Theo-
rem 2.5, established at the end of this section.

As shown by (1.4), for problem (1.1), B-stationarity is the strongest necessary
condition for local optimality if f is only assumed to be continuously differentiable
on E . In particular, under this assumption, P-stationarity is not necessary for local
optimality, as illustrated by Example 2.3.

Example 2.3. Let E := R2, C :=
{

(x1, x2) ∈ R2 | x2 ≥ max
{

0, x
3/5
1

}}
[42, Fig-

ure 6–12(a)], and f : R2 → R : (x1, x2) 7→ 1
2 (x1−1)2+|x2|3/2. Then, f is continuously

differentiable and, for all (x1, x2) ∈ R2, ∇f(x1, x2) = (x1−1, 32 sgn(x2)|x2|1/2). Thus,

−∇f(0, 0) = (1, 0) ∈ N̂C(0, 0) \ ̂̂NC(0, 0), yet argminC f = {(0, 0)}.
Proposition 2.4 states that P-stationarity is necessary for local optimality if f is

differentiable on E and ∇f is locally Lipschitz continuous. The latter means that, for
every ball B ( E ,

Lip
B

(∇f) := sup
x,y∈B
x 6=y

‖∇f(x)−∇f(y)‖
‖x− y‖ <∞,

which implies, by [34, Lemma 1.2.3], that, for all x, y ∈ B,

(2.3) |f(y)− f(x)− 〈∇f(x), y − x〉 | ≤ LipB(∇f)

2
‖y − x‖2.

Proposition 2.4. Assume that f is differentiable on E and ∇f is locally Lip-

schitz continuous. If x ∈ C is a local minimizer of f |C , then −∇f(x) ∈ ̂̂NC(x).

Proof. By contrapositive. Assume that −∇f(x) /∈ ̂̂NC(x) for some x ∈ C. Let
ρ ∈ (0,∞). Then, for all α ∈ (0, ρ

2‖∇f(x)‖ ],

x /∈ PC(x− α∇f(x)) ⊆ B(x, 2α‖∇f(x)‖) ⊆ B(x, ρ),
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where the first inclusion holds by (2.1). Thus, by (2.3) and (2.2), for all α ∈
(0,min{ ρ

2‖∇f(x)‖ ,
1

LipB(x,ρ)(∇f)}] and y ∈ PC(x− α∇f(x)),

f(y)− f(x) ≤ 〈∇f(x), y − x〉+
LipB(x,ρ)(∇f)

2
‖y − x‖2

<

(
− 1

2α
+

LipB(x,ρ)(∇f)

2

)
‖y − x‖2

≤ 0.

Hence, x is not a local minimizer of f |C .

Theorem 2.5 states that (1.5) is valid, which shows that P-stationarity is the
strongest necessary condition for local optimality if f is differentiable on E and ∇f is
locally Lipschitz continuous.

Theorem 2.5 (gradient characterization of proximal normals). For every x ∈ C,
(1.5) holds.

Proof. Let x ∈ C. The inclusion ⊇ holds by Proposition 2.4. For the inclusion

⊆, let us fix v ∈ ̂̂NC(x). From the definition of the proximal normal cone, there exists
α ∈ (0,∞) such that x ∈ PC(x + αv). This is equivalent to the fact that x is a
minimizer of h|C , where h : E → R is defined by

h(y) :=
1

2ᾱ
‖y − (x + αv)‖2 ∀y ∈ E .

The map h is differentiable, its gradient is locally Lipschitz continuous (actually,
globally Lipschitz continuous, since it is an affine map), and

−∇h(x) = v.

Since x is a global minimizer of h|C , it is also a local minimizer of h|C . This shows
that

v ∈



−∇h(x)

∣∣∣∣∣

h : E → R is differentiable,
∇h is locally Lipschitz continuous,
x is a local minimizer of h|C



 ,

which implies the inclusion ⊆ in (1.5).

3. Stationarity in the literature. This section surveys the names given to
the stationarity notions provided in Definition 1.1. The name “M-stationarity” is
unanimous in the literature. It is legitimate because this stationarity notion is based
on the normal cone introduced by Mordukhovich and often called the Mordukhovich
normal cone.

In contrast, B-stationarity is known under other names in the literature. On
the one hand, because the regular normal cone is also called the Fréchet normal
cone, especially in infinite-dimensional spaces [42, 31, 32], B-stationarity is called
Fréchet stationarity, or F-stationarity for short, in [26, Definition 4.1(ii)], [27, Defini-
tion 5.1(i)], and [28, Definition 3.2(ii)]. On the other hand, B-stationarity is simply
called stationarity in [44], [17], [24, Definition 2.3], [23, Definition 3.2(c)], and [13,
Definition 1]. This is legitimate since this notion of stationarity is the natural one, as
explained in Section 1. Furthermore, in the literature about mathematical programs
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with equilibrium constraints, the name “B-stationarity” sometimes indicates a notion
of stationarity that is not B-stationarity. This is detailed in Section 3.1 which provides
a brief history of B-stationarity.

Finally, P-stationarity seems to be new in the literature, although it is closely
related to the so-called α-stationarity, as explained in Section 3.2. We propose the
name “P-stationarity” because this stationarity notion is based on the proximal nor-
mal cone. In the context of optimization problems with complementarity constraints,
[8] defines a stationarity notion called strong stationarity, or S-stationarity for short,
which involves a proximal normal cone. However, the definition is specific to problems
with complementarity constraints, and does not seem to have a clear relation with
our “P-stationarity”.

3.1. A brief history of Bouligand stationarity. Peano already knew that
B-stationarity is a necessary condition for optimality. The statement is implicit in his
1887 book Applicazioni geometriche del calcolo infinitesimale and explicit in his 1908
book Formulario Mathematico where the formulation is based on the tangent cone
and the derivative defined in the same book; see the historical investigation in [9, 10].

B-stationarity appears as a necessary condition for optimality in [46, Theorem 2.1]
and [15, Theorem 1], without any reference to Peano’s work. The latter theorem uses
the polar of the closure of the convex hull of the tangent cone which equals the polar of
the tangent cone by [42, Corollary 6.21]. Neither “stationary” nor “critical” appears
in [46] or [15].

The Bouligand derivative is introduced in [41]. It is a special case of the contingent
derivative introduced by Aubin based on the tangent cone. The name “Bouligand
derivative” was chosen because the tangent cone is generally attributed to Bouligand;
see, e.g., [42, 31, 32] for recent references.

B-stationarity is called a “stationarity condition” and said to be “well known”
in [29, §4.1] where [15] is cited. The linearized cone is also introduced which always
contains the tangent cone; the stationarity condition [29, (28)] associated with the
linearized cone is called L-stationarity in this section. In general, these cones are
equal only if a constraint qualification (CQ) is satisfied.

The name “Bouligand stationarity”, or “B-stationarity” for short, is introduced
in [43], without any comment on its origin. In [43, §2.1], “B-stationarity” is defined for
a mathematical program with complementarity constraints. However, the definition
looks more like L-stationarity than B-stationarity and yields a necessary condition
for local optimality only if a CQ is satisfied, while B-stationarity is always neces-
sary for local optimality. This suggests that this “B-stationarity”, which is specific
to problems with complementarity constraints, is not B-stationarity. In [43, §2.3],
“B-stationarity” is defined for the minimization of an exact penalty function. The
definition relies on the Bouligand derivative but not on the tangent cone since the
problem is unconstrained. Thus, in this case, the name “B-stationarity” is arguably
due to the Bouligand derivative.

B-stationarity appears, under this name, in [37]. Moreover, it is indicated in
[37, §1] that “the condition” introduced in [29] is called “B-stationarity” in [43]; this
condition is arguably L-stationarity since B-stationarity is said to be well known in
[29] and is thus not “introduced” in [29]. Hence, on the one hand, [37] confirms that
what is called “B-stationarity” in [43] is actually L-stationarity but, on the other
hand, “B-stationarity” means both B-stationarity and L-stationarity in [37].

B-stationarity appears, under this name, in [12, Definition 2.4], in the proof of
[11, Theorem 3.9], in [49, Definition 2.2], in [36, §2], in [38, (18)], in [19, §4], and
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in [6, Definition 6.1.1]. Moreover, [49] confirms that, in [43], “B-stationarity” means
L-stationarity and not B-stationarity. Remarkably, among all stationarity notions
appearing in [49], B-stationarity is the only one defined based on a tangent or nor-
mal cone; formulating the other notions, such as those of Clarke and Mordukhovich,
based of the corresponding normal cones would be an interesting contribution to this
investigation.

However, L-stationarity is called “B-stationarity” in [16, Definition 2.2] and [48,
Definition 3.2] which both cite [43].

In conclusion, although the name “B-stationarity” was introduced in [43], it means
B-stationarity everywhere in the literature except in [43] and some papers that cite
it.

3.2. Proximal stationarity and α-stationarity. Proximal stationarity is re-
lated to α-stationarity which was introduced in [4, Definition 2.3] for C = Rn

≤s and
in [26, Definition 4.1(i)], [17], [27, Definition 5.1(ii)], [25, (4.2)], and [28, Defini-
tion 3.2(i)] for several low-rank sets. By definition of the proximal normal cone, a
point x ∈ C is P-stationary for (1.1) if and only if there exists α ∈ (0,∞) such that
x ∈ PC(x − α∇f(x)). In contrast, given α ∈ (0,∞), a point x ∈ C is said to be
α-stationary for (1.1) if x ∈ PC(x − α∇f(x)). Thus, while α-stationarity prescribes
the number α ∈ (0,∞), P-stationarity merely requires the existence of such a number.
Furthermore, α-stationarity should not be confused with the approximate stationarity
from [24, Definition 2.6].

4. The PGD algorithm. This section reviews the PGD algorithm, as defined
in [21, Algorithm 3.1], based on its iteration map, called the PGD map and defined as
Algorithm 4.1. The nonmonotonic behavior of PGD is described in Proposition 4.1.

Algorithm 4.1 PGD map (iteration map of [21, Algorithm 3.1])

Require: (E , C, f, α, α, β, c) where E is a Euclidean vector space, C is a nonempty
closed subset of E , f : E → R is differentiable on C, 0 < α ≤ α < ∞, and
β, c ∈ (0, 1).

Input: (x, µ) with x ∈ C and µ ∈ [f(x),∞).
Output: y ∈ PGD(x, µ; E , C, f, α, α, β, c).
1: Choose α ∈ [α, α] and y ∈ PC(x− α∇f(x));
2: while f(y) > µ + c 〈∇f(x), y − x〉 do
3: α← αβ;
4: Choose y ∈ PC(x− α∇f(x));
5: end while

6: Return y.

Two remarks should be made about Algorithm 4.1. First, the Armijo condition

f(y) ≤ µ + c 〈∇f(x), y − x〉
ensures that the decrease µ − f(y) is at least a fraction c of the opposite of the
directional derivative of f at x with respect to the update vector y−x. By (2.2), this
condition implies that

(4.1) f(y) ≤ µ− c

2α
‖y − x‖2,

which is the condition used in [22, Algorithms 3.1 and 4.1]. Importantly, all results
from [22] hold for both conditions, as is clear from the proofs.
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Second, by Proposition 5.3, if ∇f is continuous on C and x is not B-stationary
for (1.1), then the while loop is guaranteed to terminate, thereby producing a point
y such that f(y) < µ; y 6= x holds because x is not B-stationary and hence not P-
stationary. If f is differentiable on E and ∇f is locally Lipschitz continuous, then the
while loop is guaranteed to terminate, by Corollary 6.2.

The PGD algorithm is defined as Algorithm 4.2. It is said to be monotone or
nonmonotone depending on whether l = 0 or l > 0.

Algorithm 4.2 PGD [21, Algorithm 3.1]

Require: (E , C, f, α, α, β, c, l) where E is a Euclidean vector space, C is a nonempty
closed subset of E , f : E → R is differentiable on C, 0 < α ≤ α <∞, β, c ∈ (0, 1),
and l ∈ N.

Input: x0 ∈ C.
Output: a sequence in C.
1: i← 0;
2: while −∇f(xi) /∈ N̂C(xi) do

3: µi ← maxj∈{max{0,i−l},...,i} f(xj);
4: Choose xi+1 ∈ PGD(xi, µi; E , C, f, α, α, β, c);
5: i← i + 1;
6: end while

If f is differentiable on E and ∇f is locally Lipschitz continuous, then N̂C(xi)

should be replaced with
̂̂
NC(xi) in line 2. If PGD generates a finite sequence, then the

last element of this sequence is B-stationary for (1.1), and even P-stationary for (1.1)
if f is differentiable on E and ∇f is locally Lipschitz continuous. The rest of the paper
concerns the case where it generates an infinite sequence. In that case, the stationarity
of the accumulation points of the generated sequence, if any, is studied in Sections 5
and 6. Following [40, Remark 14], which states that it is usually better to determine
whether an algorithm generates a sequence having at least one accumulation point
by examining the algorithm in the light of the specific problem to which one wishes
to apply it, no condition ensuring the existence of a convergent subsequence is made.
As a reminder, a sequence (xi)i∈N has at least one accumulation point if and only if
lim infi→∞ ‖xi‖ <∞.

Monotone PGD generates a sequence along which f is strictly decreasing. Non-
monotone PGD generates a sequence containing a subsequence along which f is non-
increasing, as stated in Proposition 4.1.

Proposition 4.1. Let (xi)i∈N be a sequence generated by PGD (Algorithm 4.2).
For every i ∈ N, let g(i) ∈ argmaxj∈{max{0,i−l},...,i} f(xj). Then:

1. (f(xg(i)))i∈N is nonincreasing;
2. (xi)i∈N is contained in the sublevel set (1.6);
3. if x ∈ C is an accumulation point of (xi)i∈N, then (f(xg(i)))i∈N converges to

ϕ ∈ [f(x), f(x0)];
4. if f is bounded from below and uniformly continuous on a set that contains

(xi)i∈N, then (f(xi))i∈N converges to ϕ ∈ R.

Proof. The first two statements are [22, Lemma 4.1 and Corollary 4.1]. Let
(xik )k∈N be a subsequence converging to x. Since the sequence (f(xg(i)))i∈N is non-
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increasing, it has a limit in R ∪ {−∞}. Thus,

lim
i→∞

f(xg(i)) = lim
k→∞

f(xg(ik)) ≥ lim inf
k→∞

f(xik) = f(x) > −∞.

It remains to prove the fourth statement. From the first statement, and because f
is bounded from below, (f(xg(i)))i∈N converges to some limit ϕ ∈ R. Assume, for
the sake of contradiction, that (f(xi))i∈N does not converge to ϕ. Then, there exist
ρ ∈ (0,∞) and a subsequence (f(xij ))j∈N contained in R \ [ϕ − ρ, ϕ + ρ]. For all
j ∈ N, define pj := g(ij + l) − ij ∈ {0, . . . , l}. Then, there exist p ∈ {0, . . . , l}
and a subsequence (pjk)k∈N such that, for all k ∈ N, pjk = p. By [22, (27)] or [21,
(A.9)], (f(xg(i)−p))i∈N converges to ϕ. Therefore, (f(xg(i+l)−p))i∈N converges to ϕ.
Hence, (f(xg(ijk+l)−p))k∈N converges to ϕ. This is a contradiction since, for all k ∈ N,

f(xg(ijk+l)−p) = f(xijk
).

5. Convergence analysis for a continuous gradient. In this section, PGD
(Algorithm 4.2) is analyzed under the assumption that ∇f is continuous on C. Specif-
ically, the first statement of Theorem 1.2, restated in Theorem 5.1 for convenience, is
proven.

Theorem 5.1. Let (xi)i∈N be a sequence generated by PGD (Algorithm 4.2). If
∇f is continuous on C, then all accumulation points of (xi)i∈N are B-stationary
for (1.1). If, moreover, (xi)i∈N has an isolated accumulation point, then (xi)i∈N

converges.

The proof is divided into three parts. First, in Section 5.1, we show that, in a
neighborhood of any point that is not B-stationary for (1.1), the PGD map (Algo-
rithm 4.1) terminates after a bounded number of iterations. Then, in Section 5.2,
we prove that, if a subsequence (xik )k∈N converges, then (xik+1)k∈N also does, to
the same limit. Finally, we combine the first two parts in Section 5.3: if (xik )k∈N

converges to x, then, from the second part,

‖xik+1 − xik‖ → 0 when k →∞,

but, from the first part, if x is not B-stationary for (1.1), then the iterates of PGD
move by at least a constant amount at each iteration. It is therefore impossible that
(xik )k∈N converges to a point that is not B-stationary for (1.1).

5.1. First part: analysis of the PGD map. In this section, we show that, if
x ∈ C is not B-stationary for (1.1), then the while loop in Algorithm 4.1 terminates,
in some neighborhood of x, for nonvanishing values of α. To show it, we first prove
that, in a neighborhood of x, the first-order term of the Taylor expansion of f is
“large” compared to the remainder. This is the goal of Proposition 5.2.

Proposition 5.2. Assume that ∇f is continuous on C. Let x ∈ C be non-B-
stationary for (1.1), and w ∈ TC(x) be such that

(5.1) 〈w,−∇f(x)〉 > 0.

Define κ :=
√

1− β〈w,−∇f(x)〉2

8‖w‖2‖∇f(x)‖2 ∈ (0, 1). There exist arbitrarily small numbers αx ∈
(0, α] such that, for some ρ(αx) ∈ (0,∞), it holds for any x ∈ B(x, ρ(αx)) ∩ C and
α ∈ [αx, αx/β] that, for all y ∈ PC(x− α∇f(x)),

d(x− α∇f(x), C) ≤ κα‖∇f(x)‖,
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which implies

〈∇f(x), y − x〉 ≤ −
√

1− κ2‖∇f(x)‖‖y − x‖.

Proof. Let ε ∈ (0, α]. We show that there exists αx ∈ (0, ε) satisfying the required
property.

Let (wi)i∈N be a sequence in C converging to x, and (ti)i∈N be a sequence in
(0,∞) such that

wi − x

ti

i→∞−→ w.

From the definition of w in (5.1), it holds for all i ∈ N large enough that

(5.2) 〈wi − x,−∇f(x)〉 > 0.

As 1
ti

‖wi−x‖2

〈wi−x,−∇f(x)〉

i→∞−→ ‖w‖2

〈w,−∇f(x)〉 and ti
i→∞−→ 0, it also holds for all i ∈ N large

enough that

(5.3)
‖wi − x‖2

〈wi − x,−∇f(x)〉 < ε.

Similarly, it holds for all i ∈ N large enough that

(5.4)
〈wi − x,−∇f(x)〉2
‖wi − x‖2 >

〈w,−∇f(x)〉2
2‖w‖2 .

Fix i ∈ N satisfying (5.2), (5.3), and (5.4). Pick αx such that

αx

2
<

‖wi − x‖2
〈wi − x,−∇f(x)〉 < αx < ε.

Since ∇f is continuous at x, there exists ρ0 ∈ (0,∞) such that, for all x ∈ B[x, ρ0]∩C,

〈wi − x,−∇f(x)〉 > 0,(5.5a)

αx

2
<

‖wi − x‖2
〈wi − x,−∇f(x)〉 < αx,(5.5b)

〈wi − x,−∇f(x)〉2
‖wi − x‖2‖∇f(x)‖2 >

〈w,−∇f(x)〉2
2‖w‖2‖∇f(x)‖2 .(5.5c)

We now establish the first inequality we have to prove: for an adequate value of ρ(αx),
it holds for any x ∈ B(x, ρ(αx)) ∩ C and α ∈ [αx, αx/β] that

‖x− α∇f(x) − y‖ ≤ κα‖∇f(x)‖ ∀y ∈ PC(x − α∇f(x)),

which is equivalent to d(x− α∇f(x), C) ≤ κα‖∇f(x)‖.
Let us for the moment consider any ρ(αx) ∈ (0, ρ0]. For any x ∈ B(x, ρ(αx))∩C,
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α ∈ [αx, αx/β], and y ∈ PC(x− α∇f(x)),

‖x− α∇f(x) − y‖2 ≤ ‖x− α∇f(x) − wi‖2

= ‖x− α∇f(x) − wi‖2 + 2 〈x− x, α∇f(x) + wi − x〉+ ‖x− x‖2

≤ ‖x− α∇f(x) − wi‖2

+ 2ρ(αx) (α‖∇f(x)‖+ ‖wi − x‖) + ρ(αx)2

≤ ‖x− α∇f(x) − wi‖2

+ 2ρ(αx)

(
α max

z∈B[x,ρ0]∩C
‖∇f(z)‖+ ‖wi − x‖

)
+ ρ(αx)2

= α2‖∇f(x)‖2 − 2α 〈wi − x,−∇f(x)〉+ ‖wi − x‖2

+ 2ρ(αx)

(
α max

z∈B[x,ρ0]∩C
‖∇f(z)‖+ ‖wi − x‖

)
+ ρ(αx)2

≤ α2‖∇f(x)‖2 − α 〈wi − x,−∇f(x)〉

+ 2ρ(αx)

(
αx

β
max

z∈B[x,ρ0]∩C
‖∇f(z)‖+ ‖wi − x‖

)
+ ρ(αx)2.

The last inequality is true from (5.5b) and the fact that αx ≤ α ≤ αx

β . Choose

ρ(αx) ∈ (0, ρ0] small enough so that

2ρ(αx)

(
αx

β
max

z∈B[x,ρ0]∩C
‖∇f(z)‖+ ‖wi − x‖

)
+ ρ(αx)2

≤ αx

2
min

z∈B[x,ρ0]∩C
〈wi − x,−∇f(z)〉 .

Note that the right-hand side of this inequality is positive, from (5.5a). Combining
this definition with the previous inequality, we arrive at

‖x− α∇f(x) − y‖2 ≤ α2‖∇f(x)‖2 − α

2
〈wi − x,−∇f(x)〉

= α2‖∇f(x)‖2
(

1− 〈wi − x,−∇f(x)〉
2α‖∇f(x)‖2

)

≤ α2‖∇f(x)‖2
(

1− β 〈wi − x,−∇f(x)〉
2αx‖∇f(x)‖2

)

≤ α2‖∇f(x)‖2
(

1− β 〈wi − x,−∇f(x)〉2
4‖wi − x‖2‖∇f(x)‖2

)

≤ α2‖∇f(x)‖2
(

1− β 〈w,−∇f(x)〉2
8‖w‖2‖∇f(x)‖2

)

= κ2α2‖∇f(x)‖2.

In other words, for any x ∈ B(x, ρ(αx))∩C, α ∈ [αx, αx/β], and y ∈ PC(x−α∇f(x)),
it holds that

‖x− α∇f(x) − y‖ ≤ κα‖∇f(x)‖.

To conclude, we show that this inequality implies

(5.6)

〈
y − x

‖y − x‖ ,
∇f(x)

‖∇f(x)‖

〉
≤ −

√
1− κ2.
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Indeed, if we define θ ∈ R such that
〈

y−x
‖y−x‖ ,

∇f(x)
‖∇f(x)‖

〉
= cos(θ), we have

‖y − x‖2 + 2α‖∇f(x)‖‖y − x‖ cos(θ) + α2‖∇f(x)‖2 ≤ α2κ2‖∇f(x)‖2.

This already shows that cos(θ) < 0. In addition, if we minimize the left-hand side
over all possible values of ‖y − x‖, we get

−α2‖∇f(x)‖2 cos2(θ) + α2‖∇f(x)‖2 ≤ α2κ2‖∇f(x)‖2,

hence cos2(θ) ≥ 1− κ2, which establishes (5.6).

Proposition 5.3. Assume that ∇f is continuous on C. Let x ∈ C be non-B-
stationary for (1.1). There exists αx ∈ (0, α] such that, for some ρ ∈ (0,∞), it holds
for any x ∈ B(x, ρ) ∩ C, α ∈ [αx, αx/β], and y ∈ PC(x− α∇f(x)) that

f(y) < f(x) + c 〈∇f(x), y − x〉 .

Proof. Fix αx as in Proposition 5.2, small enough so that

sup
y∈B

[

x,
7αx

2β ‖∇f(x)‖
]

∩C

|f(y)− f(x)− 〈∇f(x), y − x〉 |
‖y − x‖ <

(1− c)
√

1− κ2‖∇f(x)‖
4
(

1 + 8
3(1−κ)

) ,

(5.7a)

sup
y∈B

[

x,
7αx

2β ‖∇f(x)‖
]

∩C

‖∇f(y)−∇f(x)‖ < (1− c)
√

1− κ2

4
‖∇f(x)‖.(5.7b)

These inequalities are satisfied by all αx small enough, from the definition of the
gradient for the first one, and because the gradient is continuous at x for the second
one.

Let ρ(αx) be as in Proposition 5.2. Define

ρ := min
{
ρ(αx), αx‖∇f(x)‖

}
.

Note that, for all x ∈ B(x, ρ) ∩ C,

‖x− x‖ < ρ ≤ αx‖∇f(x)‖ < 7αx

2β
‖∇f(x)‖,

so that from (5.7b),

(5.8)
3

4
‖∇f(x)‖ < ‖∇f(x)‖ < 5

4
‖∇f(x)‖.

For any x ∈ B(x, ρ) ∩ C, α ∈ [αx, αx/β], and y ∈ PC(x− α∇f(x)),

f(y) = f(x) + 〈∇f(x), y − x〉
+ (f(x)− f(x)− 〈∇f(x), x− x〉)
+ (f(y)− f(x)− 〈∇f(x), y − x〉)

≤ f(x) + 〈∇f(x), y − x〉+
(1− c)

√
1− κ2‖∇f(x)‖

4
(

1 + 8
3(1−κ)

) (‖x− x‖+ ‖y − x‖) .(5.9)
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The last inequality follows from (5.7a); observe that

‖y − x‖ ≤ ‖y − x‖ + ‖x− x‖
≤ 2α‖∇f(x)‖ + ρ from (2.1)

≤ 2αx

β
‖∇f(x)‖+ αx‖∇f(x)‖

<
5αx

2β
‖∇f(x)‖+ αx‖∇f(x)‖

≤ 7αx

2β
‖∇f(x)‖.

We continue from (5.9):

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
(1− c)

√
1− κ2‖∇f(x)‖

4
(

1 + 8
3(1−κ)

) (2‖x− x‖+ ‖y − x‖)

(a)
< f(x) + 〈∇f(x), y − x〉+

(1 − c)
√

1− κ2‖∇f(x)‖
4

‖y − x‖

≤ f(x) + 〈∇f(x), y − x〉+ ‖∇f(x)−∇f(x)‖‖y − x‖

+
(1 − c)

√
1− κ2‖∇f(x)‖

4
‖y − x‖

≤ f(x) + 〈∇f(x), y − x〉+
(1− c)

√
1− κ2‖∇f(x)‖

2
‖y − x‖ from (5.7b)

< f(x) + 〈∇f(x), y − x〉+ (1− c)
√

1− κ2‖∇f(x)‖‖y − x‖ from (5.8)

≤ f(x) + 〈∇f(x), y − x〉 − (1− c) 〈∇f(x), y − x〉 from Proposition 5.2

= f(x) + c 〈∇f(x), y − x〉 .

Inequality (a) is true because

‖y − x‖ ≥ α‖∇f(x)‖ − ‖x− α∇f(x)− y‖
= α‖∇f(x)‖ − d(x − α∇f(x), C)

≥ (1− κ)α‖∇f(x)‖

≥ 3

4
(1− κ)ρ

>
3

4
(1− κ)‖x− x‖.

5.2. Second part: convergence of successive iterates.

Proposition 5.4. Assume that ∇f is continuous on C. Let (xi)i∈N be a sequence
generated by PGD (Algorithm 4.2), and x be an accumulation point. Then, for any
subsequence (xik )k∈N converging to x, the sequence (xik+1)k∈N also converges to x.

Proof. Let (xik )k∈N be a subsequence converging to x. We show that (xik+1)k∈N

also converges to x.
It suffices to show that x is an accumulation point of every subsequence of

(xik+1)k∈N. In other words, we show the following: for every subsequence (ijk)k∈N of
(ik)k∈N, there exists a subsequence of (xijk+1)k∈N that converges to x. Let (ijk)k∈N be
a subsequence of (ik)k∈N. For all i ∈ N, define g(i) ∈ argmaxj∈{max{0,i−l},...,i} f(xj),
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as in Proposition 4.1. By the third statement of Proposition 4.1, the sequence
(f(xg(i)))i∈N converges to ϕ ∈ [f(x), f(x0)]. For every k ∈ N, letting αijk

∈ (0, α] be
the number such that xijk+1 ∈ PC(xijk

− αijk
∇f(xijk

)), by (2.1),

‖xijk+1 − xijk
‖ ≤ 2αijk

‖∇f(xijk
)‖ ≤ 2α‖∇f(xijk

)‖.

Thus, since (xijk
)k∈N is bounded and ∇f is locally bounded (as it is continuous), the

sequence (xijk+1)k∈N is bounded. If we replace (ijk)k∈N by a subsequence, we can
assume that (xijk+1)k∈N converges.

Iterating the reasoning, we can assume that (xijk+s)k∈N converges to some xs ∈ C

for every s ∈ {0, . . . , l + 1}. By definition of x, x0 = x.
Observe that, from the continuity of f ,

f(xg(ijk+l+1)) = max{f(xijk+1), . . . , f(xijk+l+1)}
→ max{f(x1), . . . , f(xl+1)} when k →∞.

In particular, there exists s1 ∈ {1, . . . , l + 1} such that

(5.10) f(xs1) = ϕ.

Let s1 be the smallest such integer. For any k ∈ N, from the condition in line 2 of
Algorithm 4.1 and (4.1),

f(xijk+s1) ≤ f(xg(ijk+s1−1))−
c

2α
‖xijk+s1 − xijk+s1−1‖2.

Letting k tend to infinity yields

ϕ = f(xs1 ) ≤ ϕ− c

2α
‖xs1 − xs1−1‖2.

Consequently, xs1 = xs1−1. In particular, f(xs1−1) = f(xs1) = ϕ. Therefore, s1 = 1,
otherwise it would not be the smallest integer satisfying (5.10). The equality xs1 =
xs1−1 then rewrites as x1 = x0 = x and, when k →∞,

xijk+1 → x1 = x.

5.3. Third part: proof of Theorem 5.1. Let x be an accumulation point of
(xi)i∈N. Assume, for the sake of contradiction, that x is not B-stationary for (1.1).
Let (xik)k∈N be a subsequence converging to x.

Let αx and ρ be as in Proposition 5.3. For all k ∈ N large enough, xik ∈ B(x, ρ)∩
C. Then, when Algorithm 4.1 is called at point xik , the condition in line 2 stops being
fulfilled for some αik ≥ αx, meaning that

xik+1 ∈ PC(xik − αik∇f(xik )) for some αik ∈ [αx, α].

If we replace (ik)k∈N with a subsequence, we can assume that (αik)k∈N converges to
some αlim ∈ [αx, α].

For any k ∈ N, we have

‖xik − αik∇f(xik)− xik+1‖ = d(xik − αik∇f(xik ), C)
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and since the distance to a nonempty closed set is a continuous function, we can
take this equality to the limit. We use the fact that xik+1 → x when k → ∞, from
Proposition 5.4. This yields

‖αlim∇f(x)‖ = d(x − αlim∇f(x), C),

which means that x ∈ PC(x−αlim∇f(x)). In particular, −∇f(x) ∈ ̂̂NC(x) ⊆ N̂C(x),
which contradicts our assumption that x is not B-stationary for (1.1). We have
therefore proven that any accumulation point is B-stationary.

Finally, if (xi)i∈N has an isolated accumulation point, then the sequence (xi)i∈N

converges, from Proposition 5.4 and [33, Lemma 4.10].

6. Convergence analysis for a locally Lipschitz continuous gradient.

In this section, PGD (Algorithm 4.2) is analyzed under the assumption that f is
differentiable on E and ∇f is locally Lipschitz continuous. Specifically, the second
statement of Theorem 1.2, restated as Theorem 6.3 for convenience, is proven based
on Proposition 6.1 and Corollary 6.2 which state that, for every x ∈ C and every
input x sufficiently close to x, the PGD map (Algorithm 4.1) terminates after at most
a given number of iterations which depends only on x.

Proposition 6.1. Assume that f is differentiable on E and ∇f is locally Lip-
schitz continuous. For every x ∈ C, α ∈ (0,∞), and c ∈ (0, 1), there exists ρ ∈ (0,∞)
such that, with ρ := ρ + 3α‖∇f(x)‖ and α∗ := (1 − c)/LipB[x,ρ](∇f), for all x ∈
B[x, ρ] ∩ C, α ∈ [0,min{α∗, α}], and y ∈ PC(x − α∇f(x)),

f(y) ≤ f(x) + c 〈∇f(x), y − x〉 .

Proof. Let x ∈ C, α ∈ (0,∞), and c ∈ (0, 1). Since ∇f is continuous at x, there
exists ρ ∈ (0,∞) such that, for all x ∈ B[x, ρ], ‖∇f(x) − ∇f(x)‖ ≤ 1

2‖∇f(x)‖ and
hence, as |‖∇f(x)‖ − ‖∇f(x)‖| ≤ ‖∇f(x)−∇f(x)‖,

1

2
‖∇f(x)‖ ≤ ‖∇f(x)‖ ≤ 3

2
‖∇f(x)‖.

For all x ∈ B[x, ρ] and α ∈ [0, α], PC(x − α∇f(x)) ⊆ B[x, ρ]; indeed, for all y ∈
PC(x− α∇f(x)),

‖y − x‖ ≤ ‖y − x‖+ ‖x− x‖ ≤ 2α‖∇f(x)‖ + ρ ≤ ρ,

where the second inequality follows from (2.1). Thus, by (2.3) and (2.2), for all
x ∈ B[x, ρ], α ∈ [0,min{α∗, α}], and y ∈ PC(x− α∇f(x)),

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
1

2
Lip

B[x,ρ]

(∇f)‖y − x‖2

≤ f(x) +

(
1− α Lip

B[x,ρ]

(∇f)

)
〈∇f(x), y − x〉

≤ f(x) + c 〈∇f(x), y − x〉 .

Corollary 6.2. Consider Algorithm 4.1 under the assumption that f is differ-
entiable on E and ∇f is locally Lipschitz continuous. Given x ∈ C, let ρ and ρ be as
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in Proposition 6.1. Then, for every x ∈ B[x, ρ] ∩C, the while loop terminates with a

step size α ∈
[
min

{
α, β(1−c)

LipB[x,ρ](∇f)

}
, α
]
and hence after at most

max

{
0,

⌈
ln

(
1− c

α0 LipB[x,ρ](∇f)

)
/ ln(β)

⌉}

iterations, where α0 is the step size chosen in line 1.

Proof. Either the initial step size chosen in [α, α] satisfies the Armijo condition
or the while loop ends after iteration i ∈ N \ {0} with α = α0β

i such that α
β >

1−c
LipB[x,ρ](∇f) . In the second case, i < 1 + ln( 1−c

α0 LipB[x,ρ](∇f) )/ ln(β) and thus i ≤
⌈ln( 1−c

α0 LipB[x,ρ](∇f) )/ ln(β)⌉.

Theorem 6.3. Let (xi)i∈N be a sequence generated by PGD (Algorithm 4.2). If
f is differentiable on E and ∇f is locally Lipschitz continuous, then all accumulation
points of (xi)i∈N are P-stationary for (1.1).

Proof. Assume that a subsequence (xij )j∈N converges to x ∈ C. Let ρ and ρ be
as in Proposition 6.1. Define

I :=

[
min

{
α,

β(1 − c)

LipB[x,ρ](∇f)

}
, α

]
.

There exists j∗ ∈ N such that, for all integers j ≥ j∗, xij ∈ B[x, ρ], thus, by Corol-
lary 6.2, xij+1 ∈ PC(xij − αij∇f(xij )) with αij ∈ I, and hence

‖xij+1 − (xij − αij∇f(xij ))‖ = d(xij − αij∇f(xij ), C).

Since I is compact, a subsequence (αijk
)k∈N converges to α ∈ I. Moreover, there exists

k∗ ∈ N such that jk∗
≥ j∗. Furthermore, by Proposition 5.4, (xij+1)j∈N converges to

x. Therefore, for all integers k ≥ k∗,

‖xijk+1 − (xijk
− αijk

∇f(xijk
))‖ = d(xijk

− αijk
∇f(xijk

), C),

and letting k tend to infinity yields

‖x− (x− α∇f(x))‖ = d(x− α∇f(x), C).

It follows that x ∈ PC(x − α∇f(x)), which implies that −∇f(x) ∈ ̂̂NC(x).

Proposition 6.4 considers the case where PGD generates a bounded sequence.

Proposition 6.4. If PGD (Algorithm 4.2) generates a bounded sequence (xi)i∈N,
which is the case if the sublevel set (1.6) is bounded, then all of its accumulation points,
of which there exists at least one, are P-stationary for (1.1) and have the same image
by f .

Proof. Assume that PGD (Algorithm 4.2) generates a bounded sequence (xi)i∈N.
It suffices to prove that all of its accumulation points have the same image by f ; the
other statements follow from Theorem 6.3. The proof is based on the argument given
in the proof of [40, Theorem 65]. Assume that (xik)k∈N and (xjk )k∈N converge respec-
tively to x and x. Being bounded, the sequence (xi)i∈N is contained in a compact set.
By Proposition 4.1, since a continuous, real-valued function is bounded from below
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and uniformly continuous on every compact set [47, Propositions 1.3.3 and 1.3.5], the
sequence (f(xi))i∈N converges. Therefore, f(x) = limk→∞ f(xik) = limi→∞ f(xi) =
limk→∞ f(xjk ) = f(x).

7. Proximal normal cones to some stratified sets. The following examples
of a set C that is not Clarke regular at infinitely many points are studied in [35]:

1. the closed cone Rn
≤s of s-sparse vectors of Rn, i.e., those having at most s

nonzero components, n and s being positive integers such that s < n;
2. the closed cone Rn

≤s ∩ Rn
+ of nonnegative s-sparse vectors of Rn;

3. the determinantal variety [18, Lecture 9]

Rm×n
≤r := {X ∈ Rm×n | rankX ≤ r},

m, n, and r being positive integers such that r < min{m,n};
4. the closed cone

S+
≤r(n) := {X ∈ Rn×n

≤r | X⊤ = X, X � 0}

of order-n real symmetric positive-semidefinite matrices of rank at most r, n
and r being positive integers such that r < n.

In this section, we prove that, for these sets, regular normals are proximal normals.
As detailed in [35], if C is a set in this list, then there exist a positive integer p

and disjoint nonempty smooth submanifolds S0, . . . , Sp of E such that Sp = C and,

for all i ∈ {0, . . . , p}, Si =
⋃i

j=0 Sj . This implies that {S0, . . . , Sp} is a stratification
of C satisfying the condition of the frontier [30, §5]. Thus, C is called a stratified set
and S0, . . . , Sp are called the strata of {S0, . . . , Sp}.

Proposition 7.1. Let C be a set in the list. For all x ∈ C,

̂̂
NC(x) = N̂C(x)

and, if x /∈ Sp, then

N̂C(x) ( NC(x).

Proof. The strict inclusion follows from [35, Proposition 7.16] and [3, Theorem 3.9]
if C = Rn

≤s, from [35, Proposition 6.7] and [45, Theorem 3.4] if C = Rn
≤s ∩ Rn

+, from

[19, Corollary 2.3 and Theorem 3.1] if C = Rm×n
≤r , and from [35, Proposition 6.28]

and [45, Theorem 3.12] if C = S+
≤r(n). By (1.2), it remains to prove that, for all

x ∈ C,
̂̂
NC(x) ⊇ N̂C(x). This follows from [1, Lemma 4] if x ∈ Sp. Let x ∈ C \ Sp. If

C is Rn
≤s or Rm×n

≤r , then, by [35, Proposition 7.16] and [19, Corollary 2.3], N̂C(x) =

{0} and the result follows. If C is Rn
≤s ∩ Rn

+ or S+
≤r(n), then the result follows

from [35, Proposition 6.7] and [45, Proposition 3.2] or [35, Proposition 6.28] and [7,
Corollary 17]; the detail is given below for completeness.

Assume that C is Rn
≤s ∩ Rn

+. Let supp(x) := {i ∈ {1, . . . , n} | xi 6= 0}. By [35,
Proposition 6.7],

N̂Rn
≤s

∩Rn
+

(x) = {v ∈ Rn
− | supp(v) ⊆ {1, . . . , n} \ supp(x)}.

Thus, by [45, Proposition 3.2], for every v ∈ N̂
Rn

≤s
∩Rn

+
(x), PRn

≤s
∩Rn

+
(x + v) = {x}.
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Assume now that C is S+
≤r(n). By [35, Proposition 6.28],

N̂
S+
≤r

(n)
(X) = S(n)⊥ + {Z ∈ S−(n) | XZ = 0n×n},

with S(n) := {X ∈ Rn×n | X⊤ = X}, S(n)⊥ = {X ∈ Rn×n | X⊤ = −X}, and

S−(n) := {X ∈ S(n) | X � 0}. Let Z ∈ N̂
S+
≤r

(n)
(X) and Zsym := 1

2 (Z + Z⊤). Then,

by [7, Corollary 17], PS+
≤r

(n)(X + Z) = PS+
≤r

(n)(X + Zsym). Let r := rankX and

r̃ := rankZsym. Since imZsym ⊆ kerX , r̃ ≤ n − r and there exists U ∈ O(n) such
that

X = U diag(λ1(X), . . . , λr(X), 0n−r)U
⊤

and

Zsym = U diag(0n−r̃, λn−r̃+1(Zsym), . . . , λn(Zsym))U⊤

are eigendecompositions. Thus,

X + Zsym = U diag(λ1(X), . . . , λr(X), 0n−r−r̃, λn−r̃+1(Zsym), . . . , λn(Zsym))U⊤

is an eigendecomposition. Hence, by [7, Corollary 17], PS+
≤r

(n)(X + Zsym) = {X}.

8. Conclusion. In this paper, PGD is proven to accumulate at B-stationary
points of (1.1) if ∇f is continuous on C, and even at P-stationary points of (1.1) if f
is differentiable on E and ∇f is locally Lipschitz continuous. These are the strongest
stationarity properties that can be expected for problem (1.1) under the considered
assumptions.

A sufficient condition for the convergence of the sequence generated by PGD
is provided in Theorem 5.1. However, if satisfied, this condition does not offer a
characterization of the rate of convergence. This important matter is addressed in
[20] for monotone PGD under the assumption that f is differentiable on E , ∇f is
locally Lipschitz continuous, and f satisfies a Kurdyka– Lojasiewicz property.

This paper opens several avenues of research.
1. Is it possible to extend the results to more general search directions? For ex-

ample, a search direction at a point x ∈ C that is not B-stationary for (1.1)

could be any v /∈ N̂C(x) that satisfies [14, conditions (2) and (3)], i.e.,
〈∇f(x), v〉 ≤ −c1‖∇f(x)‖2 and ‖v‖ ≤ c2‖∇f(x)‖ with c1, c2 ∈ (0,∞).

2. Are there necessary or sufficient conditions on C for the equality
̂̂
NC(x) =

N̂C(x) to hold at all x ∈ C?
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