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Abstract—The verification and validation of AI-based
systems raise new issues that are not easily addressed
by existing practices and standards. We think that this
gap is actually an opportunity to introduce new practices
and establish a clearer and more formal link between the
engineering activities and artefacts, the expected properties
of the system, and the verification and validation evidence.

Therefore, in this paper, we describe and illustrate
an approach integrating (i) the definition and modelling
of an AI-based system engineering workflow, (ii) the
identification of the trustworthiness properties, and
(iii) the argumentation demonstrating the satisfaction
of these properties. This approach is centred on the
model of Assurance Cases, a semi-formal representation
of argumentation which supports the claim of system
trustworthiness. In addition, we present supporting tools
for this formalism that enable the automatic production of
Verification and Validation plans for specific properties of
AI-based systems.

Index Terms—Assurance Case, Machine Learning,
Robustness, V&V

I. INTRODUCTION

There is an obvious and strong willingness to leverage
the capabilities of Machine Learning in all domains of
industry, including those delivering business- or safety-
critical services. However, the adoption and deployment
of this technology remain slow, for we fundamentally
lack confidence in these methods.

In the Confiance.ai program1, we address this
problem by tackling all stages of the development of
systems involving Artificial Intelligence (AI), spanning
from defining engineering workflows to implementing
and deploying ML-related components on hardware
platforms. This process revolves around the notion
of trustworthiness, which becomes increasingly crucial
as AI plays a larger role in the system. Besides,
the program’s effort is essentially directed toward
identifying and addressing the novel challenges that
emerge during the integration of AI into such systems.
More specifically, focus is placed on specific attributes
of ML-based systems, such as model robustness,

1https://www.confiance.ai/en/

explainability, or fairness, with the broader goal of
improving our confidence in the final system. Besides,
the justification of this confidence forms a necessary
condition of the safety case for such system. It requires
a global approach to explicit the link between the
different parts of this safety case: the Engineering
Items produced during development, the Activities that
produce them, the expected Properties of these items and
the justifications that these properties actually contribute
to the confidence on the ML-based system, all these used
in a structured argumentation allowing to demonstrate
the satisfaction of those properties. This approach is
needed to guarantee the completeness, transparency
and auditability of the argumentation. It also supports
traceability and impact analysis.

The approach is based on Assurance Cases (ACs) [1],
a method that associates the property of interest to be
demonstrated with the evidence supporting it through
convincing and valid reasoning. The Goal Structuring
Notation standard (GSN) [2] used in this work is one
of several formalisms (e.g. Claims Arguments Evidence
(CAE) [3] or Structured Assurance Case Metamodel
(SACM) [4]) designed to model an assurance case. It
consists of decomposing, according to a specific strategy,
a high-level claim representing a property of interest
into elementary sub-goals that can be easily proven
with evidence. This formalism has already been adopted
in several industries, particularly under the specific
form of Safety Cases [5] (when the argued property is
safety). It is also a practice recommended by several
international standards such as IEEE and ISO [6], [7]. By
providing clear and explicit reasoning to demonstrate the
property of interest, assurance cases simplify the tasks
of reviewing the argument, as well as correcting it or
completing it if necessary.

We argue that this approach is particularly suited for
ensuring properties about an ML-based system for which
the guarantees provided by conventional engineering
practices are sometimes insufficient and often simply
not applicable [8]. The approach is not specific to
any particular industrial domain, but its application

https://www.confiance.ai/en/


clearly makes more sense in domains where significant
stakes are involved. These stakes may relate to the
impact on individuals (such as aeronautics, industry, or
automotive), costs, or overall image (across all domains).
Our contributions are: • A process and the associated
tool that enable (i) building a generic argument
to demonstrate that the system actually complies
with some expected overarching properties thanks
to appropriate development practices and/or V&V
activities, (ii) formalising the relationship between this
argument and the development artefacts of the system
(engineering activities, engineering items and their
properties). • A set of argumentation templates covering
some major properties expected for a system involving
AI. • A means to (i) derive a generic argument based on
the contribution of each of its elements and (ii) produce
the complete workflow including both the development
and the V&V activities determined by the argument.

All these contributions are supported by a dedicated
tooling support section which details how the method
used is effectively implemented in our framework and
how the tool can be used to reproduce each step or
activity.

The remainder of this paper is structured as follows.
Section II gives an overview of our approach which is
then further decomposed into the 5 sections: Section III
presents an extract of a development workflow and the
associated engineering items of interest and Section IV
identifies a set of properties for which guarantees are
expected. Section V provides several generic assurance
cases to ensure these properties and Section VI details
how these assurance cases can be instantiated. The
choices made during this phase lead to the selection
of Development and Verification and V&V activities
that must be integrated into the workflow and compiled
into a V&V plan as presented in Section VII. Finally,
Section VIII provides an overview of the related works,
and Section IX concludes the document and opens some
questions and future work.

II. APPROACH OVERVIEW

Our main objective is to exhibit the elements to be
provided to demonstrate the satisfaction of a safety-
related property of the system, considering the activities
conducted to build it, and the artefacts produced in the
process. The demonstration in this case is neither formal
nor mathematical, but it shall nevertheless provide the
argumentation and evidences necessary to convince –
for instance, a regulation authority – that the property
actually holds.

One necessary condition to support this objective
is to define precisely the concepts involved in the

development, verification and validation of a system, and
their relationships. Towards that goal, we rely on the
Model-Based Systems Engineering (MBSE) approach
where activities and Engineering Items are well defined
(i.e., they comply with a metamodel) and are associated
with modelling artefacts.

Figure 1 presents the different steps that compose our
approach to verifying the safety-related properties of the
system. The numbering corresponds to the one used in
the sections of this paper.

Fig. 1. General approach to demonstrate the satisfaction of safety-
related properties

The starting point of this approach is the engineering
workflow, from which we will extract the engineering
items of interest. On each of these engineering
items, we will then identify properties related to
requirements on the system. The couple ⟨item, property⟩
will therefore constitute the root of an Assurance
Case, claiming that the property is satisfied on this
particular item. We will provide in Section V a set of
generic Assurance Case patterns for specific ML-related
properties. However, these generic patterns cannot be
used as is. They may contain contexts and elements
that need to be instantiated, typically with engineering
items from the current system of interest. Besides, these
argumentation trees may contain alternative branches
in their decomposition, sometimes mutually exclusive,
which implies that a choice has to be made in the
argument by the user. This step is crucial as the resulting
argument will dictate which Verification and Validation
activities must be performed and integrated in the
workflow. These new activities will finally be extracted
in the form of a Verification and Validation plan which
can be followed to ensure the expected property.

Tooling support details

Within the Confiance.ai program, the MBSE approach
is implemented in the Capella2 solution: an open source

2https://mbse-capella.org/
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extensible Eclipse3 application dedicated to Systems
Architecture modelling. The solution implements the
Arcadia method [9] that promotes the use of dedicated
modelling perspectives: “Operational Analysis”,
“System Analysis”, “Logical Architecture”, “Physical
Architecture”, “EPBS architecture”. The Confiance.ai
program approach extends the “Operational Analysis”
(OA) one, to provide a methodological end-to-end
engineering approach to support the particularities
of engineering activities related to critical AI-based
systems [10]. It defines an “Engineering Activities for
trustable AI” Capella Viewpoint, in which: Engineering
Process, Process Sequence Flow, Process Activity,
Process Item Flow, Engineering Role, Engineering
Activity, and Engineering Exchange concepts, are
mapped to Capella objects.

III. WORKFLOW DESIGN

The development workflow, which models the
development activities and the corresponding
Engineering Items (more specifically Exchanged
items in Capella) they produce, is the starting point
of our approach. Figure 2 is an excerpt of the
comprehensive workflow for developing ML-based
systems produced in the Confiance.AI program [11].
It presents a view of the activities and sub-activities
commonly considered during the model engineering
phase [12]. The ML model development is typically
absent from conventional software workflow, as it is an
ML-related activity. There are 3 possibilities to ensure
a specific property on this activity:

1) Ensure that property holds for the item resulting
from this activity (here the trained ML
model),

2) Rely on a development activity which guarantees
the property by design (or by construction),

3) Verify that the property holds on the item before
the activity, and rely on guarantees that the activity
preserves the property.

For this part of the workflow, we focus on the first
two solutions, as the last solution implies to preserve
a property during the training phase. This can be
particularly challenging due to the absence of control
over the optimisation process used during ML model
training. Moreover, some of the properties we are
interested in, such as robustness, are typically stemming
from the training process itself, making it impossible to
ensure any property preservation from a prior activity in
this case.

3https://www.eclipse.org/

On the opposite, the first solution is typically
based on additional verification and validation activities.
Providing guarantees by design can also be effective for
specific properties but is often insufficient and requires
additional verification activities to obtain the appropriate
level of guarantees, especially for critical systems.

In the following, we will therefore focus on
the Trained ML Model, our engineering item of
interest, and on the Train ML Model activity that
produces it.

IV. PROPERTIES IDENTIFICATION

In a safety-critical context, one major concern is the
system’s trustworthiness. Therefore, this paper focuses
on trust-related properties that are specific to Machine
Learning ([13]) and particularly difficult to verify.
Historically, these properties are determined by the
potential threats to which each activity is exposed.
However, in the case of ML-based systems, the list of
new threats is considerable [14], and highly dependent
on the system of interest and the different activities
involved in the development workflow. Therefore, in
practice, we rely on specific regulation [15] or general
guidance [16] to express these properties. Among the
key aspects often considered in these documents, we
selected Robustness, Explainability and Fairness as the
three main properties to ensure on the Trained ML
Model engineering item, as illustrated in Figure 3.

Furthermore, for these properties to be meaningful
and carefully considered during the design of a system,
they must be refined into low-level requirements that
directly relate to the item of interest (the Trained ML
Model in our case). For now, it is up to each industrial
to interpret these guidelines and produce his own
refinement of these properties in coherence with his use
case. This may imply to consider the Operational Design
Domain (ODD), which is a set of conditions in which the
system is designed to operate [17], [18]. Indeed, some of
these conditions can be propagated through the system
down to the ML component and expressed as input
constraints. Depending on the condition considered,
this propagation may establish a link with a specific
property like robustness or fairness. A typical example
of operational conditions impacting the robustness of a
trained ML model could be scenarios where a camera
system is subject to vibrations, resulting in blurred
images, or foggy environments leading to noisy images.
These effects could then be translated into quantifiable
metrics in the image space, for instance in maximum
acceptable perturbations expressed with regard to the
L∞-norm.

3
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Fig. 2. Generic ML workflow focused on Model Engineering

Fig. 3. Focus on the Trained ML Model Exchange Item in an
extended Capella Class Diagram [CDB] with Engineering Properties

Although these analyses are typically application-
dependant, we argue that, at least for the robustness
property, a first level of refinement can be made
generically, aligned with the capabilities of existing tools
for verifying these properties or ensuring them by design.

Low-level refinements

For the Robustness property, we consider the
following definition of local robustness: “A Trained
ML Model is locally robust for a single input x to a
perturbation radius λ if it produces the same output
for any perturbation x′ with distance(x, x′) ≤ λ”,
where distance can be the l2-norm or the l∞-norm
commonly used in that context.

Leveraging this definition which focuses on a single
input, we can express global robustness criteria using
three possible metrics:

• Percent robust: The percentage of samples that are
locally robust for a fixed λ

• Max robust: The maximal λ for which all samples
are locally robust

• Mean robust: The mean of the maximal λ for
which each sample is locally robust

These three possible criteria expressed at the level of
the ML component, coupled with our engineering item
of interest –the Trained ML Model– form the root

goals of three different argumentation trees. This helps
separate methods depending on whether they support the
corresponding norms and metrics, although these root
goals must still be instantiated with the appropriate λ
and l-norm.

The Robustness property can be formalised using
mathematically grounded concepts and formulas, which
make it suitable for the refinement presented above.
However, it is less direct for more softer properties. For
instance, considering the main usages of Explainability
in our case, we refined this property in two main
requirements: providing explanations for successful
model decisions or ensuring the absence of bias
in the model’s decision-making process. These two
aspects reflect the separation between local and global
explanations, which consist of either explaining a single
decision or explaining a set of decisions. Moreover,
we further divided the local explanations into success-
case and failure-case explanations. However, the primary
usage of failure-case explanations is for the ML-
Algorithm Engineer (see Figure 2) to find, during
training, the reasons for a model failure, and to use
these insights to retrain it and correct it. Conversely, the
verification and validation of the Trained ML Model
resulting from the application of the assurance case
consider the model to be in a final, stable version. In that
state, there should be no more failure cases to explain,
but only success cases, which would still need those local
explanations for increased trustworthiness. Therefore our
main refinement for local explanations is expressed as
“The correct decisions of the model are explained”.

Global explanations, on the other hand, serve to
detect general biases in the model, which might reflect
a problem during training or even an issue with the
training dataset. Therefore we proposed “The model is
unbiased” as a second refinement of the Explainability

4



in a separate Assurance Case.
Finally, the expression of the Fairness property was

made more explicit with the following refinement:
“The ML model does not contribute to any undesired
discrimination”.

Tooling support details

In our approach, this decomposition of properties
into low-level requirements is supported by a dedicated
tool named pure::variants4 entirely integrated into the
Capella environment (more details are provided in
the following sections). This tool handles both the
workflow model and the assurance case trees and
will be used during several more or less complex
steps of our approach. Notably, it offers a filtering
functionality (configuration process of pure::variants)
that extends up to the selection of the appropriate low-
level requirements, as illustrated in Figure 4.

Fig. 4. Illustration of the filtering capability of pure::variants.

V. GENERIC ASSURANCE CASES

We provide in a git repository5 a set of generic
assurance case patterns for the identified properties,
namely Robustness, Explainability and Fairness,
modelled in GSN. As explained in previous section, we
refined these properties into more specific requirements,
each resulting in a new Assurance Case. We present
two extracts of these argumentation trees in Figures 5
and 6.

These argumentation trees are modelled in Capella
using a dedicated Assurance Case Viewpoint supporting
an enriched version of the GSN meta-model, and
integrated in the Arcadia method.

The first extract in Figure 5 shows the decomposition
of a robustness criterion according to several strategies,
including the type of method used (by design or by
evaluation) and the choice between these methods which
is materialised in the tool by a diamond-shaped node.
In these assurance cases, no choice has been made yet
between the multiple branches, as these trees remain
generic and thus can be considered and adapted to a
variety of use cases.

4https://www.pure-systems.com/purevariants
5https://github.com/ TBCompleted!

The second extract, presented in Figure 6 shows
a generic argument for the local explainability of a
Trained ML model. It focuses on the use of attribution
methods for computer-vision tasks, ensuring that, for
each decision, the part of the images used in each image
is relevant. The main branch of this argument relies on
the validation of the method results by experts whose
legitimacy is verified in a specific subgoal. However, the
AC also contains a specific branch dedicated to ensuring
that the explainability method used is trustworthy, which
will require additional V&V activities.

Using these generic assurance cases in our approach
consists of instantiating the generic contexts and
resolving the pending choices.

Tooling support details

As introduced before, the Capella environment is
enhanced with an Assurance Case Viewpoint. It provides
new Capella modeling elements, and new and enhanced
diagrams at operational analysis level. The modeling
elements added to support this Viewpoint are twofold:

• The concepts from the GSN standard in the version
3, cf. [19]. These are added to the “Operational
Analysis” metamodel part and gathered into
“Assurance case” elements in “Assurance Cases
Pkg” ones. A specific GSN diagram implements
the diagrammatic concrete syntax of the assurance
case, composed of goals, strategies, solutions, etc.
The relation with engineering operational activities
is made via “Engineering item” and “Engineering
item elements” referenced from GSN Solution
elements.

• Some Glossary entries are also added to the
“Operational Analysis” metamodel part and
grouped into a “Glossaries pkg” element. Indeed,
each GSN element is described (in rich text format)
with hyperlinks to definitions in the glossary, or to
external referential.

VI. AC INSTANTIATION AND CHOICES

Two tasks must be completed to instantiate an AC:
The choices between branches must be made and
the generic contexts must be instantiated. These tasks
cannot be performed independently since, the selection
of one branch might depend on the availability of
the corresponding contexts, and on the opposite, only
the instantiation of contexts of selected branches is
mandatory to obtain a complete, instantiated AC.

An example of choice is provided on the extract of the
Robustness AC in Figure 5. The cardinality of choice
(here [1..4]) indicates that each method provided
below in isolation is able to provide a certain degree

5
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Fig. 5. Extract of the Assurance Case for the robustness of the Trained ML Model, considering a Percent robust metric with a l2-norm,
with a focus on the methods providing guarantees by-design. The whole assurance case is provided on the following git repository

of guarantee for the l2-norm robustness. This choice
can be based on several criteria, such as the criticality
of the property of interest, the cost resulting from the
deployment of a certain strategy/approach (i.e., time,
effort, computational power, etc.) or other considerations
related to the profile/experience of the engineer or its
company. For instance, a critical property in a critical
system will require the approach, or the combination
of approaches, that brings the most guarantees to
the satisfaction of the property of interest. On the
other hand, numerous approaches [20], [21], [22] of
confidence/uncertainty assessment of assurance cases,
based on experts’ judgements, can be used as a selection
criterion. Indeed, a user may choose the strategy or
the approach which provides the most (resp. the least)
confidence (resp. uncertainty) to the satisfaction of its
property.

In the generic arguments provided, nothing prevents
the user from selecting several, if not all methods,
regardless of their compatibility. Despite this issue,
which needs to be verified on a case-by-case basis, it
is even often recommended to use all possible methods
available for a given choice to increase the overall
confidence in the top-level argument. However, this will
naturally come with increased costs, appearing when
producing the corresponding V&V plan.

On the right of the Explainability AC extract in
Figure 6, the context C000139 (in yellow) is an
example of node requiring instantiation: The list of
attribution methods to verify is not known in advance
as it will be highly use-case dependant and may change

over time, which is why only a few suggestions can
be provided. The context node C000176 also requires
instantiation, as it is used in the attached goal as the set
of “selected metrics” which must be evaluated for each
explanation method considered.

These choices can be made in the assurance case
viewpoint in Capella, where the user can either directly
select the appropriate method for his use case , or use
the tool pure:variants presented earlier, as illustrated in
Figure 7.

The Assurance Case is considered instantiated
when these two tasks are completed. However,
this instantiation (especially the choices) structurally
removes branches from the AC, leaving only the subset
of V&V activities required to produce the expected
pieces of evidence. Hence, the instantiation process
impacts both the workflow and the AC. Depending on
the structure of the workflow and the argumentation,
and the potentially dual role of engineering items –
i.e., playing a role in the argumentation and in the
development workflow – this chain of effects can
propagate back and forth between the workflow model
and the argumentation model.

Tooling support details

In summary, GSN and Capella extended OA models
are defined exhaustively, i.e. considering every possible
goal, strategy and solution for any ML-based component
and any property. However, an argumentation, in the
end, has to be fit for a specific purpose. This means
methodically removing specific model elements (On

6
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Fig. 6. Extract of the Local Explainability Assurance Case with a focus on the attribution branch. The whole assurance case is provided on the
following git repository

Fig. 7. Illustration of the functionalities of pure::variants for the
selection of AC choices.

both Assurance case and Capella engineering parts) from
the initial exhaustive models.

One community has already addressed these
implementation problems for another intent: reuse and
rationalisation of product families. Indeed, Software
product line (SPL) [23] techniques aim at deriving
a tailored product from a set of features [24]. The
variability between these features is consistently
managed, defining options, alternatives (AND,
OR, XOR), and mandatory and exclusive features.

The implementation follows a so-called negative
variability [25] (or annotative [26]) approach, which
uses some form of explicit or implicit annotations in the
models. This approach is here, as previously introduced,
implemented with the use of a commercial SPL tool
named pure::variants.

In our case, the exhaustive assurance case modelling
represents a so-called 150% modeling [27] that acts
as a base model, including all supported variability.
Options or alternatives that are not selected for a specific
argumentation during the configuration phase are then
removed from the base models in the AC instantiation
phase.
The implementation is done as depicted in Figure 8:

• (A) In the feature models (.xfm files) are encoded
the valid possible configurations of the tactics that
are applicable to a given property. An example
for the robustness AC is given in Fig. 9. The
feature model defines first-order logical constraints

7
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Fig. 8. Pure::variant implementation and workflow overview

between features with operators (e.g. the AND
operator between “Local Robustness” and applying
a “strategy pattern” as represented in the Figure),
and direct constraints (e.g. selecting “Property
satisfied by design” requires to apply a “Design
Method”). It gathered all possible choices available
in the configuration, from the AC selection
property to consider (Non-exclusive OR between
“Robustness”, “Fairness”, “Explainability”), to the
partitioning choices (cf. 4), to the different strategy
choices into the GSN model (i.e. the cardinality
of choice in the GSN model, e.g. [1..4] in
Figure 5 has to be consistent with the one in the
feature model – Non-exclusive OR with cardinality
constraints).

• (B) In the Capella model is represented exhaustively
(150%) the modelling element (engineering and
assurance cases in GSN).

• (C) The mapping between the external feature
model is performed at two levels: (C1) a specific
mapping between one feature model and the
Capella model (.ccfm file); (C2) generic deletion
(propagation) rules. Indeed, in the extended
Capella, different element types are semantically
related to each other. Propagation rules utilise
these semantic relations to simplify the mapping
of Capella elements to conditions. Basically, a
propagation rule ensures that if Element A is
removed during transformation, also Elements B,
C, and D are removed. We defined 16 customised
rules.

• (D) The configuration model drives the possible
choices according to the feature model logic (.vdm
file). It also stores the final configuration. This
configuration is graphically customised via the use
of a configuration wizard model (.vcwm file) to
provide a graphical interface as illustrated in Fig. 4
or Fig. 7.

With the information given in all these files,
the pure::variants derivation engine produces a new
Capella project containing only the instantiated AC, as

represented in Figure 8.

Fig. 9. Extract from the Pure::variants feature model on the robustness
AC

VII. V&V ACTIVITIES INTEGRATION

The instantiated AC provides a list of evidences that
must be produced through specific V&V activities which
must therefore be added to the development workflow6.
These activities produce the required evidence as V&V
Engineering Items, and they should take as input
either development Engineering Items or other V&V
Engineering Items. At this stage, the Workflow contains
both the development activities and the V&V activities,
as illustrated Figure 10.

The AC serves as an intermediate yet important model
for building a comprehensive and convincing V&V
plan, by combining the new V&V activities needed to
produce the evidences required. This plan can thus be
automatically generated from information related to the
engineering item, the property to be verified and all
other elements carried by the argument. It also includes
other information, such as the glossary, which defines
all key terms used in the argumentation (e.g., local
robustness, l2 local robustness, etc.). Only the part of the
V&V plan dealing with specific solutions which require

6In practice, the V&V activities that produce the evidences required
by all the branches of the AC are added a priori to the workflow and
simply selected depending on the choice made in the AC

8



Fig. 10. Example of enrichment of the generic workflow of Figure 2 with the new activities (in light green) required by a specific branch of
the robustness assurance case (robustness by design using Lipschitz training).

precise knowledge of the methods to be used and how
to implement them needs to be manually produced by
the experts of the method. Figure 11 shows an extract
from such a plan, related to the robustness property, for
the implementation of a Lipschitz network.

Fig. 11. Extract from the V&V plan related to robustness property

VIII. RELATED WORKS

This section focuses on existing works that applied
ACs to ML-based systems. Indeed, as mentioned
previously, Assurance Cases appear as relevant tools
for addressing certification-related issues and ensuring
systems safety [28]. Applying this approach to ML-
based systems seems like an appropriate solution, as no
consensual method exists in this domain and standards
are not yet established [29].

A first step in this direction was made by Hawkins
et al. with AMLAS [30], a general guidance on
the use of ACs for ML-based system. Their analysis
covers a generic ML development workflow, which they
enriched with high-level ACs at each main step of the
development.

While this paper is of major interest for the application
of ACs to an ML-based workflow, the arguments
provided rely heavily on requirements to be defined and
contain numerous elements (variables) that need to be
instantiated. This approach is highly generic and handles
any type of workflow, as the AC’s solutions are mainly
assessments of the satisfaction of the requirements. Yet,
for this reason, the decomposition of main goals remains
limited to a few steps, since refining argumentation until
concrete evidence needs requirements to be defined and
variables to be instanciated. Nevertheless, this paper
provides a solid foundation for developing ACs further.
In particular, this approach is complementary to ours:
it could be used as a common high-level argument for
linking all the main properties of interest of ML-based
systems such as robustness, fairness or explainability
presented in our work. This would provide additional
steps of decomposition in the assurance case before
reaching the step where the requirements need to be
instantiated.

In addition to this general guidance, a few recent
studies provide argumentation patterns applicable to
ML-based systems. These generic solutions to common
problems are intended to be reused and instantiated in
various contexts for similar problems. However, they
often highlight the fact that a concrete operational
context or risk analysis is needed in order to go down
in the argumentation until reaching final evidence.

For instance, the work of Picardi et al. [31] defines
ACs for the deployment of ML-based systems in
a medical context. Their approach focuses on the
interpretability of the system’s outputs, going beyond
conventional performance measurements. They propose
an argumentation pattern that encompasses the entire
context of the ML component, from datasets to model

9



architecture. This pattern also covers domain-specific
contexts, such as information about experts involved and
the technical tasks they realise. In [32], they refine their
generic pattern with a more precise taxonomy and focus
on providing additional guarantees on the confidence
in the Trained ML Model (called “Machine Learning
Learnt” in their paper) and on the confidence in the
data. However, these new arguments are composed of a
single decomposition step and thus remain particularly
generic and high-level. Finally, the authors extend their
work in [33] to reflect better the relationship between
the ML models and the safety of the system. In the
process, they also develop an assurance process for the
engineering of ML components built upon existing best
practices. This process facilitates the instantiation of the
confidence argument patterns through consideration of
the required activities to be undertaken and the artefacts
to be generated at each stage in the ML lifecycle.
They also propose a generic way of decomposing
ML requirements (“desideratas”) into property-specific
arguments such as model performance, model robustness
and model interpretability. However, these properties are
only decomposed one step further, and their subgoals
remain “to be developed”, which contrasts with our
approach that proposes a multi-step decomposition down
to concrete evidence.

Although previous literature provides a significant
foundation in the development of assurance cases for
ML-based systems, its traceability with respect to the
ML development workflow is still exploratory, and none
of them provide the associated tooling support.

In the automotive domain, Bloomfield et al. [34]
propose an AC template for an experimental autonomous
vehicle and its social context. The decomposition of
their argumentation follows a top-down approach, from
the system to its components, including the ML model.
To ensure the trustworthiness of their system, their
systematic approach explicitly considers sources of
doubt and vulnerabilities in the system’s behaviour. To
this aim, their pattern is designed to identify gaps and
challenges during the justification of system behaviours,
as well as gaps within the assurance framework itself.
This approach is complementary to ours and could be
used to identify new gaps and properties on specific
engineering items of the complete workflow of an ML-
based system, providing a starting point for developing
new arguments.

Among the most recent studies, Dong et al. [35]
present a specific ’end-to-end’ AC applied to an ML
model. First, they introduce a framework called the
Reliability Assessment Model (RAM) that assesses the
reliability of a classification model, covering both its

robustness and its operational profile. Then, all evidence
produced by the RAM is represented with an AC that
tackles the argumentation from a probabilistic point of
view and ends with quantitative evidence. This rigorous
approach provides a complete, vertical argumentation
for an ML property. While we share the authors’
argumentation approach, our work differs in two key
aspects. First, we do not focus on a specific property
including all the mathematical formalism. Our focus is
set on an end-to-end assurance case with a model-based
formalism. In other words, an assurance case whose
evidence and contextual information are mapped onto
the engineering workflow. Each necessary element of the
assurance case considers a pre-established workflow of
activities alongside the injection of V&V activities to
be performed. Second, our proposal develops assurance
cases horizontally, while they include the selection of
multiple sub-arguments for the user, which allows them
to select different demonstration approaches.

IX. CONCLUSION

Throughout this paper, we presented a tool-supported
process that enables the systematic derivation of
V&V plans, specifically tailored to address the unique
challenges posed by the introduction of ML-based
systems in critical domains. We addressed these
challenges across the entire lifecycle of AI-based
systems, integrating our approach into an engineering
workflow specific to such systems. This workflow
constitutes a pivotal resource for identifying relevant
properties and integrating the V&V activities required
by our assurance case patterns. Indeed, our contributions
extend beyond the mere formulation of a process and
offer a set of argumentation templates, focusing on
key properties of these systems, such as robustness,
explainability and fairness. Nevertheless, combining
these arguments under the same overarching property
is an open problem. A first step in this direction is
provided with the AMLAS [30], which can be used as
a common high-level argument, but conflicts between
branches may still arise. However, while additional
research is required to explore this subject, our tooling
and the choice mechanic offer a partial solution to this
problem since the branches are structurally removed
from the argument, and conflicts will thus appear in the
form of non-supported goals during the instantiation of
the assurance case.
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