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Abstract

Motivation Graphical representations are useful to model complex data in general
and biological interactions in particular. Our main motivation is the comparison
of metabolic networks in the wider context of developing noninvasive accurate di-
agnostic tools. However, comparison and classification of graphs is still extremely
challenging, although a number of highly efficient methods such as graph neural
networks were developed in the recent decade. Important aspects are still lacking
in graph classification: interpretability and guarantees on classification quality, i.e.,
control of the risk level or false discovery rate control.

Results In our contribution, we introduce a statistically sound approach to con-
trol the false discovery rate in a classification task for graphs in a semi-supervised
setting. Our procedure identifies novelties in a dataset, where a graph is considered
to be a novelty when its topology is significantly different from those in the refer-
ence class. It is noteworthy that the procedure is a conformal prediction approach,
which does not make any distributional assumptions on the data and that can be
seen as a wrapper around traditional machine learning models, so that it takes
full advantage of existing methods. The performance of our method is assessed
on several standard benchmarks. It is also adapted and applied to the difficult
task of classifying metabolic networks, where each graph is a representation of all
metabolic reactions of a bacterium. We show that our approach efficiently controls
— in highly complex data — the false discovery rate, while maximizing the true
discovery rate to get the most reasonable predictive performance.

Availability and implementation The proposed method is implemented in Python
and publicly available for research purposes (https://github.com/arianemarandon/
godconf).

Keywords: Novelty detection, conformal prediction, wrapper method, metabolic
networks, graph neural networks

1 Introduction

With the rise of new sequencing and high-throughput technologies, new data in
form of metabolic networks are more and more available to support the study of
human pathologies. These datasets are huge and of complex structure requiring
the application of appropriate machine learning models. In particular, the interest
to apply predictive models to metabolic information is extremely high in metabolic
diseases tasks, such as prediction of obesity and diabetes. These pathologies result
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from a certain disability of a cell to breakdown or produce some essential substrates.
As a result, if an enzyme in one reaction is broken, it may influence subsequent
reactions, leading to enormous cascading damages [Ross et al., 2000, Lee et al.,
2008].

A metabolic network represents a complete set of metabolic and physical pro-
cesses describing physiological and biochemical properties of a living cell [Jeong
et al., 2000]. Moreover, modern large metabolic databases such as KEGG [Kane-
hisa and Goto, 2000] make it possible to access genomic, enzymatic and metabolic
information and to reconstruct interactions. Strong correlations between pheno-
typical traits of organisms and the topology of metabolic networks were reported
[Takemoto et al., 2007, Zendrera et al., 2019], underlining the importance to study
metabolic networks.

From a mathematical viewpoint, a metabolic network can be represented by
a graph composed of nodes and edges, which connect the nodes. The metabo-
lites and enzymes are the nodes of the graph. Each reaction substrate is linked to
the catalysing enzyme and each enzyme is connected to products of the chemical
reaction [Zendrera et al., 2021]. Modern statistical and machine learning meth-
ods can be applied to such data to get more insights in the functioning of living
organisms [Shah et al., 2021].

While the overwhelming majority of existing results concern the analysis of a
single network, here we are particularly interested in the classification and compar-
ison of multiple metabolic networks, since it is a step forward to the development of
non invasive accurate diagnostic tools. Our specific goal is novelty detection, some-
times also called outlier detection. This amounts to compare metabolic networks to
a reference and to decide which of the networks are significantly different from the
reference. Detecting metabolic networks whose structure or topology is inherently
different from the structure of a set of default or nominal graphs is crucial for the
identification of anormal cells and for gaining new insights into the functionalities
of different metabolisms.

Network comparison is an inherently involved problem due to the complex
structure of graphs. Generally, dimensionality reduction methods are used which
provide a graph embedding for every network. This can be achieved by traditional
principal component analysis [Pearson, 1901, Hotelling, 1933] or more recently with
graph neural networks [Kipf and Welling, 2016a, Pfeifer et al., 2022, Long et al.,
2022, Ding et al., 2023]. In medical and pre-clinical research, novelty detection
based on graph embeddings is generally done in a manual way, which is both time
consuming for human experts and highly subjective, since a human might take
a biased decision instead of using an objective criterion. Moreover, such novelty
detection comes without any guarantee on the quality of the results.

In many applications, it is vital not only to make accurate predictions but also
to quantify the accuracy and provide explanations on the learned model. More
precisely, any novelty detection method may make mistakes either by declaring
observations as novelties while they are not, or by not recognizing a new observation
as a novelty. Depending on the difficulty of the underlying problem, that is, whether
novelties are completely different from the reference or still share some similarities,
the number of errors for a given method may vary greatly. Traditional machine
learning methods do not provide any information on the quality of its results.
However, recently, new procedures have been developed that come with a statistical
guarantee that the set of detected novelties contains at most a given percentage of
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falsely detected novelties, while keeping the number of identified novelties as large
as possible. One of such approaches is conformal prediction [Vovk et al., 2005,
Shafer and Vovk, 2008] first introduced in classification and regression settings.
Figure 1 illustrates the novelty detection task and the possible error types that a
procedure can make.

A major advantage of conformal prediction is that it does not make any as-
sumptions on the type of distribution of the observations, which is important for
applications where distribution assumptions on the data are hard to verify and/or
rarely satisfied. Moreover, the reference or nominal distribution is not assumed to
be known, but it is sufficient to dispose of a sample from the reference distribution,
that is, a semi-supervised setting is considered. Here, we use the notion of the
semi-supervised scenario introduced by Mary and Roquain [2022]. Such a general
framework makes conformal prediction highly attractive for uncertainty quantifi-
cation on complex structures such as networks. Moreover, conformal prediction
is known to provide non-asymptotic and distribution-free coverage guarantees for
various tasks [Romano et al., 2019, 2020]. Finally, it is extremely noteworthy that
conformal prediction is a wrapper around traditional machine learning models, that
is, it can be directly applied to the output of existing methods. As such, confor-
mal prediction takes full advantage of existing high-performance machine learning
algorithms.

In a recent series of works, conformal procedures for the novelty detection task
have been developed [Bates et al., 2023, Mary and Roquain, 2022, Yang et al., 2021,
Marandon et al., 2022, Liang et al., 2024, Bashari et al., 2023]. The general idea is
to, first, learn a non-conformity score for all new observations using some existing
machine learning algorithm. Then a comparison of these scores to the scores of the
reference observations provides the final set of detected novelties. For the selection
of the final set of novelties, tools from multiple testing are used, where finite-sample
guarantees on the error rate can be obtained. The procedure AdaDetect proposed
by Marandon et al. [2022] is the most powerful approach up to date, which is
based on a particularly efficient way of learning the non-conformity scores, and it
is appropriate for a huge variety of settings.

Novelty, or outlier, detection in graphs is particularly challenging due to the
complex structure of the data. Some very recent attempts to extend conformal
prediction to graphs concern either link prediction [Lunde et al., 2023] or the pre-
diction of node labels [Huang et al., 2023, Zargarbashi et al., 2023] in a single
graph. A recently developed procedure for the problem of novelty detection in a
collection of networks is given in Dey et al. [2022], where a simple outlier detection
method is proposed; this approach is applied to graphs in neuroscience and relies
on a hierarchical generalized linear model, but not on conformal inference.

Our aim here is to extend AdaDetect to the specific task of novelty detection
in a collection of metabolic networks. Our goal is to show its usefulness in practice
and illustrate the gain of new insights on the cell metabolism. Our contribution is
multi-fold:

• We propose a statistically sound method that identifies the networks in a data
set which are significantly different from a set of provided reference observa-
tions and that controls the corresponding false discovery rate. Our approach
applies to any type of complex networks, not necessarily to metabolic net-
works. To our best knowledge, we are the first ones to propose conformal
outlier detection procedure for a collection of graphs.
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(a) Reference sample

(b) Test sample with declared novelties

Fig. 1: Illustration of the data sets, the novelty detection task and possible
errors. All networks in the reference set are composed of two commu-
nities, while the test set also contains networks with one community.
The novelty detection method identifies most of the novelties (in red)
correctly, but also falsely declares a reference network as a novelty.
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• We discuss theoretical guarantees of our method, and the ability of the pro-
posed procedure to outperform some existing state-of-the-art baseline meth-
ods.

• We show the generalizing performance of the newly introduced model on
several benchmarks.

• We validate our method on a real data set of bacteria, where each bacterium
is represented by its metabolic network.

2 AdaDetect for Graphs

2.1 Setting and notations

We consider the general setting with observed networks denoted by G = (A,X),
where A is the adjacency matrix of the network and X is a matrix of node covariates
(if available). Networks may be directed or undirected, binary or valued, share the
same nodes over all networks or not, may have varying number of nodes from one
network to the other or include node covariates.

In the semi-supervised framework, two sets of networks are observed. First,
Gref = {Gi, i ∈ J1, nK} is a set of networks having the standard or normal behavior,
referred to as the reference sample. Here Ja, bK denotes the set of integers from a
to b. These networks are assumed to be i.i.d. realizations of some distribution Pref,
which is unknown to the user. That is, Gi ∼ Pref, i ∈ J1, nK. The second set of
observed networks denoted by Gtest = {Gi, i ∈ Jn + 1, n +mK} is the test sample,
where the observed networks are assumed to be independent, not observed during
training. The task is to decide which of them are novelties, that is, which networks
do not come from the reference distribution Pref. To put it differently, the aim is
to discover the set Inov = {i ∈ Jn+1, n+mK, Gi ̸∼ Pref}, which is the set of indices
of the novelties. Furthermore, denote Itest = Jn + 1, n + mK the set of indices of
networks in Gtest and Iref = Itest \Inov the set of indices i of networks in Gtest from
the reference distribution, that is Gi ∼ Pref.

Now a novelty detection procedure is a (measurable) function R that returns
a subset of Itest corresponding to the indices of the networks declared as novelties.
The false discovery rate (FDR), that is the proportion of falsely declared novelties,
and the true discovery rate (TDR), that is the proportion of correctly identified
novelties, are defined as

FDR(R) = E
[
|Iref ∩R|
1 ∨ |R|

]
, TDR(R) = E

[
|Inov ∩R|
1 ∨ |Inov|

]
.

Our goal is to find a procedure that controls the FDR at a prescribed level α,
that is FDR(R) ≤ α, and whose power or TDR is as large as possible.

2.2 AdaDetect

The general idea of conformal novelty detection [Vovk et al., 2005, Haroush et al.,
2022, Bates et al., 2023, Mary and Roquain, 2022] is to compare the non-conformity
score of a test observation to the scores of the reference observations to decide
whether the observation is a novelty or not. In the seminal work of Bates et al.
[2023], the FDR control is shown to be guaranteed when proceeding as follows:
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Algorithm 1 AdaDetect for networks

Input: Set of reference networks Gref, set of test networks Gtest, α desired
risk level.
Output: Set of declared novelties {j ∈ Itest, Sj > δbest}.
1. Split Gref into two parts, Gtrain and Gcal.
2. Label the graphs in Gtrain as “0” and the graphs in Gcal ∪Gtest as “1”.
3. Learn a graph classifier g of class “0” versus class “1” on all data such
that g returns the score or probability of a network to belong to class “1”.
4. Let Ical ⊂ Iref be the set of indices for which Gi ∈ Gcal. For every
i ∈ Ical ∪Itest, compute the non-conformity score Si = g(Gi).
5. For j ∈ Itest, consider the novelty detection procedure RSj with threshold
δ = Sj and compute the proportion

pj =
|{i ∈ Ical : Si > Sj}|+ 1

| Ical |+ 1
.

6. Determine the smallest threshold Sj such that pj < α, that is,

δbest = argmin{Sj , j ∈ Itest, pj < α}.

the reference sample Gref is split into two parts and the score is trained using
one of the parts. The power of the procedure, that is the number of correctly
detected novelties, depends on the quality of the scores. In this line, Marandon
et al. [2022] recently achieved an important improvement by training the score
not only on the reference sample Gref with a one-class classification algorithm, but
training the score using a two-class classification method including the test sample
Gtest. This procedure is called AdaDetect and yields a significant gain in power,
while still controlling the FDR. In this work, we work out how to successfully apply
AdaDetect to the task of novelty detection in network data.

In detail, in AdaDetect the non-conformity score is a classifier trained on the
following problem. First, the reference sample Gref is split into two subsets, say
Gtrain and Gcal. The networks in Gtrain are labeled as “0” and the elements of
Gcal ∪Gtest as “1”. That is, Gtrain is a pure class, where all observations come from
the reference distribution Pref, while Gcal ∪Gtest is mixed, containing observations
from the reference distribution Pref as well as novelties. A classifier can be trained
using any machine learning classifier for graphs. The classifier function, say g,
gives the non-conformity score, which generally corresponds to the probability of a
network to belong to class “1”.

Now denote by Ical ⊂ Iref the set of indices for which Gi ∈ Gcal. For every
i ∈ Ical ∪Itest, compute the non-conformity score Si = g(Gi). Now it is reasonable
to declare all networks that have a large score, or more precisely, whose score is
larger than some threshold δ, as novelties. That is, we consider the novelty selection
procedure Rδ defined as

Rδ = {j ∈ Itest, Sj ≥ δ}.

As the choice of the threshold is crucial for the control of the FDR, we introduce the
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Fig. 2: Choice of threshold δ for the novelty detection procedure Rδ. Illus-
tration of proportion pδ of falsely declared novelties for three different
thresholds.

quantity pδ defined as the proportion of reference observations declared as novelties
by procedure Rδ:

pδ =
|{i ∈ Ical : Si > δ}|+ 1

| Ical |+ 1
.

That is, pδ is an approximation of the FDR of procedure Rδ. Thus, for our proce-
dure we choose the smallest threshold δ such that the corresponding proportion pδ
is lower than α, which is the desired risk level. The justification of this approach
is that it is impossible for any classifier to learn to distinguish reference observa-
tions in class “0” from reference observations in class “1”. Thus, the distribution
of the scores {Si, i ∈ Ical} equals the distribution of the score under Pref. Hence,
{Si, i ∈ Ical} is appropriate for a comparison of the scores of the test observations
for fixing the threshold δ that yields the FDR control.

The procedure is summarized in Algorithm 1. Figure 2 schematically shows the
proportion of falsely declared novelties for different thresholds. Marandon et al.
[2022] illustrate that AdaDetect is more powerful than state-of-the art procedures,
that is, it detects more novelties than other methods.

Note that while the FDR control holds regardless of sample sizes, in practice, the
sample size of the calibration set Gcal must be large enough to ensure a good power
[Mary and Roquain, 2022, Bates et al., 2023, Marandon et al., 2022]. However,
increasing | Gcal | and hence the proportion of references networks in the mixed set
Gcal ∪Gtest degrades the quality of the scores learned by the classifier in AdaDetect.
Based on power results from Mary and Roquain [2022], Marandon et al. [2022], we
recommend to choose | Gcal | to be of the same order as the test sample size | Gref |.

2.3 Machine learning algorithms for graph classification

Graph classification has garnered significant interest in recent years with many
new methods, especially in the field of deep learning [Wu et al., 2020]. A particular
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feature of graphs is that in general no natural order of the vertices exits, but that
classifiers are required to be invariant to the reordering of the nodes. This is one
of the main obstacles to extending classical ML methods to graph data. Hence,
as networks are complex data objects, their comparison is a challenging task and
different methods handle this question in widely different ways. The choice of an
appropriate approach also depends on the characteristics of the data at hand such
as the availability of node features, the absence or presence of node correspondence,
or whether the networks are directed or not. In this section, we present the general
approaches to graph classification and we discuss their principal properties. The two
main approaches are graph kernels [Kriege et al., 2020] and graph neural networks
(GNNs) [Wu et al., 2020, Zhang et al., 2018, Xu et al., 2019, Ying et al., 2018,
Defferrard et al., 2016].

Graph kernels are the historically dominant approach for graph classification.
A graph kernel is a deterministic function defining a similarity measure between
a pair of networks, that can be combined with a support vector machine (SVM)
classifier for supervised learning. The most popular graph kernel is the Weisfeiler-
Lehman (WL) kernel [Shervashidze et al., 2011], which is suited for networks with
discrete node attributes. It is based on the 1-WL or color refinement algorithm,
which proceeds as follows: First, for every network a graph embedding is computed
according to some message passing mechanism. In detail, for every node its label (or
color) is aggregated with the labels of its neighbors yielding a fingerprint. Then all
nodes with identical fingerprint are assigned a new common node label (or color).
When this procedure is iterated, say K times, this results in a node embedding
describing the structure of the K-hop neighborhood of every node, where nodes
with identical K-hop neighborhoods share the same label. In other words, the node
embeddings define a node clustering. For the WL subtree kernel [Shervashidze et al.,
2011] the clusterings obtained at all iterations are used to build a graph embedding
with multiple resolutions. Finally, the WL kernel of two graphs is defined as the
inner product of their graph embeddings. The WL algorithm gives rise to the
most powerful existing test to decide whether two graphs are isomorphic, that is,
whether one of the graphs can be obtained from the other by a permutation of
the nodes Morris et al. [2019]. Many other graph kernels have been proposed in
the literature, see Kriege et al. [2020] for a complete review, some of them take
into account discrete or continuous node attributes. A general main drawback of
graph kernels is the computational burden that comes with computing the kernel
function for every pair of networks in the training sample. The running time is
O(NKnmax + N2Kmmax), where nmax and mmax are the maximum number of
vertices and edges in a collection of N graphs. In our case N = | Gcal |+ | Gtest |.

Graph neural networks (GNNs) are recent approaches for graph-based learn-
ing, that aim to scale to larger datasets than graph kernels by generalizing neural
networks (NNs) to graph-structured data. Specifically, GNNs are permutation-
invariant functions that produce a vector representation of each node in a network,
using a combination of linear and non-linear operations. This vector representation
is based on a neighborhood aggregation scheme, where, given an initial represen-
tation of the nodes, node representations are updated by taking into account their
neighbors (e.g. computing the sum, mean or max of the representations). In that
view, GNNs can be seen as a neural network version of the 1-WL algorithm. As
GNNs produce a matrix of node embeddings, they can be combined with NN lay-
ers for node classification [Kipf and Welling, 2016b] or link prediction [Zhang and
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Chen, 2018]. Moreover, graph classification can be performed by collapsing the
node representations of a network into a single vector representation, and by feed-
ing this graph representation into NN layers for end-to-end learning [Xu et al., 2019].
More generally, a GNN-based approach for graph classification is a composition of
functions (or layers) of two types: 1) GNN layers (also called graph convolutional
layers), which produce node representations based on the graph structure and node
features (or initial node representations), and 2) pooling layers that, depending on
their role in the architecture, either coarsen the network into a smaller one or pro-
duce a graph representation that can be used in a NN (also called a read-out layer)
for end-to-end learning. Figure 3 provides a schematic illustration.

Here we present several GNN-based approaches suitable to use with AdaDetect,
chosen for their popularity, theoretical justification and interpretability.

• GIN by Xu et al. [2019]. In general, Graph Isomorphism Network (GIN)
denotes a type of GNN layer, in which the new node representations are
obtained by

X ′ = MLP
(
(A+ I)X

)
,

where MLP is a multilayer perceptron, A an adjacency matrix, I the identity
matrix, and X is a node representation. For the task of graph classification,
Xu et al. [2019] propose to combine several GIN layers with a read-out layer
that consists in summing up node representations. Moreover, the authors
prove that GIN has favorable theoretical properties, namely that GIN is as
powerful as the 1-WL test.

• DiffPool by Ying et al. [2018]. GIN and most other GNNs are rather flat
networks, so that they can only capture local patterns. To learn graph prop-
erties on a higher level, differentiable graph pooling (DiffPool) combine GNN
layers with pooling layers that successively coarsen the graph. Coarser graphs
may represent more global features of the initial graph. In each pooling op-
eration of DiffPool, a new (coarsened) graph and new node representations
are obtained by

A′ = STAS, S = softmax
(
GNNpool(A,X)

)
X ′ = STGNNembed(A,X)

where GNNpool and GNNembed are GNN layers (e.g. GIN layers). The matrix
S represents a (differentiable) clustering of the nodes that is used to coarsen
the input graph A. A final vector-valued graph representation is obtained
using a standard read-out layer.

• DGCNN by Zhang et al. [2018]. To extend convolution neural networks
(CNN) to graph-structured input, Zhang et al. [2018] introduce SortPool, a
special kind of read-out layer that also acts as a coarsening operation. The
SortPool layer produces a sorted representation of the nodes, such that ap-
plying classical one-dimensional CNN layers to these representations makes
sense. Moreover, SortPool unifies graph sizes by truncating/extending all
sorted representations to the same length, say k (where k is e.g. such that
50% of the graphs have more than k nodes). Dynamic graph CNN (DGCNN)
refers to the architecture that results from combining GNN layers with Sort-
Pool and one-dimensional CNN layers.
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Input graph
A ∈ RN×N

X ∈ RN×d

GNN layer

A ∈ RN×N , X1 ∈ RN×d1

Pooling layer

A1 ∈ RN1×N1 , X2 ∈ RN1×d1

. . .

AL′ ∈ RNL′×NL′ , XL+L′ ∈ RNL′×dL

Read-out layer
Graph representation
H ∈ RdL

Fig. 3: A typical GNN architecture for graph classification: N denotes the
number of nodes of the input graph (A,X), L and L′ denote the
number of GNN and pooling layers in the architecture, respectively,
without the read-out layer. Each GNN layer applies a non-linear
transformation on the current graph representation Al and the cur-
rent node embedding matrix X l (initially A,X) and produces an
updated node embedding matrix X l+1, whereas each pooling layer
coarsens the graph representation Al (initially A) into Al+1. The
final layer (read-out layer) takes the embedding matrix XL+L′

and
transforms it into a one-dimensional embedding.

On the one hand, GNNs have more flexibility in that they can easily take
into account various characteristics of the network data, such as node attributes
of any type, node correspondance, or directed edges. Moreover, graph kernels
suffer from a certain computational burden in terms of the number of networks at
hand. On the other hand, GNNs inherit from the lack of interpretability of NNs.
Finally, while GNNs support end-to-end learning (whereas graph kernels produce
fixed embeddings), their expressivity power is limited, since concerning the task of
distinguishing networks GNNs cannot be more powerful than the 1-WL algorithm
[Morris et al., 2019, Xu et al., 2019].

3 Numerical results

3.1 Real complex graphs

In this section, we apply the method introduced above to real datasets. For the
purpose of illustration, we use graph classification datasets, where all data are
labeled. A summary of the considered datasets downloaded from Kersting et al.
[2016] is given in Table 1. The datasets DD and PROTEINS encode information
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Tab. 1: Summary of the used datasets.

DD PROTEINS AIDS NCI1

Number of graphs 1178 1113 2000 4110
Average number
of nodes

284.32 39.06 15.69 29.87

Average number
of edges

715.66 72.82 16.20 32.30

Number of covariates 89 29 4 0

Tab. 2: Experimental settings for numerical study.

Dataset m n

DD 100 300
PROTEINS 100 300
AIDS 500 1500
NCI1 500 1500

about macromolecules. The nodes of PROTEINS represent secondary structure
elements, and an edge exists if they are neighbours along the amino acid sequence.
In DD, the nodes are amino acids and the edges refer to the spacial proximity. NCI1
represents chemical compounds where nodes are atoms and edges are bonds between
the atoms. This dataset is relative to the cell lung cancer task. AIDS represent
molecular compounds from the Antiviral Screen Databased of Active Compounds.

In our novelty detection task, we consider the graphs of one class as anoma-
lies, and the remaining observations as references. In each task, we construct test
samples and training samples by subsampling the dataset. We choose the test sam-
ples Gtest such that half of its networks are novelties, that is | Iref |/| Inov | = 0.5,
and the size of the test samples m = | Gcal | as given in Table 2. The size of the
reference sample is | Gref | = n = 2m and for the calibration set | Gcal | = m. We
apply AdaDetect with each of the graph classification methods described in the
previous section: the GNN-based approaches GIN, DGCNN, and DiffPool, and
one graph kernel-based approach, using the WL kernel, leading to the procedures
AdaDetect-GIN, AdaDetect-DGCNN, AdaDetect-DiffPool and AdaDetect-WL. For
each GNN, the architecture consists of 3 layers and 32 neurons and we train for 10
epochs with a learning rate of 0.001, and the WL kernel is used with 5 iterations.
Moreover, we compare our results to the conformal anomaly detection (CAD) pro-
cedure proposed by Bates et al. [2023], using one-class classification approaches: the
one-class classifier given by the Support Vector Data Description (SVDD) method
introduced in Ruff et al. [2018] with a family of functions given by either GIN,
DiffPool, or DGCNN, and a one-class SVM using the WL kernel, which gives the
procedures CAD-GIN, CAD-DGCNN, CAD-DiffPool, and CAD-WL.

The FDR and TDR for the methods are evaluated on 100 subsampled data
sets and the results are reported in Table 3. First, we observe that all methods
control the FDR at the nominal level α = 0.2. Most often the AdaDetect version
achieves a larger FDR than its CAD counterpart. Concerning the TDR, values vary
a lot over the four settings and the different procedures, ranging from 0.00 to 0.95.
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Tab. 3: Performance of different methods on different data sets in terms of
FDR (top) and TDR (bottom) with nominal level is α = 0.2. Mean
values and standard deviations (in parentheses) over 100 subsampled
data sets.

DD PROTEINS AIDS NCI1

FDR
GIN AdaDetect 0.05 (0.10) 0.04 (0.12) 0.10 (0.10) 0.04 (0.11)

CAD 0.04 (0.11) 0.05 (0.13) 0.19 (0.08) 0.04 (0.10)
DiffPool AdaDetect 0.02 (0.05) 0.01 (0.05) 0.06 (0.08) 0.00 (0.01)

CAD 0.00 (0.02) 0.03 (0.13) 0.04 (0.08) 0.00 (0.00)
DGCNN AdaDetect 0.11 (0.12) 0.08 (0.12) 0.19 (0.07) 0.03 (0.08)

CAD 0.03 (0.09) 0.04 (0.12) 0.10 (0.10) 0.03 (0.11)
WL AdaDetect 0.10 (0.12) 0.08 (0.12) 0.19 (0.06) 0.06 (0.11)

CAD 0.08 (0.04) 0.06 (0.04) 0.09 (0.04) 0.01 (0.05)
TDR

GIN AdaDetect 0.10 (0.20) 0.04 (0.10) 0.42 (0.42) 0.00 (0.00)
CAD 0.04 (0.12) 0.03 (0.09) 0.87 (0.20) 0.02 (0.03)

DiffPool AdaDetect 0.04 (0.12) 0.03 (0.06) 0.62 (0.42) 0.00 (0.00)
CAD 0.00 (0.01) 0.01 (0.04) 0.17 (0.24) 0.00 (0.00)

DGCNN AdaDetect 0.27 (0.26) 0.15 (0.12) 0.95 (0.11) 0.01 (0.02)
CAD 0.10 (0.17) 0.05 (0.11) 0.27 (0.26) 0.00 (0.01)

WL AdaDetect 0.22 (0.18) 0.12 (0.12) 0.89 (0.07) 0.01 (0.03)
CAD 0.29 (0.10) 0.15 (0.10) 0.49 (0.01) 0.00 (0.00)

On the data sets DD, PROTEINS and AIDS, AdaDetect with any GNN classifier
outperforms the corresponding CAD version (with one exception), illustrating an
important gain in power due to the AdaDetect approach. This is in line with
the properties of AdaDetect reported in Marandon et al. [2022]. Concerning WL,
depending on the setting, CAD is slightly doing better than AdaDetect in terms of
power. The data set NC11 appears to be an inherently difficult setting as none of
the procedures detects many novelties and also the FDRs are far below the nominal
level α.

3.2 Metabolic networks of bacteria

In this section AdaDetect is applied to a database of metabolic networks. To
illustrate the performance of AdaDetect, we construct several novelty detection
setups using different characteristics of the bacteria as class labels and compute the
associated FDR and TDR.

Data description The data set contains 5610 prokaryotic species from the KEGG
database [Kanehisa and Goto, 2000]. Among them, there are 301 archaea and 5309
bacteria. The taxonomic information was obtained from the National Center for
Biotechnology Information (NCBI) Taxonomy database [Federhen, 2012]. The re-
constructed networks were provided by Zendrera et al. [2021]. All information on
the species was extracted in November/December 2019. The following characteris-
tics of the bacteria are provided, which we use to build different novelty detection
tasks:

• Oxygen tolerance: 917 Aerobe, 782 Facultative anaerobe, 532 Anaerobe

• Habitat: 554 Symbionts, 395 Environment, 235 Mixed

Experimental setup We use the characteristics provided above to define groups
of bacteria, which are then used to construct several novelty detection tasks, by
labelling a bacterium as either a reference or a novelty depending on which group it
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Fig. 4: FDR (upper row) and TDR (lower row) for AdaDetect procedures
with α = 0.1 (dashed green line) for the setups described in Table
4. Each boxplot is based on 50 data sets. Red points indicate mean
values.

Tab. 4: Description of the novelty detection tasks considered for the
metabolic network dataset.

References Novelties | Iref | | Inov | n
a) Aerobe Anaerobe, Facultative 417 1314 500
b) Symbiont Environment, Mixed 254 630 300

c) Mesophile Aerobe
Mesophile Anaerobe,
Mesophile Facultative

216 874 300

d) Mesophile Symbiont
Mesophile Environment,

Mesophile Mixed
167 324 200

belongs to. Table 4 describes which groups are considered as references or novelties
in each setup.

In each task, we construct test samples and training samples by using the
complete set of novelties and a random subset of the references as test observa-
tions, with the remaining references used for the training sample: the sample sizes
| Iref |, | Inov |, n are given in Table 4 for each scenario. We set α = 0.1 and use
| Gcal | = | Gtrain | = n/2 for splitting the training sample.

When applying AdaDetect to these data, we observed that results are unstable
and depend on the random split of the reference set Gref into subsets Gtrain and Gcal.
This indicates that the sample size of the reference set is small compared to the
variability of the networks in the reference set. To solve this instability issue, we
choose to apply each method 10 times with 10 different splits of Gref and consider
the union of all detected networks as the final set of detections.

Note that metabolic networks are too large for the WL algorithm, so we only
consider AdaDetect with the three GNNs. The FDR and TDR are displayed in Fig-
ure 4 for 50 randomly constructed samples. We observe that the FDR is controlled
(or close to) in all settings for all methods. Concerning the power, GIN makes
only very few detections, while AdaDetect with DiffPool and DGCNN are powerful
procedures and depending on the setting, one or the other achieves a better TDR.
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4 Conclusion

Conformal prediction is an emerging direction in medical and biological applica-
tions, since statistical machine learning models have to be developed and applied
with caution, especially in high-stake domains.

We propose a powerful tool, applicable to complex structures, to control the
desired risk level. To our best knowledge, we are the first ones to challenge this
task. Although our method achieves remarkable performance, there is still room
for further research. So, our next step is to increase the interpretability of graph
embeddings used in the method. Particularly, the metabolic networks are huge
complex graphs, and their reconstruction and representation can vary according
to the scientific aim, e.g., some ubiquitous metabolites can be omitted, enzymes
can be included or not, an algorithm of network reconstruction can easily result in
different graphs; the direction of reactions is not unique and can also vary according
to an ontology used for the graph reconstruction.

An open ambitious question is how to relate the data representation and the
FDR control, and whether a unified efficient framework can be proposed and de-
veloped.
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