
HAL Id: hal-04588553
https://hal.science/hal-04588553v1

Submitted on 27 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A privacy-preserving graph encryption scheme based on
oblivious RAM

Seyni Kane, Anis Bkakria

To cite this version:
Seyni Kane, Anis Bkakria. A privacy-preserving graph encryption scheme based on oblivious RAM.
38th Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy (DBSec), Jul
2024, San Jose, United States. pp.101-108, �10.1007/978-3-031-65172-4_7�. �hal-04588553�

https://hal.science/hal-04588553v1
https://hal.archives-ouvertes.fr

A Privacy-Preserving Graph Encryption Scheme
Based on Oblivious RAM

Seyni Kane2,3⋆ and Anis Bkakria1[0000−0002−9758−4617]

1 IRT SystemX, Palaiseau, France
2 Applied Crypto Group, Orange Innovation, 14000 Caen, France.

3 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France.

Abstract. Graph encryption schemes play a crucial role in facilitating
secure queries on encrypted graphs hosted on untrusted servers. With ap-
plications spanning navigation systems, network topology, and social net-
works, the need to safeguard sensitive data becomes paramount. Existing
graph encryption methods, however, exhibit vulnerabilities by inadver-
tently revealing aspects of the graph structure and query patterns, posing
threats to security and privacy. In response, we propose a novel graph
encryption scheme designed to mitigate access pattern and query pattern
leakage through the integration of oblivious RAM and trusted execution
environment techniques, exemplified by a Trusted Execution Environ-
ment (TEE). Our solution establishes two key security objectives: (1)
ensuring that adversaries, when presented with an encrypted graph, re-
main oblivious to any information regarding the underlying graph, and
(2) achieving query indistinguishability by concealing access patterns.
Additionally, we conducted experimentation to evaluate the efficiency of
the proposed schemes when dealing with real-world location navigation
services.

Keywords: Privacy Enhancing Technology · Graph Encryption Scheme
· Oblivious RAM · Trusted Execution Environment

1 Introduction

Cloud computing is a paradigm that offers on-demand storage and computing
resources to individuals and enterprises. Large data sizes motivate storage out-
sourcing for reasons of cost, availability, and efficiency. Storing and processing
data securely on the cloud can be challenging. To protect outsourced data, Struc-
tured Encryption (SE) [6] has been proposed. A structured encryption scheme
encrypts structured data in such a way that it can be queried through the use of
a query-specific token that can only be generated with knowledge of the secret
key. In addition, the query process reveals no useful information about either
the query or the data. Structured encryption schemes include graph encryption
schemes [14, 18].
⋆ The research presented in this paper was conducted while the author was affiliated

with IRT-SystemX

2 S. Kane and A. Bkakria

Graph encryption schemes have many applications, such as private naviga-
tion systems [29], online social networks [16], modeling highly confidential infras-
tructure and more. The main challenge is to design graph encryption schemes
that are secure, expressive, and efficient. Some cryptographic techniques, such
as Fully Homomorphic Encryption (FHE) [12] and secure Multi-Party Compu-
tation (MPC), can achieve high security but low efficiency. Other solutions trade
off some security for better efficiency by allowing controlled leakage [14, 18]. One
example of leakage is the Access Pattern (AP), which is the set of nodes and
edges accessed by a query on the encrypted graph. Another example is the Query
Pattern (QP), which is the set of queries issued on the encrypted graph. An ad-
versary who observes the AP and QP can infer information about the graph
structure, connectivity, and content, as well as the query frequency, similarity,
and user interests.

Ghosh, Kamara and Tamassia (GKT) [14] proposed a practical graph encryp-
tion scheme that supports shortest path queries with a good trade-off between
efficiency and security. They encrypts the graph using a recursive algorithm that
partitions the graph into subgraphs and encrypts them separately. It has opti-
mal preprocessing time and space, and query time proportional to those for the
unencrypted graph. However, it still leaks AP and QP. Falzon et al. [10] pre-
sented an attack on the GKT scheme that exploits the QP leakage to recover
the queries with high probability.

Due to access pattern and query pattern leakage, existing graph encryption
schemes are not suitable for highly sensitive graphs. A possible solution is to use
Oblivious RAM (ORAM) [15] techniques to hide the AP and QP leakage from
an untrusted server, and avoid such as the ones proposed in [10]. ORAM is a
technique that allows a client to access data in a data store without revealing
which item it is interested in. It does this by accessing multiple items each time
and periodically reshuffling some or all of the data in the data store.

However, using ORAM for graph encryption schemes can be inefficient, be-
cause it requires the client to interact with the server for each recursive call
to fetch the path between two nodes. This results in high communication com-
plexity. A way to overcome this issue is to use Trusted Execution Environments
(TEE), which is a technology that allows an application to create a protected
area in its address space, called an enclave. The data and instructions inside
the enclave are confidential and secure even if the attacker has full control of
the operating system. TEE can be used to create more efficient oblivious data
structures [11, 24, 25, 30], by placing a mini-client inside the untrusted server.
This reduces the communication complexity between the client and the server.

1.1 Our Contributions

In this paper, we introduce an innovative graph encryption scheme designed to
facilitate shortest path queries without compromising any information pertaining
to the underlying data or the query itself. Our approach builds upon the founda-
tion of the GKT scheme [14], widely recognized as the state-of-the-art solution
for graph encryption, and incorporates advanced privacy-preserving techniques

A Privacy-Preserving Graph Encryption Scheme Based on Oblivious RAM 3

such as Oblivious RAM (ORAM) [15] and hardware isolation mechanisms like
Trusted Execution Environments (TEE) [8].

By seamlessly integrating ORAM, our scheme effectively eliminates Access
Pattern and Query Pattern leakage. Additionally, the incorporation of TEE opti-
mizes communication complexity between the client and the server by establish-
ing a secure enclave within the untrusted server. The key contributions proposed
in this work can be resumed as follows:

– We introduce TOGES, the first graph encryption scheme that synergistically
employs ORAM and TEE to conceal both AP and QP leakage from an un-
trusted server. We prove the adaptive semantic security of our scheme, along
with the assurance of AP indistinguishability and QP indistinguishability.

– We implement our scheme and conduct extensive evaluations on a real loca-
tion navigation dataset, showcasing its practicality and efficiency.

1.2 Organization of the paper

The rest of this paper is organized as follows: Section 2 reviews the related work
on graph encryption, ORAM, and TEEs. It also discusses recent constructions
that combine ORAM and TEE to create more efficient oblivious data structures.
Section 3 introduces the notation, definitions, and background schemes used in
this paper, such as GKT, Path ORAM, and TEEs. Section 4 defines the system
and security model that we consider for our construction. It also states the
assumptions, threat model, and security goals that we aim to achieve. Section 5
describes our construction in two versions: a basic version utilizing ORAM-based
graph encryption, and an enhanced version leveraging TEE-ORAM based graph
encryption. Section 6 analyzes the security of our construction and provides a
formal security proof. Section 7 analyzes the performance of our construction.
Section 8 concludes the paper and suggests some possible future directions.

2 Related Work

In this section, we delve into the advancements in the key theoretical founda-
tions underpinning our research. We commence with an exploration of graph
encryption, followed by an examination of ORAM. Lastly, we survey pertinent
literature that leverages TEE to enhance the efficiency of oblivious data struc-
tures.

Several approaches have been proposed for private shortest path computa-
tion. Previous studies [21, 22, 31] have delved into PIR-based solutions aimed at
concealing the client’s location. In the approaches outlined in [22, 21], the client
initiates a confidential retrieval of specific subregions within the graph that per-
tain to its query. Following this, the client locally calculates the shortest path
within the retrieved subgraph. In the work presented in [31], the client discreetly
solicits columns from the next-hop routing matrix to glean information about
the subsequent hop in the shortest path. While these methodologies effectively

4 S. Kane and A. Bkakria

safeguard the privacy of the client’s location, it is essential to note that they do
not address the concealment of the server’s routing details.

Diverging from prior methodologies, Graph encryption schemes are a type
of structured encryption that allows querying encrypted graph. It was intro-
duced by Chase and Kamara [6] in their seminal work on structured encryption
which is a generalization of searchable encryption to the setting of arbitrarily
data structure. They also presented a model and a security definition for graph
encryption. Meng et al. [18] proposed three graph encryption schemes that sup-
port approximate shortest distance queries on encrypted graphs, using different
distance oracles, each with a slightly different leakage profile. Ghosh et al. [14]
proposed an efficient graph encryption scheme that supports exact shortest path
queries on encrypted graphs, using a recursive algorithm based on SP-matrix
and non-response revealing Dictionary Encryption Scheme (DES) [4]. However,
their scheme has some leakage that can be exploited by query recovery attacks,
as shown by Falzon and Paterson [10].

Another family of solutions are those based on Oblivious RAM (ORAM), a
technique employed to conceal the access pattern of structured encryption—an
area of primary interest. The inception of ORAM can be attributed to Goldreich
and Ostrovsky [15], who pioneered its development in the context of software
protection and simulation. Subsequently, numerous practical constructions have
emerged, with efforts aimed at enhancing the efficiency of Goldreich and Os-
trovsky’s initial model, as evidenced by works such as [5, 32]. However, a no-
table drawback of these advancements lies in their substantial client-side storage
requirements, which scale proportionally with the size of the underlying data
structure.

Addressing the need for more practical and space-efficient ORAMs, Shi et
al. introduced recursive ORAMs [26]. This innovative approach is rooted in tree
data structures, where each node functions as a small bucket ORAM. Accessing
an element involves traversing a path in the tree, leading to partial reshuffling
for enhanced security.

Subsequent contributions, such as those by [20, 27], further refined and ex-
panded upon the concept of recursive ORAMs. Notably, Path ORAM [27] stands
out as one of the most intriguing implementations, currently recognized as among
the most efficient ORAM schemes. Path ORAM employs a binary tree structure,
accessing data along the path from the root to the leaf. After each access, the
data undergoes shuffling and re-encryption to mitigate potential information
leakage. The challenge of large client-side storage, exemplified by the position
map in Path ORAM, is effectively addressed by incorporating a second ORAM
for achieving recursion.

There are recent advancements that integrate Oblivious RAM (ORAM) tech-
niques with Trusted Execution Environments (TEE) to enhance the efficiency of
oblivious data structures.Trusted Execution Environments, such as Intel’s Soft-
ware Guard eXtensions (SGX) [3, 8, 17], employ hardware-based approaches to
optimize search operations on encrypted data within an untrusted server. Intel’s
SGX, in particular, has inspired various applications of TEEs.

A Privacy-Preserving Graph Encryption Scheme Based on Oblivious RAM 5

One application involves constructing secure indexes for encrypted data. For
instance, Fuhry et al. introduced HardIDX [11], an encrypted database index
based on B+ trees, implementing search functionality within an SGX enclave.
Mishra et al. proposed Oblix [19], an oblivious search index that conceals memory
accesses and result size while supporting insertions and deletions. Oblix utilizes
novel oblivious-access techniques on hardware enclave platforms like Intel SGX.

Another application is private search over encrypted data. Cui et al. de-
veloped an SGX-assisted scheme [9] that protects access patterns against side
channel attacks without compromising search efficiency. Amjad et al. introduced
the first SGX-supported dynamic Searchable Symmetric Encryption (SSE) con-
structions [2], ensuring both backward and forward privacy.

Relevant to our work are approaches utilizing oblivious RAM to conceal
access patterns, leveraging secure enclaves like Intel SGX for improved effi-
ciency. For instance, Sasy et al. proposed Zerotrace [25], an enclave-based ORAM
scheme offering security against powerful adversaries. Rachid et al. devised ef-
ficient techniques for constructing ORAMs using Intel SGX [24], implementing
and comparing multiple ORAM schemes. Wu et al. introduced OBI [30], a multi-
path ORAM demonstrating superiority over traditional single-path ORAM in
terms of local stash size and insertion efficiency, while ensuring strong security
guarantees.

As previously mentioned, prevalent graph encryption methods, exemplified
in [14, 18], exhibit vulnerabilities, particularly in Access Pattern (AP) and Query
Pattern (QP) leakage, which could be exploited for information extraction. In
response, our privacy-preserving graph encryption scheme has been meticulously
designed to eliminate both AP and QP leaks. In comparison to existing recur-
sive ORAM techniques [20, 27], we enhance our ORAM execution’s efficiency
by introducing a non-interactive approach through server-side TEE integration,
thereby fortifying security while achieving superior performance.

3 Preliminaries

In this section, we will introduce some fundamental definitions and cryptographic
notions essential for the rest if this paper.

3.1 Graph

A graph G = (V,E) consists of a set of vertices V and a set of edges E that
connect vertices in pairs. A graph is directed if the edges have a direction from
one vertex to another. Two vertices u, v ∈ V are connected if there is a path
from u to v in G. We only consider static graphs that support Single Pair
Shortest Path (SPSP) queries. A SPSP query SPath(G, (u, v)) [14], takes a
graph G = (V,E) and two vertices u, v ∈ V as input and returns a simple path
pu,v, i.e, a list of nodes (w1, ..., wt) such that (u,w1), (w1, w2), . . . , (wt, v) ∈ E.
If there is no path from u to v in G, SPath returns ⊥.

6 S. Kane and A. Bkakria

A tree is a graph that is connected and has no cycle. A rooted tree T =
(V,E, r) is a tree with a root vertex r. For any rooted tree T = (V,E, r) and
vertex v ∈ V , we write T [v] for the subtree of T that has v and all its descendants.

3.2 SP-matrix [14]

We uses SP-matrix as a data structure to for graphs, in order to be able to
perform recursive queries on the graphs.

Definition 1 (SP-matrix[7]). An SP-matrix structure is a |V | × |V | matrix
MG that is built from a graph G = (V,E) by running an All-Pairs Shortest
Path (APSP) algorithm between all pairs of vertices. We associate the rows and
columns of MG with vertices in V and use (vi, vj) to refer to the item at row vi
and column vj. For each pair of vertices (vi, vj), we store the first vertex on a
shortest path from vi to vj at MG[vi, vj], or ⊥ if there is no path. All the diagonal
entries in MG are set to ⊥.

Given MG, we can find the shortest path between two vertices (vi, vj) as
follows. Look at (vi, vj) in MG to get an item w. If w ̸= ⊥, then w is the
first vertex on the shortest path from vi to vj and we repeat the process with
(w, vj). The recursion ends when we see a ⊥. The query time is optimal, i.e., it
is proportional to the length of the shortest path.

3.3 GKT

The GKT scheme [14] supports single pair shortest path (SPSP) queries. An
SPSP query on a graph G = (V,E) takes as input a pair of vertices (u, v) ∈ V ×
V , and outputs a path pu,v = (u,w1, . . . , wt, v) such that (u,w1), (w1, w2), . . . ,
(wt−1, v) ∈ E and pu,v is of minimal length. SPSP queries may be answered
using a number of different data structures.

The GKT scheme makes use of the SP-matrix. For a graph G = (V,E), the
SP-matrix MG is a |V |× |V | matrix defined as follows. Entry MG[i, j] stores the
second vertex along the shortest path from vertex vi to vj ; if no such path exists,
then it stores ⊥. An SPSP query (vi, vj) is answered by computing MG[i, j] = vk
to obtain the next vertex along the path and then recursing on (vk, vj) until ⊥ is
returned. At a high level, the GKT scheme proceeds by computing an SP-matrix
for the query graph and then using this matrix to compute a dictionary SPDX ′.
This dictionary is then encrypted using a dictionary encryption scheme (DES)
such as [6, 4]. To ensure that the GKT scheme is non-interactive, the underlying
DES must be response-revealing [4].

Leakage of the GKT Scheme Ghosh et al. [14] provide a formal specification
of their scheme’s leakage. Informally, the setup leakage of their scheme is the
number of vertex pairs in G that are connected by a path, while the query leakage
consists of the query pattern (i.e., if and when a query is repeated), the length of
the shortest path, and what they refer to as the path intersection pattern (PIP).

A Privacy-Preserving Graph Encryption Scheme Based on Oblivious RAM 7

Given a of sequence of SPSP queries (q1, . . . , qt), where qi = (ui, vi), PIP of qt
reveals the intersections of pt = SPSP (G, (ut, vt)) with previous shortest paths
that have the same destination vt, (see [14] for more details).

Attacks on the GKT Scheme Falzon et al. [10] proposed an efficient query
recovery attack against GKT, exploiting query leakage to mount the attack.
In their approach, the adversary receives the original graph along with leaked
information about specific subsets of queries. They leverage the query leakage
within the GKT scheme to execute a Query Recovery (QR) attack against it.
This attack, feasible for an honest-but-curious server, necessitates knowledge of
the graph G. While this might seem like a stringent requirement, it is, in fact,
less demanding than the conditions allowed in the security model of [14], where
the adversary even has the liberty to choose G.

The attack comprises two phases. Initially, there is an offline pre-processing
phase conducted on the graph G. In this stage, they extract a plaintext descrip-
tion of all its shortest path trees from G′. Subsequently, they process these trees
and compute candidate queries for each query, utilizing the canonical labels of
each tree. A canonical label serves as an encoding of a graph, facilitating the
determination of graph isomorphism. The canonical label of a rooted tree can
be efficiently computed using the Aho-Hopcroft-Ullman (AHU) algorithm [1].

4 System and Security Models

In this section, we introduce the system model, system definition, threats model
and security requirements of our construction.

4.1 System Model

In the presented scenario, we examine a situation where a client C, constrained
by limited resources, seeks to delegate both data storage and computation tasks
to an untrusted cloud server SP equipped with a TEE. This two-party system
comprises a client, the data owner, and a cloud server, responsible for hosting the
data. Crucially, the client places trust in the TEE embedded within the server,
treating it as an extension of its own infrastructure.

4.2 Assumptions and Attacker Model

As mentioned earlier, our scheme involves two parties: C responsible for encrypt-
ing a graph-based dataset and uploading it to the CS. C is the party that submits
queries, and assume its trustworthiness.

CS hosts a TEE and stores the encrypted tree ORAM. Additionally, CS loads
data into the enclave for query processing. We consider the possibility of an
attacker taking control of the operating system on CS.

TEE provides a secure execution environment by cryptographically safe-
guarding code and data on an untrusted server. However, it is susceptible to

8 S. Kane and A. Bkakria

side-channel attacks. These attacks enable adversaries to extract sensitive in-
formation by observing the effects of processing without direct access to the
information source. Although the operating system (OS) is untrusted, it still
manages the enclave’s resources, allowing it to monitor the enclave’s behavior.
Specifically, the OS can generate a precise trace of the enclave’s code and data
accesses at the page granularity. This trace may be exploited later to deduce
information about the outsourced data and/or executed SPSP queries. It’s im-
portant to note that we do not address these side-channel attacks in our work.
Thus we assume an adversary who cannot extract information from the TEE.

Conversely, the adversary has visibility into all communications between the
TEE and the external entities, including the untrusted domain and C.

Particularly, the TEE is supposed to manage the position map and handles
queries from C without disclosing sensitive information to CS. It also establishes
a secure channel with C to protect their communication. We presume the TEE’s
trustworthiness and consider the data and data access within the TEE as secure.
We Assume CS to be an honest but curious (semi-honest) entity, meaning it fol-
lows the protocol while attempting to acquire information about the outsourced
data.

4.3 Security Goals

We are interested in building a privacy preserving graph encryption scheme that
meets the following security requirements:

1. Given an encrypted graph, an adversary cannot learn any information about
the underlying graph.

2. Given the view of a polynomial number of query executions for an adaptively
generated sequence of queries q = (q1, . . . , qn), an adversary cannot learn any
information about q and its access pattern, except the size of the respective
path.

4.4 Syntax

Our construction is defined by three algorithm Setup, Query, and Reveal, and
is described in three versions (a trivial, enhanced, and more enhanced version).
In all version of OBGE the Setup and the Reveal algorithms are executed by C.
And the Query algorithm is executed by C in collaboration with CS.

– Setup(G = (V,E), λ, P, SKE): is PPT algorithm that takes as input a gaph
G, a security parameter λ, a PRF P , and symmetric-key encryption SKE.
It outputs an ecrypted graph in a tree ORAM T data structure, a position
map PM , and keys key := (K1,K2,K

′). The keys are generated during the
key generation sub-protocol of the setup algorithm. K1 and K2 are for SKE,
and K ′ is for P .

– Query(q = (u, v), T, PM,K2,K
′): is PPT algorithm that takes as input

shortest path query q = (u, v), an encrypted tree ORAM T , a position PM ,
and keys (K2,K

′). It outputs an encrypted path resp.

A Privacy-Preserving Graph Encryption Scheme Based on Oblivious RAM 9

– Reveal(resp,K1): is PPT algorithm that takes as input an encrypted short-
est path resp, and the key K1. It outputs the decrypted shortest path pu,v.

4.5 Security Definition

We adopt the standard security definition for graph encryption schemes [6, 18,
14], that follows the real/ideal simulation paradigm and is parameterized by a
leakage function L that formalizes the leakage of the scheme.

Definition 2. Let Π = (Setup,Query,Reveal) denote a graph encryption scheme
with respect to the above syntax, and λ a security parameter. Let A a PPT
stateful adversary, CH his challenger, and S a stateful simulator that gets the
leakage functions L. We consider the probabilistic experiments RealΠ,A(λ) and
IdealΠ,A,S(λ) described as follows:

RealΠ,A(λ) :

– The challenger CH runs the key generation procedure from the Setup algo-
rithm, and generate key := (K1,K2,K

′) for symmetric-key encryption and
the pseudo-ramdom function.

– A chooses a graph G = (V,E) and sends it to CH who encrypt it using K1

and output an encrypted tree ORAM T .
– A makes a polynomial number of adaptive queries q = (q1, . . . , qn), n ∈

N, n ≤ Poly(λ). For each query qi, A receives pi and a token (tki ← P ′
K(qi))

from the challenger CH as the transcript of the execution of the Query and
Reveal algorithm. Finally, A returns a bit b as the output by the experiment.

IdealΠ,A,S(λ) :

– A chose graph G = (V,E).
– Given L(G), S output an encrypted tree ORAM T , and send it to A.
– A makes a polynomial number of adaptive queries q = (q1, . . . , qn), n ∈

N, n ≤ Poly(λ). For each query qi, S given L(G, qi) returns token tki and
pi to A. By simulating the execution of the Query and Reveal algorithms
with S playing the role of C, and A playing the role of the server. Finally, A
returns a bit b as the output by the experiment.

where b = 1 indicates that A believes it is interacting with the real experiment,
and b = 0 indicates otherwise. We say that Π is L-secure against adaptive
chosen-query attacks if for all PPT adversaries A, there exists a PPT simu-
lator S such that

|PR[RealΠ,A(λ)]− PR[IdealΠ,A,S(λ)]| ≤ negl(λ) (1)

10 S. Kane and A. Bkakria

5 ORAM Based Graph Encryption (OBGE)

In this section, we will present our construction: a trivial version without re-
cursion, which serves as a model for the scheme, an enhanced version that uses
TEEs, and the enhanced version which is a recursive version of the enhanced
version.

5.1 A First Construction

Here we give the description of our trivial construction followed by the algo-
rithms with their detailed explanation. Our trivial construction uses a binary
tree storage on the server as in Path ORAM, to eliminate the access and query
pattern in the GKT schemes.

Description of the Protocol We propose a novel protocol OBGE = (Setup,
Query, Reveal) for privacy-preserving graph encryption based on GKT [14],
and Path ORAM [27]. Our protocol allows a client to outsource a graph to a
server and query it efficiently without revealing any information about the graph
structure or the query results. We use a symmetric-key encryption scheme SKE
= (Gen, Encrypt, Decrypt) similar to GKT and a pseudorandom function P
in our protocol.

The setup phase includes The key generation procedure, that produces K1

and K2 for SKE, and K ′ for the PRF P . In the setup phase, the client encrypts
the graph and sends it to the server. In the query phase, we use the Access
protocol in Path ORAM [27] as sub-procedure in order to be able to perform
the oblivious access to the ORAM structure. To do so the client sends a query
token the ORAM controller which send back the corresponding encrypted path.
The reveal phase is just a decryption of the encrypted path returned by the
query phase.

Setup The setup process is depicted in Algorithm 1. Suppose we have a graph
G = (V,E), where V is the set of vertices and E is the set of edges. C creates an
SP-matrix MG, which stores the shortest paths between any pair of vertices in
G. Then, the client performs the same steps as in GKT to obtain a dictionary
SPDX, which maps each pair of vertices (u, v) to the next vertex w on the
shortest path linking u to v. The client then transforms SPDX into a new
dictionary SPDX ′ as follows. For each entry (u, v) 7→ w in SPDX, the client
generates two tokens: one for the key, tk ← PK′(u, v), and one for the value,
tk′ ← PK′(w, v), using a pseudorandom function P . The client also encrypts the
value using a symmetric key encryption scheme, ct′ ← SKE.Encrypt(K1, (w, v)),
where K1 is a secret key. The client then sets SPDX ′[tk] := (tk′, ct′) to construct
the new dictionary.

The client creates a binary tree ORAM T of size N , where ZN > |V |2,
and each node acts as a bucket capable of holding up to Z blocks. A block is
represented by the tuple (tk, (tk′, ct′), x), where tk is the token identifying the

A Privacy-Preserving Graph Encryption Scheme Based on Oblivious RAM 11

block (linked to the query (u, v)), tk′ is the token identifying the next hop on
the shortest path between u and v, ct′ is the encryption of (w, v) by SKE, and
x denotes the leaf node identifier in the ORAM tree T . The client initializes an
empty stash ST , an array capable of holding blocks, and a position map PM ,
consisting of two columns. The first column stores tokens identifying blocks,
and the second column stores the leaf identifier currently associated with each
block. For each token tk ∈ SPDX ′, the client randomly assigns a leaf identifier
x←R 0, 1, . . . 2L − 1 and records it in the position map PM .

Algorithm 1: Setup
input : Graph G = (V,E), security parameter λ, pseudo random

function P , symmetric-key encryption SKE
output: Encrypted tree ORAM T , Position map PM , keys

key := (K1,K2,K
′)

Initialize empty dictionary SPDX,SPDX ′;
Initialise empty position map PM , and empty stash ST ;
sp← SKE.Gen(λ); ▷ Generate keys
K1 ← SKE.Gen(sp);K2 ← SKE.Gen(sp);K ′ ←R {0, 1}λ;
key := (K1,K2,K

′);
SPDX := ComputeSPDX(G);
for (lab, val) ∈ SPDX do

tklab ← PK′(lab); tkval ← PK′(val); ▷ Encrypt labels and
values
SPDX ′[tklab] := (tkval, ct), where ct = SKE.EncryptK1

(val);
end
for tk ∈ SPDX ′ do

PM [tk] := x, where x←R {0, 1, . . . , 2L − 1}; ▷ Assign random
positions

end
for tk ∈ PM do

(tk′, ct′)← SPDX ′[tk]; ▷ Retrieve encrypted values
c← SKE.EncryptK2(block), where block = (tk, (tk′, ct′), x);
Upload c on P(x); ▷ Encrypt and upload encrypted block

end
return T, PM,ST, key := (K1,K2,K

′);

C begins by initializing the tree T . For each block = (tk, (tk′, ct′), x), employ
C to encrypt the block using K2: c← SKE.Encrypt(K2, block). Next, retrieve the
corresponding leaf identifier x := PM [tk] from the position map. Subsequently,
upload the encrypted block to the appropriate node along the path from the root
to the leaf x in T , denoted as P(x). This process follows the same mechanism
as described in PathORAM [27]. Consequently, by the end of the setup phase,
buckets containing fewer than Z data blocks are populated with dummy blocks.

The client finishes the setup phase by uploading the ORAM tree T to the
server. The client stores the position map PM , the stash ST , and the keys. The
Setup protocol is described in detail in Algorithm 1.

12 S. Kane and A. Bkakria

Query To query the shortest path between nodes u and v, the client computes
the token tk of the query using PK′(u, v). And execute Access(tk) with tk, which
return the decrypted block = (tk, (tk′, ct′)) ← SKE.DecryptK2

(c). If block ̸= ⊥
C parse block store the ciphertext ct′ in a variable resp, and recall Access(tk′),
this time with token of the next hope tk′. Repeats this process from step 4 until
the Access procedure return ⊥. The Query protocol is described in detail in
Algorithm 2.

Algorithm 2: Query
input : Query q = (u, v), Encrypted tree ORAM T , K2,K

′

output: Encrypted path resp

C computes tk ← PK′(q); ▷ Extract the corresponding leaf
identifier
x := PM [tk], status := ϵ, resp := ϵ; ▷ Initialization
Set variable curr := tk; ▷ Set current node to the leaf
while status ̸= ”SearchEnd” do

C executes block ← Access(curr); ▷ Access current block
if block = ⊥ then

set status := ”SearchEnd”;
else

Parse block as (tk, (tk′, ct′), x);
set resp := resp ∪ ct′ and curr := tk′;

end
end
return resp; ▷ Return encrypted path

Reveal Once the client receive the cipher-text he decrypts the ciphertext with
his key K1 and obtains the plaintext, which is the requested path. The Reveal
protocol is described in detail in Algorithm 3.

Algorithm 3: Reveal
input : resp, key := K1

output: Decrypted path pu,v

C Set variable pu,v := ϵ ; ▷ Initialization
Parse resp as ct1 ∪ ct2 ∪ . . . ∪ ctk ; ▷ Parse encrypted path
for i = 1, . . . k do

mi ← SKE.Decrypt(K1, cti) ; ▷ Decrypt each node
Set m := m ∪mi ; ▷ Aggregate decrypted nodes

end
return M ;

Theorem 1 (Correctness of OBGE). If P is a secure PRF, SKE is correct and
the ORAM is correct, then OBGE is correct.

A Privacy-Preserving Graph Encryption Scheme Based on Oblivious RAM 13

Proof. The correctness follows from the fact that the tokens generated by P have
a negligible probability of colliding in a random function, and consequently, this
negligible probability extends to the PRF P as well.

Complexity Analysis

Space Complexity The space complexity analysis encompasses both server and
client storage requirements.

– Server Storage. The server’s storage entails maintaining a binary tree struc-
ture with a depth of L = ⌈log2 N⌉ and 2L leaves, where N denotes the
number of nodes in the tree. Each node, known as a bucket, can accommo-
date up to Z real blocks. Consequently, the storage demand on the server
side is O(ZN), which simplifies to O(N) due to the constant nature of Z.

– Client Storage. On the client side, storage involves retaining secret keys K1,
K2, and K ′ for symmetric-key encryption (SKE) and the Pseudo-Random
Function (PRF) P . Additionally, the client manages the stash ST and the
position map PM . As per [27], the stash typically occupies O(logN) · w(1)
blocks with high probability. The position map, comprising NL = N logN
bits, translates to O(N) blocks.

Communication complexity The client communicates with the server for each
query q = (u, v) by reading and writing a path of Z logN blocks for each level
of recursion. The number of recursion is equal to the length of the path pu,v.
Therefore, the total bandwidth used per query is 2|pu,v|Z logN blocks. Since Z
is a constant, and |pu,v| is at most N , the bandwidth usage is O(N logN) blocks.

Computation The server acts as a storage device, so it only retrieves and stores
O(logN) blocks per level of recursion. The computation is done by the client.
The client’s computation is O(N logN) ·w(1) per query. In practice, most of this
time is spent on encrypting and decryptingO(logN) blocks per level of recursion.

Our basic construction is a straightforward adaptation of Path ORAM [27]
with the GKT graph encryption scheme [14]. The client stores the stash ST
and the position map PM . However, this can consume a lot of storage space
on the client side, especially for large graphs. This goes against our goal, which
was to reduce the client’s storage and processing burden by delegating it to
the cloud. Moreover, the protocol is interactive and requires communication
between the client and the server for every level of recursion, which increases the
communication overhead as we can see above.

5.2 Enhanced Construction

Recognizing the inadequacies of the basic construction when dealing with large
graphs (e.g., location navigation graphs), we introduce a substantial enhance-
ment aimed at employing a dual-pronged strategy to effectively tackle these
challenges.

14 S. Kane and A. Bkakria

Initially, we implement a Trusted Execution Environment (TEE) on the
server side, establishing a secure enclave that furnishes a confidential and tamper-
resistant execution environment. Within this TEE enclave, a compact client
module is deployed to oversee the management of the client’s stash (ST) and
position map (PM). This enclave functions as the Path ORAM controller, seam-
lessly handling client queries and furnishing corresponding results devoid of sen-
sitive data exposure. By adopting this framework, we obviate the necessity for
client-side storage and streamline the client-server interaction, thus mitigating
security vulnerabilities associated with client-side operations.

Despite the discernible enhancements, the storage capacity of the TEE en-
clave remains a pivotal concern. Traditional TEE implementations, exemplified
by Intel SGX, offer a finite internal storage capacity, typically set at 128 MB [28].
Although the position map and stash are usually smaller than the graph, they
may still surpass the storage threshold for larger graphs. Notably, the combined
sizes of the position map and stash may exceed the available storage capacity,
presenting scalability hurdles.

To fortify our construction and alleviate the inherent storage limitations of
TEEs, we propose a secondary approach. Leveraging a recursive ORAM data
structure [23], meticulously engineered to curtail the volume of data stored
within the TEE’s internal memory, we aim to optimize TEE storage utilization
while upholding the security assurances of the ORAM protocol. This stratagem
not only enhances the scalability of our construction but also ensures the ju-
dicious employment of TEE resources, rendering it conducive for applications
entailing expansive graphs and datasets.

6 Security Analysis

In the following, we examine the security of OBGE. We demonstrate that our
construction is adaptively-secure with respect to a well-defined leakage profile.
We define our leakage profile below.

Setup Leakage Our scheme has no setup leakage. Indeed, in the Setup phase of
our scheme, we set the size of the ORAM tree ZN > |v|2, so we do not reveal
the size of the graph.

Query Leakage In the query phase, the server only learns the leaf identifiers
associated with blocks containing the path of the current query. And we replace
these leaf identifiers with random ones on the tree T as we access the blocks.
Moreover, we re-encrypt the accessed blocks using a semantically secure SKE
and relocate them either in the stash or in a new branch on the tree associated
with the new leaf identifier. The server also does not learn the access pattern,
which is guaranteed by the underlying Path ORAM protocol. So the only thing
the server learns during a query is the length of the requested path |pu,v|, by
counting the number of recursions.

A Privacy-Preserving Graph Encryption Scheme Based on Oblivious RAM 15

We can then formalize the leakage function of our scheme as L = LQ(q =
(u, v)) = |pu,v|. We summarize the security of our scheme in the next theorem.

Theorem 2 (Security of OBGE). If P is a secure PRF, SKE is INDCPA-
secure, ORAM is secure according to definition in [27] then OBGE, as described
above, is adaptively L-semantically secure, where L is the leakage function.

Proof. We define a simulator that works as follows. Given L, the simulator gen-
erates keys key := (K1,K2,K3), constructs an ORAM tree T that holds N
random blocks and a position map PM as specified in the real Setup. For each
query q = (u, v), the simulator receives LQ(q). It checks the query pattern to see
if the query is new. If not, it returns the token it generated before. Otherwise, it
randomly picks a token tk that is not previously generated and a random path
p and outputs (tk, p).

To show that this simulator satisfies our security definition, we first argue
that the random choices of tk and p will be indistinguishable from the outputs
of P and Reveal. Then we argue that since all entries of T and PM are random,
(tk, p) will be randomly distributed and thus indistinguishable from the output
of the PRF P and Reveal. The result follows directly.

7 Evaluation

7.1 Dataset

For our evaluation, we utilized a real world graph dataset constructed from the
OpenStreetMap data for navigating Paris [13]. This dataset represents the city’s
infrastructure as a network of interconnected nodes and edges. The nodes in our
graph dataset consist of road intersections, providing a detailed representation
of the city’s street layout. Additionally, points of interest, which encompass var-
ious locations searchable within Paris, serve as supplementary nodes. The total
number of nodes in the constructed graph is 102, 037.

7.2 Experimental Setup

We developed SGX-based implementations of the proposed path ORAM and
recursive path ORAM, leveraging Intel’s SGX SDK version 2.2 and Intel’s IPP
cryptographic library. Our experiments were conducted on a machine equipped
with 32 GB of RAM and an Intel(R) Core(TM) i7-6770HQ 2.60GHz CPU, with
a maximum enclave size of 128 MB. Throughout our tests, we maintained Z=5,
representing the number of blocks within each node of the recursive path ORAM.

Figure 1 reports the correlation between the length of the retrieved path and
the time required for query response but also underscore the practicality of the
proposed solution for finding the closest paths. As the length of the retrieved
path increases, indicating a more extensive search space, the time required for

16 S. Kane and A. Bkakria

20 40 60 80 100
Length of Retrieved Path

0

100

200

300

400

500

600

Ti
m

e
Re

qu
ire

d
(m

s)

ORAM Depth = 10
ORAM Depth = 20
ORAM Depth = 30
ORAM Depth = 40

Fig. 1: Time Required for Path Query Response in Varying recursive ORAM
Depths

query response escalates accordingly. Despite this escalation, the solution’s effi-
ciency remains evident, particularly in scenarios necessitating the exploration of
longer paths. This suggests the solution’s viability and effectiveness in practical
applications where extensive pathfinding is required, demonstrating its potential
utility in various real-world contexts.

8 Conclusion

In conclusion, the need for secure graph encryption schemes is paramount in
various applications, including navigation systems, social networks, and infras-
tructure modeling. Existing methods, while efficient, suffer from vulnerabilities
such as access pattern and query pattern leakage, which compromise security
and privacy. To address these challenges, we propose a novel graph encryption
scheme that leverages Oblivious RAM (ORAM) and Trusted Execution Envi-
ronments (TEE) to conceal both access pattern and query pattern leakage. Our
scheme builds upon the foundation of existing state-of-the-art solutions like the
GKT scheme, enhancing security while maintaining efficiency. Through evalua-
tions on real-world datasets, we demonstrate the practicality and effectiveness
of our solution in protecting sensitive graph data while allowing secure shortest
path queries.

Acknowledgments. This work were supported by the french national research agency
funded project AUTOPSY (grant no. ANR-20-CYAL-0008). Additionally, part of this
work was done as part of IRT SystemX project PFS (Security of Smart Ports).

A Privacy-Preserving Graph Encryption Scheme Based on Oblivious RAM 17

References

1. Aho, A.V., Hopcroft, J., Ullman, J.: Data structures and algorithms (1983). Google
Scholar Google Scholar Digital Library Digital Library (1983)

2. Amjad, G., Kamara, S., Moataz, T.: Forward and backward private searchable
encryption with sgx. In: Proceedings of the 12th European Workshop on Systems
Security. pp. 1–6 (2019)

3. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for cpu
based attestation and sealing. In: Proceedings of the 2nd international workshop
on hardware and architectural support for security and privacy. vol. 13. ACM New
York, NY, USA (2013)

4. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.C., Steiner,
M.: Dynamic searchable encryption in very-large databases: Data structures and
implementation. Cryptology ePrint Archive (2014)

5. Chan, T.H.H., Guo, Y., Lin, W.K., Shi, E.: Oblivious hashing revisited, and appli-
cations to asymptotically efficient oram and opram. In: Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I 23. pp. 660–690. Springer (2017)

6. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Ad-
vances in Cryptology-ASIACRYPT 2010: 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore, De-
cember 5-9, 2010. Proceedings 16. pp. 577–594. Springer (2010)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to al-
gorithms, chapter 11 (2001)

8. Costan, V., Devadas, S.: Intel sgx explained. Cryptology ePrint Archive (2016)
9. Cui, S., Belguith, S., Zhang, M., Asghar, M.R., Russello, G.: Preserving access pat-

tern privacy in sgx-assisted encrypted search. In: 2018 27th International Confer-
ence on Computer Communication and Networks (ICCCN). pp. 1–9. IEEE (2018)

10. Falzon, F., Paterson, K.G.: An efficient query recovery attack against a graph
encryption scheme. In: European Symposium on Research in Computer Security.
pp. 325–345. Springer (2022)

11. Fuhry, B., Bahmani, R., Brasser, F., Hahn, F., Kerschbaum, F., Sadeghi, A.R.:
Hardidx: Practical and secure index with sgx. In: Data and Applications Security
and Privacy XXXI: 31st Annual IFIP WG 11.3 Conference, DBSec 2017, Philadel-
phia, PA, USA, July 19-21, 2017, Proceedings 31. pp. 386–408. Springer (2017)

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

13. Geofabrik: Openstreetmap data for this region: Ile-de-france.
https://download.geofabrik.de/europe/france/ile-de-france.html, accessed: 15th
April, 2024

14. Ghosh, E., Kamara, S., Tamassia, R.: Efficient graph encryption scheme for short-
est path queries. In: Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security. pp. 516–525 (2021)

15. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
Journal of the ACM (JACM) 43(3), 431–473 (1996)

16. Lai, S., Yuan, X., Sun, S.F., Liu, J.K., Liu, Y., Liu, D.: Graphse2: An encrypted
graph database for privacy-preserving social search. In: Proceedings of the 2019
ACM Asia Conference on Computer and Communications Security. pp. 41–54
(2019)

18 S. Kane and A. Bkakria

17. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. Hasp@ isca 10(1) (2013)

18. Meng, X., Kamara, S., Nissim, K., Kollios, G.: Grecs: Graph encryption for ap-
proximate shortest distance queries. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. pp. 504–517 (2015)

19. Mishra, P., Poddar, R., Chen, J., Chiesa, A., Popa, R.A.: Oblix: An efficient obliv-
ious search index. In: 2018 IEEE Symposium on Security and Privacy (SP). pp.
279–296. IEEE (2018)

20. Moataz, T., Blass, E.O., Noubir, G.: Recursive trees for practical oram. Cryptology
ePrint Archive (2014)

21. Mouratidis, K.: Strong location privacy: A case study on shortest path queries.
In: 2013 IEEE 29th International Conference on Data Engineering Workshops
(ICDEW). pp. 136–143. IEEE (2013)

22. Mouratidis, K., Yiu, M.L.: Shortest path computation with no information leakage.
arXiv preprint arXiv:1204.6076 (2012)

23. Patel, S., Persiano, G., Yeo, K.: Recursive orams with practical
constructions. Cryptology ePrint Archive, Paper 2017/964 (2017),
https://eprint.iacr.org/2017/964, https://eprint.iacr.org/2017/964

24. Rachid, M.H., Riley, R., Malluhi, Q.: Enclave-based oblivious ram using intel’s sgx.
Computers & Security 91, 101711 (2020)

25. Sasy, S., Gorbunov, S., Fletcher, C.W.: Zerotrace: Oblivious memory primitives
from intel sgx. Cryptology ePrint Archive (2017)

26. Shi, E., Chan, T.H.H., Stefanov, E., Li, M.: Oblivious ram with o ((log n) 3)
worst-case cost. In: Advances in Cryptology–ASIACRYPT 2011: 17th International
Conference on the Theory and Application of Cryptology and Information Security,
Seoul, South Korea, December 4-8, 2011. Proceedings 17. pp. 197–214. Springer
(2011)

27. Stefanov, E., Dijk, M.v., Shi, E., Chan, T.H.H., Fletcher, C., Ren, L., Yu, X.,
Devadas, S.: Path oram: an extremely simple oblivious ram protocol. Journal of
the ACM (JACM) 65(4), 1–26 (2018)

28. Will, N.C., Maziero, C.A.: Intel software guard extensions applications: A survey.
ACM Computing Surveys (2023)

29. Wu, D.J., Zimmerman, J., Planul, J., Mitchell, J.C.: Privacy-preserving shortest
path computation. arXiv preprint arXiv:1601.02281 (2016)

30. Wu, Z., Li, R.: Obi: a multi-path oblivious ram for forward-and-backward-secure
searchable encryption. In: NDSS (2023)

31. Xi, Y., Schwiebert, L., Shi, W.: Privacy preserving shortest path routing with an
application to navigation. Pervasive and Mobile Computing 13, 142–149 (2014)

32. Yeo, K., Patel, S., Persiano, G., Raykova, M.: Oblivious ram with logarithmic
overhead (Jun 1 2021), uS Patent 11,023,168

