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Abstract 

Zoonotic diseases represent a significant societal challenge in terms of their health and economic impacts. One Health 
approaches to managing zoonotic diseases are becoming more prevalent, but require novel thinking, tools and cross‑
disciplinary collaboration. Bovine tuberculosis (bTB) is one example of a costly One Health challenge with a complex 
epidemiology involving humans, domestic animals, wildlife and environmental factors, which require sophisticated 
collaborative approaches. We undertook a scoping review of multi‑host bTB epidemiology to identify trends in species 
publication focus, methodologies, and One Health approaches. We aimed to identify knowledge gaps where novel 
research could provide insights to inform control policy, for bTB and other zoonoses. The review included 532 articles. 
We found different levels of research attention across episystems, with a significant proportion of the literature focusing 
on the badger‑cattle‑TB episystem, with far less attention given to tropical multi‑host episystems. We found a limited 
number of studies focusing on management solutions and their efficacy, with very few studies looking at modelling exit 
strategies. Only a small number of studies looked at the effect of human disturbances on the spread of bTB involving 
wildlife hosts. Most of the studies we reviewed focused on the effect of badger vaccination and culling on bTB dynam‑
ics with few looking at how roads, human perturbations and habitat change may affect wildlife movement and disease 
spread. Finally, we observed a lack of studies considering the effect of weather variables on bTB spread, which is particu‑
larly relevant when studying zoonoses under climate change scenarios. Significant technological and methodological 
advances have been applied to bTB episystems, providing explicit insights into its spread and maintenance across popu‑
lations. We identified a prominent bias towards certain species and locations. Generating more high‑quality empirical 
data on wildlife host distribution and abundance, high‑resolution individual behaviours and greater use of mathematical 
models and simulations are key areas for future research. Integrating data sources across disciplines, and a “virtuous cycle” 
of well‑designed empirical data collection linked with mathematical and simulation modelling could provide additional 
gains for policy‑makers and managers, enabling optimised bTB management with broader insights for other zoonoses.
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1 Introduction
Emerging infectious diseases represent a significant pub-
lic health concern as they become more prevalent world-
wide [1–3]. It is estimated that about 60% of emerging 
infectious diseases are zoonotic, 72% of which have been 
estimated to originate from wildlife [2, 3]. In 2019, thir-
teen different zoonoses had confirmed cases in humans 
within the European Union [4]. This has likely been 
accelerated by exponential growth in global population 
size and mobility with associated increases in urbanisa-
tion and concurrent loss of natural habitats. It has also 
led to increasing occurrences of human-wildlife interac-
tions (e.g., improper waste disposal, intentional feeding 
of wildlife, movement of wildlife to human-dominated 
areas) and, therefore, exposure to zoonotic diseases [5–
7]. Contact between humans, livestock and other captive 

animals, and wildlife species is only expected to keep 
increasing, leading to concerns about increased inci-
dences of zoonotic disease transfer [6, 8, 9]. The ques-
tion, however, remains of how to best track and manage 
emerging diseases.

A critical example is Zoonotic Tuberculosis (zoonotic 
TB), which was estimated in 2016 to be linked to 147 000 
human cases and 12 500 deaths worldwide [10]. Zoonotic 
TB is driven mainly by Mycobacterium bovis (i.e., the 
causative agent of Bovine Tuberculosis—also as bovine 
TB or bTB), which is transmitted by several wildlife 
hosts and livestock. Britain and Ireland, as well as many 
other countries worldwide [10], have been increasingly 
impacted by bTB, resulting in significant economic loss. 
In Ireland, for instance, 4.89% of cattle herds tested posi-
tive for bTB in 2023, leading to the humane killing of 
28  868 cattle [11]. This is in addition to the economic 
costs associated with the national bTB eradication pro-
gram with €92 million spent in 2018 alone [12]. Similar 
trends can be observed in the UK, with £70 million spent 
annually for bTB prevention and control [13]. This dis-
ease also raises welfare concerns for wildlife hosts, espe-
cially considering its high prevalence in the wild. Badgers 
(Meles meles), for example, have been shown to have a 
bTB prevalence exceeding 40% in hotspot areas in Ireland 
[14], and red deer in Spain have been estimated to have a 
prevalence of up to 50% [15].

Bovine TB eradication is prioritised by governments 
and researchers due to the significant health concerns 
and economic (trade) impacts. Despite decades of 
control efforts in several countries, the pathogen has 
successfully avoided eradication. There are complex 
reasons as to why this is the case [16], but a primary 
factor relates to its complex dynamics of transmission 
and maintenance across differing hosts and the envi-
ronment. Therefore, new thinking may be required 
to further investigate if disease control can be driven 
toward eradication. Detecting gaps in the current bTB 
literature is an essential step required to identify target 
areas for future research and to further hone govern-
ment eradication strategies.

One way in which this may be addressed, and which 
requires assessment as to its prevalence in the litera-
ture, is through multidisciplinary, coordinated collabo-
rations between the public health sector, veterinarians, 
ecologists and wildlife managers. The importance of 
interdisciplinary approaches is highlighted by the inter-
linked nature of human, animal and ecosystem health, 
which led to the concept of “One World One Health™” 
[17, 18]. Despite such multidisciplinary efforts, the 
effect of stressors (i.e., direct and/or indirect distur-
bances such as hunting, habitat loss, and more broadly 
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habitat and climate change) on animal ecology within 
human-dominated landscapes and the potential emer-
gence of zoonotic disease is still understudied [1]. For 
example, we are aware that human-driven changes 
in the environment can modify interactions between 
hosts, change host and vector densities, and alter host 
longevity and movement [19, 20]. A study by Castillo-
Neyra et  al. showed that rabies transmission was spa-
tially linked to water channels, which act as ecological 
corridors connecting multiple susceptible popula-
tions and facilitating pathogen spread and persistence 
[20]. However, with cities expanding and providing 
urban corridors to wildlife, pathogen persistence could 
become even more of an issue [20], confirming the 
importance of studying the effect of human perturba-
tions on animal ecology and related implications in dis-
ease ecology.

Additionally, transmission of different zoonoses 
often involve multiple agents including humans and a 
diverse range of wild and domestic animals. In order to 
understand the processes behind their transmission, it 
is essential to clearly disentangle the role of each agent 
involved [19]. Due to the complexity of disease trans-
mission and the maintenance of infection within mul-
tiple wildlife hosts, for example between bovine and 
badger populations in the case of bTB, the individual 
components of the transmission chain are often studied 
separately. This can limit our understanding of the sub-
tle underlying effects explaining disease emergence and 
transmission. Therefore, a holistic approach is essen-
tial to develop a complete picture of the transmission 
dynamics of zoonotic diseases like bTB [19]; for exam-
ple, recent research on rabies has shown how empirical 
data can be used to elucidate epidemiological dynamics 
[21].

However, even in cases where empirical data is used, 
there may be limited power, which can impact results 
and interpretation. In these cases, evidence from 
empirical data can now be boosted by mathematical 
simulations, which are powerful tools for predicting 
disease transmission trajectories [22]. Simulations of 
disease transmission through compartmental models 
(e.g., the Susceptible, Infectious, and/or Removed (SIR) 
model and its variations) have been used in a variety of 
disease systems, including the recent COVID-19 pan-
demic. COVID-19, however, is exceptional in the level 
of global concern garnered and resultant significant 
investment in funding. This meant that large empirical 
datasets were also made readily accessible, which made 
direct complex modelling possible [23]. Other zoonoses 
are typically more difficult to model this way due to 
the lack of empirical data on disease transmission and 
associated hosts [24]. Mathematical simulations, using 

for example SIR models, therefore create opportunities 
to also model these zoonoses. In addition, such simula-
tions allow us to undertake experiments that are cur-
rently logistically unfeasible, too costly, too complex or 
on “unobservable” phenomena [22, 25].

As mentioned, lack of information on associated 
hosts and transmission pathways is often a limiting fac-
tor in modelling zoonoses and may potentially also be 
an issue in bTB research. Studying interactions between 
and within host species, as well as the role played by 
each host in the transmission chain, can enable us to 
better understand zoonotic disease dynamics. While 
simulations can achieve much, it is important to note 
that interactions amongst wild animals are heteroge-
neous by nature and vary significantly between differ-
ent populations as well as individuals. Therefore, it is 
important to account for this variability to understand 
the mechanisms behind transmission and subsequently 
be able to predict and control disease spread [8]. This 
can be achieved by using network modelling, where 
heterogeneous contacts between animals can be used 
to simulate disease transmission [8, 24], for example 
using social network analysis (SNA) [8]. SNA can be 
beneficial for disease management since it enables us to 
identify “super-spreaders” (i.e., highly connected indi-
viduals) which can then be targeted for vaccination, 
allowing for a dramatic reduction in transmission [1, 8]. 
In addition, new research is looking at integrating SNA 
with molecular epidemiology (phylodynamics) to better 
estimate transmission pathways and direction of trans-
mission between individuals [26].

Finally, it is of key importance that models of disease 
risk and distribution consider variances across space 
and time [27, 28], which enables us to identify disease 
clusters [5] and model host abundance [29]. As eco-
logical processes occur at different scales (from sin-
gle study sites to macroecological scales), the spatial 
scale used for disease distribution modelling is crucial 
in understanding how these processes exacerbate the 
spread of zoonotic diseases, such as bTB [30, 31]. Large 
spatial scales (i.e., global, continental) can examine the 
broader picture and disentangle how host abundance 
and abiotic factors influence disease prevalence [19]. 
Smaller spatial scales (i.e., country, region) can be used 
to examine population dynamics and pathogen genetic 
diversity at the local level [19]. Temporal patterns are 
important to consider as many zoonotic diseases show 
seasonal variations (e.g., Zoonotic enteric diseases such 
as Salmonella spp, Escherichia coli, Giardia spp) as well 
as daily variations (i.e., due to the circadian rhythm 
of microbes and pathogens as well as chronobiology 
of wildlife hosts) in their infection patterns [32–34]. 
It is of key importance that any gaps in bTB research 
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pertaining to factors discussed above be identified, in 
order to inform future research direction.

Here, we aimed to uncover empirical and methodo-
logical gaps in the peer-reviewed literature on bTB. 
Our intention is to use bTB as an example of a com-
plex multihost zoonotic disease for which recent devel-
opments with sampling design, animal monitoring 
tools and technology, and mathematical modelling has 
helped to fill the gaps in knowledge and improve our 
understanding and ability to combat zoonotic diseases 
more generally.

To achieve our goal, we developed a scoping review 
of bTB multihost epidemiology focusing on 18 research 
questions (reported in Table  1 and conceptually sum-
marised in Figure  1) regarding the type of study, 
whether, which and how wildlife species have been 
monitored, what kind of sampling designs and meth-
odological approaches have been used, and whether 
epidemiological empirical data have been collected. We 
then gathered data from the peer-reviewed literature 
on the mechanisms driving inter- and intraspecies bTB 
transmission, looking in particular at novel and multi-
disciplinary approaches. Our goal is that our work will 
spark renewed discussion on how to monitor and deal 
with zoonotic diseases, direct future research, and 
stimulate focused funding efforts (Figure 2).

2  Methods
We conducted a scoping review (as per PRISMA guide-
lines) [35] by sourcing peer-reviewed papers using Web 
of Science (Clarivate, 2021 Online Version) focusing on 
bovine tuberculosis, and more specifically its most com-
mon cause, Mycobacterium bovis, in cattle and several 
key wildlife hosts. The search terms and list of articles 
have been summarised in Additional file 1. We identified 
3531 potentially relevant papers (i.e., the search included 
all years of publication) which were uploaded and 
screened for duplicates using EndNote (Clarivate, Ver-
sion 20.1.0.15341)(Figure 2). Relevant articles were then 
selected using a PEO (Population, Exposure, Outcomes) 
eligibility criterium structure [36]. The aim of the PEO 
is to identify articles of interest by selecting the “Popula-
tion” (i.e., the subject being affected by the disease/health 
condition) for a particular “Exposure” (i.e., a disease/
health condition) and either a particular “Outcome” or 
“Themes’’ to examine [36, 37]. The PEO eligibility crite-
rium was chosen since it was in line with the recommen-
dations given for scoping reviews that target literature on 
etiology and risk factors, such as a particular disease. We 
decided to use a modified version of the PEO framework 
structure which also includes themes of interest as poten-
tial “Outcomes” [37], as summarised in Table  2 to aid 
reproducibility. All papers that did not meet the eligibility 

criteria listed in Table  2 were removed  (Figure  2). The 
papers were screened by one researcher who coded 18 
variables (stored in an excel spreadsheet) to answer the 
questions of interest summarised in Table 1. The results 
were then imported and plotted using ggplot2 in R ver-
sion 4.1.1 [38].

3  Results
Our results are based on 532 peer-reviewed papers pub-
lished between 1981 and 2022. The study location of the 
papers was representative of 6 continents and 52 different 
countries (Figure 3). The continent with the highest num-
ber of studies on bTB is Europe (n = 303, 169 of which 
were from the UK), significantly higher than those car-
ried out in much larger continents such as Africa, Asia, 
and both Americas (Figure 3). We screened all papers for 
18 different variables (addressing our 18 questions, see 
Table  1) which we summarised in the following section 
under the heading: 3.1 general characteristics (Sub-head-
ings: “Study species and wildlife species”; “Management 
and data type”), 3.2 data analysis (Sub-headings: “Spatial 
analysis, spatial scale and temporal scale”; “Farm envi-
ronment and human perturbations”), and 3.3 epidemio-
logical analysis (Sub-headings: “Intra- and interspecies 
interactions”, “Direction of transmission and compart-
mental models”). Note that most plots presented below 
have a sample size of n = 532, corresponding to the num-
ber of papers screened, with a few exceptions where this 
sample size is higher (for example, in relation to temporal 
scale included in the study, if a paper reported multiple 
temporal scales, therefore contributing to multiple levels 
of a category) or lower (for example, in relation to epi-
demiology, where variables of interest were analysed only 
in the subset of papers describing studies that included 
epidemiological interactions).

3.1  General characteristics
3.1.1  Study species and wildlife species
We found that 41% of bTB papers focused on cattle only, 
whereas 30% of them included both cattle and wild-
life species and 29% targeted only wildlife species (Fig-
ure 4A). Among those papers reporting wildlife data, we 
found that the European badger attracted most research 
effort (50% of wildlife studies), followed by cervid species 
(28%: 13% red deer, 11% white-tailed deer, 5% fallow deer, 
3% roe deer, 2% wapiti elk, from hereinafter referred to as 
simply elk, and < 1% of studies including sika and muntjac 
deer), wild boar (18%), brushed tailed possum (17%) and 
buffalo (4%) (Figure 4B).
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3.1.2  Management and data type
Our results highlighted that only 25% of the studies 
dealt with management solutions (Figure  4C). Manage-
ment strategies mainly included culling (18%) or vac-
cination (6%), with 5% looking at other strategies (e.g., 
fencing, sterilisation). We also found that most papers 
gathered original empirical data (79%), and papers only 
using simulations were limited (4%), with a remaining 
17% of papers combining empirical data and simulations 
(Figure 4D).

3.2  Data analysis
3.2.1  Spatial analysis, spatial scale and temporal scale
We found that the majority of papers did not include 
any spatial analysis. Those that did focused on spatial 
patterns in wildlife (30%, Figure  5B) slightly more than 
cattle (28%, Figure 5A). Among the 149 papers that inves-
tigated spatial analysis in cattle, 58% looked at bTB risk 
and probability of infection; 16% looked at cattle inter-
actions with wildlife, 13% analysed the spatial distribu-
tion of bTB positive biological samples, 11% investigated 

Table 1 Description of the 18 questions (and related variables) used to screen bTB papers published before July 2022 

The variables have been divided into three groups depending on the question type. Variables looking at general aspects of the paper (e.g., type of host species 
included in the study) were grouped as general characteristics. Variables concerning the type of data analysis conducted in the studies were grouped as data analysis. 
Finally, variables focused on the type of epidemiological analysis conducted in the papers of interest were grouped as epidemiology.

Variables

Variable types Variable names 18 questions

General characteristics Study type Is the study on cattle and/or wildlife?

Wildlife species Which wildlife species are included in the study: i.e., cervid, badger, wild boar, brush‑tailed 
possum, wild buffalo?

Management Does the study look at possible management solutions for controlling the spread of bTB 
from wildlife to livestock and their efficacy?

Data type Is the study based on empirical data and/or simulations?

Data analysis Spatial analysis—cattle Does the study conduct spatial analysis in cattle (e.g., looking at risk and probability 
of infection)?

Spatial analysis—wildlife Does the study conduct spatial analysis in wildlife (e.g., using GPS collars)? (Which does 
not imply testing for disease but rather whether the spatial behaviour of the potential 
wildlife host has been studied)

Spatial scale Does the study include a spatial scale and if so which type: local, regional, national 
and international?

Temporal scale What type of temporal scale does the study include, if any? Temporal scale type: daily 
variability, snapshot (1 point in time), intra‑annual variability, interannual variability, future 
scenario predictions

Farm environment Does the data analysis include variables that explain the environment characteristics 
inside the farm (e.g., herd data, habitat within the farm)?

Outside farm environment Does the data analysis include variables that explain the environmental characteristics 
around the farm (e.g., habitat characteristics)?

Weather Does the data analysis include climate variables (e.g., rainfall, soil humidity)?

Human perturbation Does the data analysis include human perturbation variables (e.g., culling, road construc‑
tion, forest clearfell)?

Epidemiology Intra and interspecies interactions Does the study look at interactions between animals and, if so, does it look at intraspecies 
or interspecies interactions?

Interaction type If the study looks at interactions, what type of interactions does it look at? Type of interac‑
tions: indirect or direct

Interaction equipment If the study looks at interactions, how was the data collected? Collection type: direct obser‑
vations, technological tools (GPS, proximity loggers, camera traps), simulation

Interaction methodology If the study looks at interactions, what methodology was used for the data analysis? Meth‑
odology type: differential equations, social network analysis, linear models or other (e.g., 
t‑test/ANOVA, stochastic models)

Direction Does the study include a direction of transmission (e.g., using whole genome sequencing 
of genetic samples) and/or a clear and direct path of contacts between animals (e.g., using 
a social network)?

Epidemiological modelling Does the study look at compartmental models (i.e., SIR) and/or transmission rates?
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cattle movement outside the farm. Interactions between 
farm animals and cattle movement inside the farm were 
included in 5% and 1% of papers, respectively. Among 
the 161 studies which investigated spatial behaviour in 
wildlife (Figure 5B), analysis was undertaken using a vari-
ety of methodologies; direct observations (36%), satellite 
GPS telemetry (19%), spatial patterns predicted by future 
scenarios modelling or mathematical simulations (19%), 
genetic samples (11%), camera traps (7%), proximity log-
gers (4%) and indirect observations (e.g., faecal samples 
for population density estimations; 1%).

We also found that most papers included spatial scales 
at the regional level or smaller (72%), with less than 4% 
papers looking at national and/or international spatial 

Figure 1 Key host species and topics of interest we screened for in the bovine tuberculosis scientific literature published between 
1981 and 2022. bTB host species include cattle as well as a range of wild species: badger, wild boar, cervid species (with the following species 
identified in the literature screened: white‑tailed deer, red deer, fallow deer, roe deer, wapiti elk, sika deer and muntjac deer), brush‑tailed possum 
and wild buffalo. The circles on the outside illustrate the key information sought in peer‑reviewed papers dealing with bTB, which has been 
expanded and clarified in Table 1: type of data collected by researchers; whether spatial analyses were carried out (i.e., in cattle and or wildlife); 
what type of spatial and temporal scales were considered; whether environmental variables were taken into account (i.e., environment in the farm, 
environment around the farm and/or weather variables); whether the methodological approach captured the direction of disease transmission; 
whether the study used common epidemiological modelling techniques (i.e., compartmental models, transmission rates), or whether the study 
included intra/interspecies interactions in their methodology (i.e., what type of interactions did they look at ‑ e.g., direct and/or indirect, what 
type of equipment was used to get interactions data and what methodology was used to analyse the data); finally, if human perturbations (i.e., 
forest felling, culling, vaccination) were taken into account when looking at variables affecting bTB spread, and management solutions to offset 
the spread of bTB, if any. Animal silhouettes were downloaded from PhyloPic [134]. Cattle, cervid, brushed‑tailed possum and wild boar silhouettes 
are under: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication. Buffalo silhouette is by Jan A. Venter, Herbert H. T. Prins, David A. Balfour & Rob 
Slotow (vectorized by T. Michael Keesey) under: Attribution 3.0 Unported (CC BY 3.0) [135]. Badger silhouette is by Anthony Caravaggi under: Attribu
tion‑NonCommercial‑ShareAlike 3.0 Unported (CC BY‑NC‑SA 3.0) [135]

Figure 2 Cascade diagram of the process used in the selection 
of relevant papers. 
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scales (Figure  5C). In regard to temporal scales, 36% of 
the studies considered interannual variability, whereas 
17% tackled intra-annual variability. Thirty-six percent 
of the studies did not analyse any intra- or interannual 
temporal variability (Figure  5D). Only 4% of the studies 

looked at fine-scale variability (e.g., days), whereas in 
a few instances the year of study was not reported at all 
(4%). Finally, 12% of papers included predictions for tem-
poral patterns into future scenarios.

Table 2 Eligibility criteria used in the selection of papers for the systematic scoping review 

The criteria follow a PEO (Population, Exposure, Outcomes/Themes) structure.

Eligibility criteria

PEO criteria Explanation Scoping review criteria Eligible paper

Population Who is the focus of the scoping review? Cattle, badger, deer, elk, wild boar, wild 
buffalo, brushed‑tailed possum (i.e., 
known bTB hosts)

Contains at least one of the species 
of interest as a study species

Exposure What issue is the focal point of the scop‑
ing review?

Bovine tuberculosis (i.e., Mycobacterium 
bovis)

Focal point of the paper must be bovine 
tuberculosis, more specifically the most 
common cause: Mycobacterium bovis

Outcomes/Themes What themes, in relation to the issue, will 
the scoping review focus on?

• Risk: Does the study assess or evaluate 
potential risks of spreading bTB and its 
drivers (biotic and/or abiotic factors)?
• Management: Does the study look 
at potential management solutions 
for controlling the spread of bTB 
from wildlife to livestock and their effi‑
cacy?
• bTB occurrence: Does the study look 
at the presence of bTB in cattle and/or res‑
ervoir hosts at a spatial and/or temporal 
level?
• bTB spread: Does the study look 
at the mechanisms behind the active 
spread of bTB between individuals 
of the same species and/or interspecies 
transmission?

Focuses on at least one of the themes 
of interest

papers
1

2

2−5

5−11

11−24

24−59

59−169

None

Figure 3 World map showing number of papers screened per country. Number of papers per continent: Europe (303), Africa (68), Oceania (60), 
North America (53), South America (29), Asia (26).
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3.2.2  Farm environment and human perturbations
When looking at farm characteristics, 50% of the stud-
ies included some type of herd data (e.g., herd size, bTB 
history), with 44% not including any type of in-farm 
environmental variables (Figure  6A) and 24% of papers 
incorporating other types of farm characteristics. These 
included environmental conditions on the farm (e.g., nat-
ural habitats, land-fragmentation; 13%), farm location in 
respect to other farms (11%) and farm location in respect 
to wildlife (6%).

Environmental conditions outside the farm were 
included in 33% of the papers’ data analysis (Figure 6B). 
These studies mainly looked at habitat characteristics 
around the farm (e.g., wildlife presence, natural habi-
tats), with two papers also including variables focusing 

on habitat variation (e.g., forest clearfell, new artificial 
plantations). We also looked at weather variables (e.g., 
temperature, rainfall) and observed that 4% of papers 
included these as part of their analysis (Figure  6D). 
Finally, 25% of the papers screened included human per-
turbation variables with the vast majority looking at the 
effect of vaccination and culling on transmission dynam-
ics (Figure 6C).

3.3  Epidemiological analysis
3.3.1  Intra‑ and interspecies interactions
We found that most papers (69%) did not include an 
analysis on interactions, with 25% of papers looking at 
intraspecies transmission and 14% at interspecies trans-
mission (Figure 7A). Among the interaction studies, 33% 
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included direct interactions, 17% included indirect inter-
actions and 51% included both (Figure  7B). In addition, 
interaction data were mostly collected using simulations 
(39%), followed by technological tools (29%; e.g., GPS, 
proximity loggers, camera traps), and direct observations 
(23%), with genetic sampling used in 7% of papers (Fig-
ure  7C). The methodology used to analyse interaction 
data also varied between papers with 28% of papers using 
differential equations (e.g., SIR models, discreate mod-
els), 19% social network analysis, 18% linear models (i.e., 
including generalized mixed models as well as simple 

linear regressions) and 38% using a variety of statisti-
cal techniques (e.g., t-test/ANOVA, stochastic models) 
(Figure 7D).

3.3.2  Direction of transmission and compartmental models
We found that a limited proportion of the papers (8%) 
included direction of transmission in their analysis (Fig-
ure  8A). We also found that epidemiological modelling 
techniques (e.g., compartmental models and transmis-
sion rates) were adopted in 15% of the studies (Figure 8B).
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4  Discussion
In this review we found that there has been significant 
research focusing on the badger-cattle bTB episystem. 
We acknowledge, however, that we also found a very 
limited number of studies on other episystems [39–41]. 
Our spatially-explicit overview of bTB research efforts 
(Figure 3) highlights how the badger-cattle episystem has 
been the focus of most research done to date, highlight-
ing a huge amount of money and research effort on bTB 
transmission dynamics across Europe and particularly 
in Britain and Ireland. However, there has been far less 

attention given on other multi-host episystems of coun-
tries in southern Africa, Asia and both South and North 
America. We believe we have more to learn from these 
chronically understudied systems.

Our scoping review found a limited number of stud-
ies focusing on management solutions and their efficacy, 
with very few looking at modelling exit strategies [42, 
43]. This is due to the paucity of studies using math-
ematical simulations, not only to better understand and 
predict possible outputs of management solutions, but 
also to explore long-term bTB dynamics under different 
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scenarios (e.g. [44, 45]). Only a small number of studies 
have looked at the effect of human disturbances on the 
spread of bTB in wildlife host species, and this knowl-
edge gap needs to be tackled as we are aware that human 
perturbations may exacerbate zoonotic outbreaks and 
spread [46–48]. Most of the studies we reviewed have 
focused on the effect of badger vaccination and culling 
on bTB dynamics with only three studies looking at how 
other  human perturbations may affect these dynamics 
[49–51]. Additionally, only two focused on the effect of 
habitat change (e.g., clearfell forest operations) on bTB 

breakdowns [52, 53]. Finally, we observed that there is 
only a few studies looking at the effect of weather vari-
ables (i.e., rainfall, soil humidity, temperature etc.) on 
bTB spread or risk [54]. This is especially important when 
considering wildlife-cattle transmission since it is now 
thought to occur also through environmental sources 
[55].

We have carefully evaluated the outcome of our scop-
ing review, and in the following sections we have summa-
rised data types and methodological approaches which, 
we believe, could contribute to gaining further insights 
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into bTB epidemiology. Based on our review, we have 
identified a significant gap when it comes to prediction 
and simulation models, which would be a useful tool for 
managers to assess disease risk under different land use 
and climate change scenarios. Another major gap is the 
lack of integration between empirically-informed tactical 
(short-term decision support) and strategic (larger spatial 
scales and longer term) models being used concurrently 
in single studies (though we do note that there are excep-
tions, for instance Brooks-Pollock et  al. [56]). Future 
research should include compartmental models fitted 
across space, linked via meta-populations and/or real-
landscape multi-host episystems; or agent-based models 
(ABMs) with empirical data feedback loops. We describe 
such modelling approaches and their prerequisites in the 
following sections, beginning with data and monitoring 
programs, and we continue with recent advances in tech-
nology, mathematical tools and analytical solutions.

4.1  Empirical data and long‑term monitoring programs: 
involving stakeholders and setting up fixed long‑term 
monitoring stations across large spatial scales

As good quality data is required to generate informed 
strategies on wildlife interventions, we need reliable data 
sources to model spatial distribution and abundance of 
the host species involved in transmission. In reference to 
the badger-cattle bTB episystem in western Europe, both 
badgers (with several examples among the literature: [57, 

58]), and cattle [59] have been extensively monitored. 
However, in some populations, it is possible that deer 
and wild boar may also play a role in the local spread and 
maintenance of infection [60]. In Britain and Ireland, 
the significance of deer as a wildlife host impacting bTB 
epidemiology has been uncertain [61]. However, recent 
research is starting to uncover the role deer may play at 
local scales where conditions favour the transmission 
between badgers-deer-cattle [62]. There could be oppor-
tunities to gather data in collaboration with hunters (as 
has occurred in France [63] and Spain [64], for example) 
to have access to a high number of deer samples, within 
and across countries (large spatial scales) and across 
years (long-term temporal scales). Involving stakehold-
ers like hunters may provide the unique opportunity to 
collect pictures of clearly infected animals (e.g., small to 
large white, tan, or yellow lesions on the lungs, rib cage, 
or in the chest cavity) - to be submitted via smartphone 
applications (see [65]). These stakeholders may also 
gather biological samples to be collected by government 
officials at ad hoc collecting centres. This type of infor-
mation would boost opportunities for monitoring the 
dynamics of the disease across multiple spatio-temporal 
scales and in relation to bTB occurrence in the two other 
hosts in the system (badgers and cattle). The ability to 
involve stakeholders across large spatial scales (e.g., hunt-
ers, farmers, foresters) may help to establish system-
atic, relatively inexpensive, and long-term monitoring 
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programmes. These can provide species presence-only 
and presence-absence data for Bayesian species and dis-
ease distribution models (described in Sect.  "Modelling 
and mathematical simulations: social network analysis 
Bayesian species distribution models, and  agent based 
models"), allowing managers to access up to date risk 
scenarios. This approach can also highlight hotspots 
of disease outbreak that could drive focused longitudi-
nal studies using satellite telemetry on multiple species 
simultaneously. This would enable us to better disentan-
gle species overlaps and contact rates [66, 67]. The role 
of stakeholders/citizen scientists in this bTB example 
could be confirming infection, which is almost never 
inexpensive, although there is the hope that cheaper field 
tests will be released in the next decade. The veracity of 
the data collected and level of engagement from stake-
holders/citizen could also be a problem which needs to 
be taken into consideration. For the time being, a well 
distributed number of samples could be collected from 
hunters to cover large areas systematically and limit the 
costs required for testing.

When it comes to establishing long-term monitoring 
programs, fixed long-term sampling stations across large-
spatial scales can capture wildlife population spatio-tem-
poral dynamics. This can, on one hand, provide data on 
occurrence, relative density, and spatio-temporal over-
laps of the host species and, on the other hand, gather 
key empirical data required to parameterise mathemati-
cal simulations. Camera traps are a popular and effective 
tool for estimating state variables of wildlife populations 
[68]. For ungulates, they have successfully been used to 
understand temporal behaviour (e.g., diel activity pat-
terns, [69]), spatial behaviour (e.g., occupancy, [70]), 
and abundance (e.g., density, [71]). Camera traps have 
been used for quantifying temporal and spatial overlap 
of wild ungulates with domestic animals in open systems 
[72, 73] with varying results [74]. Kukielka et al. demon-
strated their use in identifying hotspots of indirect wild-
life–livestock overlap for the prevention of bTB crossover 
[72]. For wildlife, especially ungulates, camera traps offer 
powerful monitoring solutions not only to measure 
abundance and spatial overlap, but also to understand 
behavioural dynamics that may align closely with disease 
risk. An example is the use of camera traps to individually 
recognise animals, which has been shown to be possible 
in a recent study by Hinojo et al. [75]. They demonstrated 
how roe deer (Capreolus capreolus) antler shapes could 
be used to identify distinct individuals. This data could be 
used to obtain better estimates of abundance as well as to 
build wildlife social networks (which will be discussed in 
more detail in Sect. "Modelling and mathematical simu-
lations: social network analysis, Bayesian species distri-
bution models, and agent based models") and therefore 

provide information on contact rates between and within 
species. The parameters from these analyses would be 
useful as an input for mathematical simulations to help 
better understand disease transmission dynamics in 
wildlife populations.

The use of camera traps as well as satellite telemetry 
can be quite challenging to use in developing countries 
since they can be extremely expensive (satellite telemetry, 
in particular) as well as difficult to use when collecting 
data in remote locations (camera traps, in particular). In 
addition, the invasive nature of satellite telemetry - which 
requires trapping animals - often makes it hard to collect 
data from enough individuals from an ethical, logistical 
and administrative points of view. Therefore, to improve 
our understanding of episystems in developing nations, 
advances in non-invasive diagnostic techniques and 
eDNA (i.e., a genetic sampling technique that uses envi-
ronmental sources  -  such as water and soil  -  to extract 
genetic information used for biosecurity and biomoni-
toring purposes) are essential [76–79]. An example of a 
widely used non-invasive sampling technique is faecal 
sampling [76–81]. Faecal samples are a relatively inex-
pensive way of monitoring diseases and health status in 
wildlife species. It is also possible to collect a high num-
ber of samples in a short period of time, which is espe-
cially important for long-term monitoring programs of 
wildlife hosts. Collecting eDNA can be even faster and is 
especially useful for long term spatio-temporal dynam-
ics of infectious pathogens at the wider scale, which can 
improve the monitoring of zoonoses at the country and 
continental level [77].

However, timing is key when monitoring diseases as 
infectious pathogens can mutate and be rapidly trans-
mitted between wildlife, humans, and domestic ani-
mals, with potentially devastating impacts on human 
health and animal welfare. Therefore, novel and rapid 
genetic techniques, such as culture-free pathogen genetic 
sequencing [82], can greatly benefit disease surveillance 
by decreasing the time needed to sequence pathogens 
and, consequently, the time needed to make essential 
ecological management decisions and activate public 
health responses. In addition, these new sequencing tech-
nologies can be very useful during wildlife field studies 
in isolated areas since they can be rapidly deployed and 
need limited laboratory equipment for processing [82]. 
In addition, when monitoring zoonosis such as bTB and 
collecting related data (invasively or not) it is impor-
tant to recall the characteristics of the bacterium itself, 
Mycobacterium bovis. For example, different lineages 
exist across the globe [83] with different strains poten-
tially showing different evolutionary [clock] rates. This 
greatly affects the rate at which the bacterium needs to 
be monitored among countries, and we believe that faster 
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sequencing technologies will be of great help in tracking 
the evolution and spread of different lineages, informing 
adaptive management of bTB (and zoonosis in general) at 
the local level.

4.2  Recent advances with technology can help to gather 
data for mathematical simulations: interindividual 
variability within animal populations and human 
socio‑economic factors matter and should be taken 
into account

Animal-attached sensors, i.e., biologging [84, 85], can 
allow us to disentangle animal behaviour and the move-
ment patterns that promote disease transmission. GPS 
units are the most widely used of these sensors, providing 
data on animal space use. Proximity sensors can detect 
when two or more sensor-equipped animals interact and 
can be used to detect direct encounters which may result 
in disease transmission. Collars with both GPS units and 
proximity sensors have been used concurrently on badg-
ers and cattle uncovering that, while badgers show a 
habitat preference for cattle pastures, there were rare to 
no direct contacts between the two species [86, 87]. This 
indicates that environmental transmission may play an 
important role in the case of bTB [87]. As such, proximity 
sensors allow insights which are not obtainable through 
investigating shared space use alone. When the disease 
state of an individual is known, proximity sensors can 
also provide information on if and how the duration of 
exposure to said individual affects transmission rate to 
other members of the population [88]. Other biologging 
sensors, including accelerometers, magnetometers, and 
gyroscopes, are used to classify distinct behaviours from 
logged datasets [85]. Behaviour classification allows activ-
ity budgets to be built so that behaviours which increase 
the likelihood of acquiring or transmitting pathogens can 
be detected and mapped in the landscape. Accelerome-
ters have also been used to compare micro-movements 
in diseased and healthy animals, with diseased animals 
exhibiting differences in posture, gait dynamism (e.g., the 
“bounce” in subsequent walking steps) and energy levels 
[89]. Monitoring such micro-movements in cattle could 
act as a warning sign to test herds for bTB when signs of 
illness are detected, e.g. by adapting existing systems in 
place to monitor lameness through accelerometry [90]. 
These effects of disease on the internal state of animals 
yield important insights into how disease status impacts 
animal movement patterns and therefore disease spread.

Biologging and satellite telemetry monitoring can, on 
one hand, provide answers aimed at understanding the 
transmission dynamics within multi-host disease systems 
[87, 91, 92] and, on the other hand, provide highly valu-
able empirical data that are strongly needed by param-
eter hungry mathematical simulations [88]. However, 

when tracking animals, special care should be taken to 
understand the behaviour of those animals that we are 
monitoring, and specifically whether we are following a 
bolder subset of the overall population that are easier to 
trap. This applies also to where we study animals which 
will provide empirical data for mathematical simula-
tions, because behaviour and movement ecology may 
vary significantly depending on the level of human dis-
turbance. We are aware that tracking multiple individuals 
of multiple species can be expensive and not accessible 
unless large amounts of funding is available. However, 
recent technological advances with satellite telemetry 
using LoRaWAN transmission technology [93, 94] have 
been developed to monitor livestock at affordable prices 
(e.g. less than 100 euros for 1 GPS unit), opening up new 
opportunities for extensive monitoring programmes in 
wildlife, within and across species.

The concept of One Health has highlighted the role that 
human activities play in the spread of zoonotic diseases 
[95]. For example, urbanisation, improper waste disposal, 
and the intentional feeding of wildlife have been shown 
to result in wildlife movement into human-dominated 
areas [7], which may facilitate disease transfer to humans 
and other animal communities [96]. However, evidence 
has shown that only a select proportion of individuals 
within wildlife populations will engage in interactions 
with humans [97] or utilise these human-dominated 
areas [7, 98]. Individual variation in movement patterns 
[99], sociability [100], and immunological defence [101], 
among others, impacts disease transmission and spread 
[102]. There is also evidence that certain behavioural 
types have higher infection rates than others (e.g. [103, 
104]), although the causal direction may be difficult to 
determine since infections also alter host behaviour [103, 
105]. Regardless, to gain a more complete understand-
ing of disease spread, future studies should incorporate 
this individual variation. These studies often utilise direct 
behavioural observations, since these are an invaluable 
data source that can be used to determine which indi-
viduals in a known population are more likely to engage 
in close-contact interactions with humans [97] or access 
human areas (e.g., farmland) [106]. This can provide us 
with information on which individuals in a population 
may be at “higher risk” of transferring disease to humans 
or to other animal populations.

Nevertheless, considering human behaviour is also 
fundamental in infectious disease transmission. The One 
Health definition has changed in 2022 accordingly and 
now it includes the importance of society and its diver-
sity in values and beliefs in effectively fighting zoonoses 
[107, 108]. Collaboration between scientific disciplines is 
not enough to improve current and emerging infectious 
disease transmission. It is fundamental that community 
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members and expertise at every level, from village to 
continent, be included if we wish to equitably improve 
human health and animal welfare [107]. In this way we 
may also improve the effectiveness of disease manage-
ment solutions by tailoring them to communities instead 
of trying to use the same solutions in different areas with-
out taking into account socio-economical differences.

4.3  Modelling and mathematical simulations: social 
network analysis, Bayesian species distribution 
models, and agent based models

Social network analysis (SNA) is a powerful tool in 
uncovering the causes and consequences of disease 
transmission within animal communities [109, 110]. In 
the past decade SNA has mainly focused on understand-
ing contact and transport networks of cattle and livestock 
movements, as well as wildlife movements [111–113]. 
Nonetheless, it could be expanded to better unravel the 
dynamics of disease transmission between wildlife popu-
lations and livestock [110]. Unlike in domestic cattle, the 
movements and interactions of wildlife can be challeng-
ing to track. As a result, a small proportion of individu-
als are typically monitored using biologging and satellite 
telemetry, as discussed earlier. Recent advances in sta-
tistical analysis of social networks have paved the way 
to obtain better inferences from limited data [114–116]. 
The first step is to identify the network metrics affecting 
disease transmission dynamics that best suits the disease 
system under study (e.g., transitivity, betweenness cen-
trality) [114, 115]. Using global metrics of a social net-
work, for example, can help estimate potential changes 
in the overall structure of the wildlife population. A com-
monly used global metric when studying disease trans-
mission dynamics is transitivity, which represents the 
tendency of a population to cluster together and is con-
sidered to be negatively correlated with disease trans-
mission rates [113]. Local network metrics, on the other 
hand, can help in understanding social characteristics at 
the individual level. A type of local metric is betweenness 
centrality, which represents the tendency of an individ-
ual to serve as a bridge between one part of the commu-
nity and another (i.e., a community in SNA is a group of 
nodes, for example individual animals, with denser con-
nections between each other compared to other nodes 
in the network), helping the selection of individuals to be 
vaccinated/removed from the population.

Once we have selected the metrics to use, they can be 
tested via pre-network permutations of available observa-
tions to ensure that the available data sufficiently captures 
non-random interactions among the animals. However, 
when using small samples for SNA we also must be care-
ful on what we infer from it. Recent research [115] has 
shown that estimates may be inaccurate, or “noisy”, at 

low sample sizes. Therefore, stable metrics with respect 
to low sample sizes should be identified before making 
inferences. Research on data collected for wild ungulates 
[115], for example, shows that the betweenness central-
ity values of smaller samples remain well correlated with 
those in larger samples, indicating that this metric can be 
used even when the social network is built using a small 
sample of the population. Similar correlation analysis can 
be done for other network metrics, mainly in cases of 
limited data availability for disease transmission. When-
ever limited animals from a population are monitored, 
confidence intervals around the network metrics should 
also be obtained to make informed decisions using statis-
tical evidence.

Using the methodologies discussed above (see Silk 
et al. and Kaur et al. for more details, [113, 115]) we now 
have the possibility of analysing all telemetry data col-
lected thus far on species involved in bTB transmission 
(e.g., badgers, wild boar; but also applicable to species 
from other disease systems) to test hypotheses on disease 
transmission dynamics. For example, we can now use 
these statistical techniques to better understand behav-
ioural patterns of wildlife species, as well as comparing 
networks overtime and how wildlife behaviour can be 
affected by perturbations in the environment (e.g., cli-
mate change, land-use change or other type of anthro-
pogenic factors) even when only limited data is available 
[115]. In addition, it will help in collecting future data 
since these methodologies can be used to estimate the 
minimum number of individuals needed in order to reli-
ably build a social network, which can vary enormously 
depending on the scope of the project as well as the 
wildlife species of interest. This will, for example, help in 
answering specific questions regarding the role of deer 
species in bTB transmission by simultaneously collecting 
telemetry data on badgers and deer species in Ireland.

Knowing the distribution and abundance of wildlife 
vectors (i.e., a living agent that carries and transmits 
pathogens  -  e.g. HIV, Covid-19, bTB  -  to other living 
beings) is also essential when aiming to reduce zoonotic 
risk [117, 118]. To that aim, Species Distribution Models 
(SDMs) can be used to produce models of the distribu-
tion and abundance of species based on occurrence data 
[119]. In recent years spatial modelling has undergone 
a conceptual and technical revolution. New modelling 
techniques within Bayesian [120] and Machine Learning 
frameworks [121] allow us to develop spatially explicit 
models of animal abundance and distributions with 
unprecedented accuracy, and the improvement of com-
putational power allows computers to rise to the chal-
lenge and cope with the high computational demands of 
these models. The flexibility of the new techniques allows 
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us to use different types of data (e.g., individual track-
ing data, survey data, and even citizen science data) and 
combine them in what are called Integrated Species Dis-
tribution Models (ISDMs), while still taking into account 
the different observational processes of each type of data, 
to produce accurate models even in data scarce systems 
[122]. In addition, these new techniques also allow for the 
calculation of uncertainty in a spatially explicit manner, 
which will help us evaluate the quality of the models and 
better interpret the results. Bayesian ISDMs using INLA 
(i.e., Integrated Nested Laplace Approximation) [123] 
were used to model the distribution of red, sika and fal-
low deer in Ireland, which are vectors of bTB [65]. The 
models produced, for the first time, relative abundance 
and distribution maps for each species, which will be an 
essential tool for deer population management and thus 
towards bTB eradication. They are already being used to 
determine high sika-density areas for a pilot study on the 
effect of deer on biodiversity, which will provide further 
management tools for the overabundant deer popula-
tions in Ireland. In addition, hierarchical Bayesian mod-
els are also the basis of a new project aimed at modelling 
European badger sett distribution, badger density, and 
their body condition. These three models will be linked 
to bTB infection in badgers and outbreaks in cattle, in an 
attempt for the first time to link badger spatial ecology to 
bTB management and eradication in Ireland (V. Morera-
Pujol 2023, personal communication).

Agent-based simulations are another useful modelling 
approach, or complementary tool to traditional meth-
ods, when data is limited/not available; helping eluci-
date transient effects of wildlife disease transmission in 
human-dominated landscapes [25]. These models serve 
as a computational laboratory that allow researchers to 
plug-in available real-world data and parameterise both 
agents (for instance, a badger) and the environment (for 
instance, a mosaic of natural habitats and farms). This 
enables researchers to empirically test if animal behav-
iour in response to landscape change or management 
interventions modulates disease risk dynamics over time 
and space [124]. Recent technological advancements have 
bolstered agent-based simulations allowing for high-
resolution spatio-temporal models that incorporate geo-
graphic information systems (GIS) data to create hyper 
realistic environments, and machine learning algorithms 
to introduce cognition and applied decision making for 
agents. Furthermore, process-driven agent-based models 
(e.g., disease transmission) can be integrated into larger 
mechanistic agent-based models (e.g., ecosystem scale 
epi-dynamics) for increasingly higher-resolution models 
that reduce uncertainty and overly-theoretical param-
eterisation of model entities [25]. The development of 
highly-realistic agent-based simulations, parameterised 

with high-resolution data, for the management of bovine 
tuberculosis in multi-host systems can contribute to 
answering important policy questions and how best to 
select management directions. In practice, this allows for 
the totality of data collected in complex multi-host sys-
tems to be incorporated into a single environment where 
they may be measured against one another in the simula-
tion to deduce the possible effects of each predictor. Take 
for example the European badger as the primary wildlife 
host in Ireland as a case study. Badgers are prevalent in 
the agroecological mosaic of natural habitats and farms 
in Ireland. Agent-based simulations can utilise data from 
badger tracking studies [51, 125, 126], habitat suitability 
[127], culling and vaccination programmes [128] and dis-
turbance regimes [52, 129] to simulate badger movement 
and behaviour realistically. GIS data for farm location 
and characteristics [130], as well as ecological and envi-
ronmental data streams, can then place the badger agent 
into a highly realistic environment to examine how these 
factors affect badger movement, behaviour, and other 
parameters, for instance, contact rates with domestic ani-
mals. Interactions between agents and the environment 
can be modulated by sub-models to further increase the 
strength of the model. For instance, weather sub-models 
(e.g., rainfall) may influence agricultural practice and 
thus contact rates, as well as the length of time Myco-
bacterium bovis persists in the environment. Alterna-
tively, disease transmission could also be sub-modelled 
so that contact rates may/may not result in infection [25]. 
Finally, management decisions can be trialled within the 
simulation to see how likely decisions change the status 
of disease within the study system, allowing for “What 
if?” scenarios to play out without risk to animal or human 
welfare or livelihoods.

5  Conclusion
Our exploration of the recent literature on multi-host 
bTB episystems, as an example of zoonotic One Health 
challenges, has revealed a significant body of work uti-
lising a diversity of methodologies at different spatio-
temporal scales and subjects (individual vs. group) levels. 
There was a significant bias in the literature towards 
one particular episystem, the badger-cattle system that 
predominates in north-western Europe, reflecting large 
financial burdens (for both governments as well as the 
agricultural sector) and research funding investments. 
Alternatively, there were comparatively less publications 
from the global south, especially in complex muti-host 
episystems in southern Africa and India. In such episys-
tems, the cost-effective and efficient collection, collation, 
and use of data are essential to drive greatest added value 
to inform on policy options.
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Given the results from our scoping review, we reflect 
on several areas where progress could be made. This 
includes the need for high-quality data on wildlife hosts, 
even in episystems where significant research invest-
ments have already been made. Such careful collection 
and utilisation of empirical data could then help feed the 
development of social network analyses, Bayesian distri-
bution models and eventually mathematical and simu-
lation-based models. Mathematical simulations, such as 
ABMs trained on synthetic data and parameterised by 
real empirical data, can answer questions that would oth-
erwise be too costly, unethical, or both. Such models can 
also be used to explore different scenarios in an increas-
ingly human-dominated world, under different levels of 
land-use and climate change, or with the appearance of 
invasive species in already complex multi-host epide-
miological systems. In addition, it can help build cross-
disciplinary bridges with other areas, deriving significant 
insights into interspecific transmission like phylody-
namic modelling.

We have used our Irish experience to inspire research-
ers from across the globe; Ireland invests considerably in 
surveying, culling, and vaccinating badgers [131, 132]. 
However, the question remains  - which applies to other 
countries and zoonotic episystems - should we be doing 
more or can we be smarter with the data we already 
have? We suggest the latter. Yes, there is a need to be 
smarter, arranging ad hoc data collections using the lat-
est technological tools to estimate unknown or uncer-
tain parameters. But we also have to focus our efforts 
on mathematical modelling (ABMs, INLA-Bayesian) to 
optimise our information gain from the large, high-qual-
ity datasets collected over the last few decades (and for 
sparser datasets, taking advantage of recently developed 
statistical tools for enhanced inferences, see [54, 68]). We 
have (almost) all the data required to parameterise simu-
lations with significant utility: this should be one main 
focus in future research. We believe that, ideally, the 
feedback of simulation and mathematical tools to inform 
data collection, and the “virtuous cycle” of feeding this 
new data to improve the next generation of model is a 
priority for decision making tools for policy makers and 
programme managers.
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