N
N

N

POSTER: Compact Linked Data for Constrained Web of

HAL

open science

Things Using CBOR-LD
Satendra Raj, Aryansh Tripathi, Kamal Singh

» To cite this version:

Satendra Raj, Aryansh Tripathi, Kamal Singh. POSTER: Compact Linked Data for Constrained Web
of Things Using CBOR-LD. IEEE Symposium on Computers and Communications (ISCC), Jun 2024,

Paris, France. hal-04588347

HAL Id: hal-04588347
https://hal.science/hal-04588347

Submitted on 28 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04588347
https://hal.archives-ouvertes.fr

POSTER: Compact Linked Data for Constrained
Web of Things Using CBOR-LD

Satendra Raj', Aryansh Tripathi!, and Kamal Singh?
Yndian Institute of Technology, BHU, India
2Univ Jean Monnet, IOGS, CNRS, UMR 5516, LaHC, F - 42023 Saint-Etienne, France
Email: !satendra.raj.civl9@iitbhu.ac.in, aryansh.tripathi.civ20@itbhu.ac.in, ?kamal.singh @univ-st-etienne.fr

Abstract—Web of Things (WoT) brings web technologies and
knowledge graphs to Internet of Things. JSON-LD, with its
popularity in representing and exchanging structured data on
the web, can be a suitable data format for WoT. However, its
verbose nature can pose challenges for constrained IoT devices
with limited bandwidth, and memory. In this paper, we study
CBOR-LD scheme for encoding JSON-LD to a lightweight binary
format CBOR (Compact Binary Object Representation). We also
study possible optimisations such as using a custom dictionary.
We provide a C library and evaluate it on several examples.
Results demonstrate that our approach provides savings up to
94% in terms of network overhead for IoT devices.

I. INTRODUCTION

Web of Things (WoT) evolves the Internet of Things (IoT)
paradigm by adding web technologies and knowledge graphs.
WoT can use JSON-LD [1], which is a JSON-based format
for representing and exchanging structured data on the web.
JSON-LD offers significant benefits for IoT or WoT domain
including semantic interoperability, seamless data integra-
tion from heterogeneous sources, contextual information, and
linked data. Through semantic annotations, JSON-LD enables
IoT devices and systems from various manufacturers to inter-
pret data consistently, promoting interoperability. Additionally,
JSON-LD’s flexible and standardized format facilitates the
integration of diverse data sources such as sensors, actuators,
and control systems. Contextual information embedded along-
side data in JSON-LD enriches IoT applications by adding
additional meaning and significance to data generated. Lastly,
JSON-LD’s linked data property enables the discovery and
integration of distributed data sources, empowering more com-
plex applications and analyses. It enables flexible declarative
search as data takes the form of a graph. Some illustrative
examples of queries could be to search the name of rooms
whose light is ON in a building, search for rooms whose
electric consumption is more than a threshold, etc. Such graphs
can also allow for inference of new facts by using a reasoner.

However, one disadvantage of JSON-LD is it’s verbose
format that can be a significant overhead for constrained
WoT objects. Some of the constrained objects have limited
bandwidth, small amount of memory, limited computational
capabilities and run on a battery.

The work by Satendra Raj and Aryansh Tripathi was accomplished during
their internship stay in Laboratory Hubert Curien, Saint-Etienne, France.

This paper contributes by proposing an open source C
library! to first encode JSON-LD terms to integers based on
a dictionary and then to convert it to CBOR format. CBOR
is a compact binary format that supports various data types
for efficient memory usage. It is designed to be lightweight,
easy to parse, and optimized for low-power devices. CBOR
supports nested structures, schema-based validation and facil-
itates readability through stream processing making it suitable
for representing complex data in a compact format. C language
was chosen to make it more suitable for embedded devices.
Our implementation is based on an in-progress CBOR-LD
standardisation in World Wide Web Consortium (W3C)2. In
this paper, we also explore optimisation possibilities such as
adding custom terms to the dictionary used for encoding. Our
results show that these optimisations are able to obtain further
savings in terms of bandwidth.

This paper is organised as follows. Section II discusses
related work. Section III details the encoding scheme from
JSON-LD to CBOR-LD, Section IV performs evaluation on
some example data and Section V concludes the paper.

II. RELATED WORK

HDT (Header, Dictionary, and Triples) [2] represents the
state of the art on compacting the RDF (Resource Description
Framework) data. RDF [3] is another popular format for
representing linked data. The authors in [4] introduced a novel
in-memory RDF dictionary using optimized Trie structures
to efficiently compress common prefixes. The work in [5]
proposes a compact representation of semantic sensor data,
in RDF format, by sending the repeated measurement values
only once.

For JSON-LD, some previous works [6] have also studied
compact representations for JSON-LD as well as RDF data.
The work in [6] compared different approaches and proposed
JSON-LD compaction by mapping resource identifiers to
shorter strings. They found that such compaction coupled
CBOR, can lead to compaction ratios around 50-60% com-
pared to HDT. More recently, the work on using CBOR to
compact the JSON-LD data has been ongoing in W3C and it
is the focus of study in this paper.

Thttps://gitlab.com/coswot/cborld-c
Zhttps://json-1d.github.io/cbor-1d-spec/

{ @graph® 1 L1

grapn’ 0: "Observationf234534",
Wit 1 ; " 2: 25,
@id"; "Observation/234534", 3a 1

"@type": "sosa:Observation”,
"sosa:hasFeatureOfinterest": {

0: "apartment/134"
"@id": "apartment/134" 1

3:’::{

"s:osa:hasResuIt": { 0: *_:g462280"
"@id": "_:g462280" }} {
}} 0: "_:g462280",
! 2:212,
"@id"; "_:g462280", 2:,1.}6{2
"@type": "qudt-1-1:QuantityValue", :
"qudt-1-L:unit": { %80 {
@id": "qudt-unit-1-1:DegreeCelsius' 2: 106,
"qudt-1-1:numericvalue": { N 3:"-2.99E1" N
"@type": "xsd:double", [J \ > CBOR
"@value": "-2.99E1" ' 1 { '
} 0: "Observation/83985",
{' 2: 25,
. . 35: {
"@id"; "Observation/83985", AT "
"@type": "sosa:Observation”, }0' 9462380

"sosa:hasResult": {

i . " ho{
. @id": "_:g462380 0: ' q462380",

} 2:212,

¢ 241: {
"@id"; "_:g462380", }O: 762
"@type": "qudt-1-1:QuantityValue", 3’80' {
"qudt-1-1:unit": { 2. i06
}"@Id": "qudt-unit-1-1:DegreeCelsius" 3. "2 24E1"
"t'qudt-l-l:numeric\lalue": { }}]

"@type": "xsd:double", 3

"@value": "2.24E1"

Fig. 1. JSON-LD to CBOR-LD

III. JSON-LD 10 CBOR CONVERSION

Converting JSON-LD data to CBOR involves pre-
processing and transformation steps. Figure 1 illustrates an
example from SSN Ontology, termed as Example 1 in the SSN
document [7]. This example comprises a graph of nodes which
shows the observation of the difference between the outside
and inside temperature. The graph consists of two observations
of outside temperature difference as well as the value of
inside temperature. The first observation is represented by the
node with the ID Observation/234534. This observation
has a feature of interest, which is an apartment identified as
apartment/134. The observation also has a result, which is
a quantity value represented by the blank node __:g462280.
The value of this quantity is a temperature difference with a
unit of Degree Celsius and a numerical value of “-2.99E1”
(which equals -29.9 degrees Celsius).

Second observation is represented by the node with the ID
Observation/83985. This observation also has a result,
which is another quantity value represented by the blank node
_:g462380. The value of this quantity is a temperature
inside the apartment equal to “2.24E1” (22.4 degrees Celsius).
Whether the observation is about the difference or apartment’s
temperature will be described by other ontology features.

Representing data like above has several advantages such
as interoperability among others, as discussed before. It can
be seen that the knowledge about data and semantics are
represented in the data itself, i.e, what is data about, what
is the relation of a data entity with other standardised concepts.

However, this format can be verbose leading to significant
bandwidth overhead for constrained objects. Thus, CBOR-LD
encodes and compacts the data as follows. First the standard
JSON-LD terms like @id, @graph, @type are mapped
to integers like 0,1, 2, etc. assuming a universal dictionary
which can be standardised. Note that these values for mapping
are subject to change as the standardisation is in process. This
mapping to integers is important as CBOR is more efficient
for encoding integers as compared to text. Next, the standard
terms from different ontologies like SSN, SOSA, QUDT,
(i.e. the ones used in the example) are mapped to integers
assuming that these terms in the ontology can be obtained
from the given ontology, sorted and then mapped one by one
to integers. As ontologies are standardised and their terms
are well known, if this above algorithm of constructing the
dictionary is standardized as well then any application can
construct this dictionary independently. Thus, all terms from
different ontologies like sosa:observation, which is
a string of size 16 bytes, are transformed to integer values
such as 25 which takes only 1 byte. Timestamps and dates
like 2017-04-16T00:00:12+00:00 are also converted
to Unix time epochs as integers. Finally the graph consisting
of integers is then serialised into CBOR format which finally
compacts the size of the graph.

Once a graph is converted to CBOR then some processing
operations, querying and partial graph extraction etc., can
always be applied on it without converting it back to the
original format. Thus, such data can stay in CBOR format
inside the network of constrained objects and save bandwidth
during exchanges. That way the need to decode it will arise
only during some final operations in the application.

A. Custom dictionary

Note that after the CBOR-LD encoding, as described above,
some terms will still be left which could not be encoded
as integers. This is because they may be data specific terms
and URLs. In this paper, we focus on 6 examples from SSN
ontology document [7] numbered according to W3C recom-
mendation: Example 1,10,12,14,17 and 19. They are about
the Indoor and Outdoor Temperature, electric consumption of
an apartment, sensor used to observe tree height, observation
of seismograph, movements of spinning cups on wind sensor
and CO2 level observed in an ice core, as in Table 1.

Some of the graphs can have specific URLs such as
Observation/234534 and apartment/134 in Ex-
ample 1 or apartment/134/electricConsumption,
sensor/926 in Example 10 [7]. If these terms or URIs
remain static then they can be encoded to integers using a
custom dictionary. If some fields are dynamic, but are integers
like the Observation/234534 then the static and dynamic
parts can be separately encoded and sent as an array of 2
numbers. First integer in the array will match Observation
and other will be the number 234534 itself.

Such a custom dictionary will be specific to the application
and for example can be exchanged in an offline manner. For

JSON-LD Data Comment Size Gzip CBOR-LD Custom Dictionary | Custom Dictionary+Gzip
Bytes | Bytes | Bytes, Savings Bytes, Savings Bytes, Savings
SSN Example 1 Indoor and Outdoor Temperature 904 301 178, 80.3% 136, 84.9% 118, 86.9%
SSN Example 10 Electric consumption of an apartment 5322 830 1616, 69.6% 510, 90.4% 340, 93.6%
SSN Example 12 Sensor used to observe tree height 3748 573 1069, 71.5% 519, 86.2% 314, 91.6%
SSN Example 14 Observation of seismograph 3503 773 1156, 67% 480, 86.3% 390, 88.9%
SSN Example 17 | Movements of spinning cups on wind sensor | 2817 476 1057, 62.5% 227, 91.9% 166, 94.1%
SSN Example 19 CO2 level observed in an ice core 2414 535 754, 68.8% 209, 91.3% 194, 91.9%
TABLE T

BYTE SAVINGS WHEN USING CBOR-LD COMBINED WITH CUSTOM DICTIONARY AND GZIP

memory optimisation, only a sub-dictionary containing the
required terms by the IoT object may be used. Finally, the
resulting CBOR data can in some cases be compressed a bit
more by using compression methods and tools such as gzip.

B. CBOR-LD C library

Our implementation provides three major functions -

e encode_to_cbor_compressed to convert JSON-
LD data into CBOR-LD format

e decompress_decode_to_Jjson to convert CBOR-
LD data back into JSON-LD format

e cborsearch functions, which can be useful to perform
searches for triples or key value pairs in CBOR-LD data.

Either a predefined dictionary or a contextMap is required
to map context URIs and standard terms to integers. It
is needed for encoding and decoding CBOR-LD data. The
documentLoader callback loads context documents, con-
structing terms-to-integer mappings.

During encoding, a transform map is generated, compress-
ing JSON by mapping its keys to integers using an algorithm
applied to the context document’s keys. All terms (keys) of
context documents are sorted and assigned unique integers,
hence keys of the JSON-LD document will be an integer in
compressed form and the term map can be generated again
using the same algorithm while decoding.

IV. EVALUATION

We now evaluate the performance of CBOR-LD library with
and without a custom dictionary. The 6 examples were taken
from SSN document [7] for this study and they were converted
to JSON-LD using RDF distiller’. The URLs of different
ontologies which are provided by the key @context were
removed as they are well known URLs.

Table I shows the results. We can see that CBOR-LD can
reduce the size of data significantly. We estimate savings as
100 - Originalorsiigzienafl Esniczoeded size. We can see that CBOR-
LD can provide savings ranging from 62% to 80% approx.
Some graphs like Example 14 could not reach higher savings
because they have several specific URLs.

Now, when we apply the custom dictionary based con-
version then we see that higher savings are achievable as
compared to the default CBOR-LD algorithm. With custom
dictionary encoding specific URLSs to integers we can achieve
between 85% to 92% savings with the examples considered.

3http://rdf.greggkellogg.net/distiller?command=serialize

There is still some more scope for improvement. For ex-
ample, the blank node identities like _:g462380 were not
encoded and the ideas discussed before can be explored.

We also observe that gzip can help in compacting the data
as well. Sometimes gzip provides better performances as com-
pared to vanilla CBOR-LD. However, CBOR-LD combined
with custom dictionary as well as a compression tool like
gzip provides the best performance and we are able to obtain
savings up to 94.1%. Though, sometimes when small size data
is compressed using gzip then it takes more space than the
original. Hence, the resulting size should be checked before
sending the data over the network.

V. CONCLUSION

This paper proposed a C library for encoding JSON-LD
terms into integers and converting them to CBOR format.
The proposed approach offers significant savings in terms of
network overhead, making it an ideal solution for constrained
WoT objects. Future work includes further optimizations for
dictionary creation and testing in real world scenarios.

VI. ACKNOWLEDGEMENTS

This work is supported by grant ANR-19-CE23-0012 from
the Agence Nationale de la Recherche, France, for the CoS-
WoT project®.

REFERENCES
(1]
(2]

M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindstrom,
“JSON-LD 1.1,” W3C Recommendation, Jul, 2020.

J. D. Fernandez, M. A. Martinez-Prieto, and C. Gutierrez, “Compact
representation of large RDF data sets for publishing and exchange,” in
International Semantic Web Conference. Springer, 2010, pp. 193-208.
B. McBride, “The resource description framework (rdf) and its vocabulary
description language rdfs,” in Handbook on ontologies. Springer, 2004,
pp. 51-65.

H. R. Bazoobandi, S. de Rooij, J. Urbani, A. ten Teije, F. van Harmelen,
and H. Bal, “A compact in-memory dictionary for RDF data,” in The
Semantic Web. Latest Advances and New Domains: 12th European
Semantic Web Conference, ESWC 2015, Portoroz, Slovenia, May 31-June
4, 2015. Proceedings 12. Springer, 2015, pp. 205-220.

F. Karim, M.-E. Vidal, and S. Auer, “Compact representations for efficient
storage of semantic sensor data,” Journal of Intelligent Information
Systems, pp. 1-26, 2021.

V. Charpenay, S. Kibisch, and H. Kosch, “Towards a binary object
notation for RDF,” in The Semantic Web: 15th International Conference,
ESWC 2018, Heraklion, Crete, Greece, June 3—7, 2018, Proceedings 15.
Springer, 2018, pp. 97-111.

S. S. N. Ontology, “W3C Recommendation. 19 October 2017,” URL:
https://www. w3. org/TR/vocab-ssn.

(3]

(4]

(51

(6]

(71

“https://coswot.gitlab.io/

