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The paper presents a review of reduced order modeling (ROM) techniques for geome-

trically nonlinear structures, more specifically of those techniques that are applicable to 
structural models constructed using commercial finite element software. The form of the 
ROM governing equations, the estimation of their parameters, and the selection of the 
basis functions are reviewed in detail and comparisons of predicted displacements and 
stresses obtained by the ROM and the full order, finite element models are presented. 
These ROM methods and validations are extended next to multidisciplinary problems in 
which the structure is subjected to thermal effects or interacts with the aerodynamics/

acoustics. These various applications demonstrate the usefulness and appropriateness of 
ROMs as computationally efficient alternatives to full finite element models for the 
accurate prediction of the geometrically nonlinear response of the structures considered. 

1. Introduction

Fielding a durable, reusable hypersonic cruise vehicle has been a goal of the USAF since the first flight of the X-15 .

The difficulty of realizing this goal cannot be overstated. Hypersonic vehicles operate at the intersection of multiple

technical disciplines: thermal, structural, and fluid (acoustics and aerodynamic). Hypersonic vehicle structures will

experience high-intensity, random loading resulting in nonlinear response [1,2], and will incorporate structural designs

that are necessarily lightweight and efficient with little margin. Further, these vehicles will also be fitted with some

combination of turbine/rocket/scramjet propulsion systems whose exhaust will impact portions of the vehicle skin, either

on external mold lines or on exhaust ducts. As a result, large dynamic pressure loads, approaching 185 dB (reference

20 mPa), and thermal loads will be applied to relatively thin-walled and hot panel structures, potentially leading to

significant fluid–thermal–structure coupling and corresponding thermal–mechanical and fatigue design requirements.

The loading arising from high-intensity jet exhaust impingement or turbulent boundary layer effects [3], is random and band-

limited . Response to this extreme loading is often geometrically nonlinear, with relatively large dynamic strains. High-cycle, or

acoustic fatigue can occur when stiffened aircraft structures have resonant, lightly damped and relatively low-frequency [4]

modes within the excitation bandwidth [5]. Acoustic fatigue has consistently plagued jet aircraft of all varieties for the past 50

years or so, and will be a design concern for present and future aircraft [6]. Industry methods, used to design or account for
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acoustic fatigue, rely principally on a variety of analytical and empirical techniques [4,7,8]. As vehicle performance envelopes

expand, these empirical models will break down, leading to either overly-conservative, heavy designs or, worse, under-designed

elements. In recent years the F/A-18 lower nacelle skin [9] and B-2 exhaust-washed aft deck [10] have each suffered from

propulsion-load induced sonic fatigue. Considerable attention has been brought to bear on the acoustic fatigue issue, with vast

resources spent to develop complex testing facilities, conduct experimental programs, and to produce exhaustive reports and

design guides. While the issue has never been a principal design driver, sonic fatigue has cost the aerospace industry enormous

amounts of time and resources to retrofit and repair military and civilian aircraft. As the USAF further develops low-observable

aircraft and continues to pursue a reusable hypersonic vehicle, sonic fatigue will become a principal design issue. Modern

computational tools such as finite element methods and computational fluid dynamics techniques, referred to here as ‘‘full order’’

methods, can of course be used for fatigue prediction. However, the computational cost associated with that effort will be

extremely large owing to the very long records to be simulated, the size of each model, the consideration of geometrically

nonlinear effects, and the need to fully couple the structural, aerodynamic, and thermal analyses. In fact, the development of such

a coupled analysis capability already represents a very significant task [11–13].

The computational challenges described above in connection with hypersonic aircraft are also encountered in many

other aerospace and mechanical engineering applications including wings, fan blades, and other thin walled structures in

which the loading is large enough to induce geometrically nonlinear effects. Thus, the methods reviewed here may also be

applied to these structural applications, as demonstrated for wings [14], a ‘‘ballute’’ [15], and a cylindrical shell [16].

2. Focus and plan

The computational cost and complexity issues associated with the consideration of geometrically nonlinear effects have

motivated the formulation and validation of extensions of the modal methods used in linear problems. In such extensions,

the displacement components ui at a point X of the structure and at time t will be expressed as the expansion

ui X,tð Þ ¼
X

M

n ¼ 1

qnðtÞ c
ðnÞ
i ðXÞ, i¼ 1, 2, 3, (1)

where cðnÞ
i ðXÞ are specified, constant basis functions and qnðtÞ are the time dependent generalized coordinates. Two key

elements that complement Eq. (1) and collectively form the reduced order models considered here are as follows:

(i) a strategy to select the basis functions cðnÞ
i ðXÞ and

(ii) a set of governing equations (2nd-order ordinary differential equations) for the generalized coordinates qnðtÞ.

With regard to the latter element, the present focus is on parametric reduced order models, i.e. in which the governing

equations have a specific form with coefficients determined for each specific problem. Then, the requirement (ii) is

subdivided into the following:

(iia) the determination of the parametric form of the governing equations and

(iib) the identification of the parameters of these equations for a particular problem.

Nomenclature

ai, ad,i component i of the arbitrary vectors a and ad

Aij ij element of an arbitrary matrix A

qnðtÞ, qb,nðtÞ components n of the generalized coordi-

nates of the reduced order model and of its

bending mode-only counterpart

u X,tð Þ 3-Component displacement vector at time t of

the point of undeformed coordinates X, con-

tinuous structure

yðtÞ, ybðtÞ, ymðtÞ displacement vectors of the finite

element nodes, total, and bending and mem-

brane components, respectively

uðnÞ
b
, uðnÞ

m bending and membrane displacements basis

functions n of the reduced order model for the

finite element model

wðnÞ
ðXÞ, uðnÞ basis functions n of the reduced order

model for the continuous structure and its

finite element counterpart

In the list below, A denotes any of the parameters Mij, Dij,

K ð1Þ
ij , Kð2Þ

ijl
, K ð3Þ

ijlp
, Fi as appropriate

A parameters of a reduced order model in

which all displacements are modeled

A parameters of the reduced order model for

the prediction of the bending displacements

only

Â parameters of the finite element model

Âb, Âm, Âbm and Âmb bending, membrane, and bending–

membrane coupling parameters of the finite

element model
~Ab parameters of the finite element model

equations after condensation of the mem-

brane displacements on the bending ones
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Further, the present review concentrates on finite element based structural models, moreover that can be developed on

commercial finite element software (Nastran and Abaqus have typically been used). Excellent work has clearly been carried

out outside of this narrow focus but will not be described here more than the brief discussion of Section 4.1. Finally, only

the nonlinearity present in the stiffness operator is considered, i.e. a linear damping model is assumed throughout, as are

linear elastic material properties.

The past and present work on the three aspects (i), (iia), and (iib) is reviewed below and a summary of the validation

studies and applications carried out is provided. In this regard, it must be recognized that computational speed is only one

of the advantages of reduced order models. The ease with which structural computations can be coupled with other

disciplinary analyses, e.g. acoustics, aerodynamics, heat conduction, is also a significant benefit of reduced order models.

The derivation of the parametric form of the governing equations for the generalized coordinates (issue (iia) above) is

addressed in the next section to provide a foundation for the ensuing developments and validations. Then, a general class

of approaches for the identification of the parameters of the governing equations (issue (iib) above, see Section 4) and the

selection of the basis (issue (i) above, see Section 5), based on the availability of a finite element model of the structure, are

then presented. A sample of validation examples of these latter methods are given in Section 6 while multidisciplinary

applications and extensions of the approaches are reviewed in Section 7.

3. Parametric form of nonlinear reduced order models

3.1. General derivation

A general derivation of linear modal models is classically carried out from linear (infinitesimal) elasticity and it is thus

desired here to proceed similarly but with finite deformation elasticity to include the full nonlinear geometric effects.

Then, the first issue to be addressed is in what configuration, deformed or undeformed, the governing equations ought to

be written. In this regard, note that the basis functions c
ðnÞ
i ðXÞ are expected to (a) be independent of time and (b) satisfy the

boundary conditions (at least the geometric or Dirichlet ones). These two conditions are not compatible if the basis

functions are expressed in the deformed configuration as the locations of the boundaries will vary with the level of

deformations or implicitly with time. However, these conditions are compatible if one proceeds in the undeformed

configuration and thus X in Eq. (1), will denote the coordinates of a point in the undeformed configuration.

Accordingly, the equations of motion of an infinitesimal element can be expressed as (e.g. see [17,18], summation over

repeated indices assumed)

@

@Xk

Fij Sjk
� �

þr0 b
0
i ¼ r0

€u i for X 2 O0 (2)

where S denotes the second Piola–Kirchhoff stress tensor, r0 is the density in the reference configuration, and b
0
is the

vector of body forces, all of which are assumed to depend on the coordinates Xi. Further, in Eq. (2), the deformation

gradient tensor F is defined by its components Fij as

Fij ¼
@xi
@Xj

¼ dijþ
@ui

@Xj

, (3)

where dij denotes the Kronecker delta and the displacement vector is u¼ x�X, x being the position vector in the deformed

configuration. Finally, O0 denotes the domain occupied by the structure which has a boundary @O0 composed of two parts:

@Ot
0 on which the tractions t0 are given and @Ou

0 on which the displacements are specified (assumed zero here). Thus, the

boundary conditions associated to Eq. (2) are

Fij Sjk n
0
k ¼ t0i for X 2 @Ot

0, (4)

and

u¼ 0 for X 2 @Ou
0: (5)

Note in Eqs. (2) and (4) that the vectors b
0
and t0 correspond to the transport (‘‘pull back’’) of the body forces and

tractions applied on the deformed configuration, i.e. b and t, back to the reference configuration (see [17,18]).

To complete the formulation of the elastodynamic problem, it remains to specify the constitutive behavior of the

material. In this regard, it will be assumed here that the second Piola–Kirchhoff stress tensors S is linearly related to the

Green strain tensor E defined as

Eij ¼
1

2
FkiFkj�dij
� �

(6)

That is,

Sij ¼ Cijkl Ekl, (7)

where Cijkl denotes the fourth order elasticity tensor.

Introducing the assumed displacement field of Eq. (1) in Eqs. (2)–(7) and proceeding with a Galerkin approach leads,

after some manipulations (see [19] for discussion and some symmetry and positive definiteness properties), to the desired
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governing equations, i.e.

Mij €qjþDij _qjþK ð1Þ
ij qjþK ð2Þ

ijl
qjqlþK ð3Þ

ijlp
qjqlqp ¼ F i (8)

in which the damping term Dij _q j has been added to model the dissipation mechanisms on the structure.

Once the generalized coordinates qjðtÞ have been determined from Eq. (8), the stress field can also be evaluated from

Eqs. (3), (6), and (7). Specifically, it is found that every component of the second Piola–Kirchhoff stress tensor can be

expressed as

Sij ¼ Sijþ
X

M

m ¼ 1

Ŝ
ðmÞ

ij qmþ
X

M

m,n ¼ 1

~S
m,nð Þ

ij qm qn (9)

where the coefficients Sij, Ŝ
ðmÞ

ij , and ~S
ðm,nÞ

ij depend only on the point X considered (see Section 4 for the identification of these

coefficients). An alternate approach for the evaluation of the stresses has also been utilized [20] in which the elements of

interest are subjected to the displacement field predicted by Eq. (1) within the finite element software and the resulting

stresses produced.

3.2. Static condensation approximation

The governing equations for the full finite element model can be derived as in Eqs. (1)–(8) but with the coordinates qi
replaced by the finite element degrees of freedom yi and the basis functions c

ðnÞ
i ðXÞ becoming the element interpolation

functions. This process accordingly leads to the equations

M̂ij €y jþD̂ij _y jþ K̂
ð1Þ

ij yjþ K̂
ð2Þ

ijl yjylþ K̂
ð3Þ

ijlp yjylyp ¼ f i (10)

Introducing in Eq. (10) a modal expansion of the form of Eq. (1), i.e.

yðtÞ ¼
X

M

n ¼ 1

qnðtÞ u
ðnÞ (11)

where uðnÞ are basis functions and qnðtÞ are the associated generalized coordinates recovers Eq. (8) as expected.

Note that Eq. (10) was obtained without any approximation to the strain definition of Eq. (6). Yet, simplifications of it

by the removal of selected nonlinear terms, more specifically the use of the von Karman strain definition [17], are often

employed. To reflect the implications of this assumption, it is convenient to partition the degrees of freedom yi into

transverse (bending) yb,i and in-plane (membrane) ym,i components.

Then, neglecting damping, it is found that

M̂b,ij €yb,jþ K̂
ð1Þ

b,ij yb,jþ K̂
ð1Þ

bm,ij ym,jþ K̂
ð2Þ

b,ijl yb,j yb,lþ K̂
ð3Þ

b,ijlp yb,j yb,l yb,p ¼ f b,i (12)

M̂m,ij €ym,jþ K̂
ð1Þ

mb,ij yb,jþ K̂
ð1Þ

m,ij ym,jþ K̂
ð2Þ

mb,ijl yb,j yb,l ¼ fm,i (13)

where the bm and mb subscripts are used for the bending–membrane coupling terms. Note in these equations that the

bending Eq. (12) is similar to its full counterpart of Eq. (10) with the membrane degrees of freedom involved linearly.

Notable simplifications of the in-plane equations have occurred with the presence of only linear terms of the membrane

degrees of freedom and quadratic of the bending ones.

These properties facilitate the static condensation of the in-plane degrees of freedom into the transverse ones [21–23]

by neglecting the inertia associated with the in-plane motion, i.e.,

M̂m,ij €ym,j ¼ 0 (14)

In doing so, the membrane displacements can be expressed in terms of the bending displacements from Eq. (13) as

ym,p ¼�½K̂
ð1Þ

m ��1
pi ½K̂

ð1Þ

mb,ij yb,jþ K̂
ð2Þ

mb,ijl yb,j yb,l�fm,i� (15)

Substituting Eq. (15) into Eq. (12) results in an equation of motion with the in-plane degrees of freedom statically

condensed onto the transverse ones. The resulting equation is lengthy and its explicit form can be found in [23]. Note that

this substitution involves obtaining products of several matrices and tensors characterizing the nonlinearity. Thus, the

static condensation process effectively alters the form of the linear, quadratic and cubic stiffness terms when compared

with the transverse degrees of freedom-related components of the stiffness terms of Eq. (12).

Nevertheless, the form of the equations of motion remains the same as Eq. (10). Specifically, performing the above

stated manipulations and introducing a linear damping term leads to the equation of motion for the transverse degrees of

freedom as

M̂b,ij €yb,jþ
~Db,ij _yb,jþ

~K
ð1Þ

b,ij yb,jþ
~K
ð2Þ

b,ijl yb,j yb,lþ
~K
ð3Þ

b,ijlp yb,j yb,l yb,p ¼
~f b,i (16)

with tensors ~K
ð1Þ

b,ij,
~K
ð2Þ

b,ijl, and
~K
ð3Þ

b,ijlp different from K̂
ð1Þ

b,ij, K̂
ð2Þ

b,ijl, and K̂
ð3Þ

b,ijlp of Eq. (12).

4



Applying to Eq. (16) the modal transformation

ybðtÞ ¼
X

L

n ¼ 1

qb,nðtÞu
ðnÞ
b

(17)

where uðnÞ
b

are basis functions representing the transverse displacements only and qb,nðtÞ are the corresponding

generalized coordinates, leads to reduced order equations of the form

Mij €qb,jþDij _qb,jþK
ð1Þ

ij qb,jþK
ð2Þ

ijl qb,j qb,lþK
ð3Þ

ijlpqb,j qb,l qb,p ¼ f i (18)

where the modal masses Mij, damping terms Dij, stiffnesses K
ð1Þ

ij , K
ð2Þ

ijl and K
ð3Þ

ijlp, and excitation f i are dependent on the modal

basis selected. Note that Eq. (18) is identical in form to Eq. (8). The key differences being that Eq. (18) governs the

transverse displacement only, with the in-plane ones then expressed by Eq. (15), while the generalized coordinates of

Eq. (8) affect all displacements.

Note that static condensation implies a memoryless map between the transverse and membrane displacements and

thus the obtained in-plane response will exhibit the same frequency characteristics as the transverse one with additional

combination frequencies induced by the nonlinearity of the map. Within its assumptions it is a successful approach

and, for a transverse dominated problem, the effect of static condensation on the in-plane response was shown to be

negligible [23].

4. Determination of ROM parameters

The next task in the formulation of a ROM is the determination of its stiffness coefficients from a structural model. In

keeping with the focus of this review, the structural models considered here will be finite element based and one can

envision 2 distinct approaches. The first one, referred to as ‘‘direct’’ here (see Section 4.1) is intrusive as it explicitly

expresses the nonlinear stiffness coefficients within the finite element formulation. It is possible with open source codes

in which the necessary information can be extracted. This approach is not the focus of the present review and thus

Section 4.1 only highlights its major steps.

The second class of approaches, focused upon in this review, will be referred to as ‘‘indirect’’. They are non-intrusive

and thus can be used with any commercial finite element package that has a static nonlinear solver such as Nastran and

Abaqus. Two variations exist in this indirect class. In the first one (see Section 4.2), a series of static displacement fields are

imposed and the forces required to achieve them determined from the finite element model. Imposing that the reduced

order model match this data provides a simple set of equations from which the ROM parameters are recursively computed.

In the second variation (see Section 4.3), a series of static load cases are imposed and the corresponding responses are

determined. The parameters of the ROM are then obtained by a least squares solution of the resulting set of equations. The

derivations presented in the ensuing sections are general with respect to the coefficients Kð1Þ
ij
, K ð2Þ

ijl
, and K ð3Þ

ijlp
although some

of these can be shown to vanish in certain cases due to symmetry of the problem (e.g. flat isotropic structure) or due to a

particular property of the finite element modeling. Further, some expected relations between coefficients (e.g. see [19,20])

have been derived and could be used in their identification. It should finally be noted that the experimental identification

of the reduced order model stiffness coefficients has also been investigated, e.g. see [24].

4.1. Direct method

The direct method is based on the relationship between the finite element tensors and their modal counterparts, i.e.

between M̂ij, K̂
ð1Þ

ij , K̂
ð2Þ

ijl , K̂
ð3Þ

ijlp, f i and Mij, K
ð1Þ
ij , K ð2Þ

ijl
, K ð3Þ

ijlp
, and F i for a formulation including all degrees of freedom (e.g. see [22])

or between M̂b,ij, ~K
ð1Þ

b,ij,
~K
ð2Þ

b,ijl,
~K
ð3Þ

b,ijlp,
~f b,i and Mij, K

ð1Þ

ij , K
ð2Þ

ijl , K
ð3Þ

ijlp, f i if static condensation is applied (e.g. see [23]). Specifically,

proceeding with a full formulation and combining Eq. (11) into Eq. (10) and collecting terms leads to the relations

Mij ¼jðiÞ
p M̂prj

ðjÞ
r F i ¼jðiÞ

p f p K ð1Þ
ij

¼jðiÞ
p K̂

ð1Þ

pr j
ðjÞ
r

K ð2Þ
ijl

¼ K̂
ð2Þ

prs j
ðiÞ
p j

ðjÞ
r j

ðlÞ
s and K ð3Þ

ijlp
¼ K̂

ð2Þ

rsuv j
ðiÞ
r j

ðjÞ
s j

ðlÞ
u jðpÞ

v

(19a)2(19e)

Then, given the availability of the matrices and tensors M̂ij, K̂
ð1Þ

ij , K̂
ð2Þ

ijl , K̂
ð3Þ

ijlp, f i, a direct computation of the reduced order

model parameters Mij, K
ð1Þ
ij , Kð2Þ

ijl
, Kð3Þ

ijlp
, and F i proceeds from Eq. (19) for a particular choice of basis functions uðnÞ of

components jðnÞ
p , see discussion in Sections 5 and 7 for application specific bases.

The key challenge of this direct approach is that the tensors K̂
ð2Þ

ijl and K̂
ð3Þ

ijlp are not available from most commercial finite

element software, and in fact are generally not computed as such. This difficulty is then resolved by proceeding with an

indirect identification of the reduced order model parameters as described in the ensuing sections.
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4.2. Displacement-based indirect method

The use of indirect methods is necessary when the finite element tensors of quadratic and cubic stiffness terms, e.g. K̂
ð2Þ

ijl

and K̂
ð3Þ

ijlp, are not available. In such cases, the modal mass and forces, Mij and Fi, are still determined from Eq. (19) but the

determination of the reduced order model stiffness coefficients, K ð1Þ
ij
, K ð2Þ

ijl
, and Kð3Þ

ijlp
, must be accomplished directly from

Eq. (8) as an evaluation process.

One such process relies on the imposition on the finite element model of specified displacement fields of the form of

Eq. (11). Then, the ith component of the nonlinear modal restoring force vector is expressed as

FrNL,i ¼ Kð1Þ
ij
qjþK ð2Þ

ijl
qjqlþK ð3Þ

ijlp
qjqlq, i¼ 1,. . .,M, (20)

Using a nonlinear static finite element analysis, the nonlinear restoring forces f
r
NL corresponding to each prescribed

displacement field are computed in physical degrees of freedom and transformed to generalized coordinates per Eq. (19b), i.e.

FrNL,i ¼jðiÞ
p f

r
NL,p (21)

As the forces FrNL,i and the generalized coordinates qi are known, Eq. (20) then constitutes a system of algebraic

equations from which the linear, quadratic, and cubic reduced order model stiffness coefficients may be determined.

The procedure is demonstrated here for coefficients having all the same lower indices, that is, for K ð1Þ
ij
, K ð2Þ

ijj
, and K ð3Þ

ijjj
,

i¼1,y, M. For example, for j¼1, a set of three displacement fields are prescribed [25,26]:

y¼ q1 u
ð1Þ y¼�q1 u

ð1Þ y¼ q̂1 u
ð1Þ (22)

The modal displacements q1 and q̂1 are two different scalar quantities and are specified such that the magnitude of the

prescribed physical displacement field y is physically meaningful. The corresponding nonlinear restoring force is evaluated

using the nonlinear static solution within a commercial finite element program, and is given as

Fr1NL,i ¼ Kð1Þ
i1
q1þK ð2Þ

i11
q21þK ð3Þ

i111
q31

Fr2NL,i ¼�Kð1Þ
i1
q1þK ð2Þ

i11
q21�Kð3Þ

i111
q31

Fr3NL,i ¼ K ð1Þ
i1
q̂1þK ð2Þ

i11
q̂
2
1þK ð3Þ

i111
q̂
3
1 (23)

from which the coefficients Kð1Þ
i1
, K ð2Þ

i11
, and Kð3Þ

i111
are obtained. The remaining coefficients K ð1Þ

ij
, Kð2Þ

ijj
, and Kð3Þ

ijjj
, j¼2,y,M, are

determined in an analogous manner. It has been observed in [25] that the stiffness coefficients obtained via this approach

are not sensitive to the particular value of modal displacement specified.

A similar technique can be employed to determine stiffness coefficients with two unequal lower indices, e.g. K ð2Þ
i12, K

ð3Þ
i112,

and Kð3Þ
i122. Coefficients of this type appear only if the number of retained eigenvectors is greater than or equal to two

(MZ2). Prescribing the displacement fields

y¼ q1 u
ð1Þþq2 u

ð2Þ y¼�q1 u
ð1Þ�q2 u

ð2Þ y¼ q1 u
ð1Þ�q2 u

ð2Þ (24)

allows the coefficients Kð2Þ
i12

, Kð3Þ
i112

, and Kð3Þ
i122

to be determined. All remaining coefficients of the type K ð2Þ
ijl
, Kð3Þ

ijjl
, and K ð3Þ

ijll
for

l4 j ¼1, 2,y, M are found in this manner. Finally, for cases when the number of retained eigenvectors is greater than or

equal to three (MZ3), coefficients with three unequal lower indices, e.g. K ð3Þ
i123, are determined by prescribing the

displacement field

y¼ q1 u
ð1Þþq2 u

ð2Þþq3 u
ð3Þ (25)

All remaining coefficients of type Kð3Þ
ijlp

, p4 l4 j¼1, 2,y,M are found in this manner.

The number of unknown coefficients, and hence the number of nonlinear static solutions required for a transformation

utilizing M modes is

Number of NL static solutions¼ 3
M

1

� �

þ3
M

2

� �

þ
M

3

� �

, MZ3 (26)

where

M

k

� �

¼
M!

k! M�kð Þ!
(27)

Note that the three terms in Eq. (26) reflect the number of linear, quadratic, and cubic modal stiffness coefficients,

respectively. The number of nonlinear static solutions can be viewed as a measure of the fixed cost of the reduced order

analysis, as the modal reduction must be performed regardless of the simulated response time to be eventually computed.

A modification of the above algorithm which utilizes the tangent stiffness matrix of the full finite element model and

matches it to the one of the reduced order model has recently been proposed and demonstrated [27]. It does lead to a
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notable reduction in computational cost but is applicable only to those commercial finite element codes that allow

the output of the tangent stiffness matrix.

The procedure described above is readily extended to the identification of the coefficients Sij, Ŝ
ðmÞ

ij , and ~S
ðm,nÞ

ij of the stress

representation, Eq. (9), provided that the desired stresses are computed (the components and locations of interest only)

in the application of the displacement fields of Eqs. (22) and (24) [26].

4.3. Force-based indirect method

Another way to evaluate the coefficients in the nonlinear reduced order model is through regression analysis using a set

of prescribed static loads applied to the finite element model f
ðsÞ
[28,29]. These loads are selected in the form

f
ðsÞ

¼ aðsÞr uðsÞ
r (28)

i.e. as scaled, linear combinations of the basis functions (which were selected as described in Section 5). For each load case s, the

displacement vector yðsÞ of all degrees of freedom of the finite element model is obtained and projected on the basis functions

uðnÞ of Eq. (11) to yield the corresponding generalized coordinates qðsÞ
i
. Inserting these values in Eq. (8) leads to the relations

Kð1Þ
ij qðsÞj þK ð2Þ

ijl
qðsÞj qðsÞ

l
þK ð3Þ

ijlp
qðsÞj qðsÞ

l
qðsÞp ¼jðiÞ

j f
ðsÞ
j (29)

which can be used for the identification of the coefficients Kð1Þ
ij , Kð2Þ

ijl
, Kð3Þ

ijlp
. With sufficient loading cases, a system of equations is

developed, and these coefficients are then identified mode-by-mode, i.e. for each value of i independently, in a least-squares

sense. The linear stiffness coefficients K ð1Þ
ij

can either be identified along with the nonlinear one, or, having already been

calculated from Eq. (19c), used as a further constraint to the identification problem.

The vectors f
ðsÞ

are selected to exercise the desired nonlinear effects and identify the linear and nonlinear coefficients

[30]. To select the load cases for the regression analysis, a nodal point of interest on the structure is identified, along with a

linear estimate of the desired displacement for that location. Different load scale factors aðsÞr to be used in Eq. (28) are then

selected based on desired transverse displacements that range from a small fraction of the panel thickness to

displacements equal to or more than the panel thickness. This ensures that the desired nonlinear effects are well

represented in the coefficient identification procedure. The desired displacement at the points of interest naturally leads to

a scaling of the basis functions that make up the load vectors. For example, the rth load scale factor, aðsÞr , based on a linear

estimate of displacements, can be obtained for the modal basis of Section 5.1as

aðsÞr ¼
o2

r

uðrÞTuðrÞ

Wc

jðrÞ
c

(30)

where or is the natural frequency of the mode uðrÞ, Wc the desired transverse displacement at location ‘‘c’’, and jðrÞ
c the

transverse displacement of uðrÞ at location ‘‘c’’ [31]. A post-processing check of the ratio of linear-to-nonlinear

displacement at location ‘‘c’’ gives an indication of the degree of nonlinearity resulting from the applied load cases.

5. Modal bases

As stated in the introduction, one of the key aspects of the reduced order modeling effort is the selection of the basis

functions uðrÞ. If the structural response is not well represented within this basis, the corresponding prediction of the

reduced order model will in general be poor. In linear dynamic problems, the construction of the basis is usually quite

straightforward and consists in selecting the linear modes ûr of the lightly damped structure, defined as

K̂
ð1Þ
ûr ¼o2

r M̂ ûr , (31)

of natural frequencyor in the band of the excitation, e.g. [32], assumed here to be generally well separated (i.e. in the ‘‘low

frequency’’ band, see [33]). Because the problems of interest tend to be dominated by the transverse motion, low

frequency transverse-dominated modes typically comprise the basis when linearity can be assumed. However, as the

amplitude of the response increases, geometrically nonlinear effects arise which include (i) a change of stiffness of the

transverse motions which is globally hardening through its cubic terms but may (e.g. for a curved panel) also exhibit a

local softening induced by the quadratic terms. Also included is (ii) a significant increase in in-plane motions induced by

the nonlinear coupling of the transverse and in-plane displacements. Through this coupling mechanism, the in-plane

motions also affect the transverse ones and this effect is typically a significant softening referred to as the ‘‘membrane

stretching’’ effect. These observations have led to two separate approaches for the basis selection.

The first approach (the ‘‘condensed basis’’, see Section 5.1) relies on retaining only linear transverse modes, as in the

linear case with the possible addition of a few out of band modes, and treating the in-plane displacements as unobserved

variables, typically eliminating them (implicitly) through a static condensation (see Section 3.2) which accounts for the

membrane stretching effect. In the second approach (the ‘‘full bases’’, see Sections 5.2–5.4), the modeling of all

displacements is performed with a basis that includes the linear modes directly excited additionally enriched to complete

the representation of the in-plane displacements. Within the focus of the present review, this enrichment has been

achieved with either linear modes residing above or well above the excitation bandwidth (Section 5.2) or ‘‘dual’’ modes
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obtained from nonlinear static solutions (Section 5.3). System identification methods are also described (Section 5.4) to

guide the selection of the linear modes to be selected in Section 5.2.

Each of these basis selection strategies has been successfully validated and can be used with either the force or

displacement based parameter identification methods of Sections 4.2 and 4.3, although some natural pairings between

basis choice and identification method occur. Each basis selection strategy has its own advantages/merits in terms of

number of basis functions used, accuracy in representing the response, and complexity in obtaining the basis.

5.1. Condensed/transverse modes only basis

For aircraft structures under transverse loading, the in-plane response is closely quasi-static and softens or reduces the

stiffness of the model in large displacement response [34] through membrane stretching. This observation suggests the

applicability of some of the static condensation concepts of Section 3.2 and has led to the consideration of only transverse,

bending modes while implicitly retaining the effect of membrane softening. This approach was originally proposed in [28,29]

and is related to the experimental identification efforts of [24]. The need to capture the membrane softening effects when

only bending modes are considered in the basis has been established clearly in [30].

The basis considered in this section, see [35,36], is composed of 2 sets of functions, uðrÞ
b

and uðrÞ
m , that focus on

characterizing the bending and membrane dominated motions. The former set comprises the linear modes of the full finite

element model, Eq. (10), not of the condensed one, Eq. (16), i.e. uðrÞ
b

¼ ûu for r¼1,y,M, and values of u such that the linear

mode ûu is bending dominated. Note that these modes contain in general, e.g. for a curved structure, small membrane

contributions which capture some, but not all of the in-plane stretching effects directly. This observation has led to the

introduction of a second part of the basis, referred to collectively as the membrane modes uðrÞ
m [35,36] so that the finite

element response y is modeled as

yðtÞ ¼ ybðtÞþymðtÞ ¼
X

M

n ¼ 1

qb,nðtÞu
ðnÞ
b

þ
X

M0

n ¼ 1

qm,nðtÞ u
ðnÞ
m (32)

The retained bending-dominated modes uðnÞ
b

are typically those that are directly excited by the loading, i.e., those

modes within the excitation band plus additional ones depending on the application and anticipated response. For

instance, curved structures can exhibit antisymmetric behavior near a snap-through bifurcation even if the loading is

purely symmetric, and thus antisymmetric mode shapes would need to be included in the basis. Another example would

be those cases of excessive deformation such as panel snap-through (on the order of many panel thicknesses), where

additional modes must be included to accurately predict the post-buckled displacement and stress response [36].

In keeping with the static condensation perspective, the bending related generalized coordinates qb,nðtÞ will be

governed by Eq. (8) while the membrane component of the response ymðtÞ will be obtained from the bending part ybðtÞ in a

manner similar to Eq. (15) but without the linear terms which have been included in the eigenvalue problem of Eq. (31)

(see [35]). That is, ymðtÞ should be a pure quadratic form of the coordinates qb,nðtÞ. This property can be reflected in Eq. (32)

by selecting M0 ¼M Mþ1ð Þ=2 and

½qm,1ðtÞ qm,2ðtÞ � � �qm,M0 ðtÞ� ¼ ½q2b,1ðtÞ qb,1ðtÞ qb,2ðtÞ qb,1ðtÞ qb,3ðtÞ � � � qb,1ðtÞ qb,MðtÞ

q2b,2ðtÞ qb,2ðtÞ qb,3ðtÞ � � � qb,2ðtÞ qb,MðtÞ � � � q2b,MðtÞ
i

(33)

It remains then to define the corresponding membrane basis functions uðnÞ
m . It was proposed in [35] to identify them

from a given set of observed responses yðsÞ, s¼1, 2,y,S, e.g. obtained during the identification of the coefficients of the

equations governing the bending coordinates qb,nðtÞ. After estimating the corresponding bending components yðsÞ
b

and the

generalized coordinates qðsÞ
b,n

, the membrane components of the response yðsÞm and their associated generalized coordinates

qðsÞm,n are obtained from Eq. (32), i.e. yðsÞm ¼ yðsÞ�yðsÞ
b
, and Eq. (33). Then, the membrane basis functions can be estimated

as [35]

½uð1Þ
m uð2Þ

m . . .u Mð Þ
m � ¼ YmQ

T Q Q T
� ��1

(34)

where

Ym ¼ yð1Þm yð2Þm ,. . .,yðSÞm

� 	

and Q ij ¼ qðjÞ
m,i

(35)

The method described above has been termed the Implicit Condensation with Expansion (ICE) approach, where

expansion refers to the inclusion of the identified membrane basis. This approach represents an extension of the Implicit

Condensation (IC) method [30] in which no membrane component ym is explicitly present but the membrane softening is

still implicitly included in the model. Note that both the IC and ICE approach assume a statically condensed form of the

structural model for identification of the bending generalized coordinate coefficients as shown in Eq. (29). The ICE

approach extends the IC one by using the bending generalized coordinates to identify a membrane basis and the associated

softening effect explicitly. More specifically, this effect is/must be reflected in the linear, quadratic, and cubic coefficients

of Eq. (8) governing the bending generalized coordinates qðsÞ
b,n

. In fact, large differences, e.g. 50%, in nonlinear stiffness
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coefficients do result if the membrane softening is not included in the identification process (see [30] for discussion and

[14] for a related comparison), as expected.

This requirement affects how the identification techniques of Section 4 are applied. The force-based indirect method,

Section 4.3, is most natural to apply as it is then only necessary that the loads imposed on the structure promote the

bending deformations. Nevertheless, the application of the displacement-based approach of Section 4.2 is also possible and

has been demonstrated in flat structures [14]. In this case, the transverse displacements were imposed while those in the

in-plane direction were left unconstrained and thus were effectively statically condensed. This procedure led to a very well

identified model (see [14]).

Note finally that the stress response is ultimately the focus in acoustic fatigue prediction. In this regard, the IC approach

does not accurately calculate the strain as it does not allow for the calculation of the membrane displacement. McEwan

et al. [29] nevertheless proposed and demonstrated an additional estimation procedure between bending displacements

and strains, involving a quadratic relation as Eq. (9), to arrive at the desired stress response. No such issue is encountered

with the ICE approach which recovers the full displacement field.

5.2. Linear modes basis

The use of bases consisting solely of linear normal modes has been studied extensively and found to be applicable over

a broad range of applications owing in particular to their property of being complete. It is important to recognize in the

following that there are two types of couplings between transverse and in-plane displacements that may be present.

A linear coupling is a property of the structural geometry and is independent of the magnitude of the response, e.g. a

planar isotropic beam is linearly uncoupled while a curved arch is linearly coupled. The subsequent discussion applies to

both types of linear coupling. The second mechanism is the nonlinear coupling due to the large deflection response. For

such problems, a sufficient basis consists of modes which represent both the transverse and in-plane responses [19,20]

while accurately capturing the nonlinear coupling between both responses.

Because of the computational effort associated with the nonlinear stiffness evaluation, Eqs. (26)–(27), and modal

reduction there is an incentive to form a reduced order system capable of supporting multiple loading conditions. This

implies that, for a given loading condition, the participation of certain modes used to form the reduced order system may

be minimal. It was demonstrated that the inclusion of linear normal modes beyond those minimally required had no

detrimental effect on the computed response [20,37–39]. Therefore, a so-called cumulative basis can be formed from the

summation of bases identified from different loading conditions, as long as the modes used collectively are linearly

independent. This implies that such a basis can be constructed when the modes are produced from the same eigen-

analysis, that is, from the single stress-free or pre-stressed condition. The loading conditions themselves may differ in their

magnitudes and/or their spatial distributions (Section 6). The simplest example of a modal basis applicable over a range of

amplitudes is that of a single basis formed for the analysis of a nonlinear response, but applied to the analysis of the linear

response.

Finally, the identification of participating linear modes is difficult in all but the simplest cases. Therefore, identification

methods, such as the proper orthogonal decomposition (POD) discussed in Section 5.4, are generally needed to guide the

basis selection in most cases.

5.3. Linear modes and dual modes basis

Other basis selection strategies have also been proposed that rely either only partially or not at all on the linear modes

of the structure. This latter class of approaches includes in particular the proper orthogonal decomposition (POD) method,

see [16,40] for some static applications with indirect evaluation of the stiffness coefficients. In the former group of

strategies, the linear modes involved in the linear response determination are enriched by other basis functions suitably

chosen, e.g. see [26,36,41,42] and references therein.

One such approach [26,36] to construct a full basis appropriate for the modeling of the nonlinear response is to focus

specifically on capturing the membrane stretching effects in the enrichment. The key idea in this approach is thus to

subject the structure to a series of ‘‘representative’’ static loadings, determine the corresponding nonlinear displacement

fields, and extract from them additional basis functions, referred to as the ‘‘dual modes’’ that will be appended to the linear

basis, i.e. the modes that would be used in the linear case. The arguments carried out below are presented in the context of

a flat structure with membrane stretching in the in-plane direction and the linear displacements in the transverse one but

the formulation is generic and has been demonstrated on a curved panel [36].

In this regard, note that the membrane stretching effect is induced by the nonlinear interaction of the transverse and

in-plane displacements, not by an external loading. Thus, the dual modes can be viewed as associated (the adjective

‘‘companion’’ would have been a better description than ‘‘dual’’) with the transverse displacements described by the linear

basis. The representative static loadings should then be selected to excite primarily the linear basis modes and, in fact, in

the absence of geometric nonlinearity (i.e. for a linear analysis) should only excite these modes, i.e. the applied load

vectors f
ðmÞ

on the structural finite element model should be such that the corresponding linear static responses are of the
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form

uðmÞ ¼
X

i

aðmÞ

i
uðiÞ (36)

which occurs when

f
ðmÞ

¼
X

i

aðmÞ

i
K̂

ð1Þ
uðiÞ (37)

where aðmÞ

i
are coefficients to be chosen with m denoting the load case number. A detailed discussion of the linear

combinations to be used is presented in [26] but, in all validations carried out, it has been sufficient to consider the cases

f
ðmÞ

¼ aðmÞ

i
K̂

ð1Þ
uðiÞ ; i¼ dominant mode (38)

and

f
ðmÞ

¼
aðmÞ

i

2
K̂

ð1Þ
uðiÞþ K̂

ð1Þ
uðjÞ

h i

; i¼ dominant mode, jai (39)

where a ‘‘dominant’’ mode is loosely defined as one expected to provide a large component of the panel response to the

physical loading. The ensemble of loading cases considered is formed by selecting several values of aðmÞ

i
for each dominant

mode in Eq. (38) and also for each mode jai in Eq. (39). Note further that both positive and negative values of aðmÞ

i
are

suggested and that their magnitudes should be such that the corresponding displacement fields uðmÞ

i
and uðmÞ

ij
range from

near linear cases to some exhibiting a strong nonlinearity.

The next step of the basis construction is the extraction of the nonlinearity effects in the obtained displacement fields

which is achieved by removing from the displacements fields their projections on the linear basis, i.e. by forming the

vectors

vðmÞ

i
¼ uðmÞ

i
�
X

j

½uðjÞTM̂uðmÞ

i
� uðjÞ and vðmÞ

ij
¼ uðmÞ

ij
�
X

j

½uðjÞTM̂uðmÞ

ij
�uðjÞ (40)

when the finite element mass matrix M̂ serves for the orthonormalization of the basis functions uðjÞ (including the linear

basis functions and any dual mode already selected).

A proper orthogonal decomposition of each set of ‘‘nonlinear responses’’ vðmÞ

i
and vðmÞ

ij
is then sequentially carried out to

extract the dominant features of these responses which are then selected as dual modes. The POD eigenvectors uk selected

as dual modes should not only be associated with a large eigenvalue but should also induce a large strain energy, as

measured by uT
k K̂

ð1Þ
uk, since the membrane stretching that the dual modes are expected to model is a stiff

deformation mode.

A recent investigation [16] has demonstrated that the dual modes defined as above are strongly related to POD

eigenvectors of response snapshots.

5.4. System identification for basis selection

A system identification based approach establishes a rigorous means of selecting the modal basis. Three variations of

the system identification procedure are next discussed. The first is based solely on a proper orthogonal decomposition

(POD) analysis [43,44] of the displacement response. The other two utilize aspects of a smooth orthogonal decomposition

(SOD) analysis [45]. Each procedure utilizes short-duration response data from numerical simulation in physical degrees of

freedom, test results [24,46] or combination of both [46].

5.4.1. POD-based approach

In the POD-based approach, a displacement snapshot matrix U can be formed as an accumulation of n instantaneous

displacement fields (snapshots). The snapshot matrix contains a selected set of N degrees of freedom resulting in a matrix

of size n�N. The sample rate and spatial resolution of the snapshot matrix must be sufficient to resolve the system’s

temporal and spatial characteristics of interest. The displacement correlation matrix RU of size N�N, is formed as

RU ¼
1

n
UTU (41)

An eigen-analysis of the displacement correlation matrix RU is next performed, i.e.,

RU p¼ p K (42)

to obtain the N�N proper orthogonal mode (POM) matrix P¼ ½p1 p2,. . ., pN� and the diagonal proper orthogonal value

(POV) matrix, K of elements lj [43].
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The contribution of each POM to the overall dynamic response is given by

wj ¼
lj

PN
j ¼ 1 lj

, j¼ 1,. . .,N (43)

where wj is the jth POM modal amplitude participation factor. The sum of all POM modal amplitude participation factors is

unity. When the dominant M POMs are selected, their cumulative participation, u, can be expressed as

u¼
X

M

j ¼ 1

wj, 0our1 (44)

The retention of only M selected POMs reduces the size of P to N�M.

The above POD-based identification process was successfully demonstrated on 1-D and 2-D thin-walled structures

[37,47–49]. Because the identification procedure utilizes only displacement response data, the modal basis selection

criterion relied solely on POM amplitudes. However, different degree of freedom types (e.g. transverse or in-plane

displacements) often times exhibit significantly different response magnitudes. Therefore, the selection process had to be

performed independently for each degree of freedom type to avoid discriminating against important response components

having small amplitudes. This procedure for selecting POMs is subsequently referred to as the modal amplitude

participation (MAP) procedure.

5.4.2. POD–SOD based approaches

A modified identification approach [50] to mitigate the need to process individual degree of freedom types separately in

the basis selection process additionally includes velocity response data and utilizes aspects of the smooth orthogonal

decomposition (SOD) analysis [45]. Specifically, the velocity correlation matrix RV , of size N�N, is formed from the full-

field velocity snapshot matrix V as

RV ¼
1

n
VTV: (45)

It can be shown that estimates of the POM frequencies, i.e. eigenvalues of Eq. (45), can be obtained from the Rayleigh

quotient-like relationship [45,51]

cP ¼x2
P ¼ 1

P�1RVP
�T

P�1RUP
�T

(46)

where 1 is the identity matrix used to extract the diagonal and vector cP ¼x2
P contains estimated POM frequencies. The

identification approach which retains POMs within some specified frequency bandwidth based on Eq. (46) is subsequently

referred to as the estimated POM frequencies (EPF) [52].

The estimated POM frequencies can also be used to obtain the modal energy corresponding to a particular POM. Feeny

and Liang [44] showed that for lightly damped randomly excited systems and large but finite number of simulation time

steps n, the POVs approximate the mean square values of the modal coordinates qðiÞj of POM j, i.e.,

lj ¼
1

n

X

n

i ¼ 1

½qðiÞ
j
�2: (47)

Note that the number of simulation time steps is typically greater than the number of time steps used in the correlation

matrices for system identification. Assume that a measure of the instantaneous modal kinetic energy associated with the

jth POM can be represented as

eðiÞ
j
ffio2

j ½q
ðiÞ
j
�2 (48)

The mean modal kinetic energy over n simulation time steps becomes

ej ¼
1

n

X

n

i ¼ 1

eðiÞj (49)

Substituting Eq. (48) into Eq. (49) yields

ejffio2
j

X

n

i ¼ 1

½qðiÞ
j
�2 (50)

Further substituting Eqs. (46) and (47) into Eq. (50) yields the mean modal kinetic energy in terms of the POVs and their

estimated squared frequencies as

ejffigjlj (51)
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As in Eq. (43), the contribution of each POM to the overall dynamic response is given by

wj ¼
ej

PN
j ¼ 1 ej

, j¼ 1,. . .,N (52)

where wj is now the jth POM modal energy participation factor. The sum of all POM modal energy participation factors is

unity. Similarly, the cumulative participation is given by Eq. (44), using the POM modal energy participation factor in place

of the POM modal amplitude participation factor. Retention of only M selected POMs reduces the size of P to N x M. The

process through which modal energy is used for selecting POMs is subsequently referred to as the modal energy

participation (MEP) procedure. For both the MAP or MEP approaches, a set of POMs may be selected based on the modal

participation factor, the cumulative participation, or some combination thereof. However, unlike the MAP approach which

requires as many criteria as there are degree of freedom types used in the system identification, e.g. one cutoff value for

the transverse displacement and one value for the in-plane displacement, the MEP approach requires only a single

criterion for either Eq. (52) or (44). The MEP procedure was also successfully tested by comparing the reduced order

analysis results with those obtained from full-order simulations in physical degrees of freedom [52]. A comparison of all

basis selection procedures (MAP, EPF and MEP) is given in [52] for three different nonlinear systems using the

displacement-based indirect method of Section 4.2.

5.4.3. Identification guided basis selection

Because of the potentially high computational effort involved in the indirect evaluation of the nonlinear stiffness, there

is an advantage to performing this operation once using a robust, load-independent basis. A basis constructed directly

from the POMs does not form such a robust basis because the POMs are load-dependent . Therefore, in all three

identification approaches (MAP, EPF and MEP), an additional step relating load-independent linear modes to load-

dependent POMs may be undertaken. Use of linear modes only allows for the formation of a load-independent modal basis

with the potential for supporting multiple analysis cases having varying excitation and response characteristics.

The relationship between the M selected POMs and the set of linear modes can be established using the modal

assurance criterion (MAC) [47,48], or by representing each selected POM as an expansion of linear modes [37,49]. The MAC

is used to compare each selected POM with up to the full number of linear modes. Linear modes with MAC values in excess

of some cut-off, e.g. MACZ0.5, are then used to form the M size basis. This approach, while simple, may not identify any

linear modes corresponding to a particular POM if that POM is highly distorted. A more versatile approach is to represent

each selected POM as a superposition of linear modes. The expansion coefficient matrix Cexp is obtained as

Cexp ¼ Û
T
P¼ ½û1û2 � � � ûM �

TP: (53)

Each column of Cexp corresponds to a particular POM and provides the coefficients required for linear mode

superposition. Since the POMs are not normalized, each column of coefficients is individually normalized such that its

maximum value is unity. In this manner, a single cut-off value can be specified for all POMs. The cut-off value selection is

arbitrary, but previous experience proved that a value of 0.5 gives reasonable results [37,49]. This technique guarantees

that at least one linear mode will be identified for each selected POM. The end result of the basis selection process is a set

of M selected linear modes, M5N, suitable for use with any of the direct or indirect nonlinear modal reductions. For

statically condensed formulations, either the full set of M selected linear modes (inclusive of both bending and in-plane

modes) can be applied, or a subset containing only bending modes.

6. Validations

The discussion of Sections 3–5 has emphasized the rationale for the cubic nonlinearity of the ROM governing equations,

for the identification of its parameters, and for the selection of the basis functions. Ultimately, however, only a comparison

of reduced order model predictions with an accurate baseline response can yield an assessment of the accuracy of the

former. Even then, such successful validations are difficult to generalize owing to the many different effects that can be

induced by the geometric nonlinearity. Accordingly, a fairly large set of validations have been carried out and a few typical

examples are summarized here.

In these validations and wherever possible, the reduced order model predictions were compared with full finite

element computations, the two being performed as closely one-to-one as possible. That is, the finite element model used

for the full order predictions was the same as the one used for the identification of the ROM parameters (including the

damping properties), the loading was selected to be identically the same, and the displacements/stresses compared were

obtained at the same physical locations and directions. Yet, differences are expected that arise most notably from the

numerical algorithms used to compute the response. The finite element results were obtained using Nastran and Abaqus

while the reduced order model results were obtained by research codes performing the numerical integration of the ROM

equations, typically by Newmark-b algorithms.

A key strength of finite element based reduced order models, especially those extracted from commercial software

(Nastran, Abaqus, etc.), is the capability to treat models which are complex from geometry and/or boundary conditions.

The first validation example was accordingly selected as one exhibiting both mixed elements (beams and plates) as well as
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non-standard boundary conditions (i.e. not fully clamped, simply supported, etc.). More specifically, an aluminum plate

reinforced along its edges by an aluminum beam and supported at its four corners only was considered, see Fig. 1(a) and

[26] for details. The panel was excited by a bandlimited white noise excitation in the band [0, 1048 Hz] equivalent to an

acoustic excitation of overall sound pressure level of 147 dB. A 12 transverse—12 duals (based on mode 1 dominant, see

Section 5.3) reduced order model was constructed using the displacement-based indirect method of Section 4.2. Shown in

Fig. 1(b)–(g) are comparisons of displacements and stresses at a rather arbitrary point of the plate (node 55, see [26] for

discussion and further comparisons) predicted by this ROM and Nastran. Note the clear qualitative and quantitative

agreement of the reduced order and finite element predictions.
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Fig. 1. Beam stiffened plate supported at its four corners: (a) model. Comparison of power spectra of (b) transverse displacement, (c) in-plane
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In the next example, the MAP approach (see Section 5.4) is utilized for basis selection and the concept of a cumulative

basis is introduced. A condition representative of a hypersonic flight regime is presented in Fig. 2, where an oscillating

shock formed ahead of a compression ramp is acting in a combined thermo-acoustic loading environment. Since the

thermal loads are addressed with higher fidelity examples elsewhere in this review, a simplification adopted in this study

[37] is shown in Fig. 3 where the oscillating boundary between high static pressure P1 and low static pressure P0 moves

over a specified span with frequency f, while the acoustic disturbance propagates in the subsonic region aft of the shock.

The structure considered in this study is a clamped–clamped composite plate strip. It is assumed that, representative of a

typical hypersonic mission profile, excitation parameters vary slowly over the duration of the mission. Therefore, seven

load cases were considered to characterize the variation in the span, frequency and location of the pressure discontinuity

oscillations. As previously mentioned in Section 5.2, there is a computational incentive to develop a reduced order model

capable of supporting analysis under a range of conditions. Consequently, the system identification and modal basis

selection procedure using the MAP approach, see Section 5.4.1, was individually applied for all seven loading conditions.

The union of the resulting seven basis sets was then taken to form a single cumulative basis set applicable across all

loadings [37].

Fig. 2. Oscillating shock due to hypersonic flow over compression ramp.

Fig. 3. Composite plate strip under time-varying spatial loading distribution.
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Using the MAP approach, a single baseline excitation case resulted in selection of 27 linear modes, while the cumulative

basis spanning all seven cases required 33 linear modes. Both reduced order systems produced results that compared very

favorably with the simulation in physical degrees of freedom, as seen in Figs. 4 and 5. The cumulative basis system using

33 basis functions was formed by solving a total of 7139 nonlinear static cases per Eqs. (26)–(27). If individual reduced

order systems were developed for each of seven loading variations, the total number of nonlinear static cases to be solved

would increase by more than three-fold to 22,170. Note that the cumulative basis concept is particularly straightforward

to apply when the basis functions identified across individual loading cases are load-independent and orthogonal.

The above two validations have been numerical, i.e. comparisons between reduced order and full order predictions.

Ultimately though, it would be expected that the reduced order model predictions would match the measured response of

physical structures, particularly for aircraft structural design purposes. ROMs will be used early in design, before structural

components are built, to quickly predict response for time-dependent limit-state analyses and those predictions will be

compared with actual structural testing [53]. What are needed are robust ROMs amenable to experimental-based model

updating.

To perform such comparisons successfully, it is necessary that the experiment be well-characterized, i.e. that the

physical properties of the experiment, including the boundary conditions, be extracted accurately enough so that the

results can be replicated using a simple model. To demonstrate this perspective, one experiment, conducted with the

intent to compare with ROMs, was undertaken in [54]. The displacement and strain response of a thin, clamped–clamped

steel beam to several excitation levels (0.5–4 g inertial loading) and axial preloads was measured and documented. An

idealized single degree of freedom beam model with estimated boundary conditions, linear and nonlinear parameters was
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utilized. Fig. 6 shows the beam mid-span normalized deflections for several different load cases. The results demonstrate

the geometrically nonlinear response typical of acoustic fatigue prone structures.

Several different ROMmethods were applied to the finite element model representing the physical experiment [55] and

were compared to the experimental results of Gordon et al. [54]. The comparisons are quite good between the IC method

and experimental results as noted in Fig. 7. In an approach similar to the IC one, it was demonstrated that nonlinear ROMs

can also be identified from experimental data [24]. In this approach, consistent response measurements were made along

the length of a clamped–clamped beam similar to the one just described. A geometric nonlinear model with cubic only

stiffness coefficients (Kð3Þ
ijlp

) was assumed. By proceeding in this manner, the resulting in-plane displacements were

implicitly condensed into the transverse displacement only model. The experimental results were filtered in the time

domain, while the identification was accomplished in the frequency domain. The linear damping and frequencies

components were identified using a rational fraction polynomial technique, while the cubic coefficients were identified in

a least-squares sense. The method was demonstrated to be successful for this simple beam structure, as evidenced in Fig. 8,

by the comparison of measured and predicted response for an excitation level much greater than that used for the

identification of the model.

Further, the above studies have also demonstrated the effect of thermal pre-load and damping on the geometric

nonlinear response. In the past, geometric nonlinearity for sonic fatigue type response has been attributed to damping. It

was shown in [55] that an increase in damping, for a ROM system, will actually diminish the effect of the geometric

nonlinearity. Also discussed, was the sensitivity of the ROM to the coefficients of the nonlinear stiffness terms.

Fig. 7. Experiment (solid line) and IC strain predictions (dotted line) of thermally pre-loaded beam.
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7. Multidisciplinary applications

The prediction of the response of aircraft panels, of hypersonic vehicles especially, is not simply a structural issue as the

panel interacts with the air surrounding it leading to a coupled aerothermoelastic problem, e.g. see [11], which is

particularly challenging/time consuming to address in the context of full (e.g. finite element) models. However, as stated

above, a key advantage of reduced order models is their simple form which permits their incorporation as a structural

model in a multidisciplinary framework. This coupling capability has been exemplified in particular with aerodynamics

(see Section 7.3) and acoustics (see Section 7.4). In these applications, the forces acting on the structure originate from the

other discipline and depend on the response of the structure.

The coupling between thermal and structural problems is more intricate as restrained thermal expansions lead to

stresses that affect the structural response. That is, the temperature appears directly in the parameters of the reduced

order model (even if the elasticity tensor is assumed to be temperature independent) as well as a pseudo excitation (i.e. on

the right-hand-side of Eq. (8)). This special coupling is described in detail in the next two sections, first (Section 7.1)

in situations in which the temperature distribution (but maybe not the magnitude) is fixed and then (Section 7.2) in a

coupled structural–thermal format in which both fields are modeled using reduced order models thereby allowing spatial

and temporal variations of the temperature distribution.

Earlier discussions have emphasized the importance of the basis selection (see Section 5) for the fidelity of the

structural reduced order model. This issue is especially important in the multidisciplinary applications considered here

and can often be viewed as a two-step process.

To clarify the first step, referred to here as the ‘‘baseline structure’’ selection, recall that the basis functions of Section 5

are all structural responses (free or forced) and thus depend on the stress field preexisting on the structure because of its

nonlinearity. The above first step is thus the specification of the constant loading, if any, applied to the structure during the

determination of the basis functions. To clarify this issue, consider the response of a heated panel (with a constant

temperature distribution) to time-varying forces and assume that the basis is to be built on linear modes (e.g. as in

Sections 5.1–5.4). It then remains to decide whether these modes are of the heated panel (basis referred to as the ‘‘warm

modes’’) or those of the unheated panel (the ‘‘cold modes’’); this is the baseline structure selection. In fact, this issue is not

specific to, albeit particularly acute in, multidisciplinary problems. For example, the response of a structure to a non-zero

mean varying pressure could be approached using the modes of the unloaded structure or their counterparts for the

structure subjected to the mean pressure distribution.

The second step of the basis selection process focuses on the detailed construction of the basis functions. Specifically, a

first option is to select the structural basis functions without any information on the detailed form of the loading induced

by the other discipline, relying only on, say, the expected frequency band of the response. A second approach consists of

using some structural responses of the fully coupled problem to either ‘‘enrich’’ the first option basis or to build entirely

the basis, e.g. in a POD format. In both of these situations, the structural ROM formulation is carried out independently of

the treatment, i.e. full or reduced order modeling, of the other discipline(s). In some cases however, most notably when the

other discipline is governed by linear equations, it is also possible to formulate a ROM of the fully coupled fields in which

the structural and other discipline’s bases are dependent of each other. To date, this approach appears to have been

suggested only in connection with acoustic problems (the complex eigenvector approach of Section 7.4).

7.1. Thermoelastic problems—fixed temperature distribution

The formulation and validation of reduced order models of the structural response of heated panels has been the

subject of a large number of investigations to date owing to both its practical importance (e.g. in the context of panels of

hypersonic vehicles) and its complexity (e.g. occurrence of thermal buckling and snap through of buckled panels). In most

of these investigations [31,36,38,48,55–57], the temperature distribution was prescribed, either fixed or scaled by an

overall magnitude. The case of a panel of uniform temperature has been particularly extensively considered with the ROM

parameters either computed at each temperature, using the indirect approaches of Sections 4.2 and 4.3, or selected to vary

with temperature as shown in Section 7.2, i.e. with the linear stiffness terms varying linearly with temperature and the

other parameters independent of it. In this latter scenario, the parameters are typically evaluated (as in Sections 4.2

and 4.3) at two different temperatures to fully characterize the temperature dependence of the linear stiffness coefficients.

t = 0.09 in
w = 1.0 in
t = 0.09 in
w = 1.0 in

2X

1X

Fig. 9. Curved beam geometry.
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The validation results presented in [31,36,38,48,55–57] confirm those obtained in the non-thermal case, e.g. see Section

6: an excellent agreement can be obtained over a broad range of temperature with both cold and hot modes. As an

example of such validations, consider the curved beam of Fig. 9 (see [36] for details) the reduced order modeling of which

was carried out by the IC and ICE methods (see Section 5.1) over a range of temperatures using the cold modes. Then,

shown in Fig. 10 is the transverse (X2) and in-plane (X1) displacements predicted by both Abaqus and the IC and ICE

methods due to a temperature increase of 150 1F and a uniform static pressure (in the X2 direction) of 3 lb/in.

7.2. Thermoelastic problems—combined structural–thermal ROM

Focusing on future coupled aero-thermo-structural analyses, a recent investigation [58] proposed and validated a

combined structural–thermal ROM approach in which the temperature field is represented in an expansion similar to

Eq. (1), i.e. as

T X,tð Þ ¼
X

m

n ¼ 1

tnðtÞ T
ðnÞðXÞ (54)

where TðmÞ are specified functions (the thermal basis functions) of the position vector X in the undeformed configuration.

The derivation of the governing equations for the coupled structural–thermal ROM proceeds in parallel to the derivation of

Section 3, with the field Eq. (2) complemented with the heat conduction equation

r0 T
_S ¼

@

@Xi

k
0
ij

@T

@Xj


 �

(55)

where S denotes the specific entropy and k
0
denotes the conductivity tensor pulled back to the undeformed configuration.

The material constitutive equation to be introduced next will generalize Eq. (7) to include the temperature. It stems

from the Helmholtz free energy (per unit mass) F defined as

F ¼ E�TS (56)

where E denotes the elastic energy. Expressions for the 2nd Piola–Kirchhoff stress components and the entropy can then

be derived as [17]

r0

@F

@Eij

� �

T

¼ Sij and
@F

@T

� �

Eij

¼�S (57),(58)

In [58], a Duhamel–Neumann form of the Helmholtz free energy was assumed, i.e.

r0 F ¼
1

2
Cijkl Eij Ekl�Cijkl akl T�T0ð ÞEijþ f T,T0ð Þ (59)
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where C denotes the fourth order elasticity tensor, a the second order tensor of thermal expansion, T0 is the reference

temperature, and [17]

f T ,T0ð Þ ¼�r0CvT0
T

T0
ln

T

T0

� �

�
T

T0
þ1


 �

(60)

in which Cv is the specific heat per unit mass measured in the state of constant strain. With the selection of Eq. (59), one

obtains in particular the expected stress definition

Sij ¼ r0

@F

@Eij

� �

T

¼ Cijkl Ekl�akl T�T0ð Þ½ �: (61)

The derivation of the governing equations for the generalized coordinates qnðtÞ and tnðtÞ is then achieved by combining

the above relations and proceeding with a Galerkin approach as carried out in Section 3. Assuming the material properties

to be temperature independent, this process leads to the reduced order model equations (see [58] for definition of

coefficients and [27] for an extension to tensor of elasticity and coefficient of thermal expansion varying linearly with the

local temperature)

Mij €q jþDij _q jþK ð1Þ
ij qj�KðthÞ

ijl
qjtlþK ð2Þ

ijl
qjqlþK ð3Þ

ijlp
qjqlqp ¼ FiþFðthÞ

il
tl (62)

and

Bij _tjþ ~K ijtjþK ðstÞ
ijl
tj _q l ¼ PiþRijtj: (63)

Considering first the structural ROM equation, Eq. (62), note that temperature appears in two terms. As expected from

Section 7.1, it only affects the linear stiffness terms and does so linearly. Next, Eq. (63) is the heat conduction equation in

which Bij and ~K ij are the elements of the capacitance and conductance matrices of the reduced order model while the

coupling term KðstÞ
ijl
tj _q l is recognized as the latency effect. Finally, Pi denotes the source term associated with the boundary

conditions (e.g. heat flux applied from aerodynamics) while Rij originates from the difference between the conductivity

tensor k and its pulled back (see [17]) counterpart k
0
and thus is a deformation dependent term. These observations

demonstrate that Eqs. (62) and (63) are fully (2-way) coupled. Note however that the latency effect and the term Rij are

both typically small (see discussion in [58]) and thus could be neglected leading to a one-way coupling only, the

temperature affecting the structural response.

The identification of the new coefficients appearing in Eqs. (62) and (63) has been accomplished as an extension of the

methods discussed in Section 4.2 (see [58]) and the approach has been applied to a series of problems [27,58–60] including

thermal loading only (steady and unsteady) or combined with a random acoustic excitation (again both steady and

unsteady thermal loading). The validation of the methodology was carried out by comparing both structural and thermal

predictions.

As an example, shown in Fig. 11(a) is a panel (modeled by a beam) subjected to a heat flux of constant, triangular

distribution of width 2D which oscillates about the fixed position a0 (taken as half of the beam length in the numerical

computations). Both structural and thermal ROM were developed for this problem with 14 thermal basis functions based

on eigenvectors of the generalized eigenvalue problem formed by the capacitance and conductance matrices with a

combined linear and cubic (see [58,59] for details) dependence through thickness. The structural basis was developed with

the baseline structure being unheated (since the mean temperature distribution could not be directly determined) and

unloaded. Then, the first 7 transverse modes of this baseline beam were selected first. Next, 7-dual modes with mode 1

dominant (see Section 5.3) were introduced to model the nonlinear transverse-in-plane coupling. Finally, the basis was

enriched with the first three in-plane linear modes to account for the in-plane thermal displacements induced by the

unknown mean heat flux. The structural model thus included 17 modes. Shown in Fig. 11(b)–(d) are comparisons of the

temperatures and in-plane and transverse displacements predicted over a period of the flux oscillation by the combined

ROM and Nastran. With regard to these results, note that Nastran does not have an option to proceed with the joint

thermal-structural analysis and thus the structural results were predicted using the same temperature distribution as

the ROM.

7.3. Aeroelastic applications

Aeroelastic analyses are traditionally conducted under the assumption that the structure is linear and thus its response

is represented in a modal form. A classic departure from this assumption is the treatment of panel flutter in which the

geometric nonlinearity must be accounted for. Reduced order models are particularly well suited for this application. For

example, to study the panel flutter phenomenon with a linear aerodynamic model (e.g. the first-order piston theory), the

equation of motion in physical coordinates, Eq. (10), needs to be modified by adding aerodynamic influence matrices

(damping and stiffness), and eliminating the excitation vector from the right-hand-side [61–63]. The system can be then

transformed to modal coordinates using two distinct strategies.

Initially, Abdel-Motagaly et al. [61] used in vacuo linear modes ûr in the process of modal transformation. With this

type of basis, six linear modes were needed to obtain converged limit cycle oscillations (LCO) when isotropic or orthotropic
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rectangular plates were studied at zero yaw angle. An anisotropic plate required more than six linear modes at the same

zero flow angle. For an arbitrary flow angle all panels required 36 such modes for the LCO convergence.

The large number of linear modes needed for the LCO convergence motivated Guo and Mei [62] to propose using the so-

called aero-elastic modes (AEMs). AEMs are obtained from a pre-stressed eigenvalue problem, where the pre-load is due to

the steady aerodynamic loading. In effect, the baseline structure (see discussion above) is then the aerodynamically pre-

loaded panel. The authors demonstrated that using AEMs leads to a very significant reduction in the number of basis

functions required for a converged LCO solution to two for the zero yaw angle study cases and six to seven AEMs for the

arbitrary angle study cases regardless whether the panel considered was isotropic, orthotropic, or anisotropic.

While the above studies were conducted on flat panels in ambient temperature, the approach was recently generalized by

Ghoman et al. [64] to shallowly curved panels under the combined elevated temperature environment and arbitrary flow angle.

Furthermore, for flat panel study cases, both linear modes- and AEMs-based reduced order system formulations were

successfully used to study suppression of panel flutter at elevated temperatures by using shape memory allows (SMAs)

[56,65]. Moreover both linear modes and AEMs-based simulations were applied to study active control of panel flutter

using piezoelectric actuators [66,67].

The application of nonlinear geometric reduced order models in aeroelastic applications is not limited to panel flutter.

In addition, structural reduced order models such as the ones reviewed here can be coupled to full order or reduced order

models (e.g. see [68–76]) of the aerodynamics. Such a coupling has in fact been accomplished [15,68,77] and the

combination of structural and aerodynamic ROMs has been found to be extremely computationally efficient while

capturing the nonlinearity in both flow and structural behavior.

7.4. Structural–acoustic coupling

Sonic fatigue prone structures and advanced structural concepts intended for hypersonic, space-access, or low-

observable, buried engine extreme environments, are often tested in progressive wave-tube facilities. Although a subset of
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the actual environment, i.e., minimal flow velocities (the bulk flow is a byproduct of the noise generators) and lower

frequency cutoffs (a function of the noise generators and duct geometry), these facilities recreate significant combined

thermal and fluctuating pressure environments that are relevant to air-vehicle structural response and fatigue. In these

test facilities, compressed air is forced through a number of valves that are opened and closed at random intervals. The

random signal used to control the valves is filtered and shaped to match the broad-band frequency content typical of

aircraft engine noise. The resulting acoustic waves propagate down the tunnel and through the test-section . One wall of

the tunnel test-section consists of the structural panel of interest. The test panels are mounted on a testing rig, isolated

from the progressive tunnel. So, although the panel makes up a wall of the test-section, the panel is not in direct contact

with the facility. The grazing incidence pressure waves, typically of high-intensity for sonic fatigue testing, excite the panel

vibration modes of interest resulting in multimode nonlinear response and fatigue. Both the Air Force and NASA maintain

such facilities. During recent testing in the Air Force progressive wave facilities, it was observed that the acoustic modes of

the facility were close in frequency to the natural frequencies of the test article in question [78]. As a result, an innovative

method was developed coupling structural ROMs with an acoustic reduced order model, and the derivation is repeated

here briefly for completeness. The coupled (displacement and pressure) linear structural and acoustic finite element

equations of motion can be expressed as

Ms 0

rS Ma

" #

€y

€p

" #

þ
Cs 0

0 Ca

" #

_y

_p

" #

þ
Ks -ST

0 Ka

" #

y

p

" #

¼
fs

fa

" #

, (64)

where Ms is the structural mass matrix, Ma is the acoustic mass matrix, S is a structural–acoustic coupling matrix, r is the

fluid density, y is the displacement vector, p is the pressure vector, fsis the structural force vector, and fa is the acoustic

force vector [79,80].

A first approach to obtain a reduced order model of the structural–acoustic system is to adopt a set of domain-specific

basis vectors for acoustic and structural domains, i.e.

w

p

( )

¼
U 0

0 W


 �

q

a

� 

, (65)

where U¼ ½uð1Þuð2Þ
. . .uðMÞ� is the structural basis (see Section 5 for discussion) and W is its counterpart for the acoustic

domain, and q and a are the vectors of structural and acoustic generalized coordinates. The resulting governing equations

for the former set of coordinates is given by Eq. (8) with

F¼ ETaþUTfs where E¼WTSU: (66)

Further, the modal acoustic equations are

€aþ ~Ca _aþ ~Kaa¼�rE €qþWTfa (67)

where

~Ca ¼wT
Caw and ~Ka ¼wT

Kaw: (68)

The nuances and the detailed steps of these approaches are described in much greater detail in [79]. Results of this

coupled structural–acoustic modeling method in [78,81] demonstrate the efficacy of the method. In this comparison, a

Fig. 12. Structure-only and structural–acoustic reduced order model predictions versus experimental progressive wave facility measured displacements.
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structural-only and the structural–acoustic coupled model were compared with the measured displacement response of

an adhesively bonded flat panel in the Air Force Research Laboratory progressive wave facility, see Fig. 12.

The coupled structural–acoustic of Eq. (65)–(68) reduced order model is seen to capture well the response of this thin-

gauge panel in a complex loading environment. Note finally that another approach investigated in [82] is based on a

reduced order modeling of the coupled structural and acoustic equations, i.e. the complex eigenvectors associated with the

left-hand-side of Eq. (64). While physically appealing, this approach is much more complex than the one described above

(from [79]) but it provides a direct estimate of the acoustically induced dissipation.

8. Conclusions

This paper presented an extensive review of indirect methods for the construction of reduced order models for the

prediction of the response of geometrically nonlinear structures modeled by finite element models. The term indirect is

used here to indicate that only standard output results of the finite element computations are used, i.e. no detailed

information on the elements formulation is assumed. Accordingly, these methods are suitable to use with commercial

finite element software such as Nastran, Abaqus, etc.

The reduced order models considered here are parametric in that the form of the governing equations for the model’s

generalized coordinates is known. In fact, it was shown (see Section 3) to be nonlinear only in the stiffness terms which are

full cubic polynomials of these coordinates. The indirect identification of the parameters of these polynomials from static

nonlinear finite element analyses was addressed next and two methods were reviewed that rely on the specification of

either displacements (Section 4.2) or forces (Section 4.3) and the finite element computation of the other.

A key element in the reduced order modeling effort is the selection of the basis to represent the motion and three

different strategies (see Sections 5.1, 5.3, and 5.4) are accordingly reviewed that rely heavily, although not completely, on

the linear modes of the structure. Each one has its own advantages/merits in terms of number of basis functions used,

accuracy in representing the response, and complexity in obtaining the basis. A sample of existing validation cases then

demonstrated the high accuracy that can be obtained with these reduced order models even in the presence of strong

geometric nonlinearity and further suggests that each of the three basis selection strategy can be used successfully.

Reduced order models are particularly useful in multidisciplinary analyses, not only because of the reduction in

computational effort they imply but also because they are typically more easily coupled to other disciplinary codes than

full finite element models. Accordingly, the final part of this review focused on such multidisciplinary applications, more

specifically on the coupling/interaction with the temperature distribution, aerodynamics, and acoustics, all of which are

important in key applications such as the sonic fatigue of hypersonic vehicles.
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