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Abstract 63 

Inductively coupled plasma mass spectrometry (ICP-MS) has grown tremendously since its 64 

introduction in 1980, owing to its multi-element and isotopic analytical capability with flexible 65 

sample introduction, high sensitivity, and fast sample throughput. In particular, integrating ICP 66 

with a magnetic sector mass spectrometer and multiple collectors significantly improves the 67 

precision of isotopic analysis for many elements that are difficult to measure with alternative 68 

techniques. This chapter reviews the history of ICP-MS, its fundamental principles, and its 69 

development for measuring concentrations and isotope ratios of elements prepared in aqueous 70 

solutions. The review highlights critical technical advancements, novel approaches to address 71 

spectral interferences, and the geochemical and cosmochemical applications that emerged from 72 

these advances. Finally, potential avenues for future research are discussed. 73 

 74 

1 Introduction 75 

Over the past four decades, inductively coupled plasma mass spectrometry (ICP-MS) has 76 

become the quintessential tool for analyzing the concentration and isotopic composition of most 77 

elements across the Periodic Table. The ICP source features high efficiency for element ionization 78 

with simple and flexible sample introduction (e.g., Houk et al., 1980; Houk 1986). The analytical 79 

strength of ICP-MS is further enhanced by coupling with a multi-collector array for simultaneous 80 

detection of different isotopes separated by a magnetic sector (i.e., MC-ICP-MS, Walder and 81 

Freedman 1992; Walder et al., 1993), which provides sensitive and precise isotopic ratio 82 

measurements at high sample throughput (e.g., Halliday et al., 1995; Hirata 1996; Vanhaecke et 83 

al., 1996; Belshaw et al., 1998; Halliday et al., 1998; Maréchal et al., 1999).  84 
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The development of MC-ICP-MS has profoundly facilitated the isotopic measurement of 85 

elements with high first ionization energies (Fig. 1) and low natural abundances, such as Hf (e.g., 86 

Blichert-Toft and Albarède 1997; Blichert-Toft et al., 1997), Zr (e.g., Schönbächler et al., 2004; 87 

Inglis et al., 2018; Tompkins et al., 2020; He et al., 2021), W (e.g., Lee and Halliday 1995; Lee 88 

and Halliday 1995; Yin et al., 2002; Kleine and Walker 2017), Fe (e.g., Belshaw et al., 2000; Zhu 89 

et al., 2000; Weyer and Schwieters 2003; Dauphas et al., 2004), Ru (e.g., Becker et al., 2002; Hopp 90 

et al., 2016), Os (e.g., Schoenberg et al., 2000; Norman et al., 2002; Nozaki et al., 2012; Ohta et 91 

al., 2022), Ni (e.g., Moynier et al., 2007; Gueguen et al., 2013), Zn (e.g., Maréchal et al., 1999; 92 

Luck et al., 2005), Cd (Wombacher et al., 2003; Cloquet et al., 2005; Ripperger and Rehkämper 93 

2007), Hg (e.g., Evans et al., 2001; Lauretta et al., 2001; Chen et al., 2010; Geng et al., 2018), Si 94 

(e.g., De La Rocha 2002; Cardinal et al., 2003; Georg et al., 2006; van den Boorn et al., 2006), Ge 95 

(e.g., Hirata 1997; Luais et al., 2000; Rouxel et al., 2006; Siebert et al., 2006), Sn (e.g., Clayton et 96 

al., 2002; Moynier et al., 2009; Balliana et al., 2013; Yamazaki et al., 2013; Creech et al., 2017; 97 

Wang et al., 2017; She et al., 2023), Mo (e.g., Anbar et al., 2001; Siebert et al., 2001; Wieser et 98 

al., 2007), Se (e.g., Rouxel et al., 2002; Elwaer and Hintelmann 2008; Zhu et al., 2008), and Te 99 

(Lee and Halliday 1995; Fehr et al., 2004; Fornadel et al., 2014; Brennecka et al., 2017; Hellmann 100 

et al., 2020).  101 

MC-ICP-MS is the preferred method for isotopic analyses of elements with less than four 102 

stable isotopes, for which instrumental isotope fractionation cannot be corrected by the 103 

conventional double-spike method used in thermal ionization mass spectrometry (TIMS). A 104 

critical limitation of TIMS is that the isotope ratio changes progressively as an analysis proceeds. 105 

This fractionation occurs because samples are loaded as salts and heated on a metal filament, with 106 

light isotopes being preferentially evaporated and ionized. In contrast, sample solutions are 107 
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continuously aspirated into the MC-ICP-MS during an analysis, leading to a relatively time-108 

independent instrumental isotope fractionation that can be corrected by external normalization. 109 

Furthermore, MC-ICP-MS has a higher sample throughput than TIMS. These analytical 110 

advantages of MC-ICP-MS have contributed significantly to the development of isotope 111 

geochemistry of elements such as Li (e.g., Tomascak et al., 1999; Bryant et al., 2003; Liu et al., 112 

2023), K (e.g., Li et al., 2016; Wang and Jacobsen 2016; Hu et al., 2018; Morgan et al., 2018; 113 

Moynier et al., 2021; Télouk et al., 2022; An et al., 2023), Rb (e.g., Waight et al., 2002; Nebel et 114 

al., 2005; Nebel et al., 2011; Pringle and Moynier 2017; Nie and Dauphas 2019; Wang et al., 115 

2023), Mg (e.g., Galy et al., 2001; Teng et al., 2007; Young et al., 2009; Teng et al., 2010; Bizzarro 116 

et al., 2011; Coath et al., 2017), Lu (e.g., Blichert-Toft et al., 1997; Vervoort et al., 2004), V (e.g., 117 

Nielsen et al., 2011; Prytulak et al., 2011; Nielsen et al., 2016; Wu et al., 2016), Cu (e.g., Maréchal 118 

et al., 1999; Luck et al., 2003; Liu et al., 2014; Wang et al., 2022; Télouk et al., 2023; Luu et al., 119 

2024), B (e.g., Lécuyer et al., 2002; Aggarwal et al., 2003; Foster 2008; Louvat et al., 2011; Chen 120 

et al., 2019), Ga (e.g., Yuan et al., 2016; Zhang et al., 2016; Kato et al., 2017), In (Liu et al., 2023), 121 

Tl (e.g., Rehkämper and Halliday 1999; Nielsen et al., 2004), and Sb (e.g., Rouxel et al., 2003).  122 

With the high-precision isotopic measurements of state-of-the-art MC-ICP-MS, non-123 

radiogenic isotope variations have been revealed for an increasing number of heavy elements, such 124 

as Ti (Millet and Dauphas 2014; Millet et al., 2016; Greber et al., 2017; Deng et al., 2019; Aarons 125 

et al., 2020; Deng et al., 2023), Fe (Poitrasson et al., 2004; Williams et al., 2004; Weyer and Ionov 126 

2007; Teng et al., 2008; Sio et al., 2013), Sr (e.g., Fietzke and Eisenhauer 2006; Ohno and Hirata 127 

2007; Moynier et al., 2010; Ma et al., 2013; Shalev et al., 2013), Nd (e.g., Ma et al., 2013; Ohno 128 

and Hirata 2013; Saji et al., 2016), and U (e.g., Stirling et al., 2005; Rademacher et al., 2006; 129 

Weyer et al., 2008; Brennecka et al., 2010; Hiess et al., 2012; Cheng et al., 2013; Tissot and 130 
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Dauphas 2015; Tissot et al., 2016). These findings have revolutionized the field of non-traditional 131 

isotope geochemistry (see recent reviews by Johnson et al., 2004; Teng et al., 2017). 132 

There are numerous reviews on various aspects of ICP-MS along with its progressive 133 

development (e.g., Jarvis et al., 1992; Montaser 1998; Taylor 2001; Becker 2002; Albarède and 134 

Beard 2004; De Groot 2004; Nelms 2005; Becker 2008; Hill 2008; Jakubowski et al., 2011; 135 

Vanhaecke and Degryse 2012; Thomas 2013; Olesik 2014; Balcaen et al., 2015; Beauchemin 136 

2020; Van Acker et al., 2023). A critical aspect of ICP analyses is the presence of three essential 137 

components in the instrument: sample introduction, excitation, and detection. These components 138 

have undergone several major developments in the various types of ICP analyses. The 139 

characteristic feature of all ICP analyses is that samples are excited in the plasma to a very high 140 

temperature and broken down into their constituent elements. The excited atoms are then separated 141 

and detected in a mass spectrometer based on their mass-to-charge ratios. In mass spectrometry, it 142 

is convenient to express the mass-to-charge ratio as m/z, which is the ratio between the mass (m) 143 

of an ion in daltons and the number (z) of elementary charges (e) it carries. Because most ions 144 

produced by Ar ICP carry a single positive charge, the m/z ratio is equivalent to the atomic (or 145 

molecular) mass of an ion. 146 

This chapter starts with a brief review of the history of ICP-MS, followed by a comprehensive 147 

overview of the fundamental principles and recent developments in ICP-based analytical 148 

techniques. The evolution of mass spectrometry for elemental concentration and isotopic ratio 149 

analysis is discussed, including developing sample introduction systems, plasma interfaces, mass 150 

analyzers, and highly sensitive detection techniques. In addition, novel approaches to overcoming 151 

spectral interferences are presented. The discussion covers applications of ICP-MS in 152 

cosmochemistry and geochemistry, and extends to future research directions.  153 
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  154 

2 History of ICP-MS 155 

This section highlights significant milestones in the rich history of ICP. The development of 156 

ICP began with the discovery of electric discharge in gases in the 1800s (e.g., Plucker and Hittorf 157 

1865). Langmuir (1928) introduced the term "plasma" to describe the phenomenon of charged 158 

particles carried in a neutral gaseous medium by analogy to electrolytes in blood plasma fluids. 159 

Since then, it has evolved into a vital tool for breaking apart molecules and exciting the resultant 160 

atoms to be analyzed [see the historical account by Ohls and Bogdain (2016)]. Initially, ICP 161 

technology was developed to analyze solid samples (arc-spark) but was limited by ionization 162 

efficiency and electrode contamination. In the 1940s, researchers developed electrodeless 163 

discharges in high-frequency electromagnetic fields operated at atmospheric pressure (Babat 164 

1947), which was the predecessor to modern ICP. The next innovation was the induction plasma 165 

torch, capable of sustaining and thermally isolating a stable atmospheric plasma with flowing gas 166 

streams inductively heated by a radio-frequency (RF) coil (Reed 1961a; b). Nevertheless, a major 167 

obstacle to the application of ICP in analytical chemistry remained: developing an aqueous sample 168 

introduction system for ICP-mass spectroscopy and spectrometry. 169 

The application of ICP as an excitation source for atomic emission spectrometry (AES) was 170 

pioneered by Greenfield et al. (1964) in the UK and Wendt and Fassel (1965) in the USA, utilizing 171 

modified torch designs to introduce aerosols generated from liquid samples (Greenfield et al., 172 

1975; Fassel 1978). The Fassel torch is smaller than the Greenfield torch and has similar analytical 173 

performance using lower gas flows and RF power; therefore, it has become widely adopted 174 

(Greenfield 2000). Since ICP-AES is based on light emission and does not require a primary light 175 

source, it is more convenient for multi-element analyses than atomic absorption spectroscopy 176 
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(AAS) and atomic fluorescence spectroscopy (AFS) (Fassel and Kniseley 1974). In addition, ICP 177 

is a more effective excitation source than the combustion flame because of its high temperature, 178 

allowing for elemental analyses with lower detection limits and greater dynamic ranges. Since its 179 

inception, Ar plasma has become the standard ionization source for various ICP-based instruments.  180 

ICP-MS evolved from ICP-OES (optical emission spectroscopy), with both methods sharing 181 

similar sample introduction systems but different detector systems. In ICP-OES, the plasma excites 182 

atoms to higher energy levels, and as they return to lower discrete energy levels, characteristic 183 

optical emissions are measured with an optical spectrometer. The intensity of these emissions is 184 

proportional to the concentration. In contrast, in ICP-MS, the plasma breaks apart molecules and 185 

produces charged ions, which are separated by electromagnetic fields in a mass spectrometer and 186 

detected as electric signals. A significant analytical difference between ICP-OES and ICP-MS is 187 

that the former detects the total elemental concentration, whereas the latter detects individual 188 

isotopes of each element. Furthermore, the detection limits of ICP-MS are generally several orders 189 

of magnitude lower than for ICP-OES (Todolí 2019). Building on the pioneering work of Gray 190 

(1974; 1975a; b), who successfully coupled a capillary-arc plasma with a mass spectrometer for 191 

direct analyses of aqueous solutions introduced at atmospheric pressure, the first analytical ICP-192 

MS was presented by Houk et al. (1980). The high sensitivity of ICP-MS and its ability to measure 193 

individual isotopes have led to the development of various types of mass analyzers for analyzing 194 

the constituent masses of a variety of samples.  195 

The magnetic sector ICP-MS and MC-ICP-MS are essential instruments for today’s high-196 

precision elemental concentration and isotopic ratio measurements. Their working concepts can 197 

be traced back to the end of the 19th century when physicists attempted to measure the m/z ratios 198 

of cathode and anode rays within gas discharge tubes, which led to the discovery of electrons, 199 
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protons, and isotopes. Thomson (1897) and Wien (1898) independently observed the deflection of 200 

cathode rays in an electrostatic field and identified them as streams of negatively charged particles 201 

with weight, i.e., electrons. Wien (1898) also observed the deflection of collimated anode rays in 202 

a strong magnetic field in the opposite direction to the cathode rays and found that these were 203 

positively charged particles with the mass of hydrogen atoms, i.e., protons. Building on these 204 

findings, J. J. Thomson designed the archetypal mass spectrograph that deflected ions by parallel 205 

magnetic and electric fields and imaged their parabolic trajectories on a photographic plate. Using 206 

this parabola spectrograph, Thomson (1913) provided the first proof of stable isotopes (20Ne and 207 

22Ne). This discovery motivated ongoing efforts to determine the exact atomic masses of elements 208 

and to develop improved analytical instruments for quantitative isotopic analyses, paving the way 209 

for the development of modern MC-ICP-MS. 210 

MC-ICP-MS was invented to overcome the limitations of high-precision isotopic analyses 211 

using existing mass spectrometry techniques. Substituting the thermal ionization source (< 2800 212 

K) with a more energetic ICP source (5000-10,000 K) substantially improves the ionization 213 

efficiency for elements with high first ionization energies (Fig. 1). Also, instrumental isotope 214 

fractionation is relatively stable during MC-ICP-MS analysis. Source instability, which is the 215 

primary limiting factor for high-precision isotopic measurements with ICP instruments, is 216 

overcome by using a magnetic sector to spatially separate ion beams according to their m/z ratios 217 

and direct them into a set of designated collectors. This capability of simultaneous analyses of 218 

multiple isotopes over a narrow mass range is the primary purpose of MC-ICP-MS, which 219 

contrasts with traditional ICP-MS techniques that focus on multi-element analyses by sequentially 220 

detecting individual ion beams rapidly scanned across a wide mass range. The original MC-ICP-221 

MS, known as the Plasma 54, was a hybrid between the VG PlasmaTrace magnetic sector ICP-222 
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MS and the Sector 54 TIMS. Analyses of U and Pb isotopic ratios with this instrument yielded 223 

accuracy and precision similar to those obtained using TIMS (Walder and Freedman 1992). Since 224 

then, MC-ICP-MS instruments have been advancing rapidly to achieve unprecedented precision, 225 

and ICP-MS has become a leading technique for elemental and isotopic analyses.  226 

 227 

3 Primary components of ICP-MS 228 

ICP-MS has undergone significant development in its primary components, leading to the 229 

current state-of-the-art systems. These components are as follows (Fig. 2):  230 

(1) a sample introduction system that brings a solution or solid sample to the ICP to break it 231 

down into ionizable atoms 232 

(2) an ion source that forms ions and accelerates the positively charged particles  233 

(3) an interface that samples ions formed at atmospheric pressure into the vacuum of the mass 234 

spectrometer 235 

(4) a mass analyzer that sorts ions by their m/z ratios  236 

(5) an ion detection system that produces electrical signals  237 

3.1 Sample introduction  238 

ICP-based analyses produce free atoms that can be readily excited and ionized by the plasma. 239 

Initially, samples must be effectively introduced to the plasma. Solution nebulization is most 240 

commonly used, where a liquid sample is converted into a fine aerosol using a nebulizer (from 241 

Latin nebula, meaning "mist"). In contrast, laser ablation is used for in situ analysis of solid 242 

samples, as discussed in another chapter of this volume. This chapter mainly concerns the solution 243 

nebulization method that delivers a fine aerosol to the plasma. Since only a few percent of an 244 
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aspirated sample eventually reaches the plasma (Gray 1975), efficient and consistent sample 245 

introduction is critical for reproducible signal output and the stable operation of the plasma.  246 

3.1.1  Nebulization 247 

Most ICP-based analyses use a pneumatic nebulizer that passes a high-speed gas through a 248 

converging nozzle to break liquids into aerosols (e.g., Sharp 1988; Todoli and Mermet 2011). 249 

Liquid samples are aspirated by a sampling probe connected to a fine capillary in the center of the 250 

nebulizer. The nebulizer is typically fed with a stream of compressed argon gas that accelerates to 251 

sonic velocity when it emerges from the nebulizer nozzle, providing the mechanical force to 252 

disperse the liquid and form an aerosol. The gas is commonly supplied in the outer capillary 253 

concentric to the central sample capillary (concentric nebulizer, Fig. 3A) (e.g., Meinhard 1976; 254 

Meinhard 1979) or at a right angle to the sample capillary by a second gas capillary (cross-flow 255 

nebulizer, Fig. 3B) (e.g., Valente and Schrenk 1970; Kniseley et al., 1974). Concentric nebulizers 256 

have fine-bore capillaries that facilitate the kinetic energy transfer between gas and liquid. They 257 

create a fine aerosol within a narrow size range, offering superior sensitivity and stability for 258 

routine analyses of clean solutions. In comparison, cross-flow nebulizers allow wider liquid 259 

capillaries and are preferred for samples containing undissolved particles or high levels of heavy 260 

element matrices. Parallel path nebulizers are also used for samples with larger particles and high 261 

salt contents, whereby a liquid sample is pumped parallel to the nebulizer gas stream, thereby being 262 

entrained into the gas flow and forming an aerosol. 263 

The development of low-flow nebulizers has facilitated effective ionization using a 264 

significantly reduced sample volume (Olesik et al., 1994; Vanhaecke et al., 1996; Boulyga and 265 

Becker 2001; Todolí and Mermet 2006). For instance, a 50-μL/min nebulizer with 50% efficiency 266 

consumes 20-40 times less sample than a standard flow nebulizer (1-2 mL/min) with ≤ 5% 267 
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efficiency, while sensitivity is only reduced by a factor of ≤ 2 (Fig. 3C). The increased efficiency 268 

of sample transport and fragmentation is likely due to increased kinetic energy to liquid ratio and 269 

decreased droplet coalescence at reduced sample uptake rates (Meinhard 1979; Todoli and Mermet 270 

2011; Olesik et al., 2021). These micro-nebulizers enable the analysis of samples of limited size 271 

and contribute to a more robust plasma by reducing solvent loading to the plasma and preventing 272 

the formation of solvent-related interferences. 273 

Nebulization can proceed with or without external pumping, depending on the nebulizer and 274 

ICP-MS system in use. While self-aspiration occurs due to the pressure drop created as argon flows 275 

through the nebulizer nozzle and is accelerated (Venturi effect), a peristaltic pump is recommended 276 

for elemental analyses in ICP-MS to ensure a constant, regulated sample flow and to minimize the 277 

impact of sample viscosity on the uptake rate. In contrast, isotopic ratio analyses in MC-ICP-MS 278 

usually do not require a peristaltic pump for sample uptake, as the elements of interest are analyzed 279 

in dilute concentrations with little differences in viscosity. This direct sample uptake without a 280 

peristaltic pump shortens the sample path to the nebulizer and reduces sample consumption. In 281 

addition, sample contamination is minimized as interactions with the pump tubing are avoided, 282 

which is beneficial for isotope analysis. However, if no peristaltic pump is used, keeping the liquid 283 

surfaces of the sample and standard solutions at the same height is crucial to avoiding differential 284 

uptake rates between analyses. 285 

3.1.2 Conventional sample introduction systems  286 

Depending on analytical needs, the nebulizer is fitted onto a spray chamber (Fig. 4), a 287 

desolvation device (Fig. 5), or it can be mounted directly on the torch, corresponding to three types 288 

of sample introduction systems: "wet" plasma introduction, "dry" plasma introduction, and direct 289 

injection nebulization (DIN). "Wet" plasma introduction is the simplest and most compact, using 290 
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a spray chamber to filter large droplets. This sample introduction typically provides the best 291 

stability and precision and is preferred when there is sufficient sample. In comparison, "dry" 292 

plasma introduction uses a semi-permeable heated Teflon® membrane to remove most of the 293 

solvent, thereby offering substantially higher sensitivity than the "wet" plasma introduction (Fig. 294 

6). It is preferred when the analyte is limited or if solvent-related spectral interferences occur. 295 

Finally, the less common DIN requires a specially designed nebulizer and generally provides 296 

sensitivity between "wet" and "dry" plasma introduction (Fig. 6). 297 

3.1.2.1  "Wet" plasma introduction using a spray chamber 298 

The aerosols formed by a pneumatic nebulizer have a range of diameters, and only those 299 

smaller than ~10 μm can be efficiently ionized by the plasma (e.g., Olesik 2014). This size limit 300 

occurs because the evaporation rate of solvent in a droplet increases with its surface area to volume 301 

ratio. Larger droplets that are not entirely vaporized upon entering the plasma can significantly 302 

cool the plasma or even cause it to extinguish. The stability of the plasma can be improved by 303 

using a spray chamber to condense larger aerosol particles; however, this also removes about 95% 304 

of the liquid sample taken up by the nebulizer.  305 

The two most common designs of spray chambers are the cyclonic type and the Scott type; 306 

both can have baffles that serve as a secondary droplet size separator to further reduce aerosol size 307 

distribution (Fig. 4). When passing through a spray chamber, the fine aerosol travels in the 308 

streamline of the carrier gas. In contrast, the larger droplets, due to their greater size and 309 

momentum, impinge on the spray chamber wall or the baffle and form a condensate, which is 310 

pumped out to the waste. A cyclonic spray chamber separates larger liquid droplets by centrifugal 311 

force during the angular flow of the sample aerosols. In comparison, a double-pass Scott-type 312 

spray chamber selectively funnels the small droplets into a central tube, whereas the larger droplets 313 
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will condense and divert to the drain. Spray chambers are typically cooled thermoelectrically 314 

(Peltier cell) to minimize water vapor entering the plasma and forming associated oxides. The 315 

cooling device also stabilizes the spray chamber temperature, thereby reducing temperature-related 316 

signal drift.  317 

Both nebulizers and spray chambers can be manufactured from glass, quartz, or Teflon®, 318 

depending on their intended use. Quartz nebulizers and spray chambers have the longest lifespan 319 

and are recommended for clean samples with low salt contents. On the other hand, Teflon® 320 

nebulizers and spray chambers resist hydrofluoric acid (HF) but are more expensive and softer 321 

than quartz ones. 322 

3.1.2.2  "Dry" plasma introduction using desolvation membrane 323 

In contrast to "wet" plasma introduction, where solvent vapors condense on the cooled spray 324 

chamber walls, desolvation can be enhanced by heating the spray chamber with a downstream 325 

mechanism to remove solvent vapors (e.g., a membrane desolvator or cold condenser). In a typical 326 

desolvation nebulizer system, the sample aerosol is transported into a heated, semi-permeable 327 

Teflon® membrane, through which solvent vapors can pass freely and be removed by an external 328 

gas flow (Fig. 5). The desolvated sample contained in the membrane is carried into the plasma. 329 

Inlet gas is preheated and directed at the chamber walls to prevent condensation of sample aerosols. 330 

For applications unaffected by nitrogen-based interferences, a small amount of N2 can be blended 331 

into argon to enhance sensitivity and reduce oxide formation (see Section “Mixed-gas plasma”).  332 

Several desolvation nebulizer systems are commercially available (Fig. 5). The DSN-100 from 333 

Nu Instruments is the only one that works with glass instead of Teflon® nebulizers, but its 334 

production has been discontinued. Teledyne CETAC produces the Aridus series (Aridus, Aridus 335 

II, and Aridus 3), with the Aridus 3 featuring software control of gas flow and temperature. 336 
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Elemental Scientific Inc. (ESI) offers a selection of systems for specific applications, such as Apex 337 

Q (Quartz flow path), Apex IR (for Isotope Ratio analysis), and Apex HF (for samples containing 338 

HF). The latest software-controlled Apex Omega combines a heated cyclonic spray chamber, a 339 

multi-pass Peltier-cooled condenser, and a heated membrane desolvator to achieve multi-stage 340 

solvent vapor removal. This system improves sample introduction efficiency and sensitivity, which 341 

is particularly useful for samples that contain high levels of dissolved solids or that are difficult to 342 

analyze by conventional nebulization methods.  343 

3.1.2.3 Direct injection nebulizer (DIN) 344 

Some elements (e.g., B, Hg, Mo, Si, Sn, W, Zn, and Zr) tend to be absorbed in the introduction 345 

system and released during subsequent runs, causing memory effects and inaccurate analyses. To 346 

alleviate this carry-over effect, DIN has been developed, whereby a micro-concentric nebulizer is 347 

mounted at the base of the plasma torch so that the aerosol sprays directly into the plasma without 348 

passing through and contacting a spray chamber. This design not only reduces memory effects but 349 

also achieves ~ 100% sample transport efficiency to the plasma, which is a significant 350 

improvement over the 1 - 2% efficiency of conventional nebulizer-spray chamber arrangements 351 

(Browner and Boorn 1984). The DIN was first used in single-collector ICP-MS and ICP-AES for 352 

elemental analyses (LaFreniere et al., 1985; LaFreniere et al., 1987), and it has later been employed 353 

for isotopic measurements using MC-ICP-MS (e.g., B, Smith et al., 1991; Louvat et al., 2011).  354 

3.1.3 Sample introduction accessory: Hydride generation system 355 

Hydride generation (HG) is an effective technique for introducing As, Bi, Ge, Pb, Sb, Se, Sn, 356 

Te, and Hg (e.g., Thompson et al., 1978a; b; Godden and Thomerson 1980; Date and Gray 1983; 357 

Powell et al., 1986; Wang et al., 1988; Dean et al., 1990). These elements are difficult to detect 358 

using conventional nebulization due to their low natural abundances, high first ionization energies 359 
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(Fig. 1), and widespread matrix- or solvent-related interferences. In an HG system, the liquid 360 

sample is introduced using a peristaltic pump and mixed online with a strong acid (e.g., HCl or 361 

HNO3). Further down-line, the acidified sample is mixed with a reducing agent (e.g., NaBH4 362 

stabilized with NaOH), converting the analyte elements to volatile species that evolve from the 363 

bulk liquid and are entrained by the argon stream into the torch. A spray chamber is often used as 364 

a gas-liquid separator to improve plasma stability and detection limits, and to allow the 365 

simultaneous detection of non-hydride forming elements (e.g., Huang et al., 1987; Huang et al., 366 

1988; Heitkemper and Caruso 1990; Zhang and Combs 1996). 367 

This technique offers two advantages over standard nebulization. First, the generation and 368 

transport of volatile analytes can approach 100% efficiency, which increases sensitivity by two 369 

orders of magnitude. Second, most matrix effects and spectral interferences (e.g., 40Ar35Cl+ on 370 

75As+) are eliminated prior to detection by separating the volatile analytes from the bulk liquid 371 

containing sample matrices, solvents, and reaction solutions. The coupling of HG with MC-ICP-372 

MS is particularly beneficial to isotopic analyses, as the HG settings can be optimized for a single 373 

element. High-precision isotopic analyses have been achieved for Se (e.g., Rouxel et al., 2002; 374 

Ellis et al., 2003; Kurzawa et al., 2017; Stüeken 2017), Te (e.g., Brennecka et al., 2017; Wasserman 375 

and Johnson 2020), Ge (e.g., Escoube et al., 2012; Karasiński et al., 2021), and Hg (e.g., Geng et 376 

al., 2018; Moynier et al., 2020) using as little as nanograms of samples. 377 

3.2 The ICP discharge 378 

Sample aerosols are carried by gas flowing into the ICP torch that sustains the plasma. The 379 

torch typically comprises three concentric quartz tubes (Fig. 7), which withstand the significant 380 

temperature gradient toward the plasma owing to the low thermal expansion coefficient and 381 

thermal conductivity of quartz (e.g., Reed 1961; Greenfield et al., 1964; Fassel and Kniseley 1974). 382 
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A fast stream of cooling gas (12-18 L/min) and a slower stream of auxiliary gas (~ 1 L/min) spiral 383 

around the outer and middle tube, respectively, which sustain the plasma, centering and 384 

constricting it radially to prevent the torch from melting. These vortex gas flows create a low-385 

pressure central channel for sample injection by the nebulizer gas (~ 1 L/min). The three tubes are 386 

usually assembled as one piece. Alternatively, the sample injector can be a demountable piece for 387 

applications requiring a specific bore size, configuration, or more corrosive-resistant materials 388 

(e.g., sapphire, alumina, platinum, and ceramic).  389 

Argon is considered the most practical gas for generating and sustaining an ICP at atmospheric 390 

pressure for the following reasons. First, argon is chemically inert because it has a completely 391 

filled valence shell that stabilizes its electronic configuration without bonding to other atoms. 392 

Second, a monatomic gas like argon can only store heat as translational kinetic energy, unlike 393 

diatomic gases (e.g., N2 and O2), which may also store energy through rotation and vibration at 394 

ionization temperatures. Hence, argon absorbs less heat per degree of temperature rise than 395 

diatomic gases. Third, argon is the most abundant among the noble gases. It is heavier than air and 396 

accumulates in the atmosphere. Therefore, it is less expensive to purify in bulk than neon and 397 

helium. Last, the lower ionization energy of argon relative to neon and helium requires a less 398 

powerful system to sustain an Ar plasma (Fig. 1A).  399 

Argon ICP is a weakly-ionized plasma (~ 0.1%, Niu and Houk 1996) sustained by converting 400 

the electrical energy from an RF generator into gas enthalpy via inductive heating (Fig. 7). 401 

Coupling is achieved by sending an oscillating RF signal (typically 0.5-1.5 kW at 27.12 or 40.68 402 

MHz) through a copper coil (2-3 turns) encircling the torch exit, which induces a poloidal 403 

electromagnetic field oscillating at the same frequency (e.g., Todolí 2019). When the gas in the 404 

coil space is seeded with electrons, conventionally by a high-voltage spark from a Tesla coil, some 405 
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gas atoms are ionized on collisions. The charged particles are accelerated by the RF magnetic field 406 

and set to move in closed circular paths, leading to a cascade propagation of collisional ionizations 407 

almost instantaneously and heating of the plasma once initiated.  408 

Toroidal plasma is a robust source for excitation and ionization. Critically, sample aerosols are 409 

able to retain their compositional integrity due to limited mixing with the annular plasma. Sample 410 

aerosols are injected through the central channel of the plasma, traveling an extended time (1-2 411 

ms) in the flame-like plasma with minimal disturbance to the induction region. Plasma 412 

temperatures can reach 8000 to 10000 K in the induction zone and are slightly lower (5000-7000 413 

K) in the plasma tail (analytical zone). The high temperature evaporates aqueous solvents from the 414 

analyte salt, breaking down constituent ionic bonds and converting the gaseous atoms into positive 415 

ions. Ionization occurs via several pathways. Thermal ionization occurs during collisional energy 416 

transfer between atoms, ions, and electrons (e.g., Ar + e- à Ar+ + 2e-). Penning ionization occurs 417 

when ground-state atoms interact with metastable Ar species (Arm + M à Ar + M+ + e-). Charge 418 

transfer occurs when electrons are transferred between ions and atoms (Ar+ + M à Ar + M+). 419 

Argon ICP primarily produces singly charged ions because argon has a first ionization energy 420 

(15.8 eV) that lies between the first and second ionization energies of most elements (Fig. 1A). 421 

According to Houk (1986), elements with first ionization energies lower than 8 eV achieve over 422 

90% ionization, and alkali and alkaline earth elements are the easiest to ionize. Furthermore, the 423 

alkaline earth elements and rare earth elements (REEs) have sufficiently low second ionization 424 

energies that doubly charged ions may occur (e.g., Ca2+, Sr2+, and Ba2+) (Fig. 1B). Non-metals, 425 

metalloids, and certain metals have lower ionization efficiencies. Elements with first ionization 426 

energies of 8-9 eV (B, Si, Pd, Cd, Os, Ir, and Pt) reach 93-58% ionization, of 9-10 eV (Be, Zn, As, 427 
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Se, Te, and Au) reach 75-33% ionization, and of 10-11 eV (P, S, I, and Hg) reach 38-14% 428 

ionization, respectively. Only a few percent are ionized for elements such as Br and Xe.  429 

3.3 The ICP-MS interface 430 

The interface region extracts ions formed in the ICP (~ 1000 mbar) into a differentially pumped 431 

vacuum system (10-5 to 10-10 mbar) in which the mass spectrometer is contained (Fig. 8A). An 432 

atmospheric-pressure ion source offers the flexibility of switching between different introduction 433 

systems and using alternative gases to adapt to specific application needs. By contrast, mass 434 

spectrometers operate under high vacuum, allowing the sampled ions to reach the detectors with 435 

minimal reaction, neutralization, scattering, or fragmentation due to collisions with other ions or 436 

gas molecules. A well-maintained vacuum is vital for accurate and precise measurements. It 437 

minimizes spectral interferences from air, water, gas molecules, or other contaminants. It also 438 

improves peak shape by reducing ion scattering and background noise, and prevents arcing in the 439 

high electric potential field. The substantial pressure and temperature gradients across the interface 440 

present a fundamental challenge for its design, and high ion transmission into the mass 441 

spectrometer has to be achieved without compromising its high vacuum.  442 

The concept of mass spectrometric sampling of plasma ions stems from the use of supersonic 443 

free jets to form molecular beams. This concept was established by the theoretical work of Owen 444 

and Thornhill (1948) and Kantrowitz and Grey (1951) and was experimentally demonstrated by 445 

Johnson (1927; 1928), Kistiakowsky and Slichter (1951), and Becker and Bier (1954). By 446 

admitting gas into a low-pressure chamber through a small nozzle, the emerging stream undergoes 447 

a near-adiabatic, enthalpy-driven expansion. During this expansion, a substantial portion of the 448 

random thermal motion upstream of the nozzle is converted into an ordered motion with a narrow 449 

velocity distribution, forming a high-intensity, directed, and nearly collisionless beam. This nozzle 450 
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expansion is accompanied by rapid rarefaction and cooling of the admitted gas stream; therefore, 451 

it is an ideal mechanism for interfacing a continuum gas flow from the high-temperature, 452 

atmospheric ICP source with a mass spectrometer kept under vacuum. 453 

Following the practice of sampling flames (Hayhurst et al., 1971), a conical metal duct ("cone") 454 

with a circular orifice in its tip is typically used for plasma extraction. It allows the plasma gas to 455 

sweep smoothly over its surface with little disturbance from the back pressure, and the central flow 456 

passing through the tip to expand freely inside the cone into the first vacuum stage of the 457 

instrument. The cone is supported on a grounded, water-cooled mount to prevent melting by the 458 

plasma. When the plasma impinges on the cone, a boundary layer of cool gas forms over the cone 459 

(Hayhurst and Kittelson 1977), where unwanted chemical and physical interactions may occur to 460 

alter the relative populations of the plasma constituents. In addition, a thin electron-poor sheath 461 

may develop around the sampling orifice as electrons have a smaller mass and greater velocity 462 

than cations and, therefore, have a higher frequency of striking the cone to be neutralized (e.g., 463 

Chambers et al., 1991; Niu and Houk 1996). It is essential to prevent significant charge separation 464 

during ion sampling and to ensure the integrity of the sampled plasma. 465 

The diameter of the sampling orifice is a limiting factor for a representative ion sampling. The 466 

orifice should be sufficiently large so that a fraction of the bulk plasma can flow through it in an 467 

ordered motion as a continuum. The flow regime is determined by the Knudsen number (Kn), 468 

which is the ratio of the mean free path (λ) of the plasma gas at the throat of the sampling orifice 469 

to its diameter (D0). Continuum flow occurs if Kn < 0.01, which means that D0 should be at least 470 

100λ wide. The mean free path (λ =1/nσ) of a conventional Ar ICP is less than 2 × 10-3 mm, 471 

assuming a number density of the gas n = 1.5 × 10-18/cm3 and an Ar collision cross section σ = 5 472 

× 10-15 cm2 (Douglas and Tanner 1998). The sampling diameter also needs to be substantially 473 
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larger than the Debye length of the ICP (λD), estimated to be 10-3 to 10-4 mm (Douglas and Tanner 474 

1998), to shield the charged plasma species from external fields and avoid significant charge 475 

separation. Given these considerations, an orifice wider than 0.2 mm is preferable (Date and Gray 476 

1983; Gray and Date 1983). 477 

Early efforts to extract ions from the plasma relied on a high-capacity pump to maintain a low 478 

background pressure (< 10-3 Torr) in the first vacuum stage (e.g., Gray 1975a; b; Houk et al., 1980), 479 

similar to the Fenn-type expansion used in molecular beam studies (Fenn 2000). Nevertheless, the 480 

size of the sampling orifice used in these earlier studies (0.050-0.125 mm) was limited by the mass 481 

throughput the oil diffusion pumps could handle and the frequent occurrence of secondary 482 

discharge when the sampler orifice exceeded 0.1 mm (e.g., Gray and Date 1981; Houk et al., 1981). 483 

Due to the weaker suction of a smaller orifice, the sampled gas has to traverse a thicker boundary 484 

layer (Hayhurst and Kittelson 1977). This boundary layer sampling was prone to orifice clogging, 485 

undesirable oxide formation, and ion-molecule reactions (e.g., Date and Gray 1983a; b).  486 

To overcome the practical limitations of boundary layer sampling, an alternative sampler-487 

skimmer interface has been developed for continuum sampling from the bulk plasma (Douglas and 488 

French 1981; Date and Gray 1983; Douglas et al., 1983). This sampling arrangement utilizes the 489 

Campargue-type expansion (Campargue 1964; 1984), by which the atmospheric plasma gas 490 

propagates supersonically into a relatively high background pressure (a few Torr), forming a 491 

concentric barrel shock that terminates at a perpendicular shock wave (i.e., the Mach disk) (Fig. 492 

8B). The core of the supersonic expansion is effectively shielded from the background gas by the 493 

shock-wave structure (i.e., zone of silence), and the center-line flow is skimmed into the second 494 

vacuum stage at a much lower pressure (10-3 to 10-4 Torr). A mechanical pump is sufficient for 495 

evacuating the region between the sampler and skimmer cones. The relatively high background 496 
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pressure in this region permits the use of a larger orifice (~ 0.41 to 1 mm diameter) to sample the 497 

bulk plasma with an increased ion flux, which improves the detection limits and dynamic range of 498 

the ICP-MS while reducing oxide formation and salt deposition at the orifice (Douglas and Houk 499 

1985). The impedance matching network and tank circuit were modified accordingly to prevent 500 

the occurrence of secondary discharges (Douglas and French 1986). This improved interface 501 

design eventually led to the introduction of the first commercial ICP-MS by PerkinElmer-SCIEX 502 

in 1983.  503 

A typical interface of modern ICP-MS is shown in Fig. 8B), and the gas dynamics of the 504 

interface is detailed by Douglas and French (1988). For sampling an Ar ICP with a gas kinetic 505 

temperature of 6000 K, as the plasma is drawn adiabatically through the sampling orifice (diameter 506 

D0 ~ 1 mm), the axial flow accelerates to local speed of sound (a0 = (γkT0/m)0.5 = 1.4 × 105 cm/s) 507 

at a distance of x = 0.5D0 downstream of the sampler, and reaches terminal speed (u = (5kT0/m)0.5 508 

= 2.5 × 105 cm/s) at x ≥ 2D0. Assuming the plasma expands from atmospheric pressure (P0) into a 509 

background pressure (P1) of ~ 2 Torr, the shock wave terminates at the Mach disk located at xm = 510 

0.67D0(P0/P1)0.5 = 13 mm. The skimmer is typically placed before the Mach disk at ~ 2/3xm to 511 

allow high ion transmission while minimizing background gas penetration into the supersonic jet, 512 

corresponding to a sampler-skimmer spacing of 7-8 mm and a travel time of about 3 μs. This short 513 

transit time limits the occurrence of ion-molecule chemistry. In addition, while electron density 514 

decreases with 1/x2, resulting in an increase in λD from ~ 10-4 mm at the sampler to 10-3-10-2 mm 515 

at the skimmer tip, λD remains much smaller than a typical skimmer orifice (0.4-0.8 mm diameter). 516 

Therefore, the ion population sampled through the sampler and skimmer resembles that in the 517 

plasma source.  518 
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Downstream of the skimmer orifice, the electron density continues to decrease to the extent 519 

that λD becomes significant for charge separation (Niu and Houk 1994). With their high mobility, 520 

electrons diffuse readily to the inner wall of the skimmer cone where an electron sheath forms. 521 

The initially quasi-neutral beam takes on a positive net charge and expands radially (defocuses) 522 

due to coulomb repulsion. The heavier ions, which have greater momentums, are repelled less than 523 

the lighter ions and are transmitted preferentially. Thus, analyte transmission efficiency is affected 524 

by the concentration and atomic mass of the constituent elements, and the isotopic composition 525 

measured for a given element is likely to be heavier than the true isotope ratio. This mass 526 

discrimination due to space charge accounts for many aspects of the matrix effects (e.g., Gillson 527 

et al., 1988; Tanner 1992) and must be corrected appropriately (see Section “Instrumental isotope 528 

fractionation”). To mitigate space charge and matrix effects, a triple-cone interface has been 529 

developed, which produces a less dispersed ion beam with a reduced ion current flux through the 530 

interface orifices (Tanner et al., 1994a; b).  531 

Ions emerging from the interface have divergent trajectories along the slope of the skimmer 532 

cone due to space charge effects and the variable ion kinetic energies acquired during the 533 

expansion-driven acceleration. The Ar flow and entrained ionized species accelerate to a similar 534 

velocity of ~ 2500 m/s, resulting in a mass-dependent spread in ion kinetic energy from 0.5 to 10 535 

eV for a mass range from Li to U. The ion kinetic energies may be increased by an additional 536 

voltage offset of 10 to 20 eV between the plasma and the sampler cone due to capacitive coupling 537 

between the induction coil and the plasma (Douglas and French 1986). This wide dispersion of ion 538 

kinetic energy creates problems for ion focusing and reduces the achievable mass resolution of a 539 

mass analyzer. These detrimental effects can be reduced by accelerating the positive ions to a 540 

suitable velocity to travel toward the detection system. A high acceleration voltage (typically 4000-541 
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10,000 V) is applied in magnetic sector-ICP-MS to dilute the initial ion kinetic energy spread, 542 

whereas a smaller acceleration voltage (~ 300 V) is used in quadrupole-ICP-MS to allow ions to 543 

pass sufficient RF cycles for mass selection.  544 

The sampler and skimmer cones are commonly made from nickel, a durable metal suitable for 545 

most samples, while platinum cones are preferred for more corrosive samples or rinsing solutions. 546 

The geometry of the cone has a crucial impact on ion transmission, space charge effects, and the 547 

introduction of sample matrices into the mass spectrometer. Notably, "wet" and "dry" sample 548 

introduction systems are paired with separate sets of cones, which vary by manufacturer and can 549 

be tailored to specific analytical requirements. For example, a Jet sampler cone with a slightly 550 

wider orifice and an X-skimmer cone with a trumpet-shaped entrance can be used for the Neptune 551 

Plus MC-ICP-MS to increase sensitivity by 5-10 times (e.g., Newman 2012; He et al., 2016).  552 

3.4 Ion optics 553 

The ion beam leaves the interface with a defocused circular profile. It then passes through an 554 

ion-focusing system to be reshaped into a narrow rectangular profile while being directed toward 555 

the detectors. This focusing system consists of a series of metal slits, plates, barrels, and cylinders. 556 

By varying the polarity and strength of applied voltages, the ion trajectory and the degree of 557 

focusing can be adjusted. A circular or conical extraction lens is placed after the skimmer cone to 558 

extract positive ions while rejecting electrons, neutral atoms, and molecules as much as possible. 559 

This lens significantly improves the tranmission efficiency of low-mass elements that are displaced 560 

further away from the centerline of the ion beam by the heavier elements. Succeeding lenses adjust 561 

the ion beam in vertical and horizontal directions, refining its focus, alignment, and trajectory. 562 

Focusing the ion beam precisely through these lenses reduces ion loss and increases analytical 563 

sensitivity. 564 
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For instruments that employ a multi-collector block with fixed physical spacing, additional 565 

zoom lenses are placed between the magnet and the collector block to adjust the mass dispersion 566 

between ion beams, thereby directing them into designated collectors. As an illustration, Nu 567 

instruments use a magnet with an effective radius of ~ 500 mm. It has a dispersion for Nd isotopes 568 

of 3.4 mm per amu, which is set to be the fixed spacing between adjacent collectors. This spacing 569 

is wider than the dispersion between adjacent isotopes of elements heavier than Nd (e.g., U), and 570 

a negative quadratic voltage is applied to magnify the ion beam image at the collectors (Fig. 9A). 571 

For lighter elements such as Sr, the magnet leads to a dispersion of ~ 5.8 mm between its isotopes 572 

(Fig. 9B). While applying a positive quadratic voltage can demagnify the ion beam image into 573 

adjacent collectors, this may lead to significant distortions. Alternatively, the dispersion is widened 574 

to 6.8 mm by applying a negative quadratic voltage so that different Sr isotopes can be directed 575 

into every other collector with appropriate peak shapes (Fig. 9C).  576 

3.5 Mass analyzer 577 

The mass analyzer is the central component of an ICP-MS; it uses magnetic and electric fields 578 

to separate ions based on their m/z ratios. Ions with different m/z ratios are separated according to 579 

their kinetic energies, momentums, and velocities. These properties form the basis for designing 580 

various mass analyzers, with magnetic sector, quadrupole mass filter, and time-of-flight (TOF) 581 

analyzers being the most prevalent in ICP-MS. They use different mass separation mechanisms, 582 

which lead to their characteristic resolution and detection capabilities. 583 

3.5.1 Critical characteristics of mass analyzers 584 

3.5.1.1 Mass resolution 585 

The resolution of a mass spectrometer defines its ability to distinguish ions with small mass 586 

differences. Resolution is typically quantified by the ratio of the mass being analyzed (m) to the 587 
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smallest increment in mass (Δm), i.e., m/Δm, and can be described in three ways (Fig. 10). The 588 

10% valley definition applies to two adjacent peaks of equal height, which are considered 589 

resolvable if the valley between them is no more than 10% of their height. In this definition, the 590 

smallest resolvable mass difference is determined by the widths of the ion beam and the collector 591 

slit. The second definition is quantified by the width of a single ion peak at a given fraction (e.g., 592 

50%, 5%, or 0.5%) of its maximum peak height. The 5% peak width definition is equivalent to the 593 

10% valley definition. The third definition is based on the peak edge resolving power, which 594 

measures how well the ion beam is defined at the source slit. This is calculated from the mass 595 

difference at 5% and 95% of the maximum height on the leading edge of the peak, and it may 596 

exceed the peak width resolution and the 10% valley resolution. A steeper peak corresponds to a 597 

narrower beam and a higher resolving power.  598 

3.5.1.2 Mass dispersion 599 

The mass dispersion (D) of a magnetic sector mass spectrometer refers to the physical distance 600 

between adjacent masses. This property is determined by its geometric configuration. For two 601 

peaks at masses m and (m + Δm), the physical distance between the two (X) is related to D by the 602 

following equation: 603 

𝐷
𝑋 =

𝑚
∆𝑚 604 

For peaks at adjacent masses (ΔM = 1 amu), X corresponds to the physical separation between 605 

two adjacent masses, which decreases as the analyte mass increases.  606 

3.5.1.3 Abundance sensitivity 607 

Abundance sensitivity refers to the tailing of a peak at mass m into its neighboring masses at 608 

m±1. Tailing arises primarily from collisions of high-velocity ions with background gas molecules 609 
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along the flight path. If collisions occur before the magnet, ions affected by the collisions will have 610 

a reduced kinetic energy and be deflected more in the magnetic field than those with the same m/z 611 

ratios but unaffected by the collisions. The more deflected lower-energy ions may enter the 612 

collector below the correct mass. Since ions most likely lose energy during collisions, this tailing 613 

effect is largely absent on the high-mass side of the peak, resulting in asymmetric tailing. 614 

Alternatively, if collisions occur after the magnet, a small percentage of ions will be diverted into 615 

the lower and higher mass collectors with equal possibility, resulting in symmetric tailing on both 616 

sides of the peak. The effect of tailing is particularly significant when a low-intensity peak is 617 

adjacent to peaks of much higher intensities. 618 

3.5.2 Motion of charged particles in electric and magnetic fields 619 

The Lorentz force describes the combined effect of electric and magnetic forces exerted on a 620 

charged particle and varies in proportion to its electric charge:  621 

𝐹 = 𝑞(𝐸 + 𝑣 × 𝐵) 622 

where F stands for the force applied to the ion, q for the electric charge (q = ze), E for the electric 623 

field, and 𝑣 × 𝐵 for the cross product of the ion’s velocity and the magnetic flux density.  624 

The force accelerates an ion inversely proportional to its mass, according to Newton's second 625 

law: 626 

𝐹 = 𝑚𝑎 627 

where m stands for the mass of the ion and a for the acceleration.  628 

Therefore, ions in a mass spectrometer are separated by their m/z ratios. The electric force 629 

accelerates an ion in the direction of the applied electric field, and a radial electric field deflects 630 

incoming ions according to their velocity and kinetic energy. The magnetic force does not change 631 
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the speed and kinetic energy of a moving ion but deflects it along a circular path in the plane of v 632 

× B according to its momentum and charge.  633 

3.5.2.1 Acceleration between parallel plates 634 

In the magnetic sector ICP-MS, ions are accelerated to reach a high velocity and kinetic energy 635 

before entering the magnet, such that their mass separation in the magnetic field is less affected by 636 

their initial kinetic energy spread, and sensitivity is improved. Assuming that an ion starts to 637 

accelerate from rest and move along the electric field across a potential difference of U 638 

(acceleration voltage), the change in potential energy is converted into its kinetic energy: 639 

𝑞𝑈⬚ =
1
2𝑚𝑣⬚

"  640 

This acceleration gives the ion a velocity of: 641 

𝑣⬚ = 32𝑞𝑈
𝑚  642 

At an acceleration voltage of 6-10 kV, as commonly used in MC-ICP-MS, a proton with a 643 

mass of 1.67 × 10−27 kg and a charge of 1.6 × 10−19 coulombs will reach a velocity of ~1000 to 644 

1400 km/s after the acceleration.  645 

3.5.2.2 Deflection between cylindrical capacitors 646 

An electric field between two cylindrical plates exerts a radial force that pulls ions toward its 647 

center. The voltage is set such that the electric force equals the centripetal force to steer a moving 648 

ion along the curve of the electrode plates with a radius of rE: 649 

𝑞𝐸 =
𝑚𝑣"

𝑟#
 650 
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The radius of ion paths is determined by the kinetic energies (EK) of ions and the potential field 651 

(E) between the plates: 652 

𝑟# =
𝑚𝑣"

𝑞𝐸 =
2 × 512𝑚𝑣

"6
𝑞𝐸 =

2𝐸$
𝑞𝐸  653 

Ion beams with the same kinetic energy will be brought to a focus despite their divergent 654 

velocity vectors at entry, achieving energy focusing (Fig. 11). In contrast, ions with slightly 655 

different kinetic energies will be deflected to various degrees. By placing a narrow collimating slit 656 

at either end of the electric sector, only ions that fall within the selected kinetic energy range will 657 

pass through. 658 

3.5.2.3 Deflection in a static magnetic field 659 

A magnetic sector focuses ions with equal momentum and deflects ions with different m/z 660 

ratios. When incoming ions enter a magnetic field with velocities perpendicular to the plane of v 661 

× B, they will be forced onto circular paths (Fig. 12A), and the magnetic force equals the centripetal 662 

force: 663 

𝐹% = 𝑞𝑣𝐵 =
𝑚𝑣"

𝑟%
 664 

The radius of the circular path rB is given by: 665 

𝑟% =
𝑚𝑣
𝑞𝐵 =

72𝑚𝐸$
𝑞𝐵  666 

According to the equation above, singly charged ions with equal momentum will travel in 667 

circles with the same radius (r). If they enter the magnetic field from a common point with a 668 

divergence in the direction of α, their circular paths will intersect after traveling approximately a 669 

semicircle (Fig. 12B). With small-angle approximation, a monoenergetic ion beam with an angular 670 

divergence of 2α will converge to a limited width of b at the exit slit: 671 
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𝑏	 ≈ 2𝑟(1 − 𝑐𝑜𝑠𝛼) ≈ 𝑟𝛼" 672 

Furthermore, ions with identical kinetic energy will be deflected according to their masses, 673 

whereby ions with smaller masses will be deflected more than those with higher masses. The 674 

physical dispersion (D) of two masses, m and (m+Δm), along the focal plane is twice the difference 675 

in the radii (ΔrB) of their circular paths through the 180° magnet (Fig. 12C). Given that  676 

𝑟% = 3
2𝑈⬚
𝑞𝐵" √𝑚 677 

thus 678 

∆𝑟% = 𝑟%
∆𝑚
2𝑚 679 

and 680 

𝐷 = 2∆𝑟% =
∆𝑚
𝑚 𝑟% 681 

The natural mass dispersion of a given magnetic sector thus depends on its effective radius.  682 

The equation for rB can be rearranged as below: 683 

𝑚
𝑧=

𝐵"𝑟%"𝑒
2𝑈⬚

 684 

This equation demonstrates that for singly charged ions, the radius of ion trajectory is 685 

positively correlated with mass under a constant magnetic field and acceleration voltage. In single-686 

collector ICP-MS, ions with different masses can be sequentially focused onto the detector by 687 

adjusting the magnetic field strength, the acceleration voltage, or a combination of both. This 688 

allows for a complete scan of m/z ratios from low mass to high mass. However, magnet scanning 689 

is slower than acceleration voltage scanning as a settling period of ~10-200 ms is required for each 690 

scan to ensure a stable magnetic field. In comparison, MC-ICP-MS analyses are typically 691 
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performed in static mode, with both the acceleration voltage and the magnetic flux density held 692 

constant, while ions with different masses are collected along a focal plane for simultaneous 693 

detection. 694 

3.5.2.4 Deflection in perpendicular electric and magnetic fields  695 

If an ion enters crossed electric (E) and magnetic (B) fields with the velocity v perpendicular 696 

to the lines of force of both fields, the ion will be deflected unless the electric and magnetic forces 697 

are of equal magnitude but opposite directions: 698 

𝑞𝐸 = 𝑞𝑣𝐵 699 

which gives the velocity of v = E/B for undeflected ions (Fig. 13). Wien (1898) used a similar 700 

device to measure the m/z ratios of electrons and protons. This design led to the development of 701 

the "Wien filter" as a velocity selector in ICP-MS applications (e.g., Tsuno and Ioanoviciu 2013). 702 

3.5.3 Magnetic sector mass spectrometer 703 

The magnetic sector mass analyzer has its roots in the archetypal mass spectrograph developed 704 

by Thomson (1913), which led to the discovery of stable isotopes. In Thomson's experiment, 705 

gaseous atoms were ionized by an electric current in a partially evacuated tube. The positively 706 

charged ions were set in a circular motion by the magnetic force, while the electric field applied 707 

an acceleration in the direction parallel to the magnetic field. These combined fields caused the 708 

ions to leave parabolic traces on the photographic plates corresponding to their m/z ratios. The 709 

resolving power of this parabola apparatus was limited to ~15. As an alternative to photographic 710 

film, Thomson (1912) also used a Faraday cup and an electroscope to quantify the charge intensity 711 

of the beam, with which he obtained a mass spectrum. By gradually changing the magnetic field 712 

strength, beams of different masses could be admitted sequentially through a slit into the Faraday 713 

cup, working as a scanning mass spectrometer.  714 
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In separate but complementary efforts to improve the mass resolution, A. J. Dempster and F. 715 

W. Aston attempted to focus ions of a certain m/z ratio onto a single detection point. Dempster 716 

(1918) utilized electron bombardment to produce roughly monoenergetic ions and a 180o magnetic 717 

sector to achieve direction focusing of the ions. Ions of similar kinetic energy followed 718 

semicircular paths of equal radius and crossed their paths at the detector slit regardless of their 719 

divergent angles at the entrance (Fig. 12B). The ions were collected in Faraday cups and detected 720 

with an electrometer. This mass spectrometer provided a resolution of 100 and was particularly 721 

useful for determining the relative abundances of ionic species. Bainbridge (1932) further 722 

improved the resolution of the Dempster-type instrument to 500 by adding a velocity selector 723 

("Wien filter") before the magnet. Based on the mass of 7Li measured with this instrument 724 

(Bainbridge 1933), together with the masses of 4He and 1H reported by Aston (1927), Bainbridge 725 

(1933) presented experimental proof of Einstein’s mass-energy relation through the reaction of 7Li 726 

+ 1H à 24He. Dempster (1935) later introduced spark ionization to analyze conductive solids, with 727 

which he discovered the rare isotope 235U. 728 

Alternatively, Aston (1919) designed a spectrograph that compensated for ion energy spread 729 

by velocity focusing, using spatially separated electric and magnetic fields. A vertical diaphragm 730 

was positioned behind the electric field to select ion beams with nearly parallel velocities. Upon 731 

entering the magnetic field, the ions were deflected in a direction opposite to their deflections in 732 

the electric field, and ions with lower velocities were deflected more than those with higher 733 

velocities in both fields. Consequently, ions with the same m/z ratio but slightly different velocities 734 

arrived at the same position on the photographic plate. With this mass spectrograph, isotope masses 735 

can be measured with an accuracy of 0.1% and a mass resolving power of 130. Aston (1927; 1937) 736 

upgraded his first spectrograph by using finer slits, more stable and stronger electric and magnetic 737 
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fields that doubled ion deflection angles. These improvements increased the resolution to 2000 738 

and the accuracy to ~0.001%, which enabled Aston (1927; 1937) to precisely determine the 739 

deviation of isotope masses from the whole number rule. The concept of using velocity focusing 740 

together with direction focusing led to the development of double-focusing mass spectrometers, in 741 

which the achievable mass resolution is not compromised by the initial divergence and energy 742 

spread of ions. 743 

Effective double-focusing relies on the coincidence of direction focusing with energy focusing, 744 

which has benefited from the comprehensive formulation of ion trajectories through various 745 

combinations of magnetic and electric fields in superimposition, or in tandem (e.g., Bartky and 746 

Dempster 1929; Mattauch and Herzog 1934; Johnson and Nier 1953). The most common 747 

configurations are derivatives of the Mattauch-Herzog and Nier-Johnson geometries. The 748 

Mattauch-Herzog geometry uses a 31.82° electric sector followed by a 90° magnetic sector in the 749 

opposite direction of curvature (Fig. 14A), offering simultaneous detection of a broad mass 750 

spectrum along a focal plane. In comparison, the Nier-Johnson geometry uses a 90° electric sector 751 

and a 60° magnetic sector with the same direction of curvature (Fig. 14B), which is widely used 752 

in MC-ICP-MS for precise measurement of isotope ratios. In reversed Nier-Johnson geometry, the 753 

magnetic sector is placed before the electric sector. This geometry is often used in single-collector 754 

ICP-MS, where most ions are removed from the beam by mass filtering in the magnetic sector, 755 

thereby reducing beam aberration, peak tailing, and backgrounds. 756 

Sector-field mass analyzers provide flat-topped peaks and superior mass resolution (~ 300 to 757 

over 10,000) for resolving isobaric interferences from analyte ions. This resolution is a significant 758 

improvement over quadrupole-based instruments (~300-400) that typically have the unit mass 759 

resolution, as discussed in the following section. In addition, the magnetic sector provides spatial 760 
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separation of ions according to their m/z ratios, which facilitates the simultaneous detection of 761 

multiple ion beams with a detector array, thereby minimizing the temporal fluctuations associated 762 

with ionization and ion transmission for isotopic ratio analyses with MC-ICP-MS.  763 

3.5.4 Quadrupole mass spectrometer 764 

Quadrupole-ICP-MS has dominated the first decade of ICP-MS development since its 765 

commercialization in 1983. It remains the most widely used ICP-MS instrument today, owing to 766 

its relatively small size, mechanical simplicity, and affordable cost. A quadrupole mass filter 767 

contains four cylindrical or hyperbolic rods arranged parallel in a square array (Fig. 15). The metal 768 

rods are commonly 15-25 cm long, and the ion source and detector are closely packed. The mass-769 

filtering mechanism is based on applying direct and alternating electric currents to the conductive 770 

rods to allow the transmission of ions of one m/z ratio at a time. A reasonably good mass resolution 771 

can be achieved at a rapid scanning rate (typically 2500-5000 amu/s) and a relatively low vacuum 772 

requirement (~5 ×10-5 Torr), with no need for an additional device for energy focusing.  773 

An important analytical strength of the quadrupole mass analyzer is its ease of use in tandem 774 

mass spectrometry (see review by Balcaen et al., 2015). For example, both gas chromatography 775 

(GC) and liquid chromatography (LC) can be conveniently interfaced with a quadrupole to identify 776 

separated compounds (e.g., Finnigan 1994). Quadrupole ICP-MS is also frequently combined with 777 

LA and MC-ICP-MS for in situ geochemical analyses of mineral grains. For instance, a volume of 778 

laser-ablated zircon fragments can be split into a quadrupole-ICP-MS for trace elemental analyses 779 

and a MC-ICP-MS for U-Pb zircon dating and Hf isotopic analyses (e.g., Yuan et al., 2008).  780 

The concept of a quadrupole mass filter, published by Paul and Steinwedel (1953), differs in 781 

principle from mass spectrometers that produce a spectrum of ions separated in space (magnetic 782 

sector instruments) or time (time-of-flight instruments). Instead, it works analogously to an 783 
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adjustable bandpass filter. It utilizes oscillating electric quadrupole fields to selectively transmit 784 

ions within a specific m/z range (typically ≤ one mass unit) through the quadrupole each time. Ions 785 

with m/z ratios beyond this narrow range will strike the rods before reaching the exit of the 786 

quadrupole. The separation of ions with a specific m/z ratio is achieved by adjusting the electric 787 

field and oscillating frequencies applied to the metal rods, and ions of each m/z ratio pass through 788 

the quadrupole in sequence. While different masses are filtered sequentially, rapid ramping of the 789 

voltages allows scanning over 0-250 amu within 100 ms. This high scanning speed gives 790 

quadrupole mass spectrometers the ability to measure multiple elements rapidly.  791 

The four rods of a quadrupole are arranged as two pairs in diagonal directions of the sample 792 

path (Fig. 15). Both electrode pairs are supplied with a combination of constant direct current (dc) 793 

of the same magnitude but opposite polarity, and RF alternating current (ac) that is 180° out of 794 

phase. When no dc is applied, the RF-only electrodes serve as an ion-focusing component to direct 795 

a wide range of m/z ions traveling down the quadrupole along its central axis. The ac voltages 796 

applied to the electrodes focus and defocus the ion beams alternately every half period according 797 

to their RF. When the rods are electrically positive, they exert equal forces on the positively 798 

charged ions in opposite directions so that the ion beams converge to the center of the quadrupole 799 

and get focused. By contrast, when the rods are electrically negative, the positively charged ions 800 

are attracted toward the rods and defocused from the center.  801 

Mass separation occurs when offsetting the ac voltage of each pair of electrodes by a constant 802 

dc voltage in opposite directions to the same degree (Fig. 15). One pair of electrodes carries an 803 

oscillating voltage with brief excursions to negative voltage during each period. The positively 804 

charged ions are focused to the center of the quadrupole, except for a brief attraction toward the 805 

rods when switched to the negative voltage. High-mass ions carry more momentum and stay longer 806 
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along the central axis of the quadrupole than ions with lower masses, which are attracted further 807 

toward the rods when the voltages are switched to negative. These low-mass ions get increasingly 808 

defocused from the central ion beam during every negative excursion of the voltages supplied to 809 

the rods. Eventually, they collide with the rods and become neutralized. Therefore, this electrode 810 

pair serves as a high-mass filter that blocks the transmission of ions with m/z ratios below a specific 811 

value.  812 

The other pair of electrodes is supplied with an oscillating voltage with brief excursions to  813 

positive voltage during each period. In this case, positively charged ions are defocused from the 814 

central ion beam most of the time due to attraction to the negative electrodes, except for a brief 815 

focusing when the electrodes switch to positive voltage. These short excursions to positive voltage 816 

within each period would only exert sufficient focusing on relatively light ions to prevent them 817 

from striking the electrodes. In contrast, the brief focusing would be insufficient for ions with m/z 818 

ratios above a specific value. As a result, these high-mass ions are increasingly attracted toward 819 

the negative electrodes and eliminated from the ion beams as they reach the electrodes. 820 

Consequently, this pair of electrodes acts as a low-mass filter. The two pairs of electrodes work 821 

together to remove the transmission of ions with masses below and above a specific range at each 822 

setting. This way, the voltages can be adjusted to have a narrow bandpass that allows transmission 823 

through the quadrupole (Fig. 15).  824 

3.5.4.1 Mathematical expression 825 

In a quadrupole mass filter field, there is no acceleration along the central z-axis, and ions 826 

travel with constant velocity along this axis. The motions along the x and y directions of the 827 

symmetric hyperbolic electric field are governed by the Mathieu equation below [see Miller and 828 

Denton (1986) for the derivation of these equations]. 829 
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𝑑"𝑢
𝑑𝜉" +

[𝑎& − 2𝑞&cos	(2𝜉)]𝑢 = 0 830 

where u represents the coordinate axes x or y, and 831 

𝑎' = −𝑎( =
8𝑧𝑒𝑈
𝑚𝑟)"𝜔" 832 

𝑞' = −𝑞( =
4𝑧𝑒𝑉
𝑚𝑟)"𝜔" 833 

𝜉 = 𝜔𝑡/2 834 

where U is the magnitude of the dc voltage, Vcos(ωt) describes the amplitude of the RF voltage, 835 

ω is the angular frequency, t is time in seconds, and r0 represents the inscribed radius between the 836 

electrodes.  837 

3.5.4.2 The a-q stability diagram 838 

The parameters a and q in the Mathieu equation correlate positively with the magnitude of the 839 

dc potential (U) and the ac potential (V) applied to a quadrupole during a scan. Solutions of the 840 

equation can be plotted in a-q space to indicate whether an ion of a given mass has a stable 841 

trajectory through the quadrupole filter at the applied voltages. Any combination of a and q that 842 

lies within the triangular area corresponds to a stable ion trajectory along the X-Z and Y-Z planes 843 

(Fig. 16A). In practice, the dc and ac potentials are adjusted proportionally so that their ratios and 844 

the resolution are held constant, forming a scan line with a slope of 2U/V. A mass scan is 845 

completed by increasing U and V to allow ions with higher m/z ratios to pass through the 846 

quadrupole in succession (Fig. 16A and B).  847 

The resolution of a quadrupole mass filter corresponds to the width of the scanning bandpass, 848 

which varies with the RF frequency and the U/V ratio. Increasing the RF frequency at a constant 849 
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U/V ratio causes ions to pass through more RF cycles in the quadrupole, leading to more efficient 850 

separation and higher resolution. Increasing the U/V ratio leads to a steeper slope and higher mass 851 

resolution, whereas decreasing the U/V ratio results in a broader bandpass (Fig. 16C) and possible 852 

peak overlap between ions with similar m/z ratios. Because the stability boundary on the high-853 

mass side is steeper than that on the low-mass side, a decrease in resolution will cause the leading 854 

edge of the peak to shift more toward the lower mass than the shift of the trailing edge to the higher 855 

mass. Tailing on the low mass side of an ion peak can be reduced by limiting the kinetic energy 856 

spread of ions entering the quadrupole.  857 

The application of quadrupole mass spectrometry is mainly limited by its unit mass resolution, 858 

which is insufficient to separate analyte ions from isobaric interferences in most cases. Therefore, 859 

quadrupole ICP-MS is primarily used for measuring elemental concentrations at high sample 860 

throughput (e.g., Houk et al., 1980; Date and Gray 1981; Date and Hutchison 1986). Stable isotope 861 

analyses by quadrupole instruments are restricted to low-mass elements where natural isotope 862 

fractionation is large and isobaric interferences are less of an issue. For example,  Liu and Li (2019) 863 

achieved a long-term precision of 1.1‰ (2SD) for Li isotope analysis using only 2.5 ng Li. They 864 

pointed out that quadrupole ICP-MS is a practical alternative to MC-ICP-MS for analyzing low-865 

Li samples with high matrix contents because the quadrupole mass filter is less sensitive to matrix 866 

effects, and electron multiplier detectors provide better counting statistics than Faraday cups at 867 

low-Li concentrations.     868 

As an advantage of its robust unit mass resolution, the quadrupole mass filter can handle 869 

incoming ions with wide momentum and kinetic energy distribution. Furthermore, a quadrupole 870 

is an ideal preliminary mass filter because it filters mass by varying electric fields and rapid mass 871 

scanning. These analytical benefits have found wide applications in triple-quadrupole ICP-MS for 872 
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analyzing chemical structures or specific chemical reactions, where the first quadrupole selects a 873 

specific ion to be fragmented in the second quadrupole and analyzed in the third quadrupole (e.g., 874 

Yost and Enke 1979; Yost 2022). More recently, the quadrupole has also been used as a pre-875 

collision-cell mass filter in MC-ICP-MS (e.g., Thermo-Fisher Proteus, Bevan et al., 2021; Lewis 876 

et al., 2022; Mahan et al., 2022). 877 

3.5.5 Time-of-flight mass spectrometer 878 

Time-of-flight (TOF) mass spectrometers measure the mass-dependent time required for 879 

microsecond pulses of accelerated ions to drift through a field-free vacuum flight tube (30-100 cm 880 

long) (Fig. 17). It can generate consecutive mass spectra of ions formed by laser ablation, 881 

electrothermal vaporization, and flow injection. In principle, TOF analysis is analogous to an ion 882 

race (Stephens 1946; Wolff and Stephens 1953): an electric field first accelerates a package of ions 883 

to the same kinetic energy. This acceleration gives each ion a characteristic velocity dependent on 884 

its m/z ratio, at which it drifts along a vacuum tube. Ions with different m/z ratios are spatially 885 

separated along the flight tube, and ions with lower mass reach the detector earlier than the heavier 886 

ions: 887 

𝑡 =
𝐿
𝑣 =

S
𝑚
𝑧 ×

𝐿
√2𝑒𝑉

 888 

The entire mass spectrum of the introduced ions is completed as ions arrive sequentially at the end 889 

of the flight tube and are registered digitally. The detection of ions with various m/z ratios is quasi-890 

simultaneous as the process occurs rapidly.  891 

The TOF analysis requires a precisely defined starting time for the ion race. Ions are sampled 892 

in pulses instead of being introduced continuously into the flight tube, so that a lighter ion 893 

introduced later would not overtake a heavier ion introduced earlier during free drift. The matrix-894 

assisted laser desorption/ionization technique (MALDI) is typically used for pulsed ionization. 895 
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Alternatively, ions can be released from the source in packages through electrical "gates." In cases 896 

where ICP is used as the ionization source, the continuously formed ions are regulated by 897 

orthogonal acceleration using a set of pulsed-repeller plates aligned horizontally to the flight tube. 898 

The repeller plates send ions into the flight tube by applying a positive voltage to accelerate them 899 

perpendicular to their original direction. In contrast, no ions will be admitted into the flight tube 900 

when the repeller plates are uncharged. Current TOF analyzers can process up to 30,000 ion 901 

packages per second; therefore, they are ideal for monitoring transient signals. 902 

The major limiting factor for the mass resolution of early TOF-MS instruments is the kinetic 903 

energy spread of ions prior to their admission to the flight tube (Cameron and Eggers Jr. 1948; 904 

Wiley and McLaren 1955). To overcome this limitation, an electrostatic reflector, known as the 905 

ion mirror, was developed (Mamyrin et al., 1973). The reflector is placed at the end of the flight 906 

tube and consists of a series of high-voltage electrode rings. The reflector first decelerates the 907 

incoming ions to a stop and then accelerates them again in the opposite direction (Fig. 17). In this 908 

way, the initial distribution of kinetic energy between ions is compensated for by the different 909 

distances the ions travel in the reflector: ions with higher velocities travel further into the reflector 910 

and fly longer distances than those with lower velocities. Consequently, ions with the same m/z 911 

ratio arrive at the detector concurrently regardless of their differences in kinetic energy.  912 

3.6 Detectors  913 

The detection system collects ions emerging from the mass analyzer and, based on the rate of 914 

ions delivered to the detector, generates electrical signals proportional to the concentration of 915 

analyte ions in a sample. The ion intensities of different m/z ratios are compared with the 916 

calibration or reference standards with known concentrations. Thus, the elemental concentrations 917 

in an unknown sample can be calculated. In isotopic ratio analyses, the relative beam intensities 918 
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of isotopes measured in a sample are compared with those of a standard. The precision of isotope 919 

analyses is primarily limited by the counting statistics and the electrical Johnson-Nyquist noise of 920 

the resistor in the feedback loop. This electrical noise arises from the random thermal motion of 921 

electrons in an amplifier when no current is applied (Nyquist 1928). 922 

Most ICP-MS analyses involve measurements of ion beam intensities ranging from sub-923 

femtoampere (1 fA = 10-15 A = 6242 ions/s) to nanoampere (1 nA = 10-9 A), which are amplified 924 

for quantification. Ion signals are typically detected by counting the number of electron pulses 925 

from single ion impacts per second, or by converting the induced electric current to a voltage for 926 

analog measurements (Fig. 18). Depending on the dynamic range required for the measurements, 927 

ion multipliers are used to measure low ion currents (e.g., between 10-19 A and 10-13 A), whereas 928 

Faraday cups are preferable for higher ion beams (e.g., between 10-15 A and 10-9 A) due to their 929 

exceptional linearity and stability at high ion currents (Fig. 19). The difference in dynamic range 930 

between these two types of detectors reflects their different mechanisms for detecting ions, which 931 

are described below.  932 

3.6.1 Ion multipliers 933 

The number of incoming ions is "multiplied" due to the emission of secondary electrons when 934 

the incident ion impacts the dynode surface of the detector. In a Daly detector (Daly 1960), positive 935 

ions are attracted to an off-axis conversion dynode held at a high negative voltage (~20 kV), which 936 

repels and accelerates secondary electrons toward a scintillator. The photons emitted from the 937 

phosphor screen are amplified and detected by a photomultiplier, which can be outside the vacuum 938 

chamber. In contrast, electron multipliers work under vacuum. The incident ion strikes the detector 939 

surface in the line of sight, releasing secondary electrons that cascade, leading to a gain of 103 to 940 
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108 so that the signal is readily detected as individual electron pulses (< 106 cps) or as an electron 941 

current (~ 106 cps to >109 cps).  942 

There are two main types of electron multipliers, depending on the number of electrodes used 943 

(Fig. 18). In the discrete dynode multiplier, electron multiplication takes place between individual 944 

dynodes that are connected by a series of resistors. The gain is adjusted by changing the negative 945 

voltage (a few kV) applied to the first dynode. The voltage steps between dynodes are adjusted to 946 

output the signal at ground potential. In comparison, the continuous dynode multiplier amplifies 947 

the number of secondary electrons within a curved, cone-shaped glass tube. The inside of the tube 948 

is coated with a thin layer of semiconducting material that has a high resistance to create a gradual 949 

voltage drop along the path. A conversion dynode with a high negative voltage can be added before 950 

the conventional electron multiplier so that the secondary electrons strike the multiplier with 951 

substantially higher kinetic energy, thereby reducing the mass dependence of the secondary 952 

electron emission.  953 

Daly detectors and electron multipliers offer complementary advantages. Daly detectors are 954 

more robust and deliver better linearity, especially at high count rates. Furthermore, the dynamic 955 

range of Daly detectors are wider than that of electron multipliers. On the other hand, electron 956 

multipliers are smaller and less expensive. They are the standard detector for single-collector ICP-957 

MS and their high signal-to-noise ratio is suitable for counting low-intensity ion beams. The 958 

background noise of an ion multiplier is typically a few counts per minute, which is negligible 959 

compared to ion signals of hundreds to millions per second (Carlson 2014). However, the counting 960 

capability of the electron multiplier becomes limited at count rates higher than a few million cps 961 

(Fig. 19), as there will be a short "dead time" (a few ns to tens of ns) during which the detector 962 

cannot identify an incoming signal. Due to the restricted dynamic range of electron multipliers, a 963 
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Faraday cup can be added to the single-collector ICP-MS to extend the maximum countable rate 964 

from 109 cps to 1012 cps, enabling measurements of trace and major elements during a single scan 965 

(Wiedenbeck et al., 2012).  966 

3.6.2 Faraday cup 967 

A Faraday cup is an electrode connected to the electrical ground via a high-resistance amplifier 968 

for signal integration. The Faraday cup detects ions by neutralizing their positive charges with 969 

electrons flowing from the electrical ground. As the electric current passes through the amplifier, 970 

it is converted to a voltage for measurement. Assuming that 108 ions with a fundamental electron 971 

charge of 1.6 × 10–19 coulomb strike the collector per second, together they deliver a beam current 972 

of 1.6 × 10–11 A, which corresponds to an output voltage of 1.6 V for a standard Faraday cup with 973 

a 1011 Ω amplifier. The use of such a high-ohm resistor for signal amplification causes a 974 

background noise on the order of 10-16 A, which is significant compared to typical ion signals of 975 

10-14 to 10-10 A (Carlson 2014), and is compensated for by an extended measurement duration of 976 

several hundred seconds. Isotope abundance ratios are often measured with inter-calibrated 977 

Faraday cups, as their high signal stability facilitates high-precision ratio measurements. 978 

A critical consideration in designing Faraday cups is to reduce the generation and scattering 979 

loss of secondary electrons. Therefore, Faraday cups have a long and narrow "bucket" shape, with 980 

a base typically made of highly porous carbon. The electron trapping efficiency of the Faraday cup 981 

can be enhanced by steering electrons through a magnetic field in a spiral trajectory and increasing 982 

their chance of hitting the collector wall. In addition, Faraday cups have a metal slit, behind which 983 

a second electrode, known as the suppressor, is inserted and supplied with a potential of –50 V to 984 

–100 V (Fig. 18). This negative electrode effectively repels the secondary electrons emitted from 985 
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the slit when ions strike on it. It also helps to prevent the loss of electrons formed within the 986 

Faraday cup by repelling them back to the base.  987 

3.6.3 Multi-detection arrangement 988 

A major advance in the ion detection system came with the coupling of a multi-collection array 989 

(Fig. 18) to the ICP-MS, which enables simultaneous detection of all relevant ion signals for high-990 

precision isotopic ratio analyses (e.g., Walder and Freedman 1992; Walder et al., 1993; Wieser 991 

and Schwieters 2005). Given their compact size, more than 10 Faraday cups can be readily fitted 992 

into a multi-collection block,  and several ion multipliers can be accommodated in addition to 993 

them. Since the introduction of MC-ICP-MS, the detection system has undergone several 994 

significant upgrades, including an increased number of detectors (up to 16 Faraday cups), a larger 995 

dynamic range for standard Faraday cups (55 V vs. 11 V on 1011 Ω resistors), an improved signal-996 

to-noise ratio of the Faraday cup with new amplifier designs, and a dual-mode detector 997 

arrangement for convenient switching between the Faraday cup and electron multiplier.  998 

The state-of-the-art multi-detection system features a switchable amplifier design to 999 

accommodate diverse applications. Amplifiers with 109 Ω and 1010 Ω feedback resistors facilitate 1000 

the measurement of elements with isotopes that occur in significantly different abundances, such 1001 

as V (e.g., Nielsen et al., 2011; Wu et al., 2016). On the other hand, amplifiers with 1012 Ω and 1002 

1013 Ω resistors have been developed to bridge the detection limits between Faraday cups and ion 1003 

multipliers (Fig. 19) (e.g., Wieser and Schwieters 2005; Breton et al., 2015). Results from 1004 

Koornneef et al. (2014) show that with a 100-fold increase in resistivity, the signal-to-noise ratio 1005 

of the amplifier is improved by a factor of up to five. Furthermore, the 1013 Ω Faraday cup 1006 

potentially offers higher precision than electron multipliers for beam sizes greater than 20 kcps. 1007 

This new amplifier has greatly expanded the potential for high-precision isotopic analyses for 1008 
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small-sized samples (e.g., laser ablation, carbonate, or biological samples) and low-abundance 1009 

isotopes (e.g., Ta and Re) using MC-ICP-MS (Pfeifer et al., 2017; Steinmann et al., 2019; e.g., 1010 

Dellinger et al., 2020; Grigoryan et al., 2020). 1011 

 1012 

4 Analytical interferences in ICP-MS  1013 

While a highly efficient ICP source offers valuable analytical benefits, the trade-off is that a 1014 

variety of interfering species could be introduced into the analyzer region along with the ions of 1015 

interest. These interferences are the main factor limiting the accuracy and precision of ICP-MS 1016 

analyses. They can be divided into two broad groups, i.e., spectral and non-spectral, which are 1017 

discussed below. 1018 

4.1 Spectral interferences 1019 

Spectral interferences occur when unwanted ionic species, either isobaric or polyatomic, have 1020 

the same nominal m/z ratio as the analyte ions. These interferences result in spectral overlap, 1021 

causing the true analyte signal to be overestimated. Isotopic analysis is particularly susceptible to 1022 

spectral interferences as it requires the measurement of two or more interference-free isotopes. In 1023 

contrast, a small amount (0.1-1%) of spectral overlap can be tolerated in elemental analysis. 1024 

Spectral interferences originate from various sources, including the sample matrix, solvent (e.g., 1025 

H2O, HNO3, and HCl), plasma gas (typically Ar), and plasma-entrained air (e.g., N2, O2, and CO2). 1026 

Isobaric interferences occur when other elements have naturally occurring isotopes at the same 1027 

mass as the analyte (e.g., Ar, K, and Ca at mass 40). Polyatomic interferences arise from the 1028 

combination of two or more atomic ions, typically in the form of Ar-related species, oxide and 1029 

hydroxide, and Cl-, S-, or P-based species.  1030 
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When Ar serves as the plasma gas, the most common interferences are Ar+, Ar2+, and argides. 1031 

Argon has three naturally occurring isotopes: 36Ar (0.337%), 38Ar (0.063%), and 40Ar (99.6%). 1032 

40Ar is a severe isobaric interference on 40K, a minor isotope of K (0.0117%). It also interferes 1033 

with 40Ca (94.961%), the dominant Ca isotope. The various combinations of Ar isotopes form a 1034 

series of interferences on Se isotopes, particularly 40Ar2 that interferes with the major Se isotope 1035 

(80Se). A variety of Ar-related polyatomic ions can form in the mass range between 14 and 90 due 1036 

to the combination of Ar with the sample solvent (e.g., Tan and Horlick 1986). For example, 1037 

40Ar16O+ interferes with the dominant Fe isotope (56Fe+), while 40Ar14N+ and 40Ar16O1H+ interfere 1038 

with 54Fe+ and 57Fe+, respectively. Argides also significantly affect K isotope measurements, with 1039 

38ArH+ and 40ArH+ directly interfering with 39K+ and 41K+, respectively. For samples containing 1040 

organics, 40Ar12C may interfere with the dominant Cr isotope (52Cr), and 40Ar14N may interfere 1041 

with 54Cr. 1042 

While an ICP source produces mainly singly charged ions, a small percentage of other ionic 1043 

forms may be present. Doubly charged ions occur mostly in alkaline earth elements, forming 1044 

interference peaks at half their masses (e.g., 48Ca2+ on 24Mg+). Refractory elements typically 1045 

combine with 1H, 16O, or 16O1H from the air or sample solvent to form molecular interferences 1046 

such as hydrides, oxides, and hydroxides. For example, Ti has five naturally occurring isotopes: 1047 

46Ti (7.99%), 47Ti (7.32%), 48Ti (73.98%), 49Ti (5.46%), and 50Ti (5.25%). Their oxides form 1048 

interferences on 62Ni (46Ti16O), 63Cu (47Ti16O), 64Zn (48Ti16O), 65Cu (49Ti16O), and 66Zn (50Ti16O). 1049 

The formation of oxides relative to atomic ions depends on their respective bond strength with 1050 

oxygen, and is particularly problematic for refractory elements with high bond strength (e.g., 1051 

REEs, Ba, and Ca). 1052 
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4.2 Non-spectral interferences 1053 

In contrast to spectral interferences that directly overlap with the m/z ratio of the analyte, non-1054 

spectral interferences reflect changes in analyte throughput between samples due to physical and 1055 

chemical differences in the sample matrices. The physical properties of the sample matrices, such 1056 

as viscosity, surface tension, evaporation rate, and vapor pressure, can affect the ionization 1057 

temperature in the plasma or the mass discrimination as an ion beam passes through the expansion 1058 

chamber (Longerich 1989). In addition, analyte transmission efficiency is susceptible to matrix 1059 

elements. For example, a high loading of easily ionizable elements (e.g., Na) to the plasma may 1060 

reduce plasma energy and suppress the ionization of analytes. The suppression of the analyte signal 1061 

can also be due to space charge effects in the interface region, where coulomb repulsion between 1062 

positively charged ions defocuses the ion beams (Gillson et al., 1988; Tanner 1992). If a sample 1063 

contains an excess of heavy matrix elements, the lighter analyte ions will be more strongly 1064 

deflected from the central ion path than the heavier matrix ions, resulting in a lowered analyte 1065 

sensitivity.  1066 

 1067 

5 Approaches to overcome interferences 1068 

Spectral and non-spectral interferences significantly affect the accuracy of elemental 1069 

concentration and isotopic ratio analyses; therefore, they must be eliminated or corrected 1070 

appropriately. An ideal approach to avoid spectral interferences of an analyte is to measure the 1071 

signals of its interference-free isotopes with relatively high natural abundances. However, this 1072 

approach does not apply to elements with isotopes of low natural abundances, or with only a single 1073 

isotope (e.g., As, Co, Sc, and Mn). Therefore, various alternative approaches have been developed 1074 

to reduce the interferences with ICP-MS (e.g., see reviews by Evans and Giglio 1993; Lum and 1075 
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Leung 2016). It is important to emphasize that the most practical approaches should be tailored for 1076 

the specific element. 1077 

5.1 Choice of sample solvents 1078 

For ICP-MS measurements, samples are usually dissolved in dilute HNO3 because its three 1079 

constituent elements are also present in the entrained atmospheric gases. In contrast, HCl is less 1080 

frequently used because Cl readily forms complex ions interfering with analyte ions. This is 1081 

particularly the case for As, which occurs only as 75As (overlapping with 40Ar35Cl+), and for V, 1082 

which has its dominant isotope (51V) overlapping with 35Cl16O+. Sulfuric acid and H3PO4 are 1083 

generally not recommended because they can form a variety of S- and P-bearing polyatomic ions. 1084 

For example, 32S16O+ and 31P16O1H+ are direct interferences on 48Ti+, and 32S16O2+ is a direct 1085 

interference on 64Zn+. In addition, 31P14N+ interferes with 45Sc, the only Sc isotope, and 31P16O2+ 1086 

interferes with 63Cu, the major Cu isotope. One effective approach to suppress hydride formation 1087 

is to replace H2O with D2O, which eliminates the major polyatomic interference of 36ArH+ on 1088 

37Cl+, thereby enabling the accurate determination of 37Cl/35Cl ratios (Smith and Houk 1990).   1089 

5.2 Analyte-matrix separation 1090 

For precise and accurate isotopic analyses, it is recommended to separate the analyte from the 1091 

matrix elements. Chromatographic separation is commonly used, and is based on affinity to the 1092 

ion exchanger, hydrophobic/hydrophilic properties, size (size-exclusion chromatography), or other 1093 

less frequently used methods. Chromatographic separation can be performed online or offline, 1094 

depending on the nature of the sample and analyte. Matrix components that readily form insoluble 1095 

compounds can be removed by precipitation. For example, Cl-related interferences can be 1096 

removed by adding AgNO3 to precipitate as AgCl (Lyon et al., 1988). Precipitation of Ca in the 1097 

form of calcium sulfates has also been used to separate Mg from Ca in carbonates (Bao et al., 1098 
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2019). Alternatively, a vapor generation device can be used to convert hydride-forming elements  1099 

into volatile species, which are subsequently separated and concentrated from the residual 1100 

solutions (e.g., Powell et al., 1986; Buckley et al., 1992; and see section 3.1.3).  1101 

5.3 Sample desolvation 1102 

Because water is the primary source of H- and O-related polyatomic interferences, the 1103 

formation of these molecular ions can be effectively reduced by a desolvation nebulization system 1104 

(e.g., Gustavsson and Hietala 1990; and see section 3.1.2.2). This method applies to all elements, 1105 

regardless of their tendency to form volatile species. As measured by the ratios of CeO+/Ce+, oxide 1106 

formation decreases from 3.5% for typical "wet" plasma introduction to 0.01-0.08% for various 1107 

designs of "dry" plasma introduction systems, with an increase in sensitivity by at least an order 1108 

of magnitude.  1109 

5.4 Modifying the plasma 1110 

5.4.1 Mixed-gas plasma 1111 

By feeding an extra gas to a desolvation nebulization system, it is possible to further reduce 1112 

polyatomic interferences, mass bias, and oxide formation (e.g, Lam and McLaren 1990). This 1113 

additional gas is usually blended into the nebulizer gas, as this causes less plasma perturbation and 1114 

is more efficient than mixing it into the coolant gas at a much higher flow rate. The most commonly 1115 

used gas is N2, a molecular gas with a similar ionization energy to Ar (Fig. 1(a)) but a higher 1116 

thermal conductivity and electrical capacity. The presence of N changes the electrical and spectral 1117 

properties of the Ar plasma, its ionic composition, and the population of Ar energy levels.  1118 

The principal ionization mechanism in an Ar-N2 plasma may differ from that in an all-Ar 1119 

plasma. It has been suggested that abundant metastable Ar atoms are present in Ar plasma, which 1120 

can be readily ionized to Ar+, or they can enhance the ionization of analyte elements by Penning 1121 



50 

ionization (Boumans and De Boer 1977). In an Ar-N2 plasma, the energy of the lower metastable 1122 

level of Ar atoms is slightly higher than the excitation of vibrational levels of N2 molecules by 1123 

electron impact. This leads to efficient collisional energy transfer that quenches the metastable Ar 1124 

by exciting the vibrational levels of N2 molecules (Wagatsuma and Hirokawa 1989). The reduced 1125 

density of metastable Ar in the plasma makes Penning ionization of the analyte less likely. On the 1126 

other hand, the N2, N2+, and N+ species are highly active in scavenging O2 to form NO+. Based on 1127 

ion distributions measured in a mixed Ar-N2 plasma, ionization is suggested to occur primarily by 1128 

charge transfer with NO+, N2+, or Ar+ (Houk et al., 1983; Holliday and Beauchemin 2002; Holliday 1129 

and Beauchemin 2003).  1130 

The formation of polyatomic and oxide interferences can be significantly reduced in an Ar-N2 1131 

plasma where ionization is dominated by charge transfer with NO+. Adding low-flow of N2 (30 1132 

mL/min, < 5% vol./vol.) to the nebulizer gas has been shown to considerably reduce the formation 1133 

of ArCl+, ArAr+, and ArO+, possibly due to the competitive formation of N-based polyatomic 1134 

species (Evans and Ebdon 1989; Evans and Ebdon 1990). In addition, the ionization energy of 1135 

NO+ is lower than that for most Ar- and Cl-based polyatomic interferences, which limits their 1136 

production in an Ar-N2 plasma. The formation of NO+ also effectively sequesters oxygen, thereby 1137 

reducing oxide production (Lam and Horlick 1990; Holliday and Beauchemin 2003). Moreover, 1138 

N actively quenches excited state pathways of certain oxide species in the expansion chamber, as 1139 

illustrated by NdO+ (Newman et al., 2009). Finally, the presence of N in the nebulizer gas has also 1140 

been shown to mitigate the effects of matrix elements on sensitivity (van der Velde-Koerts and de 1141 

Boer 1994). 1142 

Along with the reduced formation of polyatomic ions in a mixed Ar-N2 plasma, it has been 1143 

observed that the sensitivity of many elements increases with careful optimization of gas flow 1144 
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rates, sampling depths, and other parameters. The addition of N2 causes the plasma volume to 1145 

contract along the torch axis (Greenfield and McGeachin 1978; Choot and Horlic 1986; Lam and 1146 

Horlick 1990; Sesi et al., 1994), thus the power density increases around its toroidal region. Since 1147 

N2 has a higher thermal conductivity than Ar, the presence of N2 may lead to enhanced energy 1148 

transfer from the toroidal region of the plasma to its central channel. However, N2 molecules also 1149 

absorb energy, which results in the cooling of the central channel. Therefore, the amount of N2 1150 

added to the nebulizer gas likely affects the competition between energy loss to the central channel 1151 

and energy transfer from the toroidal region. In ICP-OES and ICP-MS analyses, signal 1152 

enhancement is generally observed at a low flow rate of N2. In contrast, high flow rates of N2 can 1153 

lead to signal reduction or even plasma extinction (see review by Scheffler and Pozebon 2014). 1154 

The effect of N2 addition on signal enhancement depends on the element being analyzed, 1155 

particularly its ionization energy and its tendency to form a strong metal-oxygen bond. The 1156 

efficient formation of NO+ molecules in an Ar-N2 plasma would reduce oxygen availability for 1157 

metals that tend to form oxides, and these metals may exhibit a corresponding increase in ionic 1158 

signals (Lam and Horlick 1990). In addition, charge transfer with NO+ can enhance the ionization 1159 

of elements with relatively high ionization energies. The improved thermal conductivity in Ar-N2 1160 

plasma may also be responsible for the observed signal enhancements, as supported by a broad 1161 

positive correlation between the signal enhancement factor and ionization energy of various 1162 

elements in LA-ICP-MS measurements (Hu et al., 2008). 1163 

5.4.2 Cold plasma 1164 

Operating the Ar plasma at a reduced RF power (i.e., cold plasma) can effectively suppress the 1165 

formation of Ar-related spectral interferences (Jiang et al., 1988). This method leverages the high 1166 

ionization energy of Ar compared to elements with masses similar to Ar and its polyatomic ions 1167 
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(e.g., K, Ca, Fe, Cr, and Cu, see Fig. 1). Elements with sufficiently low ionization energies can be 1168 

efficiently ionized in a cold plasma while the ionization of Ar is strongly reduced. Moreover, 1169 

ionization in a cold plasma is suggested to occur primarily via charge transfer with NO+, similar 1170 

to that in a mixed Ar-N2 plasma (Tanner 1995; Holliday and Beauchemin 2002). Therefore, when 1171 

using cold plasma, especially with a desolvation nebulization system, NO+ becomes the 1172 

predominant background species, while Ar+, ArO+, and ArH+ are significantly reduced (Jiang et 1173 

al., 1988).  1174 

The use of cold plasma has shown enhanced detection limits for elemental concentrations (low 1175 

ppt levels) and improved precision for isotope ratio measurements, as studied for Li, Fe, K, and 1176 

Ca (e.g., Sakata and Kawabata 1994; Tanner et al., 1995; Murphy et al., 2002). Notably, 1177 

Chernonozhkin et al. (2017) have shown that a precision of ±0.04‰ (2SD) can be achieved for 1178 

56Fe/54Fe ratios with a low mass resolving power (RPedge 5,95%) of 300, owing to negligible 1179 

interferences from 40Ar16O+ (on 56Fe+) and 40Ar14N+ (on 54Fe+) and reduced instrumental mass 1180 

discrimination using cold plasma (600 W) (Fig. 20). This level of precision is similar to that 1181 

typically achieved using hot plasma (1260 W), with which a significantly higher RPedge 5,95% of 1182 

4500 is required to resolve Ar-related interferences. Likewise, direct measurement of the 44Ca/40Ca 1183 

ratio with MC-ICP-MS is made possible by a decreased 40Ar/40Ca ratio from 0.1 to 0.002 when 1184 

the RF power is reduced from 1250 W to 400 W (Fietzke et al., 2004). In addition to Ar, carbon-1185 

based interferences (C2+, C2H+, C2H2+ and CN+) are significantly reduced, which facilitates high-1186 

precision measurements of Mg isotopes (Choi et al., 2012) and Li isotopes (Bryant et al., 2003; 1187 

Choi et al., 2013), particularly for the analysis of low-Li carbonate samples using single-collector 1188 

quadrupole ICP-MS (Misra and Froelich 2009).  1189 
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While cold plasma is a valuable option for analyzing elements susceptible to Ar-related 1190 

interferences, it has several potential drawbacks compared with conventional hot plasma (Tanner 1191 

1995; Bryant et al., 2003). First, non-spectral interferences appear to be greater under cold plasma 1192 

conditions. Second, oxide formation may be more pronounced for some metals under cold plasma 1193 

conditions. For example, the formation of 40CaO+ would directly interfere with 56Fe+ and 1194 

underestimate the 40Ca+ signal. Third, certain interferences remain at significant levels, and in these 1195 

cases, a combination of cold plasma and high mass resolution is necessary, such as for the accurate 1196 

determination of 41K+ (40Ar1H+), 57Fe+ (40Ar16O1H+), and 54Fe+ (40Ar14N+). Considering these 1197 

limitations, hot plasma is preferred for most elements due to its higher sensitivity and stability. 1198 

5.5 Collision/reaction cell 1199 

Collision/reaction cell (CRC) technology has found diverse applications before being adapted 1200 

for removing polyatomic interferences in ICP-MS. The early development of CRC was motivated 1201 

by research in the physical chemistry of gaseous ions. For example, Von Zahn and Tatarczyk 1202 

(1964) used an RF-only quadrupole field in a pressurized flight tube between two mass 1203 

spectrometers to quantify collision-induced dissociations (CID) of polyatomic ions. Futrell and 1204 

Miller (1966) added a collision chamber between two double-focusing mass spectrometers to study 1205 

ion-molecule reactions. In subsequent studies, the sector-field mass spectrometers were replaced 1206 

by two quadrupole mass filters to improve the ion transmission efficiency (Iden et al., 1972; Yu et 1207 

al., 1972), and an RF-only quadrupole was inserted in between for photodissociation of polyatomic 1208 

ions (Vestal and Futrell 1974; McGilvery and Morrison 1978). In a following study, Yost and Enke 1209 

(1978) introduced triple quadrupole mass spectrometry to analytical chemistry, with mass 1210 

selection of ions in the first quadrupole, collisional fragmentation of selected ions in the second 1211 

quadrupole (RF-only), and analysis of fragmented ions in the third quadrupole. Since then, this 1212 
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configuration has become widely adopted for structural and trace mixture analyses of complex 1213 

organic molecules (Yost and Enke 1979; Yost 2022).  1214 

Several techniques have been explored to remove polyatomic interferences using CID. Initial 1215 

experiments with triple quadrupole mass spectrometers yielded promising results from glow 1216 

discharge mass spectra, suggesting that specific polyatomic ions (e.g., ArO+) can be eliminated or 1217 

reduced by dissociating their chemical bonds (King and Harrison 1989). However, using ICP-MS, 1218 

Douglas (1989) found that the collision energy required to dissociate many polyatomic ions is 1219 

greater than the difference in ionization energy between the analyte ions and the Ar atoms. As a 1220 

result, CID would promote the neutralization of analyte ions by electrons transferred from Ar 1221 

atoms. In this case, the loss of analyte ions due to scattering and charge transfer outweighs the 1222 

benefit of dissociating polyatomic ions by collision. Nevertheless, D.J. Douglas noticed that Ce+ 1223 

reacted with O2 much more efficiently than CeO+ when air was introduced into the quadrupole and 1224 

suggested that ion-molecule chemistry in a collision cell might help alleviate molecular 1225 

interferences.  1226 

Rowan and Houk (1989) investigated the potential for chemical resolution of polyatomic 1227 

interferences using a quadrupole collision cell connected between the ICP source and a quadrupole 1228 

mass filter. They observed effective attenuation of Ar2+, ArO+, and ArN+ when Xe or CH4 were 1229 

used for the reactions, and efficient removal of unwanted ions by kinetic energy discrimination. 1230 

Subsequent work has elaborated on the high selectivity of ion-molecule chemistry using different 1231 

gases (H2, O2, and CH4) to remove plasma matrix ions (Barinaga et al., 1994; Koppenaal et al., 1232 

1994; Eiden et al., 1996; Eiden et al., 1997; Eiden et al., 1999). At the same time, efforts were 1233 

made to reduce the substantial loss of analyte ions (30-50%) due to collisions with the background 1234 

gas. Douglas and French (1992) reported improved ion transmission by feeding the cell with a 1235 
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buffer gas, which provides collisional focusing of the ion beam. Further improvements in 1236 

transmission were achieved by using a higher-order multipole (Eiden et al., 1997; Turner et al., 1237 

1997; Feldmann et al., 1999). These improvements led to commercially available CRC-equipped 1238 

ICP-MS instruments.  1239 

The use of RF-driven multipole CRC in ICP-MS has been discussed in detail by Koppenaal et 1240 

al. (2004). The choice between quadrupole, hexapole, or octopole depends on the specific 1241 

analytical purpose. A quadrupole offers the unique advantage of selecting target ions through a 1242 

narrow, user-chosen m/z range while rejecting all ions outside this range. However, a quadrupole 1243 

produces a steep and narrow potential field (Fig. 21) that requires collisional focusing to reduce 1244 

scattering losses. It is thus necessary to use relatively heavy molecular gases with large cross-1245 

sections (e.g., NH3 and CH4) to induce abundant ion-molecule interactions. In comparison, lighter 1246 

gases (e.g., He and H2) are generally used in a hexapole or octopole because they have wider and 1247 

flatter potential well minima, which result in a larger ion stability region that allows simultaneous 1248 

transmission of ions with different masses at high efficiency (Fig. 21). Furthermore, the larger ion 1249 

stability region in higher-order multipoles ensures a greater gas thickness (at comparable 1250 

pressures), which increases the number of collisions and, thus, the reaction efficiency. In summary, 1251 

a quadrupole CRC works with more reactive gases, while a hexapole or octopole CRC works with 1252 

more selective gases. 1253 

In essence, CRC is a type of ion-guiding lens pressurized with gases. When filled with a 1254 

chemically inert gas (e.g., He), it acts as a collision cell that attenuates polyatomic interferences 1255 

by kinetic energy discrimination (Fig. 22). Because polyatomic ions have larger sizes than atomic 1256 

analytes with the same nominal mass, they would collide more frequently with the buffer gas and 1257 

lose more kinetic energy. These low-energy polyatomic interferences can thus be readily filtered 1258 
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out at the exit of the cell by applying a bias voltage. However, kinetic energy discrimination is less 1259 

effective for isobaric interferences that occur as singly and doubly charged ions (Fig. 23A), which 1260 

require chemical resolution (Fig. 23B-D). 1261 

When the CRC is supplied with a reactive gas (e.g., H2), ion-molecule reactions are the primary 1262 

mechanism to achieve chemical resolution between analyte ions and spectral interferences (see 1263 

reviews by Tanner et al., 2002; Balcaen et al., 2015). By supplying a specific reactive gas, ion-1264 

molecule chemistry can either occur exclusively with the spectral interferences to eliminate them 1265 

from the m/z region of interest (on-mass reaction mode, Fig. 23B), or the reaction gas selectively 1266 

reacts with the atomic ions of interest to form molecular ions that can be measured in a higher m/z, 1267 

'cleaner' region (mass-shift mode, e.g., detection of 75As+ as 75As16O+). In mass-shift mode, it is 1268 

possible that certain matrix elements in the sample (e.g., 91Zr+) form isobaric interferences with 1269 

the product molecular ions (75As16O+, Fig. 23C). A mass filter can be added before the reaction 1270 

cell to reject non-target masses (Fig. 23D), ensuring that the ions entering the reaction cell are not 1271 

affected by the composition of the sample matrices.  1272 

The on-mass reaction mode is widely used in ICP-MS to electrically neutralize and remove 1273 

Ar-related interferences (e.g., Ar+, ArO+, ArCl+, and ArH+). This process involves charge transfer 1274 

between the interference species and the reaction gas, taking advantage of the high ionization 1275 

energy of Ar-based interferences (≥ 15.76 eV) compared to most analyte ions. Spontaneous charge 1276 

transfer occurs when the ionization energy of the reaction gas is lower than that of the interfering 1277 

species but higher than that of the analyte ions (Fig. 24A). Hydrogen gas with an ionization energy 1278 

of 15.42 eV is often used to react with Ar+, while the analyte ions are unaffected. The reaction 1279 

forms simple product ions with low m/z ratios (Eiden et al., 1996). For example, electrons can be 1280 
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spontaneously transferred from H2 to Ar+ (e.g., Ar+ + H2 à Ar + H2+), freeing m/z = 40 for the 1281 

measurement of 40Ca+.  1282 

On-mass interferences can also be eliminated by converting into a new ionic species with a 1283 

different m/z ratio. These reactions typically involve proton transfer (AH+ + B à BH+ +A), 1284 

hydrogen atom transfer (A+ + BH à AH+ +B), and hydride ion transfer (A+ + BH à B+ +AH) 1285 

due to the fast reaction rate of small-sized hydrogen (Tanner et al., 2002). For instance, ArO+ and 1286 

ArOH+ have lower ionization energies than H2, so they cannot be neutralized by charge transfer 1287 

with H2. Instead, these interferences can be removed through successive exothermic reactions of 1288 

ArO+ + H2 à ArOH+ + H and ArOH+ + H2 à H2O+ + Ar + H (Arnold et al., 2008). Another 1289 

example is the proton transfer reaction of ArH+ + H2 à H3+ +Ar to remove ArH+, which is a major 1290 

interference on 41K+ (e.g., Li et al., 2016). 1291 

Instead of using a gas to selectively react with the interferences (i.e., the on-mass reaction 1292 

mode), the mass-shift mode increases the mass of an analyte ion by a known value, thus separating 1293 

it from the spectral interferences. This approach is particularly useful for ionic species that exhibit 1294 

significantly different chemical reactivity toward a specific reactive gas. Oxidation is commonly 1295 

used because it exploits the large difference in oxygen affinity between the atomic ions of interest 1296 

and the polyatomic interferences (Fig. 24(b)). General oxidizing agents such as N2O and CO2 have 1297 

the advantage of forming stable reaction products (e.g., N2 and CO). In comparison, targeted 1298 

oxidation of specific ions can be achieved by reactions with O2 or NO, which require strong A+-O 1299 

bonding. Exothermic oxidation by O2 has facilitated the measurement of S and P concentrations 1300 

by converting them to SO+ and PO+, thereby shifting their masses away from those of polyatomic 1301 

interferences (e.g., NO+, NOH+, CH3O+, 16O2+) (Bandura et al., 2002).  1302 
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The mass-shift mode has also been applied to in situ Rb-Sr dating with LA-ICP-MS(-MS) 1303 

(e.g., Moens et al., 2001; Cheng et al., 2008). These applications are based on the significantly 1304 

different electronic configurations of Sr+(s1) and Rb+ (s0), which result in their distinctive chemical 1305 

reactivities. Sr+(s1) is highly reactive toward a variety of gases (denoted as MX) and forms Sr-1306 

bearing complexes, such as SrF+ by F-atom transfer with CH3F and SF6, SrCl+ by Cl-atom transfer 1307 

with CH3Cl, and SrO+ by O-atom transfer with N2O. In contrast, Rb+ (s0) has a noble-gas electronic 1308 

configuration and is inert or reacts only very sluggishly with these gases. Therefore, the ratios of 1309 

87Sr/86Sr and 87Rb/86Sr can be measured as 87SrMX/86SrMX and 87Rb/86SrMX, respectively. 1310 

The CRC has proven to be an effective and affordable technique for overcoming spectral 1311 

interferences in quantitative elemental analysis with the ICP quadrupole mass spectrometer. Its 1312 

previous application in magnetic sector mass spectrometers was limited to a discontinued single-1313 

focusing MC-ICP-MS (i.e., IsoProbe-P, Feldmann et al., 1999). This instrument primarily utilized 1314 

the CRC to reduce the ion kinetic energy spread (from 20-30 eV to ≤ 2 eV) by collisional energy 1315 

damping; therefore, high-precision isotopic analysis can be performed (Turner et al., 1997). 1316 

IsoProbe-P has achieved variable levels of success in determining isotope ratios, particularly for 1317 

isotopes that are severely affected by polyatomic interferences but are of significant planetary, 1318 

geological, and biological importance, such as Si (Chakrabarti and Jacobsen 2010; Sun et al., 1319 

2010), Fe (Guilbaud et al., 2010), Se (Rouxel et al., 2002), Ca (Huang et al., 2010), and K (Li et 1320 

al., 2016; Wang and Jacobsen 2016). These promising results have sparked interest in using a CRC 1321 

on double-focusing MC-ICP-MS for more precise and accurate isotopic analysis. 1322 

Currently, four models of MC-ICP-MS offer a CRC option, all of which utilize an RF-only 1323 

hexapole. The Sapphire model, manufactured by Nu Instruments, features a switchable 1324 

conventional mode and CRC mode (Fig. 25). The conventional mode functions as a Nu Plasma 3 1325 
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double-focusing MC-ICP-MS with an acceleration voltage of 6 kV. When switching to the CRC 1326 

mode, ions are first accelerated with a voltage of 4 kV and then slowed down slightly before 1327 

entering an off-axis CRC. After the reaction, the ion beam is focused onto the exit slit and 1328 

reaccelerated by a voltage of 4 kV. Compared with isotopic analyses performed using high mass 1329 

resolution with considerably reduced sensitivity (e.g., Hu et al., 2018; Morgan et al., 2018), the 1330 

Sapphire CRC mode provides high-precision isotopic analyses for K (Ku and Jacobsen 2020; Chen 1331 

et al., 2021; Moynier et al., 2021; Li et al., 2022; Zheng et al., 2022; An et al., 2023), Ca (Dai et 1332 

al., 2022; Gao et al., 2022), and Fe (Wang et al., 2022) using low mass resolution without 1333 

compromising the sensitivity. The CRC unit can also be implemented on the Nu Sapphire 1700 1334 

platform with an extended geometry (An et al., 2023), achieving high chemical resolution and high 1335 

mass resolution.  1336 

The other three models of CRC-MC-ICP-MS are built on platforms from Thermo Fisher 1337 

Scientific, with the addition of a pre-cell mass filter to select the m/z "windows" entering the CRC 1338 

(Fig. 26). This configuration is promising for laser-ablation applications that do not require 1339 

chemical purification of the analyte. A prototype model named Proteus was built by combining 1340 

the ion source, a modified quadrupole mass filter, and the CRC of the iCAP-Q-MS with a Neptune 1341 

Plus MC-ICP-MS. While this instrument has been used for high-precision K (Mahan et al., 2022) 1342 

and Ca (Lewis et al., 2022) isotopic analyses and in situ Rb-Sr dating (Bevan et al., 2021), its 1343 

analytical capability was limited by the low sensitivity and strong non-exponential mass bias 1344 

associated with the quadrupole mass filter (Craig et al., 2021). To overcome these limitations, an 1345 

upgraded prototype instrument named Vienna was developed. This instrument, commercially 1346 

known as Neoma, features a double "Wien filter" for mass selection and is tailored for coupling 1347 

with the Neptune XT MC-ICP-MS (Craig et al., 2021). The potential of this new instrument has 1348 
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been successfully demonstrated by a study of in situ 87Rb-87Sr measurements on minerals using 1349 

SF6 gas (Dauphas et al., 2022) and high-precision Cu isotopic analysis using helium gas to remove 1350 

40Ar23Na+ interferences on 63Cu+ (Télouk et al., 2023). The conventional applications of Neoma 1351 

were also illustrated by high-precision K (Télouk et al., 2022), U (Zirakparvar et al., 2023), and Ti 1352 

(Deng et al., 2023) isotopic analyses.  1353 

5.6 High-resolution 1354 

For ICP-MS instruments with a magnetic sector, their inherent high mass resolution can 1355 

physically separate spectral interferences from analyte masses (e.g., Bradshaw et al., 1989). This 1356 

method is a convenient alternative to chemical resolution with a CRC. It has been widely used for 1357 

precise and accurate isotopic analysis where two or more isotopes need to be measured without 1358 

the influence of interfering species. Typically, three options for mass resolving power (RPedge 5,95%) 1359 

are achievable, ranging from low (~300-400) through medium (~4000-9000) to high (≥10000). 1360 

The state-of-the-art MC-ICP-MS instruments are capable of providing an RPedge 5,95% ≥ 15000, 1361 

either by an innovative slit design (for Nu Plasma HR, II, 3, and Nu Sapphire) or by the use of an 1362 

additional ultra-high-resolution (XHR) unit (for Neptune XT and Neoma MC-ICP-MS). These 1363 

high-resolution instruments are well suited for the isotopic analyses of Si, Mg, Cl, and K (e.g., 1364 

Hobin et al., 2021).  1365 

The mass resolution of an instrument can be adjusted by varying the slit widths. The Nu 1366 

Instruments MC-ICP-MS, for example, has three types of slits: the source slit with three width 1367 

options (0.03, 0.05, and 0.3 mm, Fig. 27A), the two symmetrical alpha slits that can be adjusted 1368 

continuously from 0-7 mm (Fig. 27B), and three sets of collector slits (0-1 mm) located in front of 1369 

the low, medium, and high mass collectors (Fig. 27C). For high-precision analysis, the collector 1370 

slit is usually wider than the ion beam, i.e., the source image (Fig. 27D). During the mass scan, the 1371 
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entire ion beam is collected and appears as a flat-topped peak, so that slight or transient shifts in 1372 

the ion image position in the focal plane have a negligible effect on the measured intensity and 1373 

precision. In contrast, if the beam is as wide as the collector slit, any mass instability would have 1374 

a significant effect on the registered signal. 1375 

In low-resolution mode, all slits are set to their maximum widths. Polyatomic ions may overlap 1376 

with the peaks of the analytes in the absence of a CRC (Fig. 28A and B). Narrowing the source 1377 

slit and the collector slit leads to a steeper peak slope and a higher mass resolution (Fig. 27D and 1378 

28C-E). The two alpha slits reduce the aberration of a diverging beam by passing a small current 1379 

through each alpha slit wire, which cuts off the beam from both sides until the beam intensity is 1380 

halved (Fig. 27(b)). The adjustable collector slit can then be moved to improve the alignment of 1381 

the analyte peaks and their separation from the interferences (Fig. 27C). As a trade-off for the 1382 

increased resolution, the sensitivity is reduced by a factor of ~10 in medium resolution and 15-20 1383 

in high resolution. 1384 

In most applications, polyatomic interferences occur on the high-mass side of the analyte peaks 1385 

(Fig. 28C). Isotopic measurements can be performed on the low-mass side, where an interference-1386 

free, flat-topped section is provided by setting the collector coincidence to block the interfering 1387 

ions (Fig. 28D). This pseudo-high-resolution mode is preferred over the true high-resolution mode 1388 

(Fig. 28E) because it provides a wider flat-topped peak shoulder for the analysis. However, 1389 

interferences can occur on both sides of the analyte ions, especially if the analyte elements have 1390 

not been chemically separated from the matrix elements prior to isotopic analysis (e.g., in laser 1391 

ablation applications). For example, 48Ca2+ occurs on the low-mass side of the Mg isotope peaks, 1392 

while 12C14N+, 12C21H2+, 12C13C+, and 12C2+ occur on the high-mass side. In this case, the true high-1393 
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resolution mode is necessary as it allows complete separation of the interferences from the analyte 1394 

peaks without further reducing the beam sensitivity (Fig. 28E and F). 1395 

To achieve high resolution with improved ion transmission, Nu Instruments introduced a large-1396 

geometry double-focusing MC-ICP-MS, i.e., the Nu Plasma 1700, in 1999. It features a 1397 

substantially wider mass dispersion of ~1700 mm compared to conventional MC-ICP-MS (~500 1398 

mm), achieved by combining a 943 mm radius, 70° sector electrostatic analyzer with a 750 mm 1399 

radius, 70° laminated magnet. The large geometry offers a high base resolution of > 800 (10% 1400 

valley definition), which is sufficient for analyzing approximately 40% of the isotopes at 100% 1401 

ion transmission. The flat-topped peak, which is critical for isotopic ratio analysis, can be 1402 

maintained at a 10% valley resolution of > 5000 (e.g., Fig. 28F). Additional features of this 1403 

instrument include a continuously adjustable source entrance slit and independent collector slits 1404 

that allow variable resolutions to be set for individual collectors. These features lead to a wide 1405 

range of selectable RPedge 5,95% from 5000 to 30000. For a given resolving power, the Nu Plasma 1406 

1700 has considerably higher transmission than a conventional MC-ICP-MS. A major limitation 1407 

of this instrument is being unable to resolve 36Ar+, 40Ar+, and Ar2+ from 36S+, 40Ca+ and 80Se+, 1408 

respectively. This limitation motivated the invention of the Nu Sapphire 1700 CRC-MC-ICP-MS. 1409 

 1410 

6 Instrumental isotope fractionation 1411 

An inherent issue with ICP-MS analysis is mass-dependent ion transmission efficiency, 1412 

resulting in preferential extraction and transmission of heavier ions through the interface and ion 1413 

optic system. This instrumental mass bias poses a particular challenge for isotope ratio 1414 

measurements. The magnitude of this bias varies with the analyte mass, ranging from <1%/amu 1415 

for heavy elements (e.g., Hf, Tl, Pb, and U) to ~20 %/amu for light elements such as Li and B (Fig. 1416 
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29). To obtain accurate isotopic ratios, it is crucial to correct the instrumental isotope fractionation 1417 

appropriately. The two general correction methods for stable isotope ratio measurements are 1418 

double spike and standard-sample bracketing (with or without element doping). Comprehensive 1419 

reviews of different correction methods can be found in the literature (e.g., Albarède et al., 2004; 1420 

Yang 2009; Albarède et al., 2015; Yang et al., 2018; Klaver and Coath 2019), and brief 1421 

descriptions are provided below. 1422 

6.1 Double-spike approach 1423 

The most robust correction is the isotope mixture approach and its derivative, the double-spike 1424 

method, whereby the sample solution is mixed with a double-spike solution enriched in two 1425 

isotopes relative to their natural abundances (Nier 1950; Dodson 1963; Rudge et al., 2009). If the 1426 

spike is added during sample digestion, the isotope fractionation generated during sample 1427 

preparation, chromatographic purification, and instrumental analyses are all corrected by assuming 1428 

an identical fractionation being passed onto the double-spike. In cases where the isotope ratio of 1429 

an unknown sample can be related to that of the reference standard by a mass fractionation factor 1430 

α: 1431 

𝑅*+,-./⬚ = 𝑅*0+12+32⬚ ∙ V
𝑚4

𝑚5
W
6

 1432 

where mi and mj are masses of the denominator and numerator isotopes, respectively, the isotopic 1433 

ratio of a spiked sample solution can be solved from the mixing equation: 1434 

𝑅,5'0&3/ =
𝑅27&8./9*-5:/ × 𝑞 + 𝑅*+,-./ × 𝐶 × (1 − 𝑞)

𝑞 + 𝐶 × (1 − 𝑞)  1435 

where C represents the relative isotopic abundance of the denominator isotope in the sample to 1436 

that in the double-spike, and q quantifies the mole fraction of double spike in the mixture. 1437 
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Assuming that instrumental isotope fractionation follows the exponential law with a fractionation 1438 

factor of β: 1439 

𝑅,5'0&3/ = 𝑟,5'0&3/ × V
𝑚4

𝑚5
W
;

 1440 

the three equations are combined to the equation below: 1441 

𝑓(𝑞, 𝛼, 𝛽) = 𝑅27&8./	*-5:/ × 𝑞 + 𝑅*0+12+32 × 5
,!

,"
6
6
× 𝐶 × (1 − 𝑞) − 𝑟,5'0&3/ × 5

,!

,"
6
;
× [𝑞 +1442 

𝐶 × (1 − 𝑞)]=0 1443 

The instrumental mass bias (β) can be solved along with the isotope fractionation of a sample 1444 

relative to a reference standard (α) and the mole fraction of double spike in the mixture (q) by 1445 

inverting the three mixing equations using three independent isotope ratios. 1446 

The double-spike approach has the advantage of providing both high-precision isotope ratios 1447 

and elemental abundances. In addition, it does not require strict 100% recovery of the target 1448 

element from chromatographic separation; therefore, it is preferred for elements (especially trace 1449 

elements) that are difficult to completely isolate from the sample matrix without sacrificing the 1450 

chemical yields, such as Ni  (e.g., Gueguen et al., 2013), Mo (e.g., Siebert et al., 2001; Anbar 1451 

2004), Cr (e.g., Schoenberg et al., 2008), Zr (e.g., Inglis et al., 2018), and Ti (e.g., Millet and 1452 

Dauphas 2014), or for elements susceptible to evaporative loss during sample preparation, such as 1453 

Sn (e.g., Creech et al., 2017; Wang et al., 2018; She et al., 2023). Accurate and precise isotopic 1454 

determination with the double-spike approach relies on a well-calibrated double-spike composition 1455 

and an optimal spike proportion in the spike-sample mixture. Furthermore, it requires the analyte 1456 

element to have four or more stable isotopes. An exceptional case is that with a critical double-1457 

spike composition and an optimal q, the mixing equations are insensitive to β, so that it can be 1458 

estimated by analyzing a reference standard. This critical mixing double-spike approach can be 1459 
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applied to elements with three isotopes, such as Mg, Si, and K (Hofmann 1971; Bizzarro et al., 1460 

2011; Coath et al., 2017; He et al., 2022). Special attention must be paid to double-spike data 1461 

reduction for extraterrestrial samples with isotope anomalies because they do not follow mass-1462 

dependent fractionation (Hu and Dauphas, 2017). 1463 

6.2 Standard-sample bracketing approach 1464 

Standard-sample bracketing, in which standards and samples are measured sequentially, is a 1465 

generally applicable approach for correcting instrumental isotope fractionation in MC-ICP-MS 1466 

analysis if the analytes are fully recovered from the column with a clean separation  (e.g., Halicz 1467 

et al., 1999; Tomascak et al., 1999; Belshaw et al., 2000; Galy et al., 2001). This approach takes 1468 

advantage of the fast sample analyses and the relatively stable instrumental isotope fractionation 1469 

in MC-ICP-MS, as sample solutions are continuously aspirated into the ionization source. The two 1470 

essential assumptions for using the standard-sample bracketing correction are (1) a linear drift of 1471 

the instrumental isotope fractionation over a short period and (2) an identical instrumental isotope 1472 

fractionation for the sample as for the standard. Accordingly, the instrumental fractionation is 1473 

corrected by normalizing the isotopic ratio of the sample to the average of the two adjacent 1474 

bracketing standards. The isotopic ratio of an unknown sample is expressed as per mil (‰) 1475 

deviation from the bracketing standard: 1476 

𝛿*+,-./ 	(‰) = V
𝑅*+,-./

0.5𝑅*0+12+32= + 0.5𝑅*0+12+32"
− 1W × 1000 1477 

The delta value of each bracketing standard can be calculated from the two neighboring 1478 

bracketing standards in a similar way: 1479 

𝛿*0+12+32_1(‰) = `
𝑅*0+12+32_1

0.5𝑅*0+12+32_19= + 0.5𝑅*0+12+32_1?=
− 1a × 1000 1480 
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This calculation describes instrumental stability based on the reproducibility of the delta values 1481 

calculated for all bracketing standards measured during an analytical session. Since the number of 1482 

measurements on bracketing standards is significantly larger than the number of repeat 1483 

measurements on a given sample, the two standard deviation (2SD) of δstandards provides a more 1484 

conservative error estimate than that based on limited numbers of sample analyses (Dauphas et al., 1485 

2009; Teng et al., 2015). 1486 

The application of standard-sample bracketing requires neither the choice of a specific law to 1487 

describe instrumental mass fractionation nor a priori of the true isotopic ratio of the bracketing 1488 

standard. Nevertheless, this method does not correct for artifacts due to the presence of matrix 1489 

elements or other differences between the samples and the bracketing standards. Therefore, 1490 

accurate and precise isotopic determination requires a high degree of elemental purification and 1491 

matching of the analyte concentration and acid molarity between samples and bracketing standards 1492 

(e.g., Hu and Teng 2019). 1493 

The bracketing standard and sample solutions can be doped with an element of similar mass 1494 

and a known isotopic ratio to potentially correct for the non-linear drift of instrumental mass 1495 

fractionation and to mitigate matrix effects. Many studies have followed the original work of 1496 

Longerich et al. (1987) and assume that elements with similar masses have a similar instrumental 1497 

isotopic fractionation coefficient (β) in MC-ICP-MS. As an example, Ni-doping can be used in Fe 1498 

isotope analysis, assuming that 1499 

𝛽@5 = 𝑙𝑛 d
( 𝑁𝑖⬚
A" / 𝑁𝑖)⬚

A)
,/+*&3/2

( 𝑁𝑖⬚
A" / 𝑁𝑖)⬚

A)
3/B/3/1C/

g /ln	(
𝑀A"@5

𝑀A)@5
) 1500 

then 1501 
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)
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The corrected ratios are used to calculate the delta values of the samples. However, Maréchal 1503 

et al. (1999) demonstrated that for Cu and Zn, 𝛽O& and 𝛽P1 could differ by 10%, while their ratio 1504 

remain constant during an analytical session. Therefore, Maréchal et al. (1999) suggested 1505 

calculating the 𝛽O&/𝛽P1 ratio from the slope of the linear regression between drifts in ln(65Cu/63Cu) 1506 

and ln(68Zn/64Zn) of an admixed Zn standard solution [slope = 𝛽O&/𝛽P1 × 1507 

ln(M65Cu/M63Cu)]/ln(M68Zn/M64Zn), and applying this relationship to calculate the Cu isotopic 1508 

difference between the sample and the standard (and vice versa for Zn isotopic analyses).  1509 

 1510 

7 Concluding remarks and future directions 1511 

Mass spectrometry has progressed to achieve accurate analysis of isotope abundances and 1512 

ratios with higher precision using smaller samples, owing to upgraded introduction systems, 1513 

interface designs, ion lenses, and vacuum and detection systems. The development of Hf and W 1514 

isotopic measurements using MC-ICP-MS has transformed the field of geochronology (e.g., 1515 

Vervoort et al., 1996; Blichert-Toft and Albarède 1997; Albarède et al., 2000; Kleine et al., 2002; 1516 

Yin et al., 2002). The instrumental improvements have also led to the ability to resolve isotopic 1517 

variations of transition metals and heavy elements that were previously limited by analytical 1518 

uncertainties. For example, nucleosynthetic isotope anomalies have been detected in meteorites 1519 

for a growing number of elements, revealing the compositional heterogeneity across the Solar 1520 

System at various scales (e.g., Trinquier et al., 2009; Zhang et al., 2012; Dauphas 2017; Schiller 1521 

et al., 2018; Kleine et al., 2020; Kruijer et al., 2020; Schiller et al., 2020; Hopp et al., 2022; Onyett 1522 

et al., 2023). In particular, as initially suggested by Savage et al. (2014), the recent identification 1523 
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of nucleosynthetic isotope anomalies of moderately volatile Zn provides unequivocal evidence for 1524 

the contribution of both carbonaceous and non-carbonaceous materials to Earth's volatile inventory 1525 

(Paquet et al., 2022; Savage et al., 2022; Steller et al., 2022; Martins et al., 2023). The stable 1526 

isotope fractionations of moderately volatile elements and refractory elements have also 1527 

contributed significantly to our understanding of the sources and formation processes from 1528 

chondrules to terrestrial bodies (e.g., Luck et al., 2003; Luck et al., 2005; Luais 2007; Wombacher 1529 

et al., 2008; Day and Moynier 2014; Kato et al., 2015; Wang and Jacobsen 2016; Kato and Moynier 1530 

2017; Pringle et al., 2017; Nie and Dauphas 2019; van Kooten and Moynier 2019; Hellmann et al., 1531 

2020; Ku and Jacobsen 2020; Hu et al., 2021; Nie et al., 2021; Tian et al., 2021; Wang et al., 2021; 1532 

Hu et al., 2022; 2023; Koefoed et al., 2023; Nie et al., 2023; Paquet et al., 2023; Wang et al., 2024). 1533 

Metal stable isotopic variations in terrestrial rocks have been used to trace major episodes of 1534 

geologic activity throughout Earth's history, including variations in oxygen levels in the 1535 

atmosphere and oceans (e.g., Pogge von Strandmann et al., 2015; Stüeken et al., 2015; Chi Fru et 1536 

al., 2016; Zhang et al., 2018; Ostrander et al., 2019), the intensity of forward and reverse 1537 

weathering of silicates and its influence on long-term climate cycle (e.g., Pogge von Strandmann 1538 

et al., 2021; Cao et al., 2022), the linkage between extreme paleoenvironments and mass 1539 

extinctions (e.g., Payne et al., 2010; Huang et al., 2016; Liu et al., 2017; Zhang et al., 2021; Shen 1540 

et al., 2022), the process and timing of subduction initiation, as well as the nature and mechanism 1541 

of Archean continental crust formation (e.g., André et al., 2019; Deng et al., 2019; Antonelli et al., 1542 

2021; Huang et al., 2022; Deng et al., 2023; Tian et al., 2023), the cycling of surface materials 1543 

(including carbon) to the sub-arc and deep mantle (e.g., Elliott et al., 2006; Beunon et al., 2020; 1544 

Banerjee et al., 2021; Huang and Jacobsen 2021; Debret et al., 2022; Liu et al., 2022; Zhang et al., 1545 

2022). There is also a growing interest in using metal stable isotopes in the fields of environmental 1546 
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science (e.g., Cloquet et al., 2008; Weiss et al., 2008; Yin et al., 2010; Blum et al., 2014; 1547 

Wiederhold 2015; Schilling et al., 2021; Balaram et al., 2022; Basu et al., 2022; Johnson et al., 1548 

2022; Sullivan et al., 2022; Qu and Han 2023), ecology and bioarchaeology (e.g., Jaouen and Pons 1549 

2017; Martin et al., 2017; Hassler et al., 2018; Stephens et al., 2021; Martin et al., 2022), and bio-1550 

medical science (e.g., von Blanckenburg et al., 2009; Balter et al., 2013; Moynier et al., 2013; 1551 

Balter et al., 2015; Albarède et al., 2017; Moynier et al., 2017; Costas-Rodríguez et al., 2019; 1552 

Mahan et al., 2020; Moynier et al., 2020; Tacail et al., 2020; Schilling et al., 2021; Hill Gallant 1553 

and Zheng 2022; Morel et al., 2022; Schilling et al., 2022; Sullivan et al., 2023).  1554 

More recently, CRC-MC-ICP-MS has shown great promise in removing Ar-related 1555 

interferences, which enables the measurement of K, Ca, and Fe isotope ratios without resorting to 1556 

the pseudo-high-resolution mode that leads to a substantial sensitivity loss. Another advantage of 1557 

the CRC-MC-ICP-MS is that 40Ca is directly measurable, with limited isobaric interference from 1558 

40Ar. These improvements provide the opportunity to further investigate the Ca isotopic 1559 

composition of the bulk Solar System and terrestrial bodies (e.g., Klaver et al., 2021; Eriksen and 1560 

Jacobsen 2022; Fu et al., 2022; Moynier et al., 2022; Fu et al., 2023), to apply 40K-40Ca dating (Dai 1561 

et al., 2023), to identify the presence of short-lived 41Ca as 41K excess in chondritic components 1562 

(Ku et al., 2022), and to explore biological applications of metal isotopes (e.g., Moynier et al., 1563 

2021; Higgins et al., 2022; Mahan et al., 2022; Télouk et al., 2022; Cui et al., 2023a; b). In addition, 1564 

the mass-shift mode of CRC has been successfully applied to in situ Rb-Sr dating (Bevan et al., 1565 

2021; Dauphas et al., 2022). The potential of CRC-MC-ICP-MS is far from fully realized. With 1566 

significantly improved sensitivity, the isotopic ratios of many elements can be analyzed with 1567 

minimal sample consumption. Future studies could be targeted at detecting small-scale isotopic 1568 

variations, such as in minerals and their inclusions, experimental products, and mission return 1569 
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samples (e.g., Moynier et al., 2022; Hu et al., 2024), at coupling a laser ablation system to the 1570 

CRC-MC-ICP-MS (e.g., Bevan et al., 2021; Dauphas et al., 2022), or at investigating ion-1571 

chemistry with various gases and extending the CRC techniques to other isotope systems that are 1572 

plagued by polyatomic interferences (e.g., Se and Si).  1573 

Another direction for future exploration is the development of ICP using an alternative plasma 1574 

gas to increase the ionization efficiency and to reduce polyatomic interferences. For example, 1575 

many limitations of argon plasma could be overcome by using helium plasma (Abdallah and 1576 

Mermet 1982; Robin et al., 1982; Chan and Montaser 1985; Chan et al., 1986; Montaser et al., 1577 

1987); because helium consists primarily of 4He (natural abundance 99.9998%), which has an 1578 

extremely low m/z ratio of 4. Furthermore, helium has a considerably higher ionization energy 1579 

(24.6 eV) than argon; therefore, helium plasma is expected to enhance the ionization efficiency of 1580 

elements. The analytical performance of neon plasma has also been investigated using laser 1581 

ablation (LA)-ICP-MS to analyze solid materials, where Ar-related interferences are reduced 1582 

(Petibon et al., 2002). It is worth noting that commercial instruments are optimized for argon 1583 

plasma. Using an alternative plasma gas may require a major adjustment in the RF generator's 1584 

matching circuits, forward power, torch configuration, and pumping capacity in the interface. 1585 

Since W. Wien observed the deflection of positively charged particles in a magnetic field and 1586 

J. J. Thomson’s discovery of isotopes a century ago, mass spectrometry has evolved from a 1587 

technique for studying atomic structures into an essential tool for molecular, elemental, and 1588 

isotopic ratio analyses. The development of self-sustaining, atmospheric ICP with an aqueous 1589 

sample introduction system has facilitated multi-element analysis with unprecedented flexibility, 1590 

detection limits, and sample throughput. The coupling of ICP with a quadrupole mass analyzer has 1591 

made ICP-MS a worldwide popular analytical technique. The integration of double-focusing 1592 
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magnetic sector MS with a multi-collector detection system (MC-ICP-MS) has further 1593 

revolutionized the field, enabling accurate and precise isotopic analysis of metals and metalloids 1594 

across the Periodic Table. The utilization of collision/reaction cell technology on modern MC-1595 

ICP-MS has offered a novel approach to removing spectral interferences. Future endeavors to 1596 

improve interface design and reduce space charge effects will allow the potential of ICP-MS to be 1597 

better exploited. The constant pursuit of higher mass resolution and analytical precision, accuracy, 1598 

and sensitivity will continue to push the analytical boundaries of ICP-MS, fueling interdisciplinary 1599 

research in the broad fields of cosmochemistry, geosciences, environmental sciences, and 1600 

biological and medical sciences.  1601 
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Figure captions 1614 
 1615 

Fig. 1. Argon ICP as an efficient ionization source. (A) Ionization energy (eV) of elements as a 1616 
function of their atomic mass. (B) Degree (%) of ionization of elements as a function of their 1617 
ionization energy, adapted from the calculated results by Houk (1986) based on Saha Equation at 1618 
an ionization temperature (Tion) of 7500 K with an electron density (ne) of 1 × 1015/cm3. Argon 1619 
efficiently ionizes most elements except for non-metals, metalloids, and certain metals (e.g., Hg), 1620 
which are indicated by the red circles and labels. While most elements form singly charged positive 1621 
ions, alkali earth and rare earth elements may form doubly charged ions because their second 1622 
ionization energies are lower than the first ionization energy of argon.  1623 
 1624 
Fig. 2. Main components of double-focusing ICP-MS equipped with a multi-collector detection 1625 
system. 1626 
 1627 
Fig. 3. Typical types of nebulizers used for sample introduction into the ICP-MS. (A) Concentric 1628 
nebulizers; (B) Crossflow nebulizers; (C) Nebulizer transport efficiency as a function of sample 1629 
uptake rate. Source: (A) and (C) are reproduced with permission from Glass Expansion, and (B) 1630 
is modified from Olesik (2014) with permission from Elsevier. 1631 
 1632 
Fig. 4. Typical types of spray chambers used for condensing large droplets (> 10 μm) produced by 1633 
nebulizers. (A) A baffled cyclonic spray chamber; (B) A dual Scott/cyclonic spray chamber. 1634 
Reused with permission from Glass Expansion. 1635 
 1636 
Fig. 5. Examples of commercially available desolvation systems. (A) CETAC Aridus 3 uses a 1637 
heated spray chamber with a microporous membrane to remove solvent vapors. (B) Elemental 1638 
Scientific Inc. (ESI) Apex combines a heated spray chamber with a cold condenser and a heated 1639 
membrane desolvator to remove solvent vapors. Reused with permission from Teledyne LABS for 1640 
(A) and ESI for (B). 1641 
 1642 
Fig. 6. Sensitivity enhancement for elements between Li and U using “dry” plasma (Apex 1643 
desolvating nebulizer system) and direct injection nebulization (d-DIHEN) relative to “wet” 1644 
plasma using stable introduction system (SIS: dual Scott ⁄cyclonic spray chamber). Adapted from 1645 
Louvat et al. (2011) with permission from John Wiley and Sons. 1646 
 1647 

Fig. 7. (A) Illustration of a glass ICP torch and (B) Torch box configuration.  1648 
 1649 
Fig. 8. Interface design for ICP-MS. (A) Differential pressure levels in ICP-MS across its main 1650 
components, from the ICP at atmospheric pressure to the high-vacuum mass analyzer region. A 1651 
high vacuum is required for ions to have a long mean free path to travel through the mass 1652 
spectrometer and reach the detector. The relationship between mean free path and pressure is 1653 
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plotted based on data reported on the Pfeiffer Vacuum website for nitrogen at 273.15 K. The 1654 
horizontal axis of the plot is in reverse order (decreasing pressure). (B) An illustration of ion 1655 
extraction from the interface region. Modified from Olesik (2014) and Campargue (1984), with 1656 
permission from Elsevier and the American Chemical Society, respectively. The small gray insert 1657 
shows an older interface design using a much smaller sampling orifice, which is characterized by 1658 
a thicker boundary layer and electron-poor sheath. Adapted from Niu and Houk (1996) with 1659 
permission from Elsevier. 1660 
 1661 
Fig. 9. Schematic illustration of zoom lenses used on Nu Instruments MC-ICP-MS for adjusting 1662 
the mass dispersion of isotopes of interest. (A) Quad lenses increase the dispersion for U isotopes. 1663 
(B) Sr isotopes separated by the natural dispersion of the magnet. (C) Sr isotopes with the correct 1664 
spacing produced by the Quad lenses. Reproduced with permission from Nu Instruments Ltd. 1665 
 1666 
Fig. 10. Three commonly used definitions of resolution in mass spectrometry: (A) 10% valley 1667 
definition; (B) peak width definition; (C) peak edge definition. 1668 
 1669 
Fig. 11. An electrostatic analyzer brings diverging ions of identical kinetic energy into focus and 1670 
disperses incoming ions according to their kinetic energies. Ions having a higher kinetic energy 1671 
(EK2) are deflected less relative to those with a lower kinetic energy (EK1).  1672 
 1673 
Fig. 12. Ion deflection in a static magnetic field. (A) Circular trajectory of a moving ion in a 1674 
magnetic field. (B) Angular focusing of ions with identical kinetic energy in a perpendicular 1675 
magnetic field (shown in light blue). (C) Mass dispersion of a 180º magnetic field at the focal 1676 
plane.  1677 
 1678 
Fig. 13. The application of crossed electric and magnetic fields as a velocity selector ("Wien filter") 1679 
in the mass spectrometer.  1680 
 1681 
Fig. 14. Simplified illustration of the two commonly used configurations for double-focusing: (A) 1682 
Mattauch-Herzog geometry; (B) Forward Nier-Johnson geometry. Adapted from Jakubowski et 1683 
al., (2011) with permission from the Royal Society of Chemistry. 1684 
 1685 
Fig. 15. Schematic representation of a quadrupole mass analyzer. One pair of electrodes serve as 1686 
the low-mass filter and the other pair serve as the high-mass filter. The two electrode pairs result 1687 
in a narrow bandpass of approximately 1 amu. Adapted from Miller and Denton (1986) and 1688 
Vanhaecke and Degryse (2012) with permission from the American Chemical Society and John 1689 
Wiley and Sons, respectively. 1690 
 1691 
Fig. 16. Illustration of Mathieu stability diagram for a quadrupole ICP-MS. At a lower U/V ratio 1692 
(a shallower slope scan line), the mass resolution is reduced while ion transmission is increased. 1693 
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Adapted from Clases (2023) with permission from the Royal Society of Chemistry under CC-BY 1694 
3.0 license. 1695 
 1696 
Fig. 17. Schematic representation of an orthogonal-acceleration time-of-flight mass spectrometer 1697 
(TOF MS) coupled to a quadrupole ICP. Adding a reflector improves the mass resolution; different 1698 
travel distances in the reflector compensate for the kinetic energy distribution of ions with the same 1699 
m/z ratio. Adapted from Hendriks et al. (2017) with permission from the Royal Society of 1700 
Chemistry. 1701 
 1702 
Fig. 18. Schematic illustrations of common ion detectors used in ICP-MS, with the Faraday cup 1703 
on the left and ion multipliers on the right. The illustration(s) for the Faraday cup and electron 1704 
multiplier are adapted from Wiedenbeck et al., (2012) with permission from John Wiley and Sons, 1705 
for the Daly detector is adapted from Daly (1960) with permission from AIP Publishing, and for 1706 
the multi-collector arrangement is reproduced with permission from Nu Instruments Ltd. 1707 
 1708 
Fig. 19. Dynamic range of different detector types. The recommended detector(s) available for a 1709 
given signal intensity are indicated by the intensity of shading. The counting statistic limit on 1710 
precision for a 10-minute acquisition is shown at the top, with the typical limit for each detector 1711 
type on the right. Provided by Thermo Fisher and reused with permission. 1712 
 1713 
Fig. 20. An illustration of using cold plasma to effectively reduce Ar-related interferences for Fe 1714 
isotopic analysis. Mass scans in (A) and (B) were performed in medium mass resolution (m/Δm = 1715 
4500) using “wet” plasma introduction at different RF powers. Compared with (A) hot plasma 1716 
conditions (1260 W), the interferences of 40Ar16O+ (on 56Fe+) and 40Ar14N+ (on 54Fe+) become 1717 
negligible under (B) cold plasma conditions (600 W), allowing 56Fe/54Fe ratios to be measured 1718 
precisely in low mass resolution mode (m/Δm ~ 300). However, a small amount of 40Ar16O1H+ 1719 
persists, and interferes with the minor isotope of 57Fe. Reproduced from Chernonozhkin et al. 1720 
(2017) with permission from the Royal Society of Chemistry. 1721 
 1722 
Fig. 21. A comparison of the potential well (upper panel) and ion stability regions (blue field in 1723 
the lower panel) between a quadrupole, a hexapole, and an octopole. Adapted and modified from 1724 
Marchante-Gayón et al. (2003) with permission from the Royal Society of Chemistry. 1725 
 1726 
Fig. 22. Principles of kinetic energy discrimination in a collision cell. A narrower ion energy 1727 
distribution leads to a better separation between the analyte ions and the polyatomic interferences. 1728 
Reproduced with permission from Thermo Fisher. 1729 
 1730 
Fig. 23. Schematic representation of four different modes of CRC operation. (A) Collision mode: 1731 
a buffer gas is added to the cell to filter out the slightly more massive polyatomic ions based on 1732 
kinetic energy discrimination. (B) On-mass reaction mode: charge exchange reactions with H2 1733 
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remove 40Ar+ and ArH+ interferences, freeing m/z of 39, 40, and 41 for K isotope measurements. 1734 
(C) Conventional mass-shift mode: 75As+ is oxidized to 75As16O+ and measured at m/z = 91, which 1735 
overlaps with the isobaric interference of 91Zr+. (D) Mass-shift mode with pre-cell mass filtering: 1736 
the first quadrupole admits only ions at m/z = 75 to the cell while those with other m/z values (e.g., 1737 
91Zr+) are rejected. 75As+ is then converted to 75As16O+ by O2 and measured at m/z = 91. Adapted 1738 
and modified from Balcaen et al. (2015) with permission from Elsevier. 1739 
 1740 
Fig. 24. Chemical reactions to remove isobaric interferences via (A) electron transfer and (B) 1741 
oxygen atom transfer with various gases. In (A), atomic ions are labeled in black color, and their 1742 
oxides and chlorides are shown in blue and green color, respectively. If the first ionization energy 1743 
(indicated on the y-axis) of an interfering species is higher than the reaction gas (indicated by the 1744 
dashed lines), it is thermodynamically favorable to neutralize the interfering ions by electron 1745 
transfer from the gas. In (B), atomic ions of analytical interest are shown as solid circles and 1746 
interferences (argon, argide, oxide, and hydroxide) are shown as open circles. The horizontal 1747 
dashed lines represent oxygen atom affinities of gases with one less oxygen than their indicated 1748 
forms. If an ion has an oxygen-atom affinity (shown on the y-axis) above a dashed line, it is 1749 
thermodynamically favorable to incorporate an oxygen atom from the corresponding gas. Ion 1750 
oxides with oxygen-atom affinities lower than the dashed line readily give up an oxygen atom to 1751 
the corresponding neutral, which has one less oxygen atom than the indicated gas. Adapted from 1752 
Koyanagi et al. (2005) and  Tanner et al., (2002), with permissions from John Wiley and Sons and 1753 
Elsevier, respectively. 1754 
 1755 
Fig 25. Schematic representation of the dual-path design of Nu Sapphire CRC-MC-ICP-MS. The 1756 
application of the Conventional Mode, as illustrated by K isotopic analysis (Hu et al., 2018), is 1757 
compared with the use of Collision/Reaction Cell (CRC) Mode to remove Ar-based interferences 1758 
for K and Ca isotopic measurements. Modified from figures provided by Nu Instruments Ltd with 1759 
permission. 1760 
 1761 
Fig. 26. Schematic representations of CRC-MC-ICP-MS built on Thermo Fisher Scientific 1762 
platforms with a pre-cell mass filter. (A) Proteus; (B) Vienna; (C) Neoma. Neoma is commercially 1763 
available, while Proteus and Vienna are prototypes. (A) and (B) are from Craig et al. (2021) with 1764 
permission from American Chemical Society under CC-BY 4.0 license, and (C) is adapted from 1765 
Dauphas et al. (2022) with permission from the Royal Society of Chemistry under CC-BY 3.0 1766 
license. 1767 
 1768 
Fig. 27. Three types of slits and their respective locations on a Nu Instruments MC-ICP-MS for 1769 
mass resolution adjustment. (A) Source slit (0.03 mm, 0.05 mm, and 0.3 mm); (B) Alpha slits (0-1770 
7 mm); (C) Collector slits (0-1 mm); (D) Registered peak shape after two spatially resolved beams 1771 
(with dispersion D and width b) swept across a Faraday cup (with collector slit width WC). 1772 
Modified from figures provided by Nu Instruments Ltd with permission. 1773 
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 1774 
Fig. 28. Different mass resolution modes used in MC-ICP-MS. (A) In low-resolution mode,  a 1775 
collision/reaction cell provides interference-free flat-topped peaks for Fe isotopes. (B) Without a 1776 
collision/reaction cell, the polyatomic interferences overlap with the Fe isotope peaks in low-1777 
resolution mode. (C) and (D) In pseudo-high-resolution mode, Fe isotope peaks are partially 1778 
resolved from the polyatomic interferences, providing an interference-free peak shoulder for 1779 
isotope ratio analyses. (E) and (F) In true high-resolution mode, Fe isotope peaks are fully 1780 
separated from the polyatomic interferences. The large-geometry Nu Plasma 1700 provides wider 1781 
flat-topped peaks than the standard MC-ICP-MS. Modified from figures provided by Nu 1782 
Instruments Ltd with permission. 1783 
 1784 
Fig. 29. Instrumental mass bias (% per amu) for elements over the mass range from Li to U in MC-1785 
ICP-MS. The extent of the bias for an element depends primarily on its mass. 1786 
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